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The complex SCM method combines several elements, which include demand 

forecasting alongside inventory management and supplier selection, and risk mitigation 

procedures. Artificial Intelligence integration with Supply Chain Management shows the 

potential to boost operational effectiveness while upgrading decision systems and 

minimization of operational safety threats. The study aims to investigate and apply AI 

methods to SCM for efficiency improvement, decision-making aids, and operational risk 

mitigation, using novel computational tools such as predictive and optimization models. 

This study proposes an integrated methodology for demand forecasting, late delivery risk 

prediction, and delivery status classification to enhance decision-making in SCM. The 

"DataCo Smart Supply Chain for Big Data Analysis"(DataCo Smart Supply Chain for 

Big Data Analysis Dataset, no date) dataset is used, which is sourced from Kaggle. The 
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key preprocessing steps included missing data handling, datetime transformation, feature 

engineering, and variable encoding. Time series forecasting using Prophet was applied to 

weekly aggregated order data, while classification tasks utilized AdaBoost, Cat Boost, 

and MLP models. Feature importance analysis and SMOTE were employed to enhance 

model accuracy and address data imbalance. Model performance was evaluated using 

MAE, MSE, RMSE, accuracy, recall, precision, and F1 score. The proposed machine 

learning models demonstrated high effectiveness in optimizing key supply chain tasks. 

For delivery status prediction, advanced models such as AdaBoost, Cat Boost, and MLP 

achieved exceptional AUC scores, with Cat Boost and MLP reaching 100%. In late 

delivery risk prediction, these models consistently delivered strong performance, 

achieving AUC values above 97%. For demand forecasting, the Prophet model achieved 

the lowest error rates with an MAE of 0.1391 and an RMSE of 0.1612. These findings 

demonstrate that deep learning and ensemble methods significantly improve SCM 

decision-making in terms of accuracy, efficiency, and predictive power. 
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CHAPTER I:  

INTRODUCTION 

1.1 Introduction 

In today's supply chains, the packaging business is indispensable, acting as a link 

between producers and buyers while guaranteeing the security, excellence, and longevity 

of products (Kozik, 2020). The need for cutting-edge technology that can op00timize 

design, guarantee quality, reduce waste, and improve operational efficiency is rising in 

tandem with the need for responsible and eco-friendly packaging solutions (Muhammed 

et al., 2025). There are two types of packaging technologies used in industries: traditional 

and modern or smart packaging technologies. Plastic and flexible packaging supplanted 

metal, paperboard, and glass as a result of the development of new materials such as 

ethylene vinyl alcohol polymers, polyester, and polypropylene. Radio frequency 

identification (RFID), intelligent or smart packaging (IOSP), and active packaging (e.g., 

oxygen scavengers, moisture absorbers, and antimicrobials) are among the many 

technical breakthroughs in packaging that have taken place in the last few decades. 

Product safety, quality, and longevity were all improved by these innovations (J. W. Han 

et al., 2018). 

The goal of SCM is to maximize customer satisfaction, overall performance, and 

procurement efficiency by strategically coordinating an organization's business processes. 

SCM is essential to any company's operations, and even little data mistakes may cause 

big problems for customers (Radivojević et al., 2022). For example, presenting products 

as sold out during in-store transactions or at checkout, or advertising inaccurate inventory 

levels online, may have a significant influence on consumer satisfaction. Customer 

frustration and bad word of mouth may result in lost revenue and unfavorable social 

media evaluations when such mistakes occur. Consequently, it is critical to keep supply 



 

 

chain operations accurate and up-to-date after preserving a favorable reputation for the 

organization and guarantee a great client experience (Tirkolaee et al., 2021). 

The selection of the most appropriate suppliers for the acquisition of raw 

materials is an essential part of SCM. Making smart supplier selections may boost 

operational performance, save procurement costs, build lasting partnerships, and satisfy 

customers more. Production is another important part of SCM. It entails deciding what 

items to sell based on market demand and the company's capabilities (Yun et al., 2020). 

AI methods are the most effective means of addressing this issue with large 

datasets.  Among the many branches of AI, machine learning (ML) is particularly well-

liked for its ability to automatically detect and extract relationships between variables in 

massive datasets. ML algorithms are able to uncover previously unseen patterns in data, 

provide novel insights, and guide researchers to the most appropriate locations. 

ML methods train computers to automatically process massive amounts of data with 

greater efficiency (Dey, 2016). Traditional methods often fail when faced with enormous 

amounts of data that make pattern or information extraction and interpretation unfeasible. 

The manufacturing, quality control, and logistics sectors of supply chain management 

have all seen revolutionary shifts as a result of data analytics advancements. These 

developments allow for more efficiency and capacities to improve SCM applications via 

the integration of AI, ML, IoT technologies, and ANN (MacCarthy & Ivanov, 2022). 

1.2  Evolution of Supply Chain Management:  

The term "supply chain" refers to " an arrangement of at least three groups or 

persons" that are " directly engaged in the financial, informational, and/or product flows 

from a source to a consumer, both upstream and downstream." All parties involved in the 

supply chain, whether directly or indirectly, strive to satisfy a customer's request.  

Manufacturers, suppliers, carriers, storage facilities, merchants, and ultimately the clients 



 

 

themselves are examples of parties involved. The fact that a single company may 

participate in many supply chains highlights the interconnected character of these 

systems (Awasthi, 2024). 

Supply networks have been influenced by technological advancements in the last 

forty years. The process of digitization, which involves transforming data into digital 

form, improves efficiency by creating a robust digital thread that connects and mirrors 

real supply networks. The supply chain's data, computer infrastructure, and software are 

being impacted by the shift towards cloud-based solutions (MacCarthy & Ivanov, 2022). 

An assortment of technologies may be put to use in supply chains, including sensors for 

monitoring, inexpensive cloud computing that boosts processing capacity, and real-time 

data for monitoring shipments and inventories.  The overarching objective of SCM is to 

maximize customer satisfaction via the combined use of operational and strategic skills 

(Mentzer et al., 2001). 

Additionally, as this technology became more and more prevalent in businesses, 

businesses found numerous significant sub-processes like Enterprise Resource Planning 

(ERP), Efficient Consumer Response (ECR), Customer Relationship Management 

(CRM), Transportation Management Systems (TMS), Warehouse Management Systems 

(WMS), Total Quality Management (TQM), and others. These programs gave them the 

vital chance to have more efficient and effective operations, which naturally has resulted 

in significant (Stoychev, 2023).  

Supply chain management entered its second golden era in the 1990s.  The 

foundational literature did not reflect any major changes at this time as SCM was still in 

its early phases of development and definition. Nonetheless, the external variables that 

have aided in the evolution of SCM over this time frame are of paramount significance.  



 

 

Firstly, SCM was greatly influenced by the rise of IT and the advent of e-commerce, 

which allows people to buy products and services online. 

The knowledge of SCM has grown significantly in the recent few years, 

beginning in the early 2000s, leading to fast growth in a short amount of time.  This 

created the potential for several risks and weaknesses inside the SCM. Figure 1.1 

illustrates the many connection channels in the supply chain (Mentzer et al., 2001). 

 

Figure 1.1: Types Of Channel Relationships 

This description may be found among the three levels of supply chain complexity: 

"Ultimate Supply Chain," "Extended Supply Chain," and "Direct Supply Chain."  Figure 

1.1 a depicts a direct supply chain, which consists of three entities involved in the supply 

and demand for products and services as well as the transfer of money and data. Figure 

1.1b shows that the upstream and downstream flows of commodities, services, money, 

and data include members of both the immediate supplier's and the immediate customer's 

supply chains. The last link in the supply chain includes every business that moves 

money and data from suppliers to consumers, as well as any business that produces, 



 

 

distributes, and uses products and services. Figure 1.1c displays the most complicated 

final supply chain that might be possible.  A financial advisor advising and servicing both 

companies, a third-party logistics provider facilitating the flow of goods and services 

between them, and a market research firm supplying information about the final 

consumer to a company higher up the supply chain are all possible participants in such a 

scenario. 

1.3 Overview Of Current Technology Trends in Supply Chain Management: 

There has been a dramatic shift in the previous 20 years regarding the supply 

chain's usage of digital technologies. Leading supply chain solutions supplier Intermec 

recently conducted research that ranked the ten technologies with the most influence on 

supply chain operations. The technologies included in the study were: (1) thorough 

connection - spanning 802.11 wireless LAN protocols, cellular networks, and Bluetooth; 

(2) rugged PCs with built-in voice and GPS communication; (3) Speech Recognition; (4) 

Digital Imaging; (5) Portable Printing; (6) 2D & other bar-coding advances; (7) RFID; 

(8) RTLS (real-time locating system); (9) remote management; (10) wireless and device 

security. 

It is recommended that companies and logistics service providers keep up with the 

latest technology advancements. Following global trends in the supply chain sector may 

help firms accomplish many goals, including cutting costs, improving efficiency, making 

better use of assets, and obtaining a competitive edge over rivals (Dong et al., 2021). 

Continue your research on the three primary technologies in this section: blockchain, AI, 

BDA, and IoT. These developments are classified as important emerging technologies 

and exponential trends (Hà Huy, 2021). 

● Internet of Thing: There are several ways in which the IoT could influence the 

supply chain. These include SCM, increased efficiency and effectiveness, more 



 

 

visibility into logistics, and real-time system control. The author explains the 

system as a computerized recognition method by using RFID tags or RFID 

transporters to obtain and store data. It benefits companies as it provides more 

real-time accurate information of inventory systems than data retrieved by 

conventional method.  The technology reduces labor costs by simplifying the 

business’s processes and preventing errors (Sun, 2012). 

● Big data analytics: Big Data Analytics have a potential topic which can be 

implemented by academic and management practitioners. With the availability of 

not only data generated from traditional equipment such as POD, RFID, and GPS 

but also information retrieved from digital clickstreams, camera, and surveillance 

footages. An extensive web of interconnected technologies, according to the 

author, is facilitating real-time data collection across the supply chain, which in 

turn increases transparency throughout the logistics chain (Fosso Wamba et al., 

2018) points out that companies in the pharmaceutical industry have already been 

utilizing this technology for detecting demand spikes, stocks, and delivery 

resources beforehand 

● Artificial Intelligence (AI): AI in the logistics industry as a system which 

generates better outputs when problem-solving with higher accuracy, higher 

speed, and a capability to process more input information. The technology is 

defined as an emerging competitive advantage for enterprises in the SCM 

industry, and many companies are switching from remote monitoring to an AI-

based system, which gives access to more control, optimization, and functionality. 

3 AI techniques which are being used widely in the supply chain industry can be 

Artificial Neural Networks (ANNs), Fuzzy Logic (FL), and Urgent-based System/ 

Multi-agent System (ABS/ MAS). 



 

 

 

 

New Developments in Supply Chain Management:  

1. Global Supply Chains: The difficulty of maintaining an international supplier 

connection is something that even a small manufacturing business may encounter 

in today's more globalized global economy.  While the concept of globalization 

has been around for a while, the trend that emerged in the early 2000s caused the 

globe to become flatter than at any point in history. Unfortunately, the gap in 

prices between rich and developing nations has been narrowing in recent years. 

As a result, many businesses are rethinking their supply chain configurations, 

particularly their cost-driven offshore plans.  Businesses of all sizes in the 

industrial sector have begun to reshore their offshored operations in recent years. 

2. Sustainable Supply Chains: Sustainable supply chains have gained significant 

attention over the past decade, driven by growing environmental concerns, 

regulatory pressures, and increasing consumer demand for eco-friendly practices. 

This society-wide sustainability movement has pushed many businesses to rethink 

and redesign their supply chain strategies to minimize their environmental 

footprint while promoting social and economic responsibility. Environmentally 

conscious sourcing, packaging, transportation, and waste reduction are some of 

the techniques that businesses are embracing more and more. These initiatives 

reflect a broader industry trend where firms are prioritizing circular economy 

models, promoting reusable and recyclable materials, and implementing carbon 

footprint reduction programs. Additionally, the integration of technologies like 

blockchain and IoT in sustainable supply chains enhances transparency and 



 

 

traceability, enabling businesses to monitor and report on ethical sourcing, fair 

labor practices, and environmental compliance. (Lu & Swaminathan, 2015) 

3. Humanitarian Supply Chains: Worldwide, 6,637 natural disasters occurred 

between 1974 and 2003, affecting over 5.1 billion people and causing $ 1.38 

trillion in reported damage (Ergun et al., 2009). The social and financial effects 

may have been mitigated with forethought, even if these occurrences were 

difficult to predict.  After disasters, quick reaction and relief activities are possible 

with a well-planned and frequently maintained humanitarian supply network. 

When compared to conventional supply networks, humanitarian supply chains 

have unique patterns of demand and supply.  Cooperation in real-time between 

humanitarian organizations, governments, and NGOs is essential for effective 

HSCs, as is the quick mobilization of resources. Advanced technologies, such as 

geographic information systems (GIS), blockchain for traceability, and AI-

powered predictive analytics, are increasingly being used to improve disaster 

forecasting, optimize resource allocation, and enhance supply chain visibility. 

Applications of Supply Chain Management:  

Anticipating and satisfying customer demands, managing the supply and storage 

of products and raw materials, processing orders, and arranging for delivery are all 

essential objectives. Companies are using cutting-edge technology like blockchain, AI, 

and ML to simplify operations and enhance decision-making in their data-driven and 

more intricate supply chains. Businesses can save costs, increase transparency, and 

improve overall performance with the use of these technologies in critical areas including 

demand forecasting and planning, procurement, manufacturing and inventory 

management, logistics, and transportation. This section delves into the many uses of 

SCM, primarily focusing on how advancements powered by ML and AI are 



 

 

revolutionizing conventional supply chain operations into more efficient, data-driven 

ecosystems.  This overview delves into the many fields of AI and how it is connected to 

the supply chain. 

● Demand forecasting and planning:  A number of critical company processes 

rely on accurate demand forecasts and plans. These processes include marketing, 

production scheduling, new product creation, inventory management, and 

research and development.  By accurately predicting future demand, businesses 

may better allocate resources, boost operational efficiency, and increase customer 

happiness and profitability. In inventory management, reliable demand 

predictions help minimize holding costs, prevent stockouts, and optimize 

replenishment strategies. For new product development, demand forecasting 

identifies emerging market needs, optimizes product launch timing, and reduces 

market entry risks by predicting potential demand scenarios. By leveraging ML 

models and predictive analytics, businesses can enhance the accuracy of their 

forecasts, enabling smarter decision-making, reducing supply chain disruptions, 

and driving growth (Kumari et al., 2023). 

● Key Management Issues: Nevertheless, when it comes to novel goods or 

services without a history, the accuracy of conventional forecasting tools like 

Box-Jenkins, time series, and moving averages is severely limited. The use of AI 

algorithms in conjunction with more traditional approaches to improve the 

precision of demand planning, especially in the era of quickly changing data. 

Research has examined the efficacy of ANN in a variety of fields, including oil 

extraction, electricity generation from solar power plants, and future prediction, 

among many others, for the purposes of demand planning and forecasting. ML in 

demand forecasting and planning solves a lot of problems in the supply chain, 



 

 

such the bullwhip effect, erroneous demand information estimates, and the 

difficulty to use social media data to make true predictions.  Next, supply chain 

planning makes heavy use of ML techniques (Wenzel et al., 2019). 

● Procurement: Businesses must decide whether to manufacture in-house or 

outsource depending on several criteria, including production capacity, core 

competencies, supplier demand, and procurement, which entails locating and 

acquiring raw materials, supplies, services, and other things required for 

production or sale.  Problems arise when trying to make such judgements while 

dealing with supplier relationships, budget restrictions, and sourcing techniques.  

To tackle these issues, scientists are looking at ways to improve supplier 

management and procurement with artificial intelligence. To evaluate the 

dependability of suppliers and their sustainability performance, some research has 

used ANNs, while others have utilized Bayesian learning risk dependency 

modelling. These methods try to make procurement procedures better and provide 

businesses more information to work with in the complicated and ever-changing 

world of supply chains. 

● Production and inventory management: Managing both production and 

inventory includes a wide range of tasks, from initial planning to the final delivery 

of components.  An essential part of production management that tries to satisfy 

service goals while lowering production costs is the efficient scheduling of 

services and resources. Each level of production management has made heavy use 

of AI approaches to optimize it (Garvey et al., 2015). For example, ML models 

have been successful in hierarchical SC scheduling, finding the best batch sizes, 

and predicting output and demand levels.  ML provides solutions for order 

management, inventory management, and production management by estimating 



 

 

delivery dates, optimizing reorder points and safety stocks, and identifying 

variables impacting inventory.  Improving inventory management and lessening 

the impact of the bullwhip effect are two applications of rough set theory. 

● Logistics and Transportation Management: Additionally, by combining IoT 

with blockchain, transparency may be provided. At various periods in time, 

various supply chain participants, including the carrier, may package the data that 

the vehicle continues to broadcast, which includes its position and other 

parameters.  This allows you to chain the blocks. The data may be stamped, 

encrypted, and delivered to a member's network node to be stored in that 

member's blockchain when the car is in range of that member's IoT devices. This 

manner, members can keep the data that own together secure while also helping 

one other verify the content of newcomers to the network.  One other thing that 

can be done with AI is to provide personalized commute times (Mallesham, 

2022).  

1.4 Definition and Concept of packaging  

Packaging is an important step in ensuring that food products retain their quality 

throughout their life cycle, from storage to transportation to consumption.   The 

marketing and distribution processes become more efficient, and the quality is kept from 

declining.  Protection, communication, convenience, and confinement are the four 

fundamental purposes of packaging. Product packaging serves multiple purposes: first, it 

shields goods from the elements; second, it conveys information to the buyer through 

copy, graphics, and logos; third, it caters to the buyer's lifestyle, whether that's saving 

time (in the case of ready-to-eat and heat-and-eat meals) or making the food easier to 

handle (in the case of resealable packaging, microwavable, and easy opening); and last, it 



 

 

optimizes logistical efficiency by housing products of varying shapes and sizes (J. H. 

Han, 2005). 

As far back as there has been data tracking sales and customer loyalty, packaging 

design has been a major factor.  Thoughts like selecting colors and materials, as well as 

whether to use descriptive or non-descriptive trademarks, are crucial because of the 

limited space and time available. There are two types of packaging, first is traditional 

packaging system and second is modern packaging system (Biji et al., 2015). The 

traditional packaging system refers to the conventional methods and materials used for 

enclosing and safeguarding products throughout the supply chain. It typically includes 

primary, secondary, and tertiary packaging, using materials such as plastic, glass, paper, 

metal, and wood (Chitra et al., 2022). Despite its effectiveness in product preservation 

and marketing, traditional packaging faces limitations in terms of sustainability, 

traceability, and interactivity. Discuss below in using material for Traditional packaging 

system:  

1. Glass: Glass is a popular choice for processing items' packaging because of the 

inherent moisture and oxygen barriers it provides. 

2. Paper and cardboard: The production of paper and cardboard involves the 

utilization of wood, plants, recycled paper, and cardboard waste (11). Paper is the 

material of choice in the food sector because to its quality, smoothness, and 

environmental label, as well as the treatment it receives from pulp and paper. 

3. Metal: Cans, foil wraps, retort pouches, and tin plates are some examples of 

metal-based packaging items. Other common metals used for food and other 

packaging purposes include stainless steel, tin-free steel, aluminum, and tin plate.  

4. Plastic: Many different types of food and other product packaging utilize plastic.  

Plastics have largely replaced more traditional materials in food packing 



 

 

containers, which has greatly improved food preservation. The growing demand 

for food and other products, driven by increasing incomes and population, has led 

to an increase in the use of plastic packaging.  

The next stage of interactive packaging is connected packaging, which allows 

packaging to actively support a brand.  As the packaging is already a kind of brand 

promotion, this is a brilliant move that allows you to interact with consumers via a 

location that you control. Connected packaging is great since it can be done via a cell 

phone, which almost everyone always has on them.  Interconnected, perceptive, dynamic, 

or intellectual.  Therefore, you could be familiar with comparable terminology if you've 

dabbled in this field. Let’s clarify the differences (Biji et al., 2015).  

● Connected packaging: Connected packaging leverages QR codes, NFC tags, 

RFID chips, and other digital technologies to create an interactive bridge between 

physical products and digital experiences. By scanning the packaging with their 

mobile phones, customers can access a wealth of information, including product 

details, usage instructions, promotional offers, and authenticity verification. 

Supply chain optimization relies heavily on linked packaging, which allows for 

real-time monitoring and traceability in addition to customer involvement. It 

allows manufacturers and retailers to monitor product location, condition, and 

handling throughout the distribution process, ensuring quality control and 

reducing counterfeiting risks. Additionally, connected packaging enhances brand 

transparency by providing customers with insights into sourcing, sustainability 

practices, and certifications, fostering trust and loyalty. As AI and ML continue to 

evolve, connected packaging is increasingly used for personalized marketing, 

offering tailored content and recommendations based on consumer behavior, 



 

 

making it a powerful tool for both customer engagement and supply chain 

efficiency. 

● Active packaging: Adding chemicals to packaging is known as "active 

packaging," and it extends the shelf life of items. The food business makes use of 

five distinct types of active packaging: (1) scavenging of flavors, UV radiation, 

moisture, ethylene, carbon dioxide, and oxygen; (2) discharge of ethanol, food 

preservatives, antioxidants, Sulphur dioxide, or flavors; (3) exclusion of 

substances from food, such cholesterol or lactose; (4) insulation material 

temperature regulation, temperature-sensitive packaging, and (5) UV light is used 

for microbiological and quality control purposes. 

● Intelligent packaging: Food, drink, and pharmaceutical items are often packaged 

using intelligent packaging, one kind of smart packaging.  Despite its association 

with the food industry, intelligent packaging has no bearing on the product itself.  

the capability of communicating the product's packaging conditions without 

actually handling the goods. The objective is to keep tabs on the product and 

provide the consumer with updates. The term "intelligent packaging" refers to 

containers that use sensors to monitor the contents' condition. Indicators, sensors, 

and RFID tags are the three primary components of intelligent packaging systems 

(Ghaani et al., 2016). Indicators that plot time against temperature, those that plot 

color against temperature, those that plot pathogen markers, and those that plot 

refraction are all examples of such systems. 

● Smart packaging: The phrase "smart packaging" encompasses a wide range of 

products whose containers and wrappings serve purposes beyond those of a 

simple container. It encompasses technologically enhanced packaging solutions 

that monitor, maintain, or engage with the product or consumer, adding value 



 

 

throughout the product lifecycle. Smart packaging integrates IoT sensors, RFID 

tags, NFC chips, and QR codes to provide real-time data on product authenticity, 

condition, and traceability. In supply chain management, it enables continuous 

monitoring of temperature, humidity, and handling conditions, ensuring product 

integrity, especially for perishable goods and pharmaceuticals. On the consumer 

side, smart packaging enhances user engagement through interactive features, 

such as personalized content, promotional offers, or product information accessed 

via smartphone scanning. Furthermore, it plays a key role in anti-counterfeiting by 

verifying product authenticity through blockchain-backed labels. As technology 

advances, smart packaging is increasingly being used to reduce waste, improve 

sustainability, and enhance customer experiences, making it a critical component 

of modern supply chain and marketing strategies. 

Businesses are under growing pressure to implement eco-friendly policies and 

procedures as the sustainability conversation has spread throughout society.  As an 

integral aspect of the international Supply Chain, the packaging sector is one area that 

receives special attention. The destructive effects on the environment caused by 

conventional packaging techniques, which use non-renewable resources and produce a lot 

of trash, have recently drawn attention to these issues.  Therefore, there is a growing 

chorus of voices demanding that businesses include sustainable packaging practices into 

their broader CSR and environmental governance programs (Gupta, 2024). Sustainability 

in packaging has far-reaching consequences for the whole value chain, making it an 

increasingly important consideration in supply chain contexts.  The manufacture, 

distribution, and consumption of commodities are all interdependent processes, and 

packaging is an essential part of this network since it allows for the protection of products 

during transit, branding, and identification. There is a gap between corporate imperatives 



 

 

and environmental stewardship since traditional packaging strategies sometimes put 

short-term efficiency and cost concerns ahead of long-term environmental sustainability 

(Asim et al., 2022).  

Key smart technologies for connected packaging:  

SCM is seeing a sea change with the advent of connected packaging, which 

improves efficiency, transparency, and customer interaction. Offering real-time data 

tracking, product authentication, and improved operational efficiency. Unlike traditional 

packaging, which primarily serves as a protective and marketing tool, connected 

packaging integrates smart technologies like QR codes, RFID tags, NFC chips, and IoT 

sensors.  

● QR codes and Barcodes: Products are better protected and of higher quality with 

the help of automated identification devices like these, which also make it easier 

to share data across the packaging and supply chain. These labels, also known as 

data carriers, aren't supposed to tell you anything about the product's state; their 

job is to automate processes, make them easier to track, and prevent theft or 

counterfeiting.  It often sticks to the exterior of a product's box instead than the 

actual item. QR codes and barcode labels are the most used methods. Retailers 

and businesses often use QR codes and barcodes for inventory checks and stock 

monitoring because of their affordability and user-friendliness.  In order to 

represent data with 8 to 12 digits, a barcode uses an arrangement of parallel gaps 

and bars. An optical barcode scanner reads the encoded data and transmits it to a 

database for storage and processing (Ozcan, 2020). 

● Radio-frequency identification (RFID) tags: RFID is a technology that uses 

wireless sensors to auto-identify items and gather data (Tajima, 2007). Tags and 

readers are the basis of RFID. The majority of RFID tags have some kind of 



 

 

identifier that, when scanned, allows the reader to access related data stored in a 

database and take appropriate action. The product's packaging isn't the only thing 

that typically has them attached; the outside layer of any given box, shipment, 

pallet, etc. RFID labels are the most commonly used approach.  A data carrier tag 

may be as sophisticated as an RFID tag. There are primarily three parts to an 

RFID system: a)  a tiny antenna attached to a microchip that makes up a tag, b) a 

device that sends out radio waves and receives replies from a tag, and c)  a web 

server or local area network that the middleware uses to communicate with the 

RFID (Ozcan, 2020). 

● Near field Communication (NFC) chips: Various wireless technologies are 

being used more and more to obtain different kinds of data.  Near-Field 

Communication (NFC) is one such example.  Allowing for product verification 

and consumer contact via short-range wireless communication (Gegeckienė et al., 

2022).  

● Internet of Things (IoT) sensors: A combination of smart product packaging 

and the IoT has transformed brand-consumer interactions. Disruptive technologies 

that change how items are exhibited, marketed, and experienced. Transport and 

storage conditions may be tracked with the use of embedded sensors that measure 

things like humidity and temperature (Soundarraj et al., 2023). 

IoT packaging includes features such as temperature-sensitive medicinal 

indicators, logistics monitoring facilitated by RFID, and consumer involvement and 

product verification QR codes.  Businesses may boost productivity, save costs, and 

satisfy customers more with the aid of these technologies. CPOs use smart packaging to 

accelerate supply chain change.  These developments guarantee compliance, improve 

visibility, and cut down on inefficiencies.  Additionally, by reducing waste and 



 

 

maximizing material use, smart packaging supports environmental objectives. Smart 

packaging is an investment that may pay off for businesses in the long run by cutting 

costs and giving them an advantage in the supply chain efficiency race.  

1.5 Transforming Supply Chains with Smart Packaging Technologies.  

Smart packaging is revolutionizing supply chain efficiency by using sophisticated 

technologies like RFID, IoT, blockchain, NFC tags, and QR codes. These technologies 

enable real-time tracking, improved inventory management, and greater transparency 

throughout the supply chain. By providing continuous monitoring of shipment conditions, 

product location, and handling, smart packaging enhances visibility and traceability, 

reducing stockouts, spoilage, and theft. Additionally, it drives cost savings by optimizing 

warehouse operations, lowering return rates, and reducing warranty claims. 

● Real-Time Tracking and Transparency: Technology like blockchain, RFID, 

and the IoT allow for smart packaging to monitor items in real-time and increase 

visibility all the way through the supply chain. These technologies provide 

continuous monitoring of shipments, product conditions, and location data, 

ensuring improved visibility and traceability.  

● Improved Inventory Management: Smart packaging automates inventory 

tracking, reducing stockouts and overstocking. IoT-enabled systems enhance 

accuracy and streamline warehouse operations. Report a 40% reduction in 

stockouts, while highlighting improved warehouse efficiency through RFID-based 

tracking. 

● Cost Reduction: Smart packaging reduces spoilage, theft, and operational costs. 

Report a 28% reduction in spoilage through temperature-sensitive packaging. 

Additionally, highlight that condition-monitoring sensors lower return rates and 

warranty claims. 



 

 

● Sustainability Gains: Smart packaging supports sustainability by reducing waste 

and promoting reusability. Found that reusable RFID tags cut single-use 

packaging waste by 30%. In emphasize the role of biodegradable smart labels in 

eco-friendly packaging (Morashti et al., 2022). 

● Enhanced Customer Experience: Interactive smart packaging, such as NFC tags 

and QR codes, boosts customer engagement and trust. It highlights that NFC tags 

enhance authenticity verification while demonstrating that QR codes improve 

customer experience with real-time updates (Karpavice et al., 2023). 

 

Applications of SCM in Connected Packaging: 

Connected packaging enhances SCM by leveraging IoT sensors and real-time data 

collection to improve product monitoring, traceability, and inventory management. It 

ensures product quality and safety through continuous condition tracking, especially for 

perishable goods, while enhancing transparency by providing detailed traceability data. 

Businesses may save money and make customers happier by optimizing inventory levels, 

reducing stockouts, and streamlining transportation via the integration of linked 

packaging with supply chain management systems. Additionally, it supports 

sustainability efforts by reducing packaging waste and promoting eco-friendly practices. 

● Real-Time Monitoring and Data Collection: IoT sensors included in connected 

packaging allow for constant tracking of product parameters like humidity and 

temperature all the way through the supply chain. This real-time data collection 

ensures product quality and safety, particularly for perishable goods (Chen et al., 

2020). 

● Enhanced Traceability: Smart packaging solutions provide detailed tracking 

information, allowing stakeholders to trace products from origin to destination. 



 

 

This increased transparency helps in mitigating issues related to counterfeiting 

and ensures compliance with regulatory standards (Armstrong et al., 2018). 

● Optimized Inventory Management: By integrating connected packaging data 

into SCM systems, companies can achieve more accurate inventory levels, 

reducing overstock situations and stockouts. This leads to better demand 

forecasting and replenishment strategies. 

● Improved Logistics Efficiency: Connected packaging facilitates better 

coordination among supply chain partners, leading to optimized transportation 

routes and reduced lead times. This efficiency contributes to cost savings and 

improved customer satisfaction. 

● Sustainability Initiatives: Implementing smart packaging solutions aids in 

monitoring and managing packaging waste, promoting sustainable practices 

within the supply chain. This may improve a brand's reputation and is in line with 

social objectives (Deborah & Sugihartanto, 2024). 

1.6 Artificial Intelligence in Supply Chain Management  

ML, cognitive analytics, and NLP are all parts of AI. These technologies aim to 

imitate human cognitive capabilities.  Applying AI to supply chain management allows 

for the analysis of massive datasets, the optimization of decision-making procedures, and 

the prediction of future trends.  Algorithms powered by AI may simplify logistical 

processes, increase the accuracy of forecasts, and better manage inventories. AI allows 

businesses to better understand their supply chain processes, spot inefficiencies, and 

boost performance using data-driven solutions (Yashan et al., 2024). The AI techniques 

are described below: 

Machine learning  



 

 

The next part defines "Machine Learning" and discusses the many kinds of ML 

techniques.  As a result, there is more consensus on the approaches employed by the 

various ML application domains in SCM-connected packaging.  Additionally, difficulties 

are handled. 

ML is a branch of AI that enables computational entities (such as algorithms, 

software, or systems) to acquire new knowledge and skills automatically, without human 

intervention.  Data or observations are usually utilized to build a computer model in ML. 

The model then analyzes various patterns of data, together with actual and expected 

results, to enhance the technology's functioning. The algorithm-based ML models are 

very good at sifting through large datasets for patterns, outliers and predicting insights.  

The strong qualities of this solution make it an ideal choice for addressing critical issues 

in the supply chain industry. We can identify four primary groups of algorithms, each of 

which has a different type of outcome and how much data is used during the learning or 

training phase (Mohamed-Iliasse et al., 2022). Figure 1.2 illustrates the many learning 

paradigms that define these families:  

 

Figure 1.2: Types of machine learning algorithms  



 

 

1. Supervised learning: The term "Supervised Learning" is used to describe a 

system that gives input data and predicted output data in the context of ML and 

AI. Classification labels are applied to both the input and output data after setting 

up a foundation for learning from further data processing. Thus, as seen in figure 

1.3, this learning procedure relies on comparing the expected and computed 

results; learning is characterized as determining the mistake and adjusting the 

mistake to get the target result. Applied supervised learning finds utility in many 

contexts across the supply chain, including the automated, real-time location 

monitoring of items in packaging, status or surveillance zones, and others. The 

development of patient-specific detectors for the rapid identification of the start of 

epileptic seizures, which allows for the avoidance of bodily harm and even death, 

is another well-known use of supervised learning (Pugliese et al., 2021). A 

supervised ML model is a parameterized function   fp which can show the input 

data          to the output data     . Typically, a vector of characteristics is 

used to define the input data. For a classification,    is a vector space with 

dimensions d and   is the set of classes. 

 

Figure 1.3: Structure of supervised learning 



 

 

2. Unsupervised Learning: Figure 1.4 depicts an unsupervised learning scenario, as 

contrast to supervised learning, in which examples are annotated. In this case, the 

system must function using unannotated data.  Similar to how animals and people 

can automatically create categories to match with input data, it must be able to 

identify that form as a circle or a square. Clustering, also known as segmentation, 

is the most prevalent unsupervised learning task. In this kind of learning, the goal 

is to group data into different types of categories, such as forms in photos.  

Anomaly detection is highly anticipated for applications such as predictive 

maintenance, cybersecurity, early illness diagnosis, etc. (Liu et al., 2021). 

Typically, the goal of the algorithm is to ensure that the data within each group is 

as similar as possible while also creating as many unique groups as possible. 

Various algorithms are used to classify the data based on factors such as density 

or density gradient in different contexts. The excessive or unusual nature of the 

numbers or of a pattern in the data is what is sought in the anomaly detection 

instance. A parameterized function    that takes in data         but does not 

provide any outputs is known as an unsupervised ML model. The features vector 

serves as the model's input data (Zaadnoordijk et al., 2022). In addition,    is a d-

dimensional vector space. 

 

Figure 1.4: Structure of Unsupervised learning 

3. Semi-supervised learning:  Data that is both labelled and unlabeled may be used 

to train algorithms in semi-supervised learning models. It creates predictions or 

classifications using a smaller collection of labelled samples in conjunction with a 



 

 

bigger pool of unlabeled data, as shown in Figure 1.5. Labelling data may be a 

time-consuming or costly ordeal, but these approaches make the most of 

constrained resources.   In most cases, the accuracy of semi-supervised learning 

models is higher than that of fully supervised ones. Complex tasks that need a 

large quantity of labelled data may be too much for it to handle during training, 

and it is very dependent on the accuracy of the initial labels, which might create 

bias. In mathematics, semi-supervised learning methods boil down to the 

following ideas. The collection of training samples in semi-supervised models is 

described as  = {(  ,   ) |       ,      Ω,  =1…,  }. A d-dimensional feature 

space is what makes up each sample in these models, where    is the input 

sample,    is the class label   , and Ω= { 1………  } presents the target 

classes. Furthermore, the collection of unlabeled data is denoted as U = 

{ ∗ |  =1………,  }. There are many types of semi-supervised models, including 

regression, clustering, and dimensionality reduction. 

 

Figure 1.5: Structure of semi–supervised learning 

4. Reinforcement Learning: Reinforcement learning (RL) models are another kind 

of machine learning (ML) that uses feedback from an agent's own actions and 

experiences to teach it to learn in an interactive setting. Reinforcement learning 

teaches the models how to behave in a way that maximizes rewards in a given 

environment. Through interactions with the environment and their reactions, these 



 

 

ideal activities may be carried out.  The learner must independently investigate the 

order of their activities in the absence of a supervisor to maximize the rewards 

(Polydoros & Nalpantidis, 2017) as shown in figure 1.6. Robot control and game 

playing are two examples of applications that might benefit from reinforcement 

learning's capacity to deal with complex and dynamic situations.  It also performs 

very well when input is either delayed or in short supply.  Typically, an agent will 

try to simulate the MDP to learn decision-making issues progressively. At a 

timestep t, an agent gets a notice about a setting     , where P denotes a space 

of states, and Equation (1.1) states that the agent may choose a behaviour    

      depending on the response of the environment.  

      
                            (1.1)  

 

Figure 1.6: Structure of Reinforcement learning 

Types of Machine Learning models:  

1. Support Vector Machine:  The SVM is a popular ML technique that is well-

known for its efficiency in tasks including outlier identification, regression, and 

classification.  SVM, which is based on statistical learning theory, was first 

developed for binary classification issues. Nevertheless, it has since been 



 

 

extended to manage multi-class classification with techniques such as one-versus-

all and one-versus-one. SVM finds the optimum hyperplane to maximally 

partition data points from different classes. Support vectors, or data points closest 

to the hyperplane, are used to establish the border; this is particularly helpful for 

complex and high-dimensional datasets.  SVMs may handle increasingly complex 

problems by transforming non-linearly separable data into spaces with extra 

dimensions using kernel functions, which can be linear, polynomial, or radial 

basis functions. The SVM method finds the best decision border that divides two 

classes with the biggest margin, as shown in Figure 1.7, a simplified visual 

depiction of a binary classification issue addressed by the algorithm. The 

reliability of SVMs makes them a go-to for many image recognition, 

bioinformatics, and financial forecasting tasks, particularly when dealing with 

datasets of moderate size that have distinct categories (Guido et al., 2024). 

 

Figure 1.7: General Architecture of SVM   

2. Decision tree: DT are among the most successful techniques in numerous 

disciplines, including as pattern recognition, image processing, and ML. The DT 

model is a sequential one, and it efficiently and unified incorporates a collection 



 

 

of basic tests, where each test compares a numerical feature to a threshold value. 

The mathematical weights in the neural network of links between nodes are much 

more difficult to create than the conceptual principles.  The primary use of DT is 

in the realm of classification.  The DT classification approach is also widely used 

in the Data Mining domain (Jijo & Abdulazeez, 2021). Nodes and branches are 

characteristic features of all trees.   Considering that each subset specifies a 

potential node value, the network may be seen as expressing attributes within a 

category that has to be classified.  Decision trees have found various application 

domains due to their easy analysis and accuracy on many types of input.  A DT 

example is shown in Figure 1.8. 

 

Figure 1.8: Structure of decision tree  

3. Random Forest: The RF method employs a network of multiple decision trees 

for classification and regression.  For future observations, it uses a collection of 

trained trees that have been internally verified to forecast how the predictors will 

respond. Figure 1.9 shows the overall operation of the RF algorithm.  Every tree 

in the original RF approach is a regular Classification or Regression Tree 

(CART). The so-called Decrease of Gini Impurity (DGI) is used as a splitting 



 

 

criterion, and the splitting predictor is chosen from a randomly selected group of 

predictors, which changes at each split.  

 

Figure 1.9: Random Forest Algorithm 

4. Linear Regression: A linear relationship exists among the independent variable 

X and the dependent variable Y, as per the linear regression statistical process. 

Figure 1.10 demonstrates the objective of finding an optimum linear function, 

which is to say, a collection of weights that will allow the function to predict the 

dependent variable's value as precisely as feasible (K. Qu, 2024).  Equation (1.2) 

is the formal expression of the linear regression model: 

                              (1.2) 

the independent variable X1 through Xn, the intercept β0, the regression 

coefficients β1 through βn, and the error term ε 



 

 

 

Figure 1.10: Sample of Linear regression 

5. K-Mean Clustering: To address clustering issues, K-means clustering groups 

data points into K separate clusters; it is an unsupervised learning approach that 

has seen extensive application. At the outset, the method chooses K centroids at 

random, one for each cluster. The placement of these centroids is crucial, as 

different initial positions can lead to varying results shows figure 1.11. To 

enhance accuracy, the centroids should ideally be placed far apart to maximize the 

separation of distinct groups. Clusters are formed as a result of the algorithm 

iteratively assigning data points to the centroid that is closest to them.  By 

averaging the points in each cluster, the centroids are recalculated after all points 

have been allocated.  Once convergence is achieved, either the centroids stop 

moving noticeably or the total clustering variance is minimized. Then the 

procedure ends (Mahesh, 2020). 



 

 

 

Figure 1.11: Sample of K–Mean Clustering  

Deep learning 

Deep learning (DL) has revolutionized AI by outperforming traditional methods 

in a variety of contexts and showing remarkable resilience when faced with large datasets 

and complicated calculations. A kind of machine learning known as "deep learning" 

trains ANNs with several layers (deep architectures) to learn data representations by 

extracting hierarchical features. Data inputs such as images, text, time series, and sensor 

readings may be automatically processed by deep learning models to produce complex 

patterns and representations. This contrasts with typical ML techniques, which often need 

customised feature engineering and domain-specific expertise (Eni et al., 2024). Deep 

learning uses several types of models in the present time like CNN, ANN, DBN, DNN, 

and other models to perform in different applications and recognize data. Some models to 

discuss below shown figure 1.12. 

 

Figure 1.12: Architecture of Deep Learning  



 

 

Several application disciplines, such as computer vision, NLP, voice recognition, 

and reinforcement learning, have seen outstanding success with DL algorithms.  

Convolutional neural networks (CNNs) are particularly well-suited for tasks involving 

spatial data, such as image recognition and object detection, due to their ability to exploit 

local spatial correlations through shared weights and pooling operations. In contrast, 

RNNs keep state information over time steps and capture temporal relationships, making 

them ideal for processing sequential data like time series and text. 

Deep Learning Architecture Types 

1. Artificial Neural Networks: A biological representation of the brain served as 

the basis for the lexicon of artificial neural networks.  The building blocks of any 

neural network are the neurons, which are groups of linked cells.  Neurons, as 

seen in Figure 1.13, take impulses from input cells or other neurons, process them 

in some way, and then send the result to either other neurons or output cells. 

(Jawad, 2023). The neurons in a neural network are organized into layers, with 

each layer receiving input from the one below it and sending their output to the 

one underneath it. For mathematicians, a Multi-Layer Perceptron network is just a 

function that takes the weighted average of all the functions that correspond to 

neurons.  

 



 

 

Figure 1.13: Structure of ANN 

2. Convolutional Neural Networks (CNNs): Popular among discriminative deep 

learning architectures, the CNN learns from input alone, without the assistance of 

humans required for feature extraction.  Multiple convolution and pooling layers 

are seen in Figure 1.14, which is a CNN example. Traditional ANNs, like 

regularized MLP networks, benefit from CNN's improved architecture. The level 

of model complexity and the ideal parameters for creating meaningful output are 

both considered by each layer in CNNs (Lecun et al., 1998). Furthermore, CNN 

uses a 'dropout' to prevent the problem of overfitting that may occur in traditional 

networks.   The versatility of CNNs to process a wide variety of 2D shapes makes 

them ideal for use in many fields, including visual identification, medical image 

analysis, image segmentation, NLP, and many more. The capacity to 

automatically identify key elements from the input without human involvement is 

what gives it its superiority over a conventional network. The visual geometry 

group (VGG), ResNet, Xception, Inception, Alex Net, and other CNN variations 

are available in the field. Their learning capabilities determine their suitability for 

different application areas. 

 

Figure 1.14: Structure of CNN model  

3. Deep Belief Networks: DBNs are multi-layer generative graphical models that 

are built by sequentially stacking multiple unsupervised networks, such as 

RBMs or AEs. Each layer takes its input from the previous layer. This setup is 



 

 

seen in figure 1.15 (Hinton, 2009). A DBN may so be partitioned into (i) AE-

DBN, also called stacked AE, and (ii) "stacked RBM" refers to RBM-DBN, 

where the autoencoders that make up AE-DBN and the restricted Boltzmann 

machines that make up RBM-DBN have already been covered. The eventual 

objective is to create a contrastive divergence-based faster-unsupervised training 

method for each sub-network.  A hierarchical representation of the provided data 

may be captured by DBN due to its deep structure.  Using unlabeled data to train 

unsupervised feed-forward neural networks and then fine-tuning them using 

labelled input is the main notion underlying DBN. 

 

Figure 1.15: Architecture of Deep Belief Network 

4. Deep Neural Network: DNNs are composed of ANN nodes organized in various 

hierarchical levels (figure 1.16). Output, hidden, and input layers make up this 

architecture.  Much to sequential models, this one has a defined number of input 

and output layers and a fixed number of nodes in each of those two levels. Nodes 

in the input layers are proportional to the characteristics in the input, and in the 

output layer, the number of classes is directly proportional to the output layer's 

utility as a classifier. As said, artificial neurons are the fundamental building 

components.  Let's review the composition and operation of a neuron in the 

human brain to understand its definition (Sewak et al., 2020).  



 

 

 

Figure 1.16: Deep neural network  

5. Recurrent Neural Network: Another popular sort of neural network that 

employs sequential or time-series data is the RNN, whose input and output are 

shown in Figure 1.17. Comparable to feedforward and CNN, recurrent networks 

learn from training input. What sets them apart is their "memory," which lets them 

alter input and output depending on data from previous inputs (Mienye et al., 

2024). In contrast to the typical DNN's assumption of total independence between 

inputs and outputs, RNNs' outputs are reliant on the components that came before 

them in the sequence.  Typical recurrent networks struggle with learning long data 

sequences because of the decreasing gradients issue.  Here we'll take a look at 

three popular RNN variants—LSTM, BiLSTM, and GRU—that mitigate the 

aforementioned issues and excel in a broad range of real-world application 

domains.  



 

 

 

Figure 1.17: Basic RNN architecture. 

1.7 Research Problem  

In today's intricate and ever-changing supply chain environment, operational 

responsiveness and efficiency are hampered by ineffective monitoring methods, 

fragmented data interchange, and a lack of real-time visibility. Traditional packaging 

solutions fail to provide actionable insights into product movement, condition, and 

authenticity, resulting in increased costs, delays, and quality issues. The absence of 

connected packaging solutions, which integrate IoT, data analytics, and machine learning, 

prevents companies from optimizing their supply chain processes. Improving traceability, 

minimizing hazards, and allowing data-driven decision-making are all ways in which 

linked packaging technologies might improve supply chain efficiency, which is the goal 

of this study. 

 

 

 

1.8 Purpose of Research 



 

 

The study aims to investigate and apply AI methods to SCM for efficiency 

improvement, decision-making aids, and operational risk mitigation, using novel 

computational tools such as predictive and optimization models. 

Objectives 

● To prepare and analyze supply chain data to identify key variables influencing 

operations. 

● To develop models to optimize demand forecasting, inventory management, and 

operational workflows. 

● To propose explainable AI solutions for tasks requiring interpretability, such as 

risk management and supplier selection. 

● To assess various machine learning models to determine their performance in 

solving critical SCM challenges. 

● To deliver strategies based on AI-driven results to address specific supply chain 

inefficiencies and improve overall performance. 

1.9 Significance of the Study 

This study is important because it tackles the increasing need for more efficient 

supply chains by combining data, ML, and linked packaging solutions. By exploring how 

real-time data insights from smart packaging can optimize supply chain processes, the 

research provides valuable contributions to improving traceability, reducing operational 

risks, and enhancing product quality monitoring. The findings offer practical implications 

for businesses seeking to streamline logistics, reduce waste, and strengthen customer 

satisfaction through data-driven decision-making. For businesses looking to improve their 

agility and resilience, the research is especially pertinent since it shows how machine 

learning can optimize inventory management and forecast supply chain interruptions. In 

the end, this study is a great resource for experts in the business, lawmakers, and software 



 

 

developers who are trying to figure out how to make supply chains smarter and more 

efficient by using linked packaging. 

1.10 Research Questions  

The following Research Questions are as follows: 

● What types of data are critical for implementing connected packaging solutions to 

enhance supply chain efficiency? 

● How can machine learning optimize connected packaging for better demand 

forecasting and inventory management? 

● What challenges arise in integrating data from connected packaging systems 

across interdependent supply chain stakeholders? 

● How do interdependencies between supply chain partners influence the adoption 

of connected packaging solutions? 

● What role does connect packaging play in improving real-time supply chain 

visibility and decision-making?  



 

 

CHAPTER II:  

REVIEW OF LITERATURE 

2.1 Background 

SCM operates in today’s highly dynamic global economy in three keyways: data-

driven operations and increased customer focus and enhanced complexity. Traditional 

supply networks encounter multiple issues because they lack clear visibility, goods 

tracking becomes inefficient and inter-connected communication systems delay 

deliveries. Connected packaging represents an innovative answer to supply chain 

problems through its integration of digital markers such as QR codes along with NFC and 

RFID tags together with IoT sensors in product packages (Keskin, 2022). Modern 

connected packaging technologies transform products into intelligent devices through 

continuous data flow across manufacturing and beyond until the point of user adoption 

for enhancing agile supply chain operations. 

The implementation of connected packaging produces vast data amounts that ML 

and DL techniques can utilize for analysis. Deep learning technology together with 

machine learning examines data from sensors and enterprise systems that enables 

businesses to predict market changes while optimizing transport processes and preventing 

inventory shortages and maintaining proper storage conditions for vital items such as 

pharmaceuticals and food (Khedr & S, 2024).  

Supply chains consist of connected elements that produce mutual performance 

effects between components. Any interruption in supply chain activities between 

procurement and transportation will eventually affect succeeding stages in the network. 

Connected packaging allows supply chain actors including manufacturers and logistics 

providers and retailers and consumers to be digitally connected through a synchronized 

data-rich environment. Better decision-making capabilities and sustainability gains 



 

 

become possible through improved traceability and decreased waste amounts (Kamble et 

al., 2020). Connected packaging offers stakeholders real-time alerts about expired goods 

and damaged items which leads to both supply loss reduction and better regulatory 

adherence (Yang et al., 2023). 

Several obstacles exist for implementing connected packaging with ML/DL 

technology despite its benefits because it demands expertise and needs system integration 

while being expensive to implement and affecting data protection. Researchers have 

identified a clear void in understanding how intelligent data analytics with connected 

packaging functions should be deployed to deliver optimized performance across 

multiple industrial and geographic segments. Research studies currently fail to explore 

the complete effect on end-to-end supply chain efficiency because they examine 

individual uses and examine technology feasibility rather than holistic impacts (Ghaani et 

al., 2016). 

The study aims to fill this gap by investigating the collaborative operation of 

supply chain structure with data and Machine Learning / Deep Learning techniques to 

deploy advanced connected packaging systems. This research aims to discover effective 

methods which produce superior supply chain results, together with greater 

responsiveness and sustainability performance. 

2.2 Related Work 

 This section offers a synopsis of the research on linked packaging in relation to 

ML/DL and supply chain management. It shows how technology has improved the 

function of tracking, observing, and control. Data along with interdependencies become 

the central elements to enhance supply chain performance levels. 



 

 

Supply Chain Management in connecting packaging using machine learning 

In this research Anantharaman prakash, C.B. Senthil kumar (2025) discussed how 

with the help of AI SCM becomes smarter by automating various decision-supporting 

tools, enhancing the predictive capabilities, and by dynamically optimizing.  The purpose 

of the study was to gather information from 150 supply chain specialists from various 

industries on the adoption, difficulties, and advantages of AI in the supply chain. These 

results indicate that AI-active business decisions were significantly more accurate with 

35% as opposed to the previous 25%, reduced stock costs by 28%, and specifics 

concerning the suppliers increased by 42%.  

In this research Shamsuddoha et al. (2025) investigates the ways in which RPA, 

AI, and ML impact supply chain operations in response to vulnerabilities and threats. The 

article centers on the ways in which AI and other pertinent technologies improve 

forecasting in order to accelerate logistics, boost warehouse efficiency, and encourage 

quick decision-making based on real demand. These include logistical applications of AI, 

demand planning, and management, as well as dealing with threats with the use of AI in 

the supply chain found in this study by way of concept analysis.  This system addresses 

security weaknesses and operational excellence together with resilient solution 

requirements.  The report also explores how AI could reduce risk management processes 

and predict disruptions as two ways that enhance supply chain resiliency. The results of 

this study on intelligent automation implementations in practice state the best practices 

and common issues.  The findings offer a guide for pulling into focus organizations that 

wish to leverage AI for improved performance, increased flexibility, and optimal action 

grounded on data. 

This study Mohammed et al. (2025) examines how AI and ML are transforming 

demand forecasting by discussing how the technologies may help to improve inventory 



 

 

control, decision makers and uncertainty.  Lags and gaps are frequent outcomes of 

conventional approaches to production planning because they do not consider alterations 

in the environment. Using the primarily market data together with the second, historical 

and third, external variables help AI generate better projections in its predictive models.  

The advances in automotive reinforcement learning, DL and NLP enhance the 

proficiency in forecasting skills and enable the company to make anticipative changes to 

its supply chain plans. Furthermore, utilizing current demand to adjust production 

processes with the help of artificial intelligence, enhances supply chain flexibility, 

reduces production costs, and minimizes losses.  Data quality is one of the obstacles that 

the article delves into. 

This study Pasupuleti et al. (2024) integrates innovative and effective suggestions 

of modern machine learning for the enhanced organization of logistics and stock.  

Applying ML models to historical data from a global retail corporation (sales, inventory 

levels, order fulfilment rates, operational costs, etc.) and using a variety of ML 

algorithms (regression, classification, clustering, time series analysis, etc.) resulted in 

significant improvements in key operational areas, such as a 15% improvement in 

demand forecasting accuracy, a 10% reduction in overstock and stockouts, and a 95% 

prediction accuracy for order fulfilment timelines. The technique used for the client 

segmentation also included delivery preference, which enabled appropriate tailored 

service offerings, and it identified shipments that are in danger. 

This study Samuels (2024) shows an overview of how AI is impacting SCM, 

ranging from Industry 4.0 to Industry 6.0 in relation to volatility, operation, people and 

how it addresses sustainable development, according to the PRISMA guidelines.  This is 

due to the fact that AI greatly enhances SCM's capacity via better demand forecasting, 

inventory management, and decision-making. According to the context of Industry 5.0, 



 

 

the cooperation of humans and AI leads to improved relations that affect the 

sophistication in personalization and problem-solving domains. 

This study, Sruthy (2024) makes speculative recommendations for bolstering the 

supply networks' resilience via the use of AI. The framework of the smart supply chain 

also includes factors such as risk management, operational effectiveness, and real-time 

monitoring as key elements of supply chain resilience that is underpinned by an 

application of AI technologies.   It also stresses the need of having a good rapport with 

supply chain partners via the use of amicable communication and AI-based data-sharing 

technologies. It also offers an all-embracing blueprint regarding how to apply AI to SCM, 

which pays particular attention to how it can enhance sustainability, operations, and 

robustness; in this way, it assists organizations in managing the complexities of the 

current supply chains effectively. 

This research Farooq & Yee Yen (2024) presents a thorough evaluation of 

scholarly works that investigate the substantial influence of AI on enhancing the 

robustness and longevity of supply networks.  Analyze and evaluate major topics, 

difficulties, and developments related to AI applications in various supply chain settings 

using a data-driven method on the Web of Science platform. This review draws on 28 

separate research that were published between 2020 and 2023 to form its conclusions.  

Topics covered in these studies include openness, last-mile delivery, multiagent systems, 

generative AI, and the significant impacts of AI on MSMEs. 

This study Falkner et al. (2024) describes a case study of the deployment of ML 

in a business process that involves analyzing data and making predictions on demand for 

many goods and then deploying the results in an ordering system. A heuristic is used to 

regulate and manage stock levels, frameworks, and languages; the predictions are made 

using machine learning models based on real-world data from an Austrian shop.  It can 



 

 

make the best use out of the current framework if enhanced communication exists 

between programming languages. 

This research Submitted et al. (2024) delves into a potential of modern analytics 

to improve supply chain resilience and efficiency, including analyzing late deliveries and 

demand forecasts.  This study seeks to improve supply chain performance by reviewing 

the literature and conducting research on potential applications of analytical approaches 

such as predictive modelling and machine learning.  This research offers useful insights 

for companies aiming to construct supply chains that are both efficient and robust in the 

face of ever-changing business environments. 

This research Pandey et al. (2024) discusses the ways that ML AI can help SCM.  

It gives the practical, social, and theoretical implications, explaining the theoretical 

approaches, method and significant findings in this area.  Randomized articles sourced 

from academic journals, conference proceedings as well as industry reports were 

reviewed to obtain research papers and publications as part of the systematic literature 

review for the study. The use of ML and AI in demand forecasting, inventory 

management, logistics, and risk assessment is shown by these instances.   DL, NNs, GA, 

and SVM are just a few of the AI and ML technologies that have been identified and used 

in this study to address supply chain issues. 

This study Jackson et al. (2024) enables the scholars and practitioners to gain 

fundamental understanding of how and why the AI and GAI work in the context of 

Supply Chain Operations Management.  The outlined tactic is a more systematic 

approach to identifying possible applications of AI and GAI in SCOM in enhancing 

decision making, optimizing processes, managing investments, and skill enhancement. It 

could help managers determine whether some of the operations they are involved in 

could be tweaked with the use of AI and GAI in resilience, throughput, accuracy, and 



 

 

effectiveness.  The study emphasizes that AI and GAI are very adaptable and might 

potentially transform SCOM practices, inventions, and research in the future. 

This research Verma (2024) draws on research conducted by McKinsey in 2023 

to examine the use of AI in SCM with respect to problems like as demand forecasting, 

real-time stock control, and dynamic supply chain optimization. Digital twin and ML 

have helped in experiencing vast improvements in logistics cost, inventory management, 

and services in delivery.  In order to successfully address supply chain complexity, the 

report stresses the strategic relevance of coordinating AI deployments with company 

objectives. 

This research C. Qu & Kim (2024) to survey the literature on AI integrated 

technologies for SSCM in order to guide the course of future studies.  By integrating AI 

into supply chain operations, the findings demonstrate that sustainability is mainly 

addressed, with an emphasis on economic and environmental concerns. Concerning 

social concerns such as working conditions and fair dealing, however, there remains a 

technical void.  Researchers and practitioners may use this dynamic AI in SSCM 

framework to better understand how to incorporate AI into SSCM technologies and how 

to optimize supply chain models moving forward. 

The study Mugoni et al. (2024) selected from several databases are 140 scholarly 

articles published in journals between 2012 and 2022.  ScienceDirect, ABI/INFORMs 

(ProQuest), SCOPUS, and DOAJ (Directory of Open Access Journals) were the primary 

databases used. The findings provide strong evidence that SSCMPs have a beneficial 

effect on environmental performance.  Sustainable SCM and environmental sustainability 

have attracted a considerable amount of research, but operational performance and social 

sustainability have received comparatively little attention. The mediating determinants of 

social and operational performance should be investigated in future research.  Unpacking 



 

 

the link among SSCMPs and environmental performance requires additional industry-

oriented research to use mixed techniques and mediating and moderating factors.  

This research Shebeshe & Sharma (2024) seeks to investigate how SSCM affects 

industrial organizations’ performance and competitive advantage in Ethiopia.  In order to 

accomplish the goals, data from 221 different manufacturing sectors in Ethiopia were 

collected and analyzed. This study makes use of descriptive and causal research 

methodologies, which are part of a quantitative approach.  A total of 221 manufacturing 

industry managers and supervisors participated in the survey by filling out an online 

questionnaire.  Furthermore, Smart-PLS 4.0 included structural equation modelling for 

data processing. The results show that SSCM significantly improves company efficiency 

and competitive advantage. Organizations achieve better outcomes through competitive 

advantage according to statistical data.  In addition, the connection between SSCM and 

OP is indirectly affected by competitive advantage.  Strong implementation of SSCM can 

potentially lead to improvements in both OP and competitive advantage according to the 

findings.  

The research Rojek et al. (2024) considers the benefits and possibilities provided 

by the IIoT (Industrial Internet of Things) and ML and suggests priority development 

paths while outlining important trends in this field of research and development.  A new 

era of supply chain efficiency, connection, and speed has dawned with the advent of 6G 

technology. Sustainable and safe operations are supported by this technology, which also 

increases visibility, automation, and cooperation.  Businesses who improved supply chain 

design and planning and operations created a robust and flexible supply chain ecosystem. 

This research H. Wang et al. (2023) contributes to the understanding of a ML 

framework for automatically enhancing the security of supply chain. This framework can 

help to identify fraud, predetermine when equipment needs to be maintained, and expect 



 

 

backorders when materials are out of stock.  Machine failure prediction attains 93.4% 

accuracy, material backorder prediction 89.3% accuracy, and fraud detection 88% 

accuracy employing sampling techniques, across datasets of varying sizes. All the models 

were further improved through hyperparameters tuning; for instance, the two supervised 

algorithms, XGBoost and LightGBM achieved 100% of precision degree. 

This study Hendriksen (2023) suggests a new theoretical idea known as the AII, 

which is two-pronged and addresses the spread of AI implementation via supply chain 

links and the use of AI in decision-making.  AI Integration (AII) considers human 

capabilities to make meaning as the context which shapes both the integration process 

and disruptive factors of AI within supply chains. Multiple AI implementations have 

generated numerous theoretical and practical disruptions for organizations according to 

the presented work.  Furthermore, it also raises some implications on interdisciplinary 

efforts as well as sociotechnical perspectives that are associated with integration of AI 

into SCM theory and practice.  

This research A. Ahmed et al. (2023) describes the functions, uses, advantages, 

disadvantages, and potential of AI in the supply chain industry as a whole.   The study 

cites supply chain visibility, demand optimization and planning, Inventory Management, 

logistics, and risk management as some of the advantages of AI technology. Moreover, it 

elaborates on how the integration of AI impacts the decision-making and collaboration 

processes within the supply chain.   Some of the difficulties and ethical issues with using 

AI in the supply chain are also discussed in this article.  This study reviews the existing 

situation and possible future applications of AI in SCM in an effort to add to the 

knowledge of academics and professionals in the field. 

This semi-systematic Rolf et al. (2023) investigates the present level of excellence 

in SCM reinforcement learning and suggests a category system.  Based on supply chain 



 

 

drivers, algorithms, data sources, and industrial sectors, the framework categorizes 

academic studies.  Some crucial insights were uncovered by the reviewed process.  As a 

starting point, the conventional Q-learning algorithm remains the gold standard. 

Secondly, RLS is most often used in inventory management because of its central role in 

supply chain synchronization.  Finally, most tackle artificial data-driven SCM issues that 

are similar to toy problems.  

In this study Lei et al. (2023) The risk prevention model for corporate business 

finance is implemented using Python.  The experimental finding shows an effectiveness 

of the CGOA-SVM-SMA technique suggested in. The results show that the model's 

prediction and decision-making abilities are superior to those of competing models; this 

could greatly assist supply chain businesses in mitigating financial risks. AI is pivotal in 

today's fast-paced society and drives the advancement of financial technology.  The 

supply chain relies heavily on machine learning (ML) algorithms, a subfield of AI 

research, for both day-to-day operations and future development.   

In this research Jianying et al. (2021) analysis revealed that the fresh grape supply 

chain had a low overall risk, but that there were discrepancies in the risk at each link. The 

link between the links in the chain posed the greatest threat (R0), while economic, social, 

and cooperation risks were high. The second quadrant contained the most dangerous 

events, which had a small probability but did high damage. The optimized model 

outperformed a single BPNN in evaluating hazards in the sustainable grape supply chain, 

according to the results of the comparison. The results from PSO-BP justified its use due 

to improved statistical performance combined with reduced evaluation errors. In addition, 

the results showed which risks were most detrimental to the overall sustainability of the 

grape supply chain.   This research does more than just theoretically improve the method 

of risk assessment in supply chains; it also provides actionable suggestions for making 



 

 

the fresh grape supply chain more resilient, bringing operational stability, and 

strengthening risk prevention. 

This research Tirkolaee et al. (2021) aims to recognize the uses of ML in SCM, 

which is among the most popular AI approaches, as an AI method. This study provides a 

theoretical framework and lists the practical applications of ML in areas such as supplier 

segmentation and selection, supply chain risk prediction, demand and sales estimation, 

manufacturing, Inventory Management, transportation, distribution, Sustainable 

Development (SD), and the Circular Economy (CE). It then discusses the study's 

implications for future research and offers managerial insights into the study's limitations 

and challenges.  

In this study Radmanesh et al. (2023), to investigate the possible effects of the 

suggested blockchain-based platform on the sustainability of the supply chain.   The 

significant problem of cloud-based production-distribution systems and their impact on 

sustainability in both centralized and decentralized countries. The solution's findings 

show that the decentralized state is much better than the centralized state, and that this 

improvement improves the supply chain's and the suggested model's sustainability by 

taking an axiomatic design algorithm into account. Under optimistic circumstances, the 

distributed model reduces solution time by roughly 87% and under pessimistic ones, it 

reduces system cost by up to 45%.  Less energy usage is a direct outcome of these 

upgrades, which also increase economic and environmental sustainability. 

This study Sharma & Dash (2022) focuses on filling the present knowledge 

vacuum in smart source chain management related to artificial intelligence.  The study 

also looks for ways that SSCM makes use of AI and Microsoft 365 to make it more 

successful, as well as for ways that AI and Microsoft Dynamics 365 may help with 

supply chain management studies and practices. The research primarily focusses on the 



 

 

applications of AI in smart SCM, which includes smart manufacturing, smart retailing, 

Facebook's AI implementation, intelligent delivery management, and Facebook's AI.  

Also covered in the study are the following aspects of Microsoft 365 as they pertain to 

smart supply chain management: SCM, the advantages of using MS Energetic Forces 365 

for SCM, the reasons why smart SM should use MS 365, and the features of MS 365 in 

smart SCM. Perceptions are offered by this study via systematic investigation and 

synthesis.  Finally, the study suggests ways AI may enhance an intelligent supply chain. 

In this study J. Li et al. (2022) studied the many ways in which supply chain 

businesses might use the Internet of things to manage their operations, including RFID, 

EDI, and ERP.  They conclude that the manufacturing business is the best fit for this 

simulation by looking at how widely used the Internet of things is across various sectors. 

An employ of the IoT helps to expedite the development of business supply chains.  

Consequently, businesses' bottom lines are positively impacted by the optimized route 

supply chain's horizontal integration, which also lends theoretical heft to the IoT service 

supply chain. 

In this research Malviya et al. (2022) the different ML algorithms are examined 

and contrasted in relation to determining which components are in short supply, taking 

into account past sales and predictions.  This considers backorder forecasts using 

different ML algorithms and gives plainly understandable and doable backorder decision 

cases, Prior to the occurrence of any shortages or backorders in the supply chain, 

industries must determine which items are most likely to be short in order to fulfil a high-

performance goal and improve the company's overall performance.  

This research Mallesham (2022) investigates the ways in which SCM is being 

transformed by an employ of new technologies.  Demand forecasting and inventory 

management were two areas that were examined more thoroughly.  Finally, they provide 



 

 

some last thoughts after highlighting the most recent developments and difficulties 

associated with AI and ML in SCM.  Managing the movement of products, services, data, 

and money across a network of interconnected businesses is known as SCM. ML and 

AI are becoming more popular tools for businesses to use in an increasingly complicated 

market.  Data-driven decision-making is the goal of ML, a subfield of AI.  Since 2015, 

the number of firms claiming to use ML has increased by over 300%, and the total value 

of the AI industry is estimated to be approximately $2 trillion.  The supply chain sector 

uses ML technology to discover deliveries' best routes while identifying delays in 

advance and detecting product quality issues before distribution. 

In this research Kosasih & Brintrup (2022), an automated technique to find 

probable connections to the buyer utilizing GNN is proposed for the supply chain 

visibility issue, which is seen as a link prediction problem in the area of ML.  The 

technique delivers superior results on a real automotive network while providing an 

additional artificial intelligence method to boost supply chain transparency. A widely 

used ML tool known as Integrated Gradient is integrated to help explain GNN decisions 

by showing which input attributes affect GNN outputs. The benefits and drawbacks of 

employing GNN for link prediction are also discussed, along with potential avenues for 

future research that could enhance supply chain visibility by means of ML.  

This study Song et al. (2022) in order to provide a synopsis by classifying these 

subjects into six categories:  (1) GSCM on platforms, (2) data-driven sustainable supply 

chain development, (3) variables impacting SCM, (4) methods for dealing with 

disruptions in SCM, and (5) data-driven medical SCM. Concerning the pressing need to 

address environmental degradation, the most significant findings from this study are 

sustainable development and the elements that influence supply chain management in a 

platform economy.  Important parts of GSCM that have been discussed by certain writers 



 

 

include distribution channel choice, water scarcity, remanufacturing, cooperation, and 

lean management. A number of studies have examined various aspects of sustainable 

development, including methods for predicting waste discharge, evaluating efficiency, 

sustainability indices, and collaborative logistics networks; others have focused on SCM-

influencing factors, such as Green Management, Stakeholder Motivations, Cause 

Marketing, Online Consumer reviews, Public Concerns, and sustainability indices.  Their 

findings may be used by policymakers and business decision-makers to back GSCM 

practices. A lot of other obstacles, nevertheless, must be surmounted before 

implementation can be considered a success. 

The study Lis et al. (2020) the primary areas of study within Sustainable Supply 

Chain Management (SSCM) include environmental management and economics, supply 

chains and sustainability, decision-making within SSCM, the practice of supply-chain 

management, social responsibility (SR) concerns, and the environment and management. 

Recent scientific studies in the area have centered on the following topics: human factors, 

sustainable supplier selection, production, the circular economy, efficiency, sustainable 

practices, trade, expenses, ecological footprint, and the textile sector. 

This research Park (2021) utilizes supply chain data to identify the organization to 

which fresh data from unknown sources pertains when ML algorithms detect such data.  

A variety of ML methods are used, including LR, KNN, DT, SVM, NB, RF, and MLP. 

The accuracy, confusion matrix, recall, precision, and F1score are some of a metrics 

utilized to measure the efficacy of machine learning systems for multi-class 

classification.  Companies (tiers) were correctly predicted by LR and MLP in the 

experiments, but not by NB, DT, RF, SVM, or K-NN. 

In this research Wan (2021) suggested combining Random Forest with the 

XGBoost algorithm to create a hybrid model. This hybrid model would then have an 



 

 

optimized output that would be the average of the two models' outputs.  The high 

amounts of TP and TF, as well as the big confusion matrices for XGBoost and Random 

Forest, indicate that the hybrid model works well. In addition, I test the hybrid model 

using the Kaggle-provided Datacom smart supply chain datasets.  Compared to the other 

ML methods, my technique outperforms them in the experiments.  In comparison to the 

LR method (0.49), the SVM algorithm (0.49), and the GNB algorithm (27.9%), my 

model has a better F1 score.  

This research Mageto (2021) research defines big data analytics as following: 

processing data, analytics, reporting, integration, security, and economics.  Transparency, 

a culture of sustainability, business objectives, and risk management are the components 

of sustainable SCM.  Evidence suggests that BDA improves industrial supply chains' 

SSCM. Information technology skills gap and cyberattacks are two of the issues 

preventing BDA deployment.  Incorporating the seldom-used Toulmin's argumentation 

model into management studies, this study bridges the gap between big data analytics and 

SSCM in industrial supply chains, adding both theoretical and methodological depth to 

the existing literature on SCM. 

In this research Mastos et al. (2021) to evaluate the sustainability-related efficacy 

of CSCM, a case study with a real-life supply chain is developed and used to execute a 

waste-to-energy solution according to industry 4.0 standards. According to the results, 

CSCM may be possible if supply networks were redesigned using Industry 4.0 

technology in order to facilitate the circular economy. There are obvious gains when the 

suggested approach is connected to the six Resolve model aspects of a circular economy: 

regenerate, share, optimize, loop, virtualize, and exchange.  Considerable intangible 

benefits include enhanced supply chain traceability due to the suggested solution's full 



 

 

visibility and automation, and significant measurable advantages include a 5% and 15% 

increase in personnel availability, as well as a 15% increase in fleet resource availability.  

This research Sardar et al. (2021) suggestions an ML method for SSCM on-

demand forecasting.  To alleviate the problem of having too much or too little stock on 

hand, you may use LSTM to predict future demand.  Together with the model, there is a 

way to quantify the impact on the environment. The manufacturer maintains custody of 

the inventory under a consignment policy, but the retailer receives a predetermined fee in 

addition to a commission for each product sold.  In this setup, the manufacturer sends 

RFID readers to the store.  By using a traditional optimisation method, two mathematical 

models are resolved.  The ML-RFID model outperforms the conventional system based 

on the findings from both models. 

The research Kollia et al. (2021) employs current machine learning techniques to 

regulate labelling on food retail packaging, energy management during food 

maintenance, and efficient food manufacturing.  Fully CNN, LSTM, RNN, Attention 

Mechanisms, Auto-Encoders, Latent Variable extraction and clustering, and Domain 

Adaptation are all used appropriately for this purpose. Three experimental experiments 

show that these AI approaches can provide state-of-the-art performance all the way 

across the food supply chain. This field is a relatively new one in the food processing 

industry, and it pertains to the efficient and safe transportation of food from the farm to 

the fork. 

This research Sankhye & Hu (2020) to develop quality compliance categorization 

techniques based on ML and to test these models using a case study of a manufacturing 

line for appliances with many models.  Classification and other supervised ML 

techniques were able to successfully forecast product compliance quality from 

production-related manufacturing data, with an accuracy of 0.99 and Cohen'sKappa of 



 

 

0.91 for unit batch compliance quality.  The removal of doubt via accurate prediction 

may have a significant positive impact on any part of a supply chain. 

In this research Chen et al. (2020), focused on how cutting-edge smart packaging 

technologies may cut down on food waste and improve product tracking.  Improved 

product traceability at every stage of the supply chain is possible with the help of 

integrated food SCM.  Evidence suggests that smart packaging may cut down on food 

waste, and this article covers some of the most popular printing methods used by smart 

packaging systems (sensor and indication). Nevertheless, they also cover the difficulties 

of production and implementation, downsides associated with costs, and subsequent 

stages of the food supply chain.  In general, smart packaging technologies have the 

potential to greatly enhance the food supply's quality and safety. 

In this (Seyedan & Mafakheri (2020), this study aims to classify the predictive 

BDA applications of SVM, Time Series forecasting, clustering, KNN, NNs, Regression 

Analysis, and SVR in supply chain demand forecasting; to identify research gaps; and to 

propose a framework for these applications. This review also emphasizes potential future 

research directions by drawing attention to the paucity of literature on CLSC uses of 

BDA for demand forecasting.  

This study Dumitrascu et al. (2020) is to create a model for evaluating 

performance that connects particular issues with the most relevant KPIs for every 

subsystem of SCM.  This research shows that data mining may be used to identify the 

association between various key performance indicators and certain issues that arise in 

every company's SCM. Finally, the study presents a neural network-based GUI that 

makes use of the multilayer perceptron AI algorithm to forecast the most reliable 

KPIs for each chosen issue. 



 

 

This study Makkar & Solanki (2020) is an endeavor to explore different ways in 

which SCM might benefit from ML approaches.  The article examines successful and 

real-life case studies of supply chain optimization via machine learning.  Supply chains 

(SC) function as interconnected facilities which unite many organizational entities. To 

reduce the overall cost of the supply chain, these organizations should cooperate.  This 

entails several organizations to coordinate, collaborate and exchange information with 

each other.  Still, there is a discrepancy between the ideal and actual supply chain 

network environments. 

This study Del Giudice et al. (2020) examines the role of big data in a supply 

network and the impact of circular economy strategies in a system like this on business. 

With the use of an online survey and multiple regression analysis, data was gathered from 

378 Italian enterprises who have embraced the concepts of the Circular Economy. Based 

on the findings, improving business performance from a circular economy standpoint 

requires careful planning of the supply chain, management of relationships, and human 

resource management.  The connection between HRM tactics and business success is 

under the direction of a big data supply chain.  Through applying circular economy 

principles to big data analysis, it deepens our understanding of digital transformation and 

the sustainability of supply chains.  

In this Nasurudeen Ahamed & Karthikeyan (2020) proposed to adopt 

Reinforcement Learning Integrated in Heuristic search method (RLIH), which is a meta-

heuristic search algorithm that has incorporated reinforcement learning in its search and 

planning for the supply chain network with the blockchain-based autonomous vehicles.  

With a decentralized app at its core, Reinforcement Learning Integrated in Heuristic 

search method (RLIH) outperforms the state-of-the-art heuristic search technique in terms 



 

 

of both data traffic and service time. It is used in SCM to train self-driving vehicles, and 

it integrates AI and ML algorithms.  

In this Abbas et al. (2020) established and implemented an optimized DSCMR 

that integrates blockchain and ML. The system is divided into two primary components: a 

system for managing the supply chain of drugs and another for providing customers with 

prescription recommendations.  Building a medicine SCM system that continuously 

monitors and traces the drug distribution process using Hyperledger fabrics is the first 

module's focus on the smart pharmaceutical industry's capabilities in this area. In 

contrast, the ML module makes use of the N-gram and LightGBM models to suggest the 

best medications to pharmaceutical sector clients.  The models have been trained using 

the open-source ML repository at the University of California, Irvine's drug reviews 

dataset, which is well recognized and accessible to the public.  

This research Tundys (2020) is to demonstrate how it has assessed the idea and 

extent of the themes from both a theoretical and a practical standpoint.  Content analysis 

approaches and chosen case studies were used to conduct the study. Here are some of the 

most important findings: a new way of thinking about and using SSCM; an interpretation 

of the current state, volume, and scope of SC research; research trends and directions, 

including where the gaps in our knowledge lie, which could inform future studies; and a 

bibliometric analysis. 

This study Baryannis et al. (2019) recent research into AI has focused on ML 

techniques and their possible application to supply chain risk management.   Although 

there have been several studies examining prediction performance, interpretability has 

received less attention. This is a major concern since it is essential for supply chain 

practitioners to comprehend the results and make decisions that minimize or eliminate 

risks. This research aims to explore the trade-off of prediction performance and 



 

 

interpretability by using a data-driven AI framework to the issue of delivery delay 

prediction in a real-world, multi-tiered industrial supply chain.  Working together, AI and 

supply chain professionals are the backbone of the system. 

This research Florescu et al. (2019) explores the impact of SCM strategies—

Supplier Selection, Product Stewardship, and Logistics Management—on the four pillars 

of SCM in the oil and gas distribution sector: Planning, Execution, Coordination, and 

Collaboration. This research used multiple regression models to look at 79 oil and gas 

distribution businesses in Romania and the Republic of Moldova.  Overall and for each of 

the SCM functions studied, SSCM techniques were shown to have a positive and 

statistically significant effect.  

The purpose Kot (2018) article aims to summarize the current state of sustainable 

development research on the topic of SCM for SMEs, as well as its future directions and 

the outcomes of relevant experiments. According to the findings, notwithstanding the 

imbalance mentioned in the literature, every sustainability area was crucial to the 

SCM strategies of the SMEs under study.  The research also identifies the key 

components in the specific sustainability domains of SCM and SMEs; in this regard, 

integrating the idea of sustainable SCM into SMEs' operational plans seems to be a 

crucial role.  Additionally, this supply chain encompasses the commercial, 

environmental, and social facets of sustainable development.  

This study Rezaee (2018) aims to address this gap by illuminating the connection 

between different aspects of sustainability performance, how they work together to 

generate shared value for all parties involved, and what this means for the sustainability 

of the supply chain at large.  This study presents a framework including sustainability 

theories, aspects of sustainability performance, the notion of shared value, and best 

practices in order to investigate the relationship among SCM and corporate sustainability. 



 

 

using the suggested framework, businesses may include monetary and non-monetary 

sustainability measures into their supply chain sustainability initiatives from production 

design all the way through inbound and outbound logistics, purchasing, and production. 

In this De Santis et al. (2017) investigates use of ML classifiers to suggest a 

prediction model for an unequal class issue, where the relative frequency of products 

going into backorder is low compared to those that don't.  Materials backorder is a typical 

issue in supply chains that affects the efficiency and efficacy of inventory systems; this 

job makes use of specific measures such AUC-ROC and precision-recall curves, 

sampling approaches, and ensemble learning.  

Supply Chain Management in connected packaging using deep learning 

In this research Douaioui et al. (2024) offered a new method for predicting the 

likelihood of supply chain delivery delays. The clustering phase of the given framework 

is carried out using hyperparameter optimization and a new metaheuristic named RIME. 

The framework also incorporates multi-classification approaches. The multi-classification 

phase makes use of five separate DL models: GAN, CNN-LSTM, EL via bagging, EL via 

stacking, and EL via boosting.  The GAN and CNN-LSTM forms the basis of the three 

ensemble learning models.  This examination highlights the superior accuracy of 

Ensemble learning stacking by 0.926, highlighting its ability to make exact predictions. 

In this study Sayyad et al. (2024), showcased a novel architecture for predicting 

sales orders that integrates feature extraction using DANN with several ML models.  

While keeping the data's unique behaviour, the DANN approach makes the data more 

generalizable.  The strategy overcomes difficulties including limited data availability and 

considerable unpredictability in sales conduct. This pre-trained DANN model is able to 

extract useful characteristics from unknown goods by using the transfer learning strategy, 

which involves training the model on the training data.  To the contrary, it is utilized as 



 

 

the basis for predictive models using ML methods.  The ensemble models which contain 

DT and RF components also experience hyperparameter optimization.  

This research Danach et al. (2024) completes a major need by providing a 

thorough framework for analyzing the pros, cons, possibilities, limitations, strengths, and 

risks of using AI in actual supply chains. Crime prediction, predictive modeling, and 

other fundamental artificial intelligence concepts like machine learning, optimization 

algorithms have been discussed in this paper. It provides an insight on how these 

techniques can be applied when addressing complex S.C. problems such as logistics, 

inventory management, and demand forecasting. In addition, examples of the cases that 

support all the suggested AI solutions are presented to demonstrate how the OP and 

accuracy improved greatly.  By proposing a conceptual AI model that can keep up with 

the ever-growing demands of contemporary supply chain logistics, this study adds to the 

existing body of knowledge and deepens our theoretical and practical comprehension of 

AI's function in this domain. The findings that are presented below offer academics as 

well as leaders and managers, some accurate recommendations on how global supply 

chain networks could be strengthened by innovation. 

The research Laldin Ismaeil & Lalla (2024) provides information on using AI in 

supply chain in different Arab organizations, which makes it rich with case studies to 

draw from when explaining how the various technologies are applied.  Generally, the 

above examples are positive and negative impacts of AI implementation for supply chain 

perspectives, and it gives readers a balanced idea about the topic. Finally, there are 

several obstacles to AI deployment that must be carefully considered, despite the fact that 

AI has great potential for improving supply chain management.  Technology advisory 

guidance for maximum AI technology utilization exists in the report addressed to Arab 

businesses. These rules stress the need of creating an adaptable company culture, doing 



 

 

regular risk assessments, and meticulous planning.  Companies may improve their supply 

chain operations and achieve sustainable development by tackling five critical areas and 

using the full potential of AI. 

This research Shankha Shubhra Goswami et al. (2024) provides an analysis of 

featured research on the potential of using AI in SCM to give more ideas on how such a 

great innovation has the ability to revolutionize SCM and hence create opportunities. 

Nevertheless, it also sheds light on the challenges that organizations are likely to face 

when implementing AI in SCM, including, data quality issues, challenges in privacy and 

security considerations and need for domain expertise. These are areas that were 

adequately addressed by the research as it developed a proper framework that would help 

in overcoming these challenges.  Due to the timely approach, and efficient analysis of the 

governance and ethical issues associated with AI, and a clear depiction of the steps that 

need to be taken to incorporate AI in SCM from the initial stages, this research work 

added elegance to the prospects and challenges of SCM through an integration of AI in 

present day uncertainty.  

This study Dalal et al. (2024) proposes the improvement of supply chain 

sustainability and efficiency while using CNNs with BiLSTM.  The proposed method 

employs CNNs to determine the relations between geographical locations in the supply 

chain, pattern, and allocate resources efficiently.  One of the main advantages of BiLSTM 

models is the ability to detect temporal dependencies that make demand forecasting and 

proactive decision making possible. The supply chain dynamics are explained by 

integrating these theories.  The efficiency is increased by adaptive and monitoring 

features of both CNNs and BiLSTM, which make them capable to quickly change a 

setting.  Fewer lead times decreased stock outs and improved inventory is among the 

benefits of predictive analytics.  Supply chain sustainability, integrated transportation 



 

 

management, low carbon transportation plan, and green-sourcing decision-making 

intelligence are all part of sustainability. The suggested hybrid model has a specificity of 

94.65%, an accuracy of 96.57%, a sensitivity of 95.67%, and an MCC of 0.85%.  

Evaluation of the outcomes shows that the suggested model considerably raised the 

degree of precision.  Issues in the supply chain are shown from every angle by this study.  

Two ways that wisdom derived from CNNs and BiLSTMs may make the worldwide 

supply network greener are increasing operational efficiency and aligning supply chain 

processes with sustainability goals. 

This Eni et al. (2024) research investigates how deep learning algorithms may be 

used to improve supply chain operations from a management standpoint.  The research 

starts out by going over the complexity of contemporary supply chains, which are defined 

by globalized activities, linked networks, and changing client needs.  The conditions with 

which these systems are characterized can be highly complex and unpredictable at times 

which makes it extremely difficult for traditional optimization issues to solve these 

problems by using standard optimization techniques. Deep learning functions as part of 

AI and has gained popularity because it extracts new hidden intelligence from extensive 

datasets. Some of the data types that deep learning computers can analyze using 

techniques such as convolutional and neural networks include sales forecasts, stock, 

logistic paths, and market trends. This is a management research paper that seeks to 

analyze the possibility of adopting Deep Learning algorithms to supply chain decision-

making processes.  Specifically, the most crucial ones are managing inventories, demand 

forecasts, routes, and risks.   Possible additional factors include the use of DL to 

forecasting inventory management, logistical process improvement, and early disruption 

detection. 



 

 

This research Lee & Rah (2024) discusses the impact of deep learning for the 

overall supply chain in the retail environment in such areas as demand prediction, 

inventory management, logistics, and customer satisfaction. This report from over 200 

implementation cases in North America, Europe, and Asia provides an insight of 

operational efficiency of 20-45 AD: Revenue and forecasting accuracy, 25-35 Inventory 

cost and 15-30 Transport cost savings. This report also covers areas such as 

implementation issues in the future as well as how it was successfully done in other 

organizations.  This paper aims at giving a clear theoretical background and implication 

to assist retailers in the active journey for the AI transformation in supply chain 

management. 

This study Khedr & S (2024) finds the ways in which DL and ML have improved 

SCM in a number of areas, including as manufacturing, transportation, inventory control, 

demand and sales prediction, and supplier selection.  To improve operational efficiency, 

resolve existing limits, and identify future research prospects, this study presents a 

thorough evaluation that examines the integration of DL and ML with SCM in detail. 

Consolidating previous research on SCM enhancement using ML and DL approaches, a 

thorough literature table provides a concise summary of goals, results, and development 

areas, as well as quick insights into the changing SCM environment. 

This study Ashraf et al. (2024) enhances the supply chain overall by combining a 

cognitive digital twin structure with a hybrid DL method for issue detection. Combining a 

one-class SVM technique with a deep autoencoder neural network is what the suggested 

disruption detection module does.  Furthermore, LSTM neural network models are 

constructed to ascertain the impacted echelon and the anticipated recovery period after 

the disruption. The suggested method would collect data on disruptions in real-time, 

which will aid decision-makers and supply chain practitioners in making smart choices to 



 

 

lessen the blow of disruptions.  The results show the compromises between false alarms, 

the sensitivity of the disruption detection model, and the speed with which disruptions are 

detected.  Much of the more recent writing on the subject has avoided this method. 

This research Bassiouni et al. (2024) suggests many DL approaches to get the 

most of DL, especially for determining whether any product will be supplied late in a 

complicated SC system because of any unanticipated reason.  To extract features, four 

distinct DL architectures are suggested: Simplest, Deep-LSTM, 1D-CNN, and TCN-

1DSPCNN models. To determine if the information is delayed or not, six variant 

classifiers were employed: SoftMax, Random Trees (RT), RF, KNN, ANN, and SVM. 

These DL models improve the accuracy of detecting supply chain late orders by 

capturing complex temporal connections in a seamless manner.  These suggested DL 

models are great for identifying late orders in the supply chain because they use 

hierarchical feature learning to spot subtle correlations and trends. 

In this research Rajeev (2023) recommends looking at how packaging affects 

supply chain management.  This proves that SCM places a premium on packaging.  As a 

result of supply chain management's monetary considerations, issues like careless product 

packing have come to light. The research approach used is descriptive.  Due to the lack of 

previous practical attempts at this kind of association, it was determined that such 

research would provide valuable, intriguing, and enlightening insights.  Insights into the 

importance of practical approaches to packaging innovation at both the industry and 

global operations levels are provided by the findings, which may help improve 

profitability, guarantee efficiency in business methods, and lend credence to future 

studies on the topic.  

This research Jahin et al. (2023) performs an extensive bibliometric analysis in 

conjunction with a SLR; after painstakingly reviewing 1,717 research, the authors drew 



 

 

important conclusions from 48 papers published between 2014 and 2023.  After offers a 

more comprehensive picture of the changing SCRA environment, the study addresses 

important research problems and investigates current AI/ML methodology, results, 

strategies, and future trajectories.  Outcomes show that hybrids, XGBoost, Random 

Forest, and other AI/ML models significantly improve SCRA precision.  

This study Sakas et al. (2023) investigates the demand for DL's ability to classify 

and optimize operations, as well as its ability to provide more accurate information, 

revenue growth, inventory turn values, and to conduct correlation and linear regression 

analyses to glean useful insights for researchers. Next, these findings were used to create 

statistical coefficients, which were then used to build a hybrid model. The FNN method 

was used to estimate the behavioural analytical metrics of individual agents, and the 

result was a model that accurately simulated the chosen key performance transportation 

indices of supply chain firms. Key transportation performance indices, namely those 

pertaining to transportation expenses, improve by 60% when the amount of website visits 

to supply chain enterprises increases.  On top of that, research shows that the chosen 

transport performance indicators (TPIs) fall by an average of 87.7 percent when the 

visibility of supply chain organizations’ websites increases.  

In this Oyewola et al. (2022) suggested deep learning algorithms, including 

LSTM and 1D-CNN, were used to categorize datasets of health prescription supply chain 

prices. Then, in order to improve the classification model, the appropriate model hyper-

parameters of LSTM and 1D-CNN were determined using Bayesian optimization using 

the tree parzen estimator and all kNN.  To forecast the created models' accuracy, repeated 

five-fold cross-validation is used. 

In this study Chong et al. (2022), propose and conduct a comprehensive Deep 

Reinforcement Learning research on optimizing the garment supply chain, with an 



 

 

emphasis on Soft Actor-Critic.  This research compares six different models based on 

their performance in terms of inventory-to-sales ratio, sell-through rate, and service 

quality.  When compared to other cutting-edge Actor Critic models, Soft Actor-Critic 

fared better at controlling inventory and meeting customer requests. In addition, the 

experimental performance of the models is evaluated by computing explicit indicators, In 

comparison to the S-policy, Twin Delayed Deep Deterministic Policy Gradient (TD3), 

and Trust Region Policy Optimization models (TRPO), Soft Actor Critic (SAC) achieved 

a lower inventory sales ratio of 7%, 41.6%, and 42.8%, respectively, demonstrating its 

superior ability to make sales and profit from inventory stocks.  

This study Terrada et al. (2022) use Deep Learning techniques, such as 

ARIMA and LSTM, to enhance the SC's demand forecasting system's performance by 

analyzing a company's past transactions.  Experiment findings allow for the selection of 

the most efficient approach that might outperform the tested methods in terms of 

accuracy. A substantial quantity of data is created throughout the SC). With the use of AI, 

this data might be analyzed to help each SC actor improve their performance and develop 

a better understanding of the consumer. 

 This propose Ali et al. (2021) an innovative method that shows how real-time 

data may be used to design the product and the supply chain at the same time.  Using a 

three-step cloud-based management system is fundamental to the suggested 

methodology.  The first stage involves creating a set of product families via the use of 

"AND" and "OR" nodes in a generic bill of materials. Step two involves creating a cloud-

based framework to handle echelons-based real-time expenses.  Step three involves 

solving the optimization issue using a metaheuristic approach based on Genetic 

Algorithm (GA). The model is shown using a numerical example of a power transformer. 

It optimizes the SCD based on real-time expenses.  



 

 

Dörr et al. (2020) put out a strategy for fully automating the identification of 

packaging structures:  In a logistics supply chain, a wide range of transported goods must 

be processed, identified, and verified at various nodes. The algorithm relies on deep 

learning models, specifically CNNs for image segmentation, computer vision techniques, 

and heuristic components. From a single image, one or more transport units can be 

located, and for each of these units, its characteristics, total number of packaging units, 

and arrangement can be recognized. 

This research S. S. Ahmed et al. (2018) aims to find out what GSCM practices a 

textile sector in Dhaka's Gazipur District has implemented.  The evaluation relies on data 

collected from 200 respondents.  After data was analyzed using weighted arithmetic 

mean and chi-square testing, it was determined that the textile industry of Gazipur district 

is using several green SCM strategies.  Organizations can manage possible delays and 

distribute resources efficiently and proactively thanks to their parallel processing 

capabilities, which enables real-time decision support.  

2.3 Research Gaps 

Based on the reviewed literature, several critical research gaps emerge in the 

application of AI and DL within SCM. While the current body of research demonstrates 

significant advancements in predictive analytics, optimization, and automation 

particularly through techniques such as LSTM, CNNs, DRL, and hybrid models there 

remains a noticeable lack of focus on model interpretability and explainability. Many 

studies prioritize performance metrics without considering the usability of AI models by 

supply chain practitioners, limiting their adoption in real-world scenarios. Furthermore, 

although behavioural aspects and decision-making dynamics are increasingly relevant, 

few studies incorporate human-centric or behavioural modelling in their frameworks. 

Another key gap lies in the limited cross-industry application and generalizability of 



 

 

proposed models. Most research is tailored to specific sectors like healthcare, apparel, or 

logistics, with minimal exploration of transferability across different contexts or regions. 

Additionally, the integration of AI in sustainable supply chain practices remains 

underdeveloped. While green supply chain initiatives are explored through traditional 

methods, there is a lack of AI-driven frameworks addressing environmental and social 

sustainability metrics. Lastly, many AI applications rely heavily on cloud infrastructure 

and rich datasets, which poses scalability and accessibility challenges, especially for 

SMEs in developing regions. These gaps highlight the need for future research that 

prioritizes interpretability, behavioural integration, sustainability, scalability, and domain 

adaptability of AI applications in SCM. 

 

 



 

 

CHAPTER III:  

RESEARCH METHODOLOGY 

3.1 Proposed methodology  

This study applies a comprehensive research methodology to address three key 

predictive tasks: demand forecasting, late delivery risk prediction, and delivery status 

prediction using the DataCo Smart Supply Chain dataset.  

The forecasting process requires three initial steps followed by relevant variable 

selection (Date Orders, Order Item Quantity, Order Region) and missing data 

management and datetime transformation of order dates. All information about time 

ordering including year month day and weekday was extracted from the order date which 

led to removal of the original date column because it contained repetitive information. 

The analysis through Exploratory Data Analysis (EDA) produced graphical results which 

included histograms with count plots along with line charts along with boxplots for 

investigating order distribution methods and shipping duration patterns and regional 

activity. Daily order quantity outliers were found through application of the IQR method 

so researchers could enhance the data quality. Analysis of ordering patterns required 

aggregating the data into weekly and monthly quantity groups (YEAR_WEEK, 

YEAR_MONTH). To prepare the weekly data for Prophet time series forecasting we 

converted the timestamp columns to Prophet format and named fields as ds and y before 

performing normalization through Min-Max Scaler. The data received an 80:20 partition 

between training and testing sections. The model training process with historical data 

established a Prophet framework that generated predictions for future weeks along with 

trend-based visualization. Actual vs. predicted data plots were created together with the 

evaluation of training and testing performance through MAE, MSE and RMSE metrics. 

The flowchart of demand forecasting appears in Figure 3.1. 



 

 

The late delivery risk modeling process started with data preprocessing through 

extensive exploratory data analysis which included handling missing values, irrelevant 

variable removal, datetime format application, temporal extraction for hour and day of 

week measurement and daypart categorization. The feature engineering procedure 

involved converting categorical variables to numerical data points as well as applying 

one-hot encoding techniques for appropriate columns. The data normalization involved 

applying Min-Max Scaler while splitting the data into training (70%) and testing (30%) 

portions. Random Forest analysis determined the ten most influential features which were 

displayed through a feature importance visual representation. Three classification models 

namely AdaBoost and Cat Boost and Multi-Layer Perceptron (MLP) were first 

implemented for late delivery risk prediction. Accuracy, precision, re-call, and f1score 

computations are the cornerstones of model performance assessment. A flowchart 

depicting late risk prediction appears in Figure 3.1. 

 For delivery status classification. The methodology started with data 

preprocessing steps which included check data structure while handling missing values 

and discarding irrelevant features and non-informative categorical variables to boost 

model performance and minimize noise. The target variable ‘Delivery Status’ received 

numerical encoding and the date features required datetime processing to obtain shipping 

duration calculations. The remaining categorical variables went through one-hot encoding 

while dropping the first category to prevent the issue of multicollinearity. A Random 

Forest classifier ran to determine the ten most influential attributes out of all predictors 

for selection in the model. The target variable imbalance was handled through SMOTE 

(Synthetic Minority Oversampling Technique) methodology. The preprocessed data 

underwent a split which divided it into training 80% and testing 20% portions. The three 



 

 

classification models are applied, namely AdaBoost, Cat Boost and Multi-Layer 

Perceptron (MLP) as shown in Figure 3.2 delivery status prediction flowchart. 

 

Figure 3.1: Late risk delivery prediction flowchart 

 



 

 

 

Figure 3.2: Delivery status classification flowchart  



 

 

 

Figure 3.3: Demand forecasting Flowchart 

3.2 Data collection 

This study uses a primary dataset, DataCo Supply Chain Dataset
1
.csv, contains 

structured data suitable for applying machine learning algorithms. In addition to this, the 

dataset is complemented by unstructured data in tokenized_access_logs.csv, which 

includes clickstream data, enabling the correlation of behavioral patterns with 

transactional records for deeper insights. The dataset includes a huge variety of products 

                                                 
1
  https://www.kaggle.com/datasets/shashwatwork/dataco-smart-supply-chain-for-big-data-analysis 

https://www.kaggle.com/datasets/shashwatwork/dataco-smart-supply-chain-for-big-data-analysis


 

 

from many various industries, like clothing, sports, and electronics. To support 

understanding and feature interpretation, a separate file, 

DescriptionDataCoSupplyChain.csv, provides detailed metadata describing every 

variable present in the structured dataset, enhancing the usability of the data for advanced 

analytical tasks. 

3.3 Preprocessing of Demand Forecasting Task  

The following preprocessing are performed in demand forecasting: 

● Selection of Relevant Columns: The dataset underwent a filtering process to 

maintain only the columns which supported demand forecasting. The selected 

column variables contained Date Orders, Category Name, Category Id, Order 

Item Quantity, Order Region, Order Status, ProductName, Product Card Id, Days 

for shipping (real), and Days for shipment (scheduled). By following this step the 

meaningful variables remain while the system removes noise which enhances 

forecasting model efficiency. 

● Checking for Missing Values: The .is null (). sum () function executed a null 

check procedure. The used function enabled the identification of empty values 

across the chosen columns. The early detection of missing data enables the 

assessment of data quality for deciding between imputation or row removal 

procedures in subsequent processing steps. 

● Converting Order Date to Datetime Format: The conversion of Date Orders to 

datetime format happened through application of pd.to_datetime () function. The 

conversion allows different time-based actions and helps users extract year, 

month or day components from dates. 

● Verifying Dataset Structure: The .info () function was used to inspect the data 

structure and confirm that the Date Orders column was correctly converted to 



 

 

datetime. It also provided an overview of each column’s data type and non-null 

count, helping to validate the readiness of the dataset for time-series analysis. 

● Extracting Temporal Features: The Date Orders column generated several new 

time counter features. The additional features comprised ORDER_YEAR, 

ORDER_MONTH, ORDER_DAY as well as ORDER_WEEKDAY which 

assigned Monday a value of 0 and ORDER_DATE. The features serve to capture 

time patterns and advance the forecasting model's capability to detect seasonality 

in addition to trends. 

● Dropping Original Order Date Column: The Date Orders column received its 

extracted temporal features until being removed from the dataset. The researchers 

eliminated this column to minimize redundant variables before modeling, yet it 

maintained valuable data points for analysis in their separated parts. 

● Outlier Removal Using IQR Method: A study eliminated anomalous data points 

in daily order quantities through application of the Interquartile Range (IQR) 

procedure. The IQR technique removed values which were substantially different 

from normal patterns so model training stayed accurate, and predictions would 

improve. 

● Creating Monthly and Weekly Period Features: A new ordering timeline is 

made from the ORDER_DATE feature set.: 

▪ YEAR_MONTH: Extracted the year and month (e.g., “2024-01”) to 

facilitate monthly aggregation. 

▪ YEAR_WEEK: Extracted the year and week number (e.g., “2024-W01”) to 

enable weekly-level analysis. 

● Aggregating Order Item Quantity by Month and week: Order Item Quantity 

was summed across each period in the data following its division by the 



 

 

YEAR_MONTH feature. Aggregating the data by month allowed teams to trace 

seasonal trends and determine busy periods and planning cycles based on 

historical order quantity measurements. Weekly aggregation performed in a 

similar manner through the YEAR_WEEK column. Summary of weekly order 

quantities delivered better insight into order patterns which assisted in making 

both short-term forecasts and operational choices. 

● Preparing Data for Time Series Forecasting: The weekly aggregated data 

needed to be reformatted to fulfill the specifications needed for time series 

modeling. The script processed the YEAR_WEEK data by converting its date 

format to timestamp using.dt.to_timestamp () and it also reset the index while 

renaming the columns to ds (date) and y (target value) for Prophet and other 

models. 

● Scaling Target Variable Using Min-Max Scaler: The weekly order quantity 

data in the y column received normalization through Min-Max Scaler from Scikit-

learn. Min-Max Scaler standardized the values while keeping their original 

distribution within a 0 to 1 range. The magnitude normalization technique 

enhances both convergence and accuracy levels in models which react to 

variations in value scales. 

3.4 Preprocessing in Late Risk Prediction Task 

The following preprocessing are performed in the Late risk prediction: 

● Dataset Information Retrieval: To begin the analysis, process the dataset 

underwent loading then I accessed its general information through functions 

including .info () and. head (). The review of the dataset through these functions 

delivered an understandable data summary that enabled the detection of any 

formatting or inconsistency problems. 



 

 

● Null Value Check: A thorough examination of null values occurred with the. is 

null (). sum () function to identify all missing data points. The evaluation of null 

values through. is null (). sum () created understanding about data quality 

problems and identified which values required correction through imputation or 

removal. 

● Removal of Irrelevant Features: A bulk of features in the dataset included 

numerical and categorical variables which failed to serve as useful indicators for 

predicating late delivery risks. Dropping 16 categorical and 14 numerical features 

such as ‘Customer Email’, ‘Order City’, ‘Product Name’ and ‘Customer Id’, 

‘Order Id’, ‘Latitude’ allowed for dataset simplification leading to enhanced 

model performance by minimizing dataset noise. 

● Conversion of Date Columns to Datetime Format: The conversion process for 

datetime variables utilized pd.to_datetime () function to interpret Date Orders 

columns as Shipping Date and Order Date. Proper datetime conversion became 

necessary for both time-based feature calculation and uniform temporal research. 

● Time Difference Calculation: A new column was generated to measure the 

hours between shipment dates and order dates through the calculation of 

diff(hours). Users obtained shipping delay and time-to-ship measurements 

through this feature. 

● Extracting Day of the Week: The analysts extracted ship_day_of_week and 

order_day_of_week features through transformations of shipping and order date 

information. The order_day_of_week and ship_day_of_week features assigned 

numerical values that corresponded to day numbers starting from Monday as 0 

until reaching Sunday at value 6. 



 

 

● Mapping Day Numbers to Names: The numeric day of the week was converted 

into readable words such as Monday, Tuesday, etc., for shipping days and order 

days. The database generated two additional columns named 

ship_day_of_week_name and order_day_of_week_name. 

● Extracting Order and Shipping Hours: The hour part of both the order and 

shipping timestamps was extracted and stored in order_hour and ship_hour. These 

features revealed temporal order and shipping patterns, which may correlate with 

delays. 

● Categorizing Hours into Dayparts: A custom function divided the time spans 

into six specific dayparts: 'EarlyMorning', 'Morning', 'Noon', 'Eve', 'Night', and 

'LateNight'. The function was employed for organizing order_hour and ship_hour 

into order_daypart and ship_daypart. 

● Numeric Mapping of Dayparts: The model compatibility required the daypart 

categories to receive numerical assignments. The data now includes two numeric 

columns order_daypart_n and ship_daypart_n which serve as inputs for machine 

learning applications. 

● Dropping Useless Columns: The removal of Delivery Status along with 

Customer Segment and datetime strings columns occurred after the completion of 

feature engineering because these features proved redundant or unhelpful for 

modeling purposes. 

● One-Hot Encoding for Categorical Variables: The Type and Shipping Mode 

categorical features received their transformation through the one-hot encoding 

method using the pd.get_dummies function before getting cast as integers for 

model development. Dummy variables needed conversion to integer type since it 

served as essential components for model training consistency. 



 

 

● Normalization Using Min-Max Scaler: The dataset numerical attributes 

received normalization by implementing Scikit-learn’s Min-Max Scaler. The 

normalization through Min-Max Scaler produced values ranging from 0 to 1 

which improved both convergence rate and balanced the features' relative 

importance. 

3.5 Delivery status prediction Preprocessing phases           

The following preprocessing are performed in delivery status prediction: 

● Data Inspection and Null Value Check: The preprocessing process started with 

functional checks of the dataset using .info () and describe () to analyze data 

types, value ranges and distribution characteristics. A null value check was 

performed to identify missing or incomplete data entries which could influence 

the modelling process. 

● Removal of Irrelevant and Redundant Features: The dataset underwent a 

reduction process where unneeded or repetitive features got eliminated. Amongst 

the categorical data features Category Name, Customer City, Product Name and 

Type were erased because it failed to produce predictive value. Model 

performance received no meaningful benefit from keeping numerical identifiers 

which primarily functioned as unique identifiers like Category Id, Customer Id, 

Order Id and Latitude. The removal process decreased the dataset size while 

reducing meaningless data points. 

● Target Variable Encoding: A dictionary transformed Delivery Status categorical 

values into numerical data which allowed the algorithm to process them. The 

values within the Delivery Status column received numerical encoding through 

the Dictionary: {'Shipping on time': 0, 'Late delivery': 1, 'Advance shipping': 2, 

'Shipping canceled': 3}. The transformation enabled machine learning algorithms 



 

 

to accept the data. The developed encoding scheme resulted in a new 

Delivery_Status_Encoded column, which replaced the original Delivery Status 

column due to the removal of duplication. 

● Date Conversion and Feature Engineering: The Date Orders and Shipping 

Date columns were converted from string format to datetime objects. This 

allowed for accurate date manipulations and calculations. Using these columns, a 

new feature called Shipping Duration was created by calculating the difference in 

days between the shipping and order dates. This new feature provided valuable 

information about delivery timelines. 

● One-Hot Encoding of Categorical Features: The remaining categorical 

variables were formatted for use in ML models by transforming them using one-

hot encoding.  For every feature category, this procedure generated a binary 

column. To avoid multicollinearity, the first category of each encoded feature was 

dropped while still preserving the original information. 

Data balancing using SMOTE in Delivery status prediction    

SMOTE (Chawla et al., 2002) is a resampling method utilized to balance datasets 

with a severely uneven ratio. The plan's objective is to generate more synthetic minority 

class samples in order to boost the total number of minority class samples.  In order to 

avoid the overfitting issue, the synthetic manufacturing of new samples was distinct from 

the multiplication approach. 

The fundamental premise of Synthetic Minority Oversampling Technique 

(SMOTE) is to create new minority class data samples by extrapolating from nearby 

minority class samples (D. C. Li et al., 2022). Consequently, SMOTE enhances the 

classifier's capacity to generalize by boosting the representation of the minority class in 

an imbalanced dataset. You may understand the official SMOTE process by looking at 



 

 

this:  The first step is to set N to an integer value that represents the desired level of 

oversampling. This figure may be chosen as it balances the dataset with a 1:1 ratio 

between the various classes.  Iteratively, three primary stages should then be followed. 

Selecting a subset of the minority group at random is the first step.  The second step is to 

locate its K nearest neighbors, with five being the default.  The third step is to create 

more samples and interpolate using N randomly selected neighbours out of K. Figure 3.4 

illustrates a basic understanding of how SMOTE operates. 

 

Figure 3.4: SMOTE process 

3.6 Feature selection using Random Forest Model in late delivery risk and 

delivery status task  

Feature selection using the RF model is a powerful technique for identifying the 

most influential variables in predicting outcomes in late delivery risk and delivery status. 

While training, the random forest method takes into account the ensemble's impurity 

reduction efforts and uses them to rank the features in order of relevance. This process 

highlights the features that have the greatest impact on model performance. By selecting 

the top 10 features with the highest importance scores, the model focuses on the most 

relevant predictors, which not only improves predictive accuracy but also reduces 

computational complexity and the risk of overfitting. Furthermore, this targeted approach 

enhances interpretability by allowing practitioners to concentrate on the variables that 

most significantly affect delivery-related outcomes. 



 

 

3.7 Data Splitting 

Splitting the datasets into training and testing sets allowed for effective evaluation 

of model performance in all three predicting tasks.  An 80/20 split was applied to the time 

series data for demand forecasting, with 80% going into training and 20% into testing. In 

the late delivery risk prediction task, the data is split using a 70-30 ratio to train. For 

delivery status prediction, the dataset was divided using an 80-20 split, ensuring a 

balanced and representative training and testing distribution. 

3.8 Proposed Prophet Model for Demand Forecasting Task  

The proposed framework for product portfolio categorization and sales 

forecasting relies on a strategy or instrument that can reliably anticipate time series.   

Despite the availability of other tools and approaches, this research relies on Facebook's 

Prophet tool due to its capacity to provide somewhat accurate forecasts on a broad scale. 

The Prophet method is open-source software that was developed by Facebook's Core 

Data Science team.  Time series data may be forecasted with the use of an additive model 

that accounts for nonlinear trends, yearly, weekly, and daily seasonality, and the effects 

of holidays. This approach works well with time series that include data from many 

seasons and are significantly affected by seasonality.  Prophet is robust against missing 

data and shifting trends, and it often performs well when dealing with outliers. Many 

Facebook applications use Prophet to make reliable predictions since Taylor and 

Letham's research shows that it works better than all other methods in most situations 

(Žunić et al., 2020).  

3.9 Proposed models for late risk and delivery status prediction 

This section presents the proposed models for late risk and delivery status 

prediction using AdaBoost, Cat Boost, and Multi-Layer Perceptron (MLP). Each model is 



 

 

discussed based on its core architecture, learning approach, and advantages in handling 

classification tasks. These models are selected for their robustness, accuracy, and ability 

to handle complex, categorical, and imbalanced data in supply chain prediction scenarios. 

Adaboost  

An approach called adaptive boosting has been suggested to increase the 

ensemble's accuracy (Freund & Schapire, 1997). The main idea behind boosting is to 

train a chain of classifiers, with the hope that each one would give more weight to the 

tuples that were incorrectly categorized in the previous round. When used together, 

classifiers in an ensemble boost each other's accuracy, resulting in a very precise set of 

results. The term "boosting" refers to a generic approach of improving a random learning 

algorithm. There is no overfitting, and the model technique is simple to understand.  It 

handles both kinds of binary classification issues in the same manner as ML handles 

problems with many classes. The expansion to the existing regression concerns is also 

provided by AdaBoost.  When contrasted with bagging on noise-free data, the boosting 

technique seems to be rather effective. The datasets determine the algorithm's usage, 

which is to combine many classifiers into one advanced model.  This leads to the term 

"successive classifier creation." (Riansyah et al., 2023). 

The input used to construct a classifier is the preparation or training set.   

Repeatedly calling the collection of fundamental learning algorithms also ensures that the 

weights remain consistent across the preparation set. All weights are initially set equally, 

but each round expands the weights of examples that are incorrectly categorized in order 

to force the weak learner to focus on the challenging instances in the preparation data. 

Thirdly, two structures, boosting by sampling and boosting by weighing, may be used to 

link this boosting.  With the boosting learning method, the basic learning algorithm may 

directly take a weighted set of training data.  The basic learning algorithm now gets the 



 

 

whole preparation set with these techniques. Additionally, the boosting by sampling 

method draws models by replacing the training set with a probability distribution that is 

proportional to the weights of the variables.  Using the cross-validation method, the 

iteration may be stopped (Walker & Jiang, 2019) 



 

 

Cat boost  

The term Cat Boost is derived from the words "Categorical" and "Boosting." 

Popular programming languages like R and Python make use of this open-source ML 

technique created by Yandex (Hancock & Khoshgoftaar, 2020). The Cat Boost 

framework is a GBDT that uses symmetric DT as its main learners. It processes class-

type information rapidly and fairly, has fewer parameters, and achieves great accuracy. It 

also supports class variables.  In addition, by fixing gradient bias and prediction shift, it 

reduces the chances of overfitting.   The DT's node splitting criterion will be the label 

means, which are also known as greedy target variable statistics. The equation for this is 

provided as 

…... (3.1) 

Feature data frequently contains more information than label data, which is the 

most obvious problem with this approach.   When the data structure and distribution of 

the training and test datasets are different, it may lead to conditional bias when the 

features are displayed by the average of the labels. A popular technique for improving 

Greedy TS is the addition of a priori distribution terms, which lessen the effect of noise 

and low-frequency category data on a data distribution. This method is expressed by this 

formula: 

… (3.2) 

where   is the previously added term and the weight coefficient that is larger than 

zero is usually denoted by  a. The prior likelihood of positive cases is the preceding 

phrase in a classification problem. Simultaneously, in order to make the model even more 

expressive, the algorithm will dynamically merge category features into new features. 



 

 

The blueberry ecological suitability dataset is mostly organized using categories, taking 

into consideration the advantages of the Cat Boost approach discussed previously.  More 

data may be trained using this method, which improves the model's expressiveness even 

more (Gayathri et al., 2022). Figure 3.5 displays the flow diagram of the Cat Boost 

algorithm. 

 

Figure 3.5: Flow chart of Cat Boost algorithm. 

Multi-Layer perceptron MLP 

Pattern recognition, classification, and prediction are just a few of the many uses 

for the MLP, an ANN.  It can convert data sets from inputs into outputs; this property 



 

 

makes it a Feed-Forward ANN. Data points in an MLP network flow unidirectionally 

from the input layer to the hidden levels for processing, and then back to the output layer 

for return, as shown in Figure 3.6.  Neurons are taught using the backpropagation 

learning method, and data flows forward from the input to the output layer. The output 

layer is responsible for carrying out the necessary tasks, including classification and 

prediction.  A neuron's output is generated by feeding the sum of all the weights 

multiplied by the outputs from the preceding layer into an activation function. This 

process continues for every layer except the input layer, where the input layer is not 

involved.  

 

Figure 3.6: Simple Multi-Layer Perceptron ANN. The input layer's nodes are all linked to 

the concealed layer's nodes.  After receiving data from the last hidden layer, the output 

layer applies the learnt model to provide predictions. 

Neurons known as perceptions make up the MLP.  Features with weights are 

inputted into the perceptron as X= (X1, X2, X3), where  = ( 1,  2,  3). The following 

is the formula for computing the weighted sum, which requires numerical input features: 

…. (3.3) 

where    j is the weight that links neuron i to neuron j over two successive levels. 

The activation function  f is used to generate the perceptron's output after receiving the 



 

 

weighted summation as input.  The sigmoid/logistic function is used as the activation 

function inside the buried layer: 

… (3.4) 

We utilize the SoftMax activation function in the output layer since we have 

binary categorization. 

3.10 Proposed algorithm  

Input Dataset: DataCo SMART SUPPLY CHAIN dataset 

Output Prediction Tasks: 

1. Demand Forecasting – Forecast future weekly order quantities 

2. Late Delivery Risk Prediction – Classify orders as high or low risk of late 

delivery 

3. Delivery Status Prediction – Classify order status (e.g., Delivered, Shipped, In 

Transit) 

1. Prophet Algorithm – Demand Forecasting 

1. Load the dataset and filter relevant forecasting features 

2. Clean missing data and convert date to datetime format 

3. Extract temporal features: year, month, day, weekday 

4. Remove redundant original date column 

5. Apply IQR method to detect and remove outliers in daily order quantity 

6. Aggregate data by week (YEAR_WEEK) and month (YEAR_MONTH) 

7. Rename columns to ds (timestamp) and y (order quantity) for Prophet 

8. Normalize target variable using Min-Max Scaler 

9. Split data into 80% training and 20% testing 

10. Train Prophet model on weekly historical data 

11. Forecast future weekly demand 



 

 

12. Visualize actual vs. predicted demand trends 

13. Evaluate model using MAE, MSE, RMSE 

AdaBoost, Cat Boost, MLP – Late Delivery Risk Prediction 

1. Clean missing and irrelevant values 

2. Convert date fields to datetime format 

3. Extract features: delivery hour, day of week, and daypart 

4. Apply one-hot encoding to categorical variables 

5. Normalize features using Min-Max Scaler 

6. Split data into 70% training and 30% testing sets 

7. Use Random Forest to identify top 10 important predictors 

8. Train classification models: AdaBoost, Cat Boost, and MLP 

9. Predict late delivery risk 

10. Evaluate each model using Accuracy, Precision, Recall, and F1-score 

11. Visualize feature importance and prediction outcomes 

AdaBoost, Cat Boost, MLP – Delivery Status Prediction 

1. Clean dataset: drop missing and irrelevant fields 

2. Label encode Delivery Status 

3. Convert date columns to datetime and compute shipping duration 

4. Apply one-hot encoding to categorical features 

5. Drop the first category to avoid multicollinearity 

6. Use Random Forest to select top 10 features 

7. Apply SMOTE to handle target imbalance 

8. Split data into 80% training and 20% testing 

9. Train AdaBoost, Cat Boost, and MLP classifiers 

10. Predict delivery status 



 

 

11. Evaluate performance using Accuracy, Precision, Recall, F1-score 

12. Visualize model results and class predictions 

 

 

 

 

 

 

CHAPTER IV:  

RESULTS ANALYSIS 

4.1 Experimental Configuration 

This study's experimental setup makes use of a 64-bit Windows 10 PC outfitted 

with an Intel Core i5 processor, an AMD R7 2700x 8-core 3.7GHz CPU, 16 GB of RAM, 

and 500 GB of solid-state drive space.  The research makes use of Jupyter Notebook, 

Python, and some of its prominent libraries, such as Pandas, NumPy, plotly, matplotlib, 

seaborn, and NLTK.   

Programming Language Python 

Python is a powerful and easy-to-learn programming language. The most 

advanced data structures are available, together with an approach to object-oriented 

programming that is both simple and effective (Van Rossum & Drake, 2006). Through its 

interpretive nature and dynamic typing together with beautiful syntax Python succeeds as 

a scripting language and fast application developer across most platforms.  The wide user 

base adopts Python as a general-purpose programming language with its high-level 

comprehensive nature (Nosrati, 2011). Code readability stands as a fundamental design 



 

 

principle and the syntax allows developers to express concepts using fewer code lines 

beyond C language standards. Built-in features support the creation of programs at all 

scales (Rawat, 2020). The programming language Python supports multiple paradigms 

such as procedural as well as object-oriented and imperative and functional approaches 

(McCane, 2009). Python contains an extensive standard library and manages memory 

automatically and implements dynamic types (Summerfield, 2011). Memory 

management in Python involves dynamic typing as well as reference counting together 

with another tool known as a garbage collector that checks for cycles.  Python features 

dynamic name resolution as its essential component since it performs binding to variable 

and method names while the program executes (Huang, 2023). 

Python Libraries 

1) Pandas: The Python module Pandas includes many data structures and tools for 

working with structured data collections. These sets exist in multiple scientific 

domains such as statistics economics along with the social sciences field.  These 

types of data sets may be easily analyzed and manipulated with the help of the 

library's integrated, user-friendly procedures (McKinney, 2011). The system aims 

to function as the essential statistical processing foundation for Python.  It 

functions as a powerful expansion of the existing scientific Python stack which 

duplicates and extends data manipulation functions found in R and different 

statistical programming languages. 

2) NumPy: Python's numeric computing functionality is built into the language via 

the NumPy module.  A set of extensions known as Numeric Python extensions 

(henceforth "NumPy") allows Python programmers to deal with large collections 

of objects more efficiently by using grid-like structuring (Ascher et al., 2001). An 

array is a collection of things with one or more dimensions, which may be 



 

 

between zero and two.  A one-dimensional array is analogous to a standard 

Python sequence, and a two-dimensional array is analogous to a matrix in linear 

algebra. 

3) Scikit-Learn: The open-source Python ML software with the most features is 

scikit-learn.  Due to its frequent incorporation into broader applications, including 

web services, machine learning is best provided using the same programming 

language as the rest of the application to ensure smooth integration.  For ML-

related applications, Scikit-learn is becoming more popular as a result of Python's 

broad applicability (Hao & Ho, 2019). 

4) Matplotlib: Python, being free and open-source software, has generated over 

100,000 toolkits. When it comes to visualizing data in Python, Matplotlib is a 

popular choice.  A variety of 2D charts, as well as some simple 3D charts, may be 

quickly and readily drawn with Matplotlib (Cao et al., 2021).  It has the capability 

to generate figures of publishing quality in many formats.  As an export format, it 

works with several common ones, such as PDF, SVG, JPG, PNG, BMP, and GIF.   

A wide variety of plots are within its capabilities, including Line Plots, Scatter 

Plots, histograms, Bar Charts, Error Charts, Pie Charts, and Box Plots, among 

many more. 

5) Seaborn: A free and open-source Python software for making statistical 

visualizations, Seaborn is available for download and use.   An easy way to use 

matplotlib at a high level, it is compatible with pandas’ data structures (Waskom, 

2021). Fast data exploration and visualization prototypes with a lot of the stability 

and flexibility required to generate publishing-quality photos are made possible 

with the help of the seaborn library's matplotlib interface. It is applicable to a 

broad variety of domains and may be used to exhibit tabular representations of 



 

 

various datasets. The ability to automatically "map" dataset variables to graph 

visual qualities is a crucial aspect of Seaborn.  A "semantic" mapping is one that 

modifies the characteristics so that have significance in relation to the dataset. 

Jupyter Notebook 

The open-source Jupyter Notebook enables users to create computational workflows 

through an interactive computing environment which functions in browsers to help users 

generate and distribute their work documents (Pimentel et al., 2019). I Python served as 

the foundation for developing this powerful tool which now functions with Python, Julia, 

R and JavaScript as well as data science tools and scientific programs and learning 

applications. The system ties together running code execution and rich text plus 

mathematical equations and visualizations and images and videos as well as interactive 

widgets that enable researchers and developers to create single structured documents 

combining code with data and explanations. Jupyter Notebooks serve as virtual lab 

notebooks which support real-time data analysis and scholarly communication and 

experimental work for improved reproducibility and team collaboration (J. Wang et al., 

2020). These notebooks serve both humans and digital programs so scientists can use 

them with external programs and digital repository systems. These platforms enable 

researchers to connect different research objects that include datasets and software and 

workflows to publications, so it becomes accessible while remaining transparent. The 

Jupyter Notebooks function as a FAIR (Findable, Accessible, Interoperable, Reusable) 

service that supports open science through mechanisms for researchers to share and 

maintain reusable findings (Randles et al., 2017). The interactive computing cells come 

with built-in features for version control systems along with digital identification and 

persistence functionality that adds value to academic and research applications. As a key 



 

 

component of modern computational research, Jupyter Notebooks streamline data-driven 

exploration and digital scholarly communication. 

4.2 Performance Measure 

Confusion Matrix 

Confusion Matrix is an effective technique to measure a performance of a 

classifier.  A confusion matrix serves as an effective tool to display classification issues 

by showing the different prediction and result combinations through a tabular format 

(Ramya & Stephan Thangaiah, 2022). The Confusion Matrix pieces are employed to 

identify four effective aspects, namely, accuracy, precision, recall, and F1score that 

compiles a table of all depended and real values of a classifier. To make it easier to 

predict the classes in the given classification it is important to find out the best separation 

boundary between the classes.  These measures when compared highlight the best course 

of action leading to the best definition of the border.  The following formulae compute 

accuracy, precision, recall, and F1score from this Confusion Matrix. 

 

Figure 4.1: Confusion Matrix 



 

 

● Accuracy: A percentage of samples that were accurately forecasted relative to a 

total number of samples is called accuracy.  According to Equation (4.1), the 

model's accuracy increases as the value rises. 

         
     

           
           

● Precision: The term ‘precision’ is used to mean the number of samples correctly 

classified to the overall number of samples in the test set, using the following 

formula:  

          
  

     
                 

● Recall or Sensitivity: Sensitivity, also referred to as recall or detection rate, 

refers to the ability of the system to correctly identify conditionally late orders.  

Here is the equation that defines it: 

       
  

     
                 

● F1-Score: F-score is a measure of recall and precision that is given as a weighted 

harmonic mean, where we assign a weight of beta to precision.  A higher F1-score 

indicates a better model, with a value of 1 indicating that beta is 1, and the 

formula is given by Equation (4.4): 

         
 ∗           ∗        

                
            

● ROC Curve: A method for representing, categorizing, and choosing classifiers 

according to their performance is a ROC graph (Fawcett, 2006). ROC graphs that 

describe the relationship of the hit rate and false alarm rate of the classifiers are 

not new to signal detection theory.  It is a valuable feature of ROC graphs that 

enables a competent visualization and categorization of classifier accuracy 

separated from the class distributions and expenses of both types of errors. This is 



 

 

very important when there is learning that is sensitive to costs or when the 

distribution of samples is skewed. 

4.3 Dataset Description 

A dataset called "DataCo Smart Supply Chain for Big Data Analysis" (Dataco 

Smart Supply Chain for Big Data Analysis Dataset, 2023.) was obtained from Kaggle. It 

contains 180,519 rows and 53 columns that record several parts of supply chain activities, 

such as manufacturing, provisioning, sales, and commercial distribution. It includes both 

unstructured (tokenized_access_logs.csv) and structured 

(DataCoSupplyChainDataset.csv) data, allowing for the correlation of both types of data 

for knowledge creation. The dataset includes key attributes such as order details (OrderId, 

Order Date, Order Status, Order Profit, Order Item Quantity, Sales, Order Item Total, and 

Order Region), customer information (Customer Id, Name, Email, Segment, City, State, 

Country, and Zip code), product data (Product Id, Product Name, Product Price, 

Category, Description, and Status), and shipping details (Days for Shipping, Shipping 

Mode, Delivery Status, and Late Delivery Risk). The dataset covers three main product 

categories: clothing, sports, and electronic supplies and supports ML algorithms. This 

dataset is particularly valuable for studying the role of data, ML, and supply chain 

interdependencies in implementing connected packaging solutions for enhanced supply 

chain efficiency. Connected packaging methods may be improved with the use of real-

time data and predictive analytics, which provide insights into shipment tracking, 

delivery performance, and client demand forecasts.  Further aiding sophisticated analytics 

and decision-making in SCM is a supplemental file, DescriptionDataCoSupplyChain.csv, 

which includes thorough explanations of each variable. 

Exploratory Data Analysis for Delivery Status Prediction Using Proposed Dataset 



 

 

 

Figure 4.2: Distribution of the Order Status 

Using the DataCo SMART SUPPLY Chain dataset, figure 4.2 displayed a count plot for 

a distribution of order status count. With a count surpassing 50,000, the count plot shows 

that "COMPLETE" is the most often occurring order status, followed by 

"PENDING_PAYMENT" with around 40,000 occurrences. While "closed" orders also 

reach 20,000, "processing" and "pending" statuses both report about 20,000 counts. 

Lower frequencies are recorded for "ON_HOLD" (around 10,000), 

"SUSPECTED_FRAUD" and "CANCELLED" (each about 4,000), and finally, 

"PAYMENT_REVIEW" has the lowest count, dipping below 2,000. This visualization 

offers understanding of the whole order fulfilment process and points out possible areas 

of concern, such the number of outstanding payments or orders labelled as questionable 

for fraud. 



 

 

 

Figure 4.3: Correlation Heatmap for Numeric Features of DataCo SMART SUPPLY 

CHAIN Dataset 

A correlation heatmap depicting the relationships among the numerical attributes of the 

DataCo SMART SUPPLY CHAIN dataset is shown in Figure 4.3. Heatmaps use a color-

coded scale from -1 to 1 to show the direction and intensity of correlations. The "Days for 

shipment (scheduled)" and "Days for shipping (real)" variables show a significant 

positive correlation of 0.52, suggesting that the actual and scheduled delivery periods are 

almost identical.  With a strong positive correlation of 0.99 among "Sales per customer" 

and "Sales," "Order Item Total" and "Sales" both illustrate the influence of total order 

value on overall sales numbers. A robust positive correlation of 0.79 between "Order 

Item Product Price" and "Sales" and 0.78 between "Order Item Total" provides more 

evidence of this. Conversely, "Late Delivery Risk" and "Days for shipping (real)" are 

significantly correlated with a negative value of -0.40, indicating that delayed deliveries 

are more probable in cases where shipping takes longer. It is useful for checking for 



 

 

potential multicollinearity issues in models and provides information on interactions of 

features that can be utilized for corporate decision making. 

 

Figure 4.4: Boxplots for Numerical Features of DataCo SMART SUPPLY CHAIN 

Dataset 

Figure 4.4 displays multiple boxplots which show the statistical distributions of different 

quantitative attributes found in the DataCo SMART SUPPLY CHAIN dataset. These 

boxplots reveal important information regarding the distribution patterns including spread 

and center values as well as outlier occurrences for multiple features. The delivery time 

variations appear in both "Days for Shipping (Real)" and "Days for Shipment 

(Scheduled)" plots, and the "Benefit per Order" and "Order Profit per Order" plots 

demonstrate profitability ranges showing distinct outliers. The data indicates two 



 

 

distributions "Sales per Customer" and "Sales" exhibit skewness because it contains 

numerous extreme values. The Late Delivery Risk variable shows binary or categorical 

nature by displaying data in a restricted value range. Multiple data points within "Order 

Item Discount Rate" and "Order Item Profit Ratio" extend beyond the median range to 

produce varied data distributions. The plots of "Order Item Product Price" and "Order 

Item Total" together with "Product Price" show the distribution of pricing data where 

high-value outliers exist. The distribution of "Order Item Quantity" data shows moderate 

variation although it has only a few outlier observations. The combined set of graphical 

visualizations lets users see distribution patterns of essential supply chain data and 

recognize both major trends and abnormal data points. 

 

Figure 4.5: Distribution of Delivery Status 

Figure 4.5 displayed a Count Plot of the distribution of delivery statuses, revealing that 

"Late delivery" is the most prevalent status, with a count approaching 100,000.  With 

over 40,000 counts, "Advance shipping" is the second greatest category.  For 

approximately 30,000 deliveries, "Shipping on time" is implicated. The status that occurs 

the least frequently is "Shipping canceled," which is less than 10,000 counts. This 



 

 

visualization indicates that the business may have a potential area of concern, as the high 

proportion of late deliveries indicates a need for further investigation into the causes of 

these delays. 

 

Figure 4.6: Bar Graph of Average Sales by Shipping Mode  

Figure 4.6 showcases the average sales categorized by shipping mode within the DataCo 

SMART SUPPLY CHAIN dataset.  The bar graph illustrates that "Standard Class" yields 

the highest average sales, closely followed by "First Class".  "Second Class" 

demonstrates a slightly lower average sales figure, while "Same Day" shipping exhibits 

the lowest average sales among the four categories.  The specific average sales values for 

each shipping mode are: Standard Class (203.45), First Class (200.75), Second Class 

(198.15), and Same Day (196.25). This visualization allows for a direct comparison of 

sales performance across different shipping options, potentially informing decisions on 

pricing strategies or service prioritization. 



 

 

 

Figure 4.7: Pair Plot for Selected Numerical Features  

A Pair Plot is illustrated in Figure 4.7, which illustrates the relationships between specific 

numerical features in the DataCo SMART SUPPLY CHAIN dataset. The pairwise 

correlations and distributions of "Days for shipping (real)," "Days for shipment 

(scheduled)," "Sales," "Order Profit Per Order," and "Benefit per Order" are investigated 

in this matrix of scatter graphs and histograms.  The diagram features histograms 

representing each feature distribution which is shown in the diagonal section. The 

relationships between pairings of features are revealed by the scatter plots off the 

diagonal.  It is important to note that the tightly concentrated nodes along a line imply a 



 

 

strong positive linear correlation among "Order Profit Per Order" and "Benefit per 

Order." Additionally, "Sales" exhibits a positive correlation with both profit metrics, 

albeit to a lesser extent. The "Days for shipping (real)" and "Days for shipment 

(scheduled)" exhibit a moderate positive correlation.  This visualization facilitates 

comprehension of the connections between these critical numerical variables and may 

prove advantageous for predictive modeling feature selection or engineering. 

 

Figure 4.8: Bar graph of Sales by Customer Segment 

Figure 4.8 displays the average sales across different customer segments. The 

"Consumer" category has the greatest average sales, followed closely by the "Corporate" 

segment, according to the bar graph. The "Home Office" segment demonstrates a slightly 

lower average sales figure compared to the other two.  Specifically, the approximate 

average sales values for each segment are: Consumer (202.50), Corporate (201.25), and 

Home Office (198.75). This visualization allows for a comparison of sales performance 



 

 

across different customer groups, potentially informing targeted marketing strategies or 

sales efforts. 

 

Figure 4.9: Bar Graph of Feature Importance  

Figure 4.9 presents a feature importance bar graph derived from a random forest model, 

highlighting the top contributing factors in a dataset. The "Late_delivery_risk" variable 

proves to be the top contributing factor according to an information value score higher 

than 0.35.  Theaters "Shipping Duration" along with "Days for shipping (real)" show 

substantial importance in the dataset according to their values exceeding 0.20 and 0.15 

respectively.  Two variables remain important to the overall prediction, yet it have an 

effect size of around 0.10: "Shipping Mode Standard Class" and "Days for shipment 

(scheduled)."  The following set of features including "Order 

Status_SUSPECTED_FRAUD", "Shipping Mode Second Class", "Shipping Mode Same 

Day", "Order Status PENDING_PAYMENT", and "Order Status COMPLETE" present 

diminished yet perceptible importance levels.  The visualization shows key predictive 

variables chosen by the random forest model to help explain which variables influence 

the target variable the most. 

  



 

 

Exploratory Data Analysis for Late Risk Prediction Using Proposed Dataset 

 

Figure 4.10: Distribution of Late Delivery Risk by Product Type 

Figure 4.10 displays a distribution of Late Delivery Risk across various product types, 

categorized by payment method, with specific count values provided. The stacked 

horizontal bar chart displays a count of orders for every product type ("DEBIT," 

"TRANSFER," "PAYMENT," "CASH") segmented by whether it was delivered late 

(Late Delivery Risk = 1) or not (Late Delivery Risk = 0).  For "DEBIT" transactions, 

there were approximately 26,000 on-time deliveries and 40,000 late deliveries. 

"TRANSFER" shows roughly 23,000 on-time and 25,000 late. "PAYMENT" has about 

18,000 on-time and 23,000 late. "CASH" transactions had approximately 9,000 on-time 

and 11,000 late deliveries.  This visualization emphasizes that "DEBIT" transactions 

exhibit both the highest overall volume and the largest difference between on-time and 

late deliveries, with a considerably greater number of late deliveries. 



 

 

 

Figure 4.11: Distribution of Late Delivery Risk by Customer Segment 

Figure 4.11 presents the distribution of Late Delivery Risk across various customer 

segments, with specific counts for on-time and late deliveries. The clustered bar chart 

displays the counts for each segment ("Consumer," "Corporate," and "Home Office") 

separated by delivery status (Late Delivery Risk = 0 for on-time, Late Delivery Risk = 1 

for late).  For the "Consumer" segment, there were approximately 42,000 on-time 

deliveries and 52,000 late deliveries. The "Corporate" segment had roughly 25,000 on-

time and 30,000 late.  The "Home Office" segment registered about 14,000 on-time and 

18,000 late deliveries.  This visualization highlights that while the "Consumer" segment 

has the highest overall volume, all segments demonstrate a higher number of late 

deliveries compared to on-time, suggesting a systemic issue affecting all customer 

groups. 



 

 

 

Figure 4.12: Distribution of Late Delivery Risk by Order Status 

A distribution of the Late Delivery Risk across various order statuses is shown in Figure 

4.11. Whether an order was delivered late (Late Delivery Risk = 1) or not (Late Delivery 

Risk = 0) is broken down in the stacked horizontal bar chart that displayed the count of 

orders for every status ("COMPLETE," "PENDING_PAYMENT," "PROCESSING," 

"PENDING," "CLOSED," "ON_HOLD," "SUSPECTED_FRAUD," "CANCELLED," 

"PAYMENT review").  With the biggest volume and the clear majority of on-time 

delivery shown by "COMPLETE" orders.  Nevertheless, there is a greater rate of late 

deliveries than on-time deliveries for a number of statuses, such as 

"PENDING_PAYMENT," "PROCESSING," "PENDING," and "CLOSED."  Orders 

marked as "ON_HOLD" or "SUSPECTED_FRAUD" also tend to have delivery delays.  

Although there are less "CANCELLED" and "PAYMENT_REVIEW" orders overall, 

there is a noticeable pattern of more late deliveries than on-time deliveries for these types 

of purchases. In order to enhance on-time delivery performance, this visualization 



 

 

highlights possible areas in the order fulfilment process that may need attention based on 

the order state and the Late Delivery Risk 

 

Figure 4.13: Distribution of Late Delivery Risk by Shipping Mode 

Figure 4.13 shows how Late Delivery Risk is distributed across various shipment options. 

The stacked horizontal bar chart shows the order count for shipping modes ("Standard 

Class", "Second Class", "First Class", "Same Day") which are separated into orders with 

and without late delivery (Late Delivery Risk = 1/0).  Standard Class experiences the 

biggest order volume with multiple delivery delays but delivers most orders within 

schedule.  The distribution of "Second Class" orders includes an especially significant 

number of late deliveries while on-time deliveries remain lower. Among the shipping 

methods "First Class" displays balanced timing patterns because its total number of on-

time deliveries somewhat surpasses delivery delays.  The shipping service "Same Day" 

contains the lowest number of orders combined with fewer late deliveries but its delivery 



 

 

delays as a percentage exceed those observed within the "First Class" service. The visual 

data indicates that delivery method affects risk of delay since both "Standard Class" and 

"Second Class" labels show higher susceptibility to delivery delays. 

 

Figure 4.14: Distribution of Orders Across Days of the Week 

Figure 4.14 displayed a Count Plot for the "order_day_of_week_name" feature, showing 

the distribution of orders across the days of the week. The horizontal bars represent the 

count of orders for each day, with the days arranged in descending order of frequency. 

"Thursday" exhibits the highest number of orders, closely followed by "Wednesday". 

"Tuesday" and "Saturday" show similar counts, slightly lower than the top two days. 

"Friday" and "Monday" also have comparable counts, while "Sunday" registers the 

lowest order volume.  This visualization reveals a potential pattern in order frequency 

across the week, with mid-weekdays generally having higher order counts compared to 

weekends. 



 

 

 

Figure 4.15: Distribution of Order Hours 

Figure 4.15 displayed a Count Plot for the distribution of order hours, showing the 

frequency of orders placed at each hour of the day. The horizontal bars represent the 

count of orders for each hour, numbered from 0 to 23.  The plot reveals a generally 

consistent volume of orders across most hours, with a slight dip observed at hour 6, 

which corresponds to 6 AM. The hours 4, 5, 10, 0, 13, 2, 17, and 23 (representing 4 AM, 

5 AM, 10 AM, 12 AM, 1 PM, 2 AM, 5 PM, and 11 PM respectively) show the highest 

order counts, all clustered closely together around the 7500-8000 order mark.  This 

visualization suggests a relatively even distribution of order activity throughout the day, 

with a minor decrease in the early morning hours. 



 

 

 

Figure 4.16; Distribution of Shipping Hours 

Figure 4.16 displayed a Count Plot for the distribution of shipping hours, showing the 

frequency of shipments occurring at each hour of the day. The horizontal bars represent 

the count of shipments for each hour, numbered from 0 to 23. The plot reveals a generally 

consistent volume of shipments across most hours, with a slight dip observed at hour 6, 

corresponding to 6 AM.  The hours 4, 5, 10, 13, 18, 0, 23, 16, 2, 15, and 20 (representing 

4 AM, 5 AM, 10 AM, 1 PM, 6 PM, 12 AM, 11 PM, 4 PM, 2 AM, 3 PM and 8 PM 

respectively) show the highest shipment counts, all clustered closely together around the 

7000-8000 shipment mark.  This visualization suggests a relatively even distribution of 

shipping activity throughout the day, with a minor decrease in the early morning hours. 



 

 

 

Figure 4.17: Feature Importance Bar Graph 

Figure 4.17 presents a feature importance bar graph derived from a random forest model, 

highlighting the top contributing factors in a dataset. "diff(hours)" emerges as the most 

influential feature, boasting the highest importance score exceeding 0.25. "Days for 

shipping (real)" also demonstrates significant importance, registering a value around 

0.24. "Shipping Mode Standard Class" and "Days for shipment (scheduled)" contribute 

moderately, with importance scores above 0.10. The subsequent features, including 

"Shipping Mode First Class," "Shipping Mode Second Class," "order_hour," and "ship 

hour," exhibit lower yet still notable importance. This visualization emphasizes the key 

predictive variables identified by the Random Forest model, providing insights into 

which factors most strongly influence the target variable. 

 

 

 



 

 

Exploratory Data Analysis for Demand Forecasting Using Proposed Dataset 

 

Figure 4.18: Distribution of Order Item Quantity  

Figure 4.18 displays the distribution of order item quantities, revealing a strong 

preference for single-item orders. The data, sourced by the DataCo SMART SUPPLY 

CHAIN dataset, shows a prominent spike at a quantity of 1, representing approximately 

100,000 orders. Smaller, yet notable, peaks appear at quantities of 2, 3, 4, and 5, each 

hovering around 20,000 orders. This visualization highlights a clear trend: customers 

predominantly order single items, with a significantly reduced frequency of orders for 

multiple items, suggesting potential implications for inventory management and order 

fulfillment strategies within the supply chain. 

 

 



 

 

 

Figure 4.19: Distribution of Orders by Region 

Figure 4.19 displayed a Barograph for the distribution of orders across various regions, 

revealing significant disparities in order volumes. Western Europe leads with 

approximately 26,000 orders, closely followed by South America with around 16,000.  

Oceania and Northern Europe show similar order frequencies, nearing 10,000.  In 

contrast, regions like Central Asia, Canada, and Southern Africa exhibit considerably 

lower order volumes, with Central Asia registering the fewest orders at just over 1,000. 

This visualization underscores the geographical variations in order patterns, highlighting 

key markets and areas with potential for growth or requiring targeted strategies. 

 



 

 

 

Figure 4.20: Count plot for Distribution of Orders by Category 

Figure 4.20 showcases a distribution of orders across various product categories using a 

count plot. The categories "Cleats," "Men’s Footwear," and "Women’s Apparel" emerge 

as the top three, each exhibiting order counts exceeding 20,000. Conversely, categorize 

such as "Golf Bags & Carts," "Basketball," and "As Seen on TV!" show significantly 

lower order volumes, falling below 5,000. The plot effectively visualizes the varying 

popularity of different product categories, highlighting best-selling items and those with 

potentially lower demand, offering valuable insights for inventory management and 

marketing strategies. 

 



 

 

 

Figure 4.21: Count plot for Distribution of Order Status 

Figure 4.21 illustrates a distribution of order statuses, revealing that the majority of 

orders are "COMPLETE," with a count exceeding 50,000.  "PENDING_PAYMENT" 

represents the next largest category, nearing 40,000 orders.  Following this, 

"PROCESSING" and "PENDING" statuses each account for approximately 20,000 

orders.  Conversely, statuses like "SUSPECTED_FRAUD," "CANCELED," and 

"PAYMENT_REVIEW" show significantly lower frequencies, with counts below 

10,000, indicating these are less common occurrences.  This visualization highlights the 

overall efficiency of the order process, with a large proportion of completed orders, while 

also identifying areas, such as pending payments, that may require attention. 



 

 

 

Figure 4.22: Average Days for Real vs Scheduled Shipping By Reason 

Figure 4.22 is a bar plot comparing average real shipping days against scheduled shipping 

days across different regions. The stacked bars, each representing a region, show that in 

most areas the real shipping time (represented by the bottom portion of the bar in shades 

of purple/red) is slightly less than the scheduled shipping time (represented by the top 

portion of the bar in blue). Specifically, regions like Southeast Asia, South Asia, and 

Oceania show a noticeable difference where scheduled times are longer. The graph also 

highlights that while there are variations in average shipping times across regions, the 

scheduled times generally provide a buffer over the actual shipping durations. 

Additionally, the error bars on the scheduled shipping indicate the variability in 

scheduled delivery times. 

 



 

 

 

Figure 4.23: Correlation Heatmap For Selected Numerical Features of DataCo Smart 

Supply Chain Dataset 

Figure 4.23 displays a Correlation Heatmap for selected numerical features by the 

DataCo SMART SUPPLY CHAIN dataset. Using a color-coded scale that goes from -1 

to 1, the heatmap graphically displays the correlation coefficients among pairs of 

variables. Notable positive correlations are observed between 'CategoryId' and 'Product 

Card Id' (0.99), and between 'Days for shipping (real)' and 'Days for shipment 

(scheduled)' (0.52). Conversely, a strong negative correlation (-0.75) exists between 

'ORDER_WEEKDAY' and 'ORDER_DAY', and a moderate negative correlation (-0.50) 

is seen between 'Product Card Id' and 'ORDER_MONTH'. The heatmap provides a clear 

overview of potential relationships between variables, informing feature selection and 

model development in subsequent analytical tasks. 



 

 

 

Figure 4.24: Line plot for Total Order Quantity Over Time 

Figure 4.24 depicts the total order quantity over time using a line plot, showcasing 

fluctuations and trends in order volume. The plot reveals a generally stable pattern with 

order quantities hovering around the 400 marks for much of the period between 2015 and 

late 2017. However, a noticeable drop occurs towards the end of 2017, where the order 

quantity sharply declines to approximately 50 units and remains low into 2018. This 

visualization effectively illustrates the temporal dynamics of order quantities, 

highlighting a significant decrease in late 2017 which may warrant further investigation 

into potential causes or contributing factors. 

 

Figure 4.25: Boxplot of Daily Order Quantities 



 

 

Figure 4.25 presents a boxplot of daily order quantities, visually summarizing the 

distribution and identifying potential outliers. The box extends from approximately 325 

to 425 units, encompassing the IQR and containing the middle 50% of a data. The box 

has a line that represents the median daily order quantity, which is around 375.  The 

whiskers indicate the range of usual daily order volumes, extending to the lowest and 

largest values within 1.5 times the IQR by the box. Notably, two distinct outliers are 

visible: one low value around 75 and one high value just above 500. This visualization 

highlights the central tendency and spread of daily order quantities, revealing a generally 

consistent order volume with occasional unusually low or high days. 

 

Figure 4.26: Total Order Quantity Over Time (Without Outliers) 

Figure 4.26 illustrates the trend of Total Order Quantity Over Time, focusing on the 

fluctuations in order volume while excluding outliers to provide a clearer view of the 

overall pattern. The plot shows a generally consistent level of order quantities, oscillating 

around an average of approximately 400 units throughout the depicted period. While 

there are minor peaks and valleys indicating variations in demand, the overall trend 

suggests a relatively stable order volume with no significant upward or downward shifts. 

This visualization helps in understanding the typical range of order quantities and 

identifying any potential cyclical patterns or anomalies that deviate from the established 



 

 

norm, excluding extreme values that might skew the interpretation of regular operational 

performance. 

 

Figure 4.27: Boxplot of Daily Order Quantities (Without Outliers) 

Figure 4.27 displays a boxplot of daily order quantities, excluding outliers, to illustrate 

the typical distribution of order volumes. The center half of the data is included in the 

IQR, which is represented by the central box, which runs from around 350 to 400 units.  

Within the box, you can see a line that indicates the median daily order quantity, which is 

probably about 375.  As a visual representation of the range of usual daily order volumes, 

the whiskers reach the lowest and highest values within 1.5 times the IQR from the box. 

This visualization emphasizes the consistent nature of daily order quantities, clustering 

around a central value with a relatively narrow spread, reinforcing the observation of 

stable demand with minimal fluctuations outside the typical range. 



 

 

 

Figure 4.28: Line graph for Total Orders by Month 

Figure 4.28 displays the total orders by month using a line graph, revealing a generally 

stable trend with some fluctuations. Throughout the majority of the period depicted, total 

orders fluctuate around the 10,000 to 12,000 marks, exhibiting a cyclical pattern of minor 

peaks and troughs. However, a significant decline is noticeable towards the end of the 

time frame, with a sharp drop in total orders to below 2,000. This visualization reveals 

steady order volume across most of the timeseries data with a clear reduction in numbers 

that hints at order fulfillment issues in that specific time frame. 

 

Figure 4.29: Line graph for Total Orders by Week 



 

 

The total orders by week present a steady pattern with occasional changes according to 

the line graph in Figure 4.29. The majority of the depicted timeframe shows total orders 

continuously moving between 2,400 and 2,800 marks while displaying small cyclical 

patterns. A main decrease emerges initially when orders reach numbers under 2,000 

before rising back up fast. The visualization brings to light steady order volume patterns 

across most of the time period and shows how starting orders suffered a big yet short-

term decrease that potentially demonstrates system obstacles during that timeframe. 

4.4 Experimental Results 

This section evaluates AdaBoost, Cat Boost, and MLP models for delivery status 

prediction, late risk prediction, and demand forecasting. Classification tasks were 

assessed using accuracy, precision, recall, and F1score, while demand forecasting used 

MAE, MSE, and RMSE.  

Findings for Delivery Status Prediction 

This subsection analyzes the model performance in predicting delivery status (on-

time, delayed, etc.). The classification models are assessed using the following metrics: 

accuracy, precision, recall, and F1score. The results highlight the model that best predicts 

delivery status, aiding logistics optimization. 

 Analysis of Proposed AdaBoost Model 

Table 4.1: Performance Metrics of AdaBoost Model in Delivery Status Prediction 

Model Accuracy Precision Recall F1-score 

AdaBoost  77.64 77.80 77.64 76.99 

The above-mentioned Table 4.1 presents a performance metrics of the AdaBoost model 

specifically for delivery status prediction. The table displays the accuracy, precision, 

recall, and F1score achieved by the AdaBoost model, with the recorded values being 



 

 

77.64%, 77.80%, 77.64%, and 76.99% respectively. The AdaBoost model's performance 

in identifying delivery statuses may be measured quantitatively using these measures. 

 

Figure 4.30: Confusion Matrix of AdaBoost Model for Delivery Status Prediction 

Figure 4.30 displays the Confusion Matrix for the AdaBoost model and shows the 

correctly classified instances for each delivery status category. For "Shipping on time", 

the model correctly predicted 8364 instances. It accurately classified 19725 instances as 

"Late delivery" and 19768 instances as "Advance shipping". Finally, the model correctly 

identified 5153 instances as "Shipping canceled". 



 

 

 

Figure 4.31: ROC Curve of AdaBoost Model for Delivery Status Prediction 

Figure 4.31 displayed the ROC curves for the AdaBoost model's delivery status 

predictions across four classes. Every curve plots the TPR against the FPR for various 

classification thresholds. The AUC values indicate a model's discriminative ability for 

every class: Shipping on time (0.91), Late delivery (1.00), Advance shipping (0.99), and 

Shipping canceled (0.84), reflecting strong overall performance.    

Analysis of Proposed Cat Boost Model 

Table 4.2: Performance Metrics of Cat Boost Model in Delivery Status Prediction 

Model Accuracy Precision Recall F1-score 

Cat Boost  100 100 100 100 

The above-mentioned Table 4.2 displays the performance evaluation metrics for the Cat 

Boost model applied to delivery status prediction. The chart shows that the Cat Boost 

model performed very well in identifying delivery statuses, as it got perfect scores across 



 

 

all assessed parameters, including accuracy (100), precision (100), recall (100), and 

F1score (100). 

 

Figure 4.32: Confusion Matrix of CatBoost Model for Delivery Status Prediction 

Figure 4.32 displays the confusion matrix for the Cat Boost model's performance in 

delivery status prediction. The number of cases that were accurately identified for each 

category is highlighted in the matrix: 19972 for "Shipping on time", 19725 for "Late 

delivery", 19768 for "Advance shipping", and 19717 for "Shipping canceled". These 

diagonal entries represent the accurate predictions made by the model across all delivery 

outcomes. 



 

 

 

Figure 4.33: ROC Curve of CatBoost Model for Delivery Status Prediction 

Figure 4.33 illustrates the ROC curves for the Cat Boost model's performance in 

predicting four delivery statuses. Each class, "Shipping on time", "Late delivery", 

"Advance shipping", and "Shipping canceled", achieves a perfect AUC score of 1.00. 

This proves that the Cat Boost model is quite good at differentiating between good and 

bad examples across all types of delivery outcomes. 

 Analysis of Proposed MLP Model 

Table 4.3: Performance Metrics of MLP Model in Delivery Status Prediction 

Model Accuracy Precision Recall F1-score 

MLP  99.98 99.98 99.98 99.98 

The above-mentioned Table 4.3 presents the performance metrics obtained by the Multi-

Layer Perceptron (MLP) model for the task of delivery status prediction. The table 



 

 

summarizes the model's performance across 4 key metrics: accuracy, precision, recall, 

and F1score, all of which are reported as 99.98%, indicating a near-perfect classification 

performance on the delivery status prediction task.  

 

Figure 4.34: Confusion Matrix of MLP Model for Delivery Status Prediction 

Figure 4.34 displayed the Confusion Matrix for the MLP model's delivery status 

predictions. The diagonal values represent correctly classified instances: 19965 for 

"Shipping on time", 19725 for "Late delivery", 19767 for "Advance shipping", and 19717 

for "Shipping canceled". These numbers indicate the model's accuracy in correctly 

identifying each delivery outcome. 



 

 

 

Figure 4.35: ROC Curve of MLP Model for Delivery Status Prediction 

Figure 4.35 displayed the ROCAUC curves for the MLP model's delivery status 

prediction across four classes. Each class, namely "Shipping on time", "Late Delivery", 

"Advance Shipping", and "Shipping Canceled", exhibits a perfect AUC of 1.00. This 

indicates that the MLP model achieved ideal discriminative performance, effectively 

distinguishing among positive and negative instances for all delivery status categories. 

 

 

 

 



 

 

Comparative Analysis of Proposed ML Models for Delivery Status Prediction 

 

Figure 4.36: Comparison of Proposed ML Models for Delivery Status Prediction 

Figure 4.36 presents a comparative analysis of the AdaBoost, Cat Boost, and MLP 

models for delivery status prediction using ROC curves. The plot overlays the ROC 

curves for each model, with corresponding AUC scores indicating their overall 

performance. Cat Boost and MLP both achieve perfect AUC scores of 1.00, 

demonstrating superior discriminative ability compared to AdaBoost, which has an AUC 

of 0.93. This visualization allows for a direct comparison of the models' ability to 

distinguish between positive and negative delivery status outcomes across various 

classification thresholds. 

Findings for Late Risk Prediction 



 

 

This section focuses on predicting the risk of late deliveries using classification 

models. The analysis highlights the model that best identifies potential delays, helping in 

proactive decision-making to minimize disruptions. 

 Analysis of Proposed AdaBoost Model 

Table 4.4: Performance Metrics of AdaBoost Model in Late Risk Prediction 

Model Accuracy Precision Recall F1-score 

AdaBoost  97.52 95.68 100 97.79 

The above-mentioned Table 4.4 presents the performance metrics of the AdaBoost model 

specifically for late risk prediction. The table shows the accuracy achieved by the model 

is 97.52%, the precision is 95.68%, the recall is a perfect 100%, and the resulting F1score 

is 97.79%. These metrics collectively indicate a strong performance of the AdaBoost 

model in identifying instances of late risk. 

 



 

 

Figure 4.37: Confusion Matrix of AdaBoost Model for Late Risk Prediction 

Figure 4.37, the Confusion Matrix for the AdaBoost model in late risk prediction, shows 

the correctly classified instances. The model accurately predicted 23071 instances of the 

non-late risk class (0) and 29745 instances of the late risk class (1). These diagonal values 

represent the number of TN and TP achieved by the AdaBoost model for this prediction 

task. 

 

Figure 4.38: ROC Curve of AdaBoost Model for Late Risk Prediction 

Figure 4.38 displayed the ROC curve for the AdaBoost model in late risk prediction. The 

curve plots the TPR against the FPR, yielding an AUC of 0.9716. The AdaBoost model's 

high AUC shows that it can accurately distinguish between late-risk and non-late-risk 

occurrences. 

 Analysis of Proposed Cat Boost Model 

Table 4.5: Performance Metrics of Cat Boost Model in Late Risk Prediction 

Model Accuracy Precision Recall F1-score 



 

 

Cat Boost  97.52 95.68 100 97.79 

Table 4.5, which was stated before, showed several metrics that measured how well the 

Cat Boost model predicted late-stage risks. The table indicates that the model achieved an 

accuracy of 97.52%, a precision of 95.68%, a recall of 100%, and an F1score of 97.79%. 

These metrics suggest a strong performance by the Cat Boost model in identifying 

instances of late risk, with perfect recall indicating that all actual late risk cases were 

correctly identified. 

 

Figure 4.39: Confusion Matrix of Cat Boost Model for Late Risk Prediction 

Figure 4.39 displays the confusion matrix for the Cat Boost model's performance in late 

risk prediction. The model correctly classified 23071 instances as non-late risk (0) and 



 

 

29745 instances as late risk (1). These values on the diagonal represent the TN and TP 

achieved by the Cat Boost model. 

 

Figure 4.40: ROC Curve of CatBoost Model for Late Risk Prediction 

Figure 4.40 displays the ROC curve for the Cat Boost Model in predicting late risk. The 

model achieves a high AUC of 0.9747, indicating strong discriminatory power between 

late and non-late risk instances. 

 Analysis of Proposed MLP Model 

Table 4.6: Performance Metrics of MLP Model in Late Risk Prediction 

Model Accuracy Precision Recall F1-score 

MLP  97.52 95.68 100 97.79 

Table 4.6 displays the MLP model's performance metrics for late risk prediction, as 

described before. The table details the model's achieved accuracy of 97.52%, a precision 



 

 

of 95.68%, a recall of 100%, and a resulting F1score of 97.79%. These metrics 

thoroughly assess how well the MLP model detects and categorizes incidents linked to 

late risk. 

 

Figure 4.41: Confusion Matrix of MLP Model for Late Risk Prediction 

Figure 4.41 displayed the Confusion Matrix for the MLP model's late risk prediction. The 

correctly classified instances are 23071 for the non-late risk class (0) and 29745 for the 

late risk class (1). These diagonal values represent the true negatives and true positives 

achieved by the MLP model. 



 

 

 

Figure 4.42: ROC Curve of MLP Model for Late Risk Prediction 

Figure 4.42 presents the ROC curve for the MLP model's performance in late risk 

prediction. The MLP model strongly differentiates between late and non-late risk cases, 

as seen by the high AUC of 0.9741 on the curve. 

 

 

 

 

 



 

 

Comparative Analysis of Proposed ML Models for Late Risk Prediction 

 

Figure 4.43: Comparative Analysis of Proposed ML Models for Late Risk Prediction 

Figure 4.43 presents a comparative ROC curve analysis of AdaBoost, Cat Boost, and 

MLP Classifier models for late risk prediction on the testing dataset. The plot shows the 

TPR against the FPR for each model, with corresponding AUC values. Cat Boost 

achieves the highest AUC of 0.9747, closely followed by MLP Classifier at 0.9741, while 

AdaBoost has a slightly lower AUC of 0.9716, indicating that all three models 

demonstrate strong and comparable performance in discriminating between late and non-

late risk instances.  

Findings for Demand Forecasting 

This subsection evaluates the demand forecasting model using MAE, MSE, and RMSE. 

The consequence identifies the reliability of demand forecasts, which helps to enhance 

inventory management and SCM. 



 

 

 

Analysis of Proposed Prophet Regression Model 

Table 4.7: Performance Metrics of Prophet Regression Model for Demand Forecasting 

Model MAE MSE RMSE 

Prophet Regression  0.1391 0.0260 0.1612 

 

Figure 4.44: Performance of Prophet Regression Model in Demand Forecasting 

A above-mentioned Table 4.7 and Figure 4.44 displays a bar chart illustrating a 

performance of the Prophet regression model in demand forecasting on the DataCo 

SMART SUPPLY CHAIN dataset. The model shows three primary metrics with values 

of MAE at 0.1391 while MSE equals 0.026 and RMSE stands at 0.1612. The chart 

demonstrates both accuracy and prediction capabilities of the model by presenting error 

rate statistics for demand forecasting results. 
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Analysis of Weekly Orders Forecast 

 

Figure 4.45: Prophet Regression Model Weekly Orders Forecast  

The forecast of weekly orders through Prophet regression appears in Figure 4.45 where 

historical and projected trends in order volumes across time are displayed. The analysis 

uses a date scale on the x-axis and a normalized order quantity scale reaching 1 across the 

y-axis as its axes. The graph contains actual black dots to display order volume variations 

through weekly observations. A solid blue line presents the model estimation that 

includes seasonal patterns and long-term order quantity movement. The uncertainty 

interval generates confidence ranges using the light blue shaded section of the chart. Most 

of the forecasting period shows order counts rising steadily between 0.6 and 1.0 

according to the model. Numerous distinct seasonal patterns appear throughout the data 

because it highlights cyclic changes in demand levels. From mid-2015 until the end of 

2017 the model reveals rising order quantities that later experience periodic decreases yet 



 

 

recover to previous levels. The overall upward direction of weekly order trends remains 

consistent because the data shows periodic upward movements. 

Analysis of Forecast Components 

 

Figure 4.46: Forecast Components (Trend, Weekly Seasonality) 

Figure 4.46 presents the forecast components of the Prophet model, decomposing the 

predictions into trend and weekly seasonality components for demand forecasting. The 

trend component shows a continuous upward movement from 0.77 during early 2015 to 

0.86 in mid-2017 based on the data displayed in the top graph. The bottom graph shows 

how demand waves up and down throughout the weeks of each year. Periodic peaks 

achieve a maximum level of 0.10 demand during regular intervals while troughs show 

nearly -0.15 demand at the yearly beginning and end. This decomposition helps in 

understanding the cyclical trends and fluctuations for long term and looking into the 



 

 

cyclicality of the demand patterns which helps in demand planning and resource 

forecasting. 

Analysis for Actual vs Predicted Weekly Orders 

 

Figure 4.47: Actual vs Predicted Weekly Orders 

Figure 4.47 illustrates the performance of the Prophet model in forecasting weekly orders 

by comparing actual versus predicted values. The blue line represents the actual training 

data and is shown in the range of the order quantity of approximately 0.6 up to 0.9 for the 

period Q1 2015 up to Q4 2017. Based on the actual test data indicated by a solid orange 

line, the value oscillates between 0.6 and 0.9 from 2017-01 up to 2017-09, with sharp 

decline in 2017-06. The green dashed line in the figure represents the predicted training 

data and it can be observed that it lies very close to the actual training data. This is as 

shown in the red dotted line that representing the predicted test data closely follows that 

of the actual test data, ranging between 0.7 and 0.9 with some small deviations 

particularly at the point of the dip in the actual test data to show that it is capable of 

predicting the flow of even though it does not accurately predict the exact values.  

 

 

 



 

 

CHAPTER V:  

ANALYSIS AND DISCUSSION 

5.1 Comparative Analysis  

The analysis examines various machine learning methods which optimize supply 

chain operations through the evaluation of delivery status prediction and late risk 

prediction alongside demand forecasting. This research evaluates the base and proposed 

models using the DataCo Smart Supply Chain for Big Data Analysis dataset to determine 

their success in forecasting accuracy and decision support. Comparing base models with 

machine learning proposed techniques, the study pointed how much the efficient has been 

increased in supply chain operations. The results suggest that analytical methods enhance 

decision making, increase effectiveness, decrease risks, and facilitate the planning and 

management of the supply chain activities. 

Comparison of Base and Proposed Models for Delivery Status Prediction 

Table 5.1: Comparative Analysis of Base and Proposed Model for Delivery Status 

Prediction 

Paramete

rs 

Base Model Proposed Model  

Decision 

Tree 

(Pattnaik et 

al., 2024) 

KNN 

(Pattnaik et 

al., 2024) 

Naïv

e 

Baye

s 

AdaBoost 

(Pattnaik et al., 

2024) 

Cat 

Boost 

MLP 

AUC 97.00 70.00 96.0

0 

93.00 100.00 100.0

0 

 



 

 

 

Figure 5.1: AUC Comparison of Base vs. Proposed Models for Delivery Status 

Prediction 

The above-mentioned Figure 5.1 and Table 5.1 show a comparative analysis displaying 

an AUC performance of different machine learning models for delivery status prediction 

using the DataCo Smart Supply Chain for Big Data Analysis dataset. The different 

machine learning models which include base models (Decision Tree, KNN, and Naïve 

Bayes), AdaBoost, Cat Boost, and MLP are grouped along the x-axis. The y-axis displays 

the AUC score as a percentage. Among the base models, Decision Tree achieves an AUC 

of 97%, Naïve Bayes scores 96%, while KNN performs the lowest at 70%. AdaBoost 

outperforms the other models to achieve 93% while Cat Boost and MLP reach 100% 

AUC score of 100%. The research outcomes demonstrate how ensemble learning along 

with deep learning achieves better delivery status prediction accuracy, thus providing 

valuable potential benefits to supply chain optimization. 
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Comparison of Base and Proposed Models for Late Risk Prediction 

Table 5.2: Comparative Analysis of Base and Proposed Models for Late Risk Prediction 

Paramete

rs 

Base Model Proposed Model  

XGBoost 

(Pattnaik et al., 

2024) 

LR 

(Pattnaik 

et al., 

2024) 

DT 

(Pattnaik 

et al., 

2024) 

AdaBoo

st 

Cat 

Boost 

ML

P 

AUC 95.00 58.00 77.00 97.16 97.47 97.4

1 

 

Figure 5.2: AUC Comparison of Base vs. Proposed Models for Late Risk Prediction 

Table 5.2 and Figure 5.2 show the results of comparing the base and suggested models' 

performance for late risk forecasting using the AUC measure. The image provides a bar 

graph with the base and recommended models shown on the x-axis and their performance 

as a percentage on the y-axis. The analysis includes base models XGBoost, Logistic 

Regression (LR) and Decision Tree (DT) where XGBoost demonstrated the best result 

(95.00% AUC) followed by Decision Tree (77.00% AUC) yet Logistic Regression 
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performed at (58.00% AUC). The proposed AdaBoost and Cat Boost and MLP models 

outperformed other options for predictions because it produced AUC scores of 97.16% 

and 97.47% and 97.41%, respectively. The better results from proposed models 

demonstrate ensemble learning and deep learning have shown their power to optimize 

late-risk prediction abilities. The experimental findings indicate boosting algorithms 

along with neural networks provide superior accuracy and reliability when used for 

predicting late risks within supply chain management compared to traditional prediction 

models. 

Comparison of Base and Proposed Models for Demand Forecasting 

Table 5.3: Comparative Analysis of Base and Proposed Models for Late Risk Prediction 

Parameters Base Model Proposed 

Model  

Lasso Regression 

(Haque & Kelly, 

n.d.) 

Random 

Forest 

(Haque & 

Kelly, n.d.) 

Linear Regression 

(Submitted et al., 

2024) 

Prophet 

MAE 1.3374 0.2014 0.4587 0.1391 

RMSE 2.0951 1.7779 0.6527 0.1612 



 

 

 

Figure 5.3: MAE Comparison of Base vs. Proposed Models for Demand Forecasting 

Table 5.3 and Figure 5.3 provide a bar chart that compares the MAE of four alternative 

demand forecasting models using the DataCo Smart Supply Chain for Big Data Analysis 

dataset. The chart shows the MAE values for Lasso Regression, Random Forest, and 

Linear Regression as base models, and Prophet as the proposed model. The MAE values 

are displayed above each bar, indicating that Prophet has the lowest error rate (0.1391), 

followed by Random Forest (0.2014), Linear Regression (0.4587), and Lasso Regression 

with the highest error rate of 1.3374. The Prophet model produces superior results than 

base models when used for forecasting demand within this dataset. 
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Figure 5.4: RMSE Comparison of Base vs. Proposed Models for Demand Forecasting  

An above-mentioned Table 5.3 and Figure 5.4 presents a bar chart comparing the RMSE 

of four various models used for demand forecasting on the DataCo Smart Supply Chain 

for Big Data Analysis dataset. The chart displays the RMSE values for Lasso Regression, 

Random Forest, and Linear Regression as base models, and Prophet as the proposed 

model. The RMSE values are shown above each bar, indicating that Prophet has the 

lowest error rate (0.1612), followed by Linear Regression (0.6527), Random Forest 

(1.7779), and Lasso Regression with the highest error rate of 2.0951. The Prophet model 

leads other tested base models in prediction accuracy regarding demand forecasts because 

it demonstrates the least RMSE value. 

5.2 Discussion 

The comparative study of supply chain model using the ML approach reveals that 

organization can benefit from the latest ensemble learning type and deep learning 

algorithms compared to the traditional models. Finally, this section presents the chief 

research findings and relates these to supply chain management. 
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Delivery Status Prediction 

The findings reveal that the new models featured in this study including 

AdaBoost, Cat Boost, and MLP are more accurate in predicting delivery status higher 

when compared to Decision Tree, Naïve Bayes, and KNN models. The fact that Cat 

Boost bagged 100% AUC score means that it is able to identify intricate patterns within 

delivery data as well as the MLP model. However, this high performance is deceptive in 

a way because it might mean overfitting especially if the dataset is not diverse. Future 

research could explore methods such as cross-validation and additional regularization 

techniques to ensure generalizability across different supply chain scenarios. 

Late Risk Prediction 

The analysis demonstrates that ensemble learning techniques (AdaBoost and Cat 

Boost) and deep learning models (MLP) improve the accuracy of late risk prediction, 

with AUC scores surpassing traditional models. The highest-performing model, CatBoost 

(97.47%), suggests that gradient boosting techniques effectively handle imbalanced 

datasets and capture nonlinear relationships in supply chain delays. However, real-world 

supply chains involve dynamic and evolving conditions, which might not be fully 

captured in historical data. Future improvements could integrate real-time data streams 

and reinforcement learning techniques to enhance predictive capabilities. 

Demand Forecasting 

The Prophet model consistently outperformed traditional forecasting methods 

such as Linear regression, lasso regression, and random forest, as indicated by lower 

MAE and RMSE scores. This suggests that Prophet’s ability to model seasonal trends and 

handle missing data makes it a robust choice for demand forecasting. However, one 

limitation of Prophet is its assumption of trend continuity, which may not always hold in 



 

 

highly volatile markets. Further research could examine hybrid forecasting models that 

combine Prophet with neural networks or Bayesian methods to improve adaptability. 

Implications for Supply Chain Management 

The findings underscore the importance of leveraging machine learning for supply 

chain optimization. By improving delivery status prediction, reducing late risks, and 

enhancing demand forecasting, businesses can minimize operational inefficiencies, 

reduce costs, and improve customer satisfaction. However, the successful implementation 

of these models requires: 

● High-quality, real-time data to improve model accuracy and adaptability. 

● Integration with existing supply chain systems to enable seamless decision-

making. 

● Scalability and robustness testing to ensure models perform well under diverse 

market conditions. 

 

 

 

 

 

CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

The complexities in supply chains also the increased globalization of supply chain 

management has made it imperative for organizations to look for better, informed 

methods to control or even reduce the challenges of operational inefficiency, lead time, 

among other factors. Over the past few years, the application of ML in combination with 



 

 

Big Data Analytics has been identified to address such complexities. This paper also aims 

to determine the use of ML models in improving the crucial decision-making areas of the 

supply chain by classifying the delivery status, predicting the possible risks of delayed 

delivery, as well as in demand prediction. In the case of DataCo SMART SUPPLY 

CHAIN, the examined models are AdaBoost, Cat Boost, MLP, and Prophet regression. 

Classification performance by Cat Boost for delivery status prediction was 

exceptional, achieving 100% accuracy, precision, recall, and F1-score. Slight overfitting 

was observed by using the MLP model closely followed by the desired accuracy of 

99.98% for all the classification metrics. The AdaBoost model, though not as strong, 

achieved good performance with 77.64% for accuracy, 77.80% for precision, 77.64% for 

recall and an F1-score of 76.99% meaning moderate level of predictive ability for this 

particular task. 

The credit scoring results of the three models comparing the late delivery risk 

classification with the hold-out set were as follows, for all three models, that is 

AdaBoost, Cat Boost, and MLP, achieved an accuracy level of 97.52%, precision of 

95.68 % a recall value of 100% and the f1 score proved to have value of 97.79%. The 

high recall value is a notable one since it signifies the ability of the models to detect all 

the instances of the risk of late delivery, which is essential for immediate management in 

supply chain management. 

For demand forecasting the Prophet regression model was used and for 

assessment of the model’s performance regression metrics were used. The model 

achieved a MAE of 0.1391, MSE of 0.026, and RMSE of 0.1612. The model 

demonstrates excellent performance in predicting product demand because its error 

values remain low which leads to improved planning and better inventory control. 

Overall, this study confirms the powerful role of ML in supply chain management. 



 

 

Classification tasks were the most optimal ones for Cat Boost and MLP, whereas Prophet 

demonstrated high effectiveness in time-series analysis. It is possible to emphasize that 

application of such models can contribute to development of better decision-making, 

decrease of uncertainty, and improving supply chain flexibility in contemporary 

networks.  

6.2 Implications 

The findings of this research outline the role of machine learning as a 

groundbreaking tool in contemporary supply chain management in the areas such as 

delivery status prediction, identification of the late risk, and demand forecast. Advanced 

machine learning techniques represented by Cat Boost and MLP together with AdaBoost 

and Prophet demonstrate superior performance compared to traditional Decision Trees, 

Naïve Bayes, and Linear Regression in both accuracy measurement and reliability 

statistical analysis as well as error control metrics. The developed performance 

improvements provide both technical benefits and real-world functional advantages. 

Market managers exploit accurate delivery status along with late risk predictions to 

actively adjust shipping routes while delivering resources for more efficient operations 

which leads to delay reductions and better customer satisfaction. Accurate demand 

forecasting enables better control of inventory combined with cost-effective procurement 

by reducing situations of both excessive and insufficient stock levels. The 

implementation success of these models allows organizations to maintain competitive 

positions through their ability to make quick data-based choices in real time. The study 

supports operational systems by integrating ensemble learning and deep learning 

techniques because this integration allows automation and error reduction that improves 

supply chain agility. These implications have high importance today because rapid 

markets with ongoing supply chain disruptions and volatility require them. The research 



 

 

supports organizations in adopting machine learning technology at all business scales for 

deploying intelligent optimization solutions to their supply chain. The study proves that 

organizations can achieve substantial improvements in predictive potential alongside 

operational excellence and market resilience by deploying data effectively through 

advanced algorithms in data-driven global markets. 

6.3 Recommendations for Future Research 

The findings of this work create potential for future study that aims to develop 

advanced methods toward superior machine learning models for supply chain 

management prediction capabilities. Historical and spatial relationships within extensive 

supply chain data can be detected through deep learning methods particularly LSTM and 

CNN-based approaches when performing tasks including demand forecasting. The 

creation of hybrid models which unite ensemble learning methods with neural networks 

and traditional algorithms will produce more strong and adaptive solution systems. 

Sophisticated preprocessing methods which include feature selection and dimensionality 

reduction with outlier detection and time series decomposition enhance model execution 

and textual understanding. The development of flexible models must prioritize scalability 

together with interpretability features which must match real-time conditions. Additional 

research aims to develop automatic model operation together with methodologies to 

implement multicompany use and integrate privacy and ethical guidelines.  

 

 

Key directions for future research include: 

● Application of Deep Learning Models: Future research can benefit from 

employing deep learning architectures like LSTM, GRU, CNN, and Transformer 

models to better capture temporal patterns, sequential dependencies, and spatial 



 

 

features in supply chain data. These models are particularly effective in demand 

forecasting and anomaly detection due to their ability to learn complex, non-linear 

relationships.   

● Development of Hybrid Models: Combining traditional algorithms with 

ensemble methods and neural networks can lead to more accurate and robust 

models. Hybrid approaches allow leveraging the strengths of multiple techniques, 

thereby improving prediction reliability and adapting to various types of supply 

chain challenges. 

● Use of Advanced Data Preprocessing Techniques: The implementation of 

feature engineering combined with PCA and SMOTE as well as time series 

decomposition and outlier detection methods create improvements in both data 

quality and model performance. The preprocessing methods clean the input data 

while maintaining balance and extracting maximum value from its informative 

features. 

● Exploration of Explainable AI (XAI): Research efforts should concentrate on 

developing explainable AI techniques to build transparency in model decision 

making processes. Explainable Artificial Intelligence enables supply chain 

managers to understand model decisions thus building trust in AI systems 

therefore facilitating operational adoption. 

● Integration into Real-Time Systems: The implementation of predictive models 

should happen directly inside enterprise systems such as ERP or WMS so users 

can access immediate insight. Such integration enables proactive business 

decisions through alerts which automatically execute both logistical operations 

and inventory tasks. 



 

 

● Focus on Cross-Domain Validation: Multiple industry testing of models 

provides both generalizable results and strong model stability. To assess 

scalability and adaptability supply chain models must be deployed into healthcare 

fields and manufacturing together with retail. 

6.4 Conclusion 

In conclusion, this research aimed at revealing how machine learning and big data 

analytics may contribute to the improvement of the supply chain, with special reference 

to delivery status prediction, late risk factors, and demand forecasting. In this research, 

the DataCo Smart Supply Chain for Big Data Analysis data set was used in conducting 

the analysis and training to compare the models like baseline, AdaBoost, Cat Boost, 

multilayer perceptron and Prophet. The experiments showed that all the proposed models 

were better than the base models in all tasks. In delivery status prediction, it is observable 

that Cat Boost and MLP yielded a 100% accuracy which demonstrates their reliability in 

the classification. All the models proposed in the late risk prediction domain which 

include the AdaBoost, Cat Boost, and MLP performed very well with the AUC score 

above 97% high precision, and perfect recall with a score of (100%) which underpin the 

strategic importance of early detection of delivery delays through timely risk prediction. 

The Prophet model was found to give the lowest MAE (0.1391) and RMSE (0.1612) 

among the base models which highlighted its effectiveness in demand forecasting 

especially for time-series data and in inventory planning and resource allocation. These 

observations imply that incorporating superior predictive models into supply chain 

processes does more than improving precision and performance but also facilitating wise 

decision-making and system longevity. The implications derived from these models are 

that the organizations could be in a better position to forecast demand fluctuations, 

manage risks in real time and improve the efficiency of logistics. In sum, the best supply 



 

 

chain is intelligent, responsive and resourceful and this research confirms the importance 

of AI and big data as strategic tools in this area. Future work should focus on extending 

the current model into real-time systems; incorporating external sources of data in the 

model; and testing the model applied to different industries to achieve the similar positive 

results stated in this work.   
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