

AUTOMATIC GENERATION OF NAVIGABLE USER INTERFACES AND

EXECUTABLE LOGIC FROM CUSTOMER REQUIREMENTS.

by

Harikrishnan Kuttan Pillai, MSc

Student ID: 59644

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

August, 2025

AUTOMATIC GENERATION OF NAVIGABLE USER INTERFACES AND

EXECUTABLE LOGIC FROM CUSTOMER REQUIREMENTS.

by

Harikrishnan K

APPROVED BY

 __

 Dissertation chair

RECEIVED/APPROVED BY:

Admissions Director

Dedication

This thesis is dedicated to my esteemed colleagues, whose collaboration, support,

and encouragement have been invaluable throughout this research journey. Your

insights and shared knowledge have enriched this work and inspired me to strive

for excellence.

To my family, whose unwavering love, patience, and understanding have been my

bedrock. Your belief in me has been a constant source of motivation, and I am

deeply grateful for your sacrifices and support.

Finally, to my guide and mentor, whose wisdom, guidance, and encouragement

have shaped this research. Your dedication to nurturing and guiding me has been

instrumental in the completion of this work. Thank you for your steadfast support

and invaluable contributions.

Acknowledgements

I would like to express my sincere gratitude to the following individuals and groups for

their invaluable support and assistance throughout the process of completing this thesis.

My deepest appreciation goes to my supervisor, Dr. Monica Singh for their

unwavering guidance, patience, and expertise. Their insightful feedback and continuous

encouragement played a crucial role in shaping this research.

I am also grateful to the members of my thesis committee, SSBM Review Committee

Members, for their valuable input and constructive criticism that enriched the quality of this

work. I am indebted to my friends and family for their unwavering support, understanding, and

motivation during this academic journey. Your belief in me and your encouragement were the

driving forces behind the completion of this thesis.

Lastly, I would like to acknowledge the participants in my study who generously shared

their time and insights, without whom this research would not have been possible.

This thesis is a culmination of the efforts of many, and I am grateful for the support and

inspiration I have received from all these individuals.

Thank You,

Harikrishnan K

i

ABSTRACT

AUTOMATIC GENERATION OF NAVIGABLE USER INTERFACES AND

EXECUTABLE LOGIC FROM CUSTOMER REQUIREMENTS.

Harikrishnan Kuttan Pillai

2025

Dissertation Chair: Dr. Monica Singh

This research analyzes the current state of the art in this field and aims to propose a new system

for automatically converting the user requirements to end-user applications. The system

translates the stated user requirements into an intermediate language after they have been

gathered, and with the aid of pre-trained data, it can then translate them into UI code. In this

phase, both business logic and navigation logic are integrated. We also apply an iterative model

variant in the proposed research, where code is generated based on continuous feedback from

various iterations of customer requirement gatherings.

Keywords: automation, artificial intelligence, software engineering, natural language

processing.

ii

TABLE OF CONTENTS

List of Abbreviations v

List of Figures vi

List of Tables vi

Chapter I: INTRODUCTION 1

1.1 Research Problem 1

1.2 Purpose of Research 3

1.3 Significance of the Study 3

1.4 Research Purpose and Objectives 4

Chapter II: REVIEW OF LITERATURE 7

2.1. Capturing user requirements 7

2.2. Converting captured user 9

2.3. Integrating Business and Navigation Logic 10

2.4. Assembling the application 11

2.5. Identified Gaps in Current Research 13

Chapter III: METHODOLOGY 15

3.1. Overview of the Research Problem 15

3.2. Operationalization of Theoretical Constructs 15

3.3. Research Purpose and Questions 16

3.4. Research Design 17

3.5. Population and Sample 18

3.6. Survey questions 18

3.7. Participant Selection 25

3.7. Data Analysis 25

3.8. Instrumentation 25

3.9. Data Collection Procedures 26

3.10. Research Design Limitations 26

3.11. Conclusion 27

Chapter IV: RESULTS 28

4.1 Survey Results 28

4.2 What techniques effectively extract and systematize user requirements from

raw documents? 29

4.3 How can chatbots enhance the accuracy and completeness of requirement

extraction? 31

iii

4.4 How can user requirements be translated into UI code that meets end-user

expectations? 31

4.5 What methods ensure the generated UI code is user-approved and accurately

reflects specified requirements? 32

4.6 How can additional logical and business requirements be effectively gathered

and converted into functional code? 33

4.7 How can a continuous feedback system be implemented to validate the logic

and accuracy of the generated code? 34

4.8 What features should an IDE and project structure include to support

seamless development and navigation logic? 35

4.9 Summary of Findings 37

4.10 Conclusion 37

Chapter V: DISCUSSION 39

5.1 What techniques effectively extract and systematize user requirements from

raw documents? 39

5.2 How can chatbots enhance the accuracy and completeness of requirement

extraction? 40

5.3 How can user requirements be translated into UI code that meets end-user

expectations? 42

5.4 What methods ensure the generated UI code is user-approved and accurately

reflects specified requirements? 43

5.5 How can additional logical and business requirements be effectively gathered

and converted into functional code? 45

5.6 How can a continuous feedback system be implemented to validate the logic

and accuracy of the generated code? 47

5.7 What features should an IDE and project structure include to support

seamless development and navigation logic? 48

5.8 Conclusion 50

Chapter VI: A BASIC IMPLEMENTATION FOR RESEARCH VALIDATION 51

6.1 Introduction 51

6.2 Technologies Used 54

6.3 System Design and Architecture 61

6.4 Front-end Development 67

6.5 Back-end Development 71

6.6 Project Features 74

6.7 Security 87

6.8 Deployment 93

6.9 Challenges and Solutions 98

6.10 Future Enhancements 103

iv

6.11 Conclusion 108

Chapter VII: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 111

7.1 Implications 111

7.2 Recommendations for Future Research 113

7.3 Conclusion 114

APPENDIX A: INFORMED CONSENT 116

References 118

v

LIST OF ABBREVIATIONS

UI User interface

UX User experience

IL Intermediate Language

GUI Graphical User Interface

IDE Integrated development environment

JSON JavaScript object notation

PoC Proof of concept

LLM Lange language model

AI Artificial Intelligence

ML Machine Learning

NLP Natural language processing

DB Database

SQL Structured Query Language

vi

LIST OF FIGURES

Figure 1: High level architecture ... 38

Figure 2: PoC Flow chart ... 62

Figure 3: Communications between components - PoC .. 64

Figure 4: Screen shot – Create and List Project - PoC .. 79

Figure 5: Screen shot – Chat bot - PoC.. 80

Figure 6: Chat bot with responses - PoC ... 80

Figure 7: End-user application - PoC... 82

LIST OF TABLES

Table 1: Survey Results Summary ... 29

1

CHAPTER I: INTRODUCTION

In recent years, the software development landscape has undergone a radical

transformation driven by the integration of artificial intelligence (AI), particularly natural

language processing (NLP) and large language models (LLMs). These technologies are

enabling developers to automate tasks that were traditionally manual, time-consuming, and

error-prone.

Manual requirements gathering and translation into executable code remain one of the

most error-sensitive stages of software engineering. Misunderstood or miscommunicated

requirements account for nearly 70% of project failures (Fan et al., 2023). As software becomes

more complex and delivery cycles shrink, organizations are increasingly adopting intelligent

systems to bridge this communication gap (Kessentini et al., 2021).

AI-assisted development tools, such as OpenAI Codex and GitHub Copilot, have

demonstrated promising results in interpreting natural language input and producing functional

code snippets (Chen et al., 2021). However, these tools are largely unidirectional and lack

iterative dialogue support. They do not adequately involve the user in refining the output or

integrating feedback during the development process (Friesen et al., 2018).

To address this limitation, industry leaders are shifting toward AI agents that can

manage tasks autonomously. Amazon’s "Project Kiro" and Meta’s internal initiatives

exemplify the industry’s move from “co-pilot” to “autopilot” development tools—where

agents not only assist but take over portions of the software engineering lifecycle (Business

Insider, 2025a; Financial Times, 2025). These developments underscore the growing

importance of conversational AI interfaces that support dynamic interaction and real-time

requirement refinement.

2

This study contributes to this evolving field by proposing and validating a chatbot-

driven system that can gather requirements in natural language and automatically generate a

corresponding application prototype, including UI components and business logic. Unlike

static form-based requirement gathering, the proposed system allows iterative clarification and

continuous updates to both design and function.

By integrating NLP pipelines, LLMs, and feedback-based refinement, this research builds

a foundation for interactive and autonomous systems capable of improving requirement

accuracy, accelerating development, and reducing developer workload (Hou et al., 2023; Raffel

et al., 2020).

1.1 Research Problem

High-fidelity GUI prototyping provides a meaningful way to illustrate the developers’

understanding of the requirements formulated by the customer and can be used for productive

discussions and clarification of requirements and expectations. (Kolthoff, 2019).

Understanding the informal requirements and translating them to a product often causes

misunderstandings, and it is an iterative process. Several studies have been conducted to turn

GUI pictures into executable prototypes (Beltramelli, 2018, Moran et al., 2018). But it is

insufficient for an end-to-end application. A UI/UX designer is also necessary to create the UI

screens. Iterative processes and integration with actual logic are not permitted in the

intermediate language-based approach put forth by Kolthoff in 2019. Furthermore, a navigation

logic must be in place. An IDE system and project structure are required to control the

navigation process and per-screen logics. The research intends to suggest a system using the

chat bot for client communication (Friesen et al., 2018), as well as navigation logic, backend

integration logic, and other things. The research's iterative methodology aids in enhancing the

code and user interface. Agile techniques are the foundation for the iterative process concept.

The research's iterative methodology aids in enhancing the code and user interface.

3

1.2 Purpose of Research

The research primarily aims to achieve two things. One involves systematizing basic

user requirements, while the other involves translating these requirements into UI, business,

and application logic code. The logic for requirement extraction makes use of current

techniques for model construction and requirement extraction. It will take broad strokes from

the raw user requirement documents and may employ a chatbot to fill in the blanks and provide

ongoing feedback. The system then creates a UI code using the specifications and gets it

approved by the end user. Following that, it asks the user for additional logical and business

criteria. With the use of current technologies like OpenAI Codex, this will be turned into code.

Following conversion, the code will be injected into the appropriate UI event handlers. It has

both navigational logic and business logic. Here, the implementation of the continuous

feedback system will guarantee that the logic is sound. The application will be prepared and

ready for execution after the code has been inserted. During this stage, the developer may make

any adjustments they see fit. An IDE and a project structure will be present throughout the

entire system to facilitate development.

1.3 Significance of the Study

In today’s technology-driven world, software systems must evolve rapidly to keep pace

with user expectations and business needs. Traditional methods of requirement gathering and

implementation remain highly manual, introducing inefficiencies and the potential for errors

(Smith et al., 2020). The significance of this study lies in its attempt to bridge this gap by

automating the conversion of natural language user requirements into complete software

systems.

Leveraging technologies such as OpenAI Codex and chatbots, the proposed system

aims to streamline the software development lifecycle. Research by Gulwani, 2010, Raffel et

al., 2020, and Desai et al., 2016 confirms the feasibility of converting user input into executable

4

code, though they note that integration with business logic remains a challenge. This study

builds on those findings, offering a system that handles both UI code generation and application

logic.

The iterative methodology employed, grounded in Agile principles, ensures that users

can refine requirements continuously (Moran et al., 2018). This minimizes communication

breakdowns and improves the alignment between stakeholder expectations and final output.

Ultimately, this study presents a system with the potential to advance automation in software

engineering by enhancing development speed and product accuracy.

1.4 Research Purpose and Objectives

The primary purpose of this research is to develop a system that automates the

translation of user requirements into complete applications, including user interface (UI),

business logic, and application logic code. The study aims to achieve two main objectives:

1.4.1. Systematizing basic user requirements:

• Utilize current techniques for model construction and requirement extraction to

gather and refine broad user requirements from raw documents.

• Employ chatbots to fill in gaps, provide continuous feedback, and enhance

understanding of informal requirements.

1.4.2. Translating requirements into application codes:

• Generate UI code based on the extracted specifications and obtain end-user

approval.

• Collect additional logical and business criteria from the user.

• Convert these requirements into code using technologies like OpenAI Codex.

• Integrate the generated code into appropriate UI event handlers, encompassing

navigational and business logic.

5

• Implement a continuous feedback system to ensure logical soundness and make

necessary adjustments during the development stage.

• Facilitate development with an integrated development environment (IDE) and

project structure.

1.4.3. Research objectives and questions

To guide the research and achieve its objectives, the following questions will be

addressed:

● Requirement Extraction:

• What techniques can be used to effectively extract and systematize user

requirements from raw documents?

• How can chatbots be utilized to enhance the accuracy and completeness of

requirement extraction?

● UI Code Generation:

• How can user requirements be translated into UI code that meets end-user

expectations?

• What methods can ensure the generated UI code is user-approved and

accurately reflects the specified requirements?

● Integration of Logic and Code:

• What strategies can be employed to gather additional logical and business

requirements from users?

• How can these requirements be effectively converted into functional code

using current technologies like OpenAI?

● Continuous Feedback System:

6

• How can a continuous feedback system be implemented to validate the logic

and ensure the accuracy of the generated code?

• What measures can be taken to facilitate adjustments and improvements

during the development process?

● Development Facilitation:

• What features should an integrated development environment (IDE) and

project structure include to support seamless development and navigation

logic?

• How can the IDE and project structure enhance the overall efficiency and

quality of the application development process?

By addressing these questions, the research aims to develop a robust system that automates the

translation of user requirements into fully functional applications, ultimately advancing the

efficiency and effectiveness of the software development lifecycle.

7

CHAPTER II: REVIEW OF LITERATURE

The evolution of software development methodologies has been driven by the growing

complexity of applications and the demand for rapid, high-quality solutions. Traditional

development approaches often involve extensive manual effort in translating user requirements

into functional software, creating a gap between stakeholders' visions and the final product.

This research investigates the potential of automating this translation process using AI,

particularly Large Language Models (LLMs), to revolutionize how software is conceptualized

and implemented.

The literature review delves into the existing body of work on requirement engineering,

natural language processing (NLP) in software development, and the role of AI-driven tools in

automating key stages of the development lifecycle. It explores the strengths and limitations of

these approaches, focusing on their applications in requirement analysis, code generation, and

iterative refinement. Additionally, the review highlights the challenges faced by traditional

methods in capturing nuanced user requirements and examines how recent advancements in AI

provide innovative solutions to these issues.

2.1. Capturing user requirements

Planning and requirement analysis are the most vital and basic phases of every life cycle

process. It is completed by the senior members after a meeting with the customer or owner of

the software system (Shylesh, 2017).

 Gathering requirements is among the initial tasks in all commonly used life cycle

models for software development. It is a required initial step before each iteration in all iterative

models as well. We are also applying an iterative model variant in the proposed research, where

8

code is generated based on continuous feedback from various iterations of user requirements

gatherings.

 Some of the common requirement gathering technologies are interviews,

questionnaires, task analysis, and observations. Prototyping is one of the most valuable

solutions for capturing requirements. Prototyping has no value for the early phase of

requirements engineering. It allows determining very concrete and detailed requirements at the

time when introductory requirements are already collected. (Silhavy et al., 2011)

 An attempt to create conversational software was made in 2017 with the creation of a

program named Rasa by Bocklisch, Faulkner, Pawlowski, and others. It simply comprehends

what the user is talking about and responds with pertinent comments and advice. Friesen et al.,

2018 demonstrated that a chatbot can be used as a communication interface to identify user

requirements. Ravid & Berry, 2000 provided some technics for identifying and specifying

software needs from a user interface prototype. In later stages of development, when a

prototype and other documents are present, it might be challenging to reconcile the differences

between them. This study addresses this issue. To create the requirement extraction system, we

might apply a variety of the strategies covered in all these studies.

Making the extracted requirements into UI code is the next difficult task. A tool called

pix2code was developed by Beltramelli in 2018 to produce code from a screenshot of a

graphical user interface. However, the user must create the UI and submit it to the system.

Similar techniques were developed by Zhang et al., 2023 to skeletonize user interface designs.

To bootstrap the mobile GUI implementation, a neural machine translation is used.

Additionally, Moran et al. 2018 worked on a different study to translate mobile UI code from

a mockup. They take different pieces of the mockup and generate code for each one, making it

simple to adapt to future requirements changes. The process of translating natural language

9

requirements into a UI design is not well studied. Our research aims to close this puzzle piece's

gap.

2.2. Converting captured user

Once the user requirements have been recorded, they must be translated into a intermediate

language (IL) in order to facilitate further processing. Synthesizing a program in some

underlying intermediate language (IL) from a given specification is known as program

synthesis. (Gulwani. 2010).

A general synthesis algorithm uses an English sentence as input and outputs a range of

potential IL codes. For this, we can make use of a dictionary with a powerful key phrase

extraction method. All common entities will have key words in the dictionary. A web

application might have keywords like "home page," "login page," "link," "picture," etc. A

dictionary containing actions as its elements will also be used by the key phrase extraction

logic. For instance, in the web application, we will have actions like navigate, click, go, etc.

Many pre-existing concepts about program synthesis were discovered during the literature

review. Program synthesis using natural language, by Desai et al. 2016, developed a meta-

approach for synthesizing programs from natural language descriptions that can be instantiated

for a range of interesting IL’s including text-processing, automata construction, and

information retrieval queries.

Gulwani & Marron, 2014, created an interactive programming tool using natural language

for manipulating and analyzing spreadsheet data. Their methodology involves designing a

typed IL that supports an expressive algebra of map, filter, reduce, join, and formatting

capabilities at a level of abstraction appropriate for non-expert users. The key algorithmic

10

component of the methodology is a translation algorithm for converting a natural language

specification in the context of a given spreadsheet to a ranked set of likely programs in the IL.

Using formal IL to describe the GUI and its navigational schema, K. Kolthoff, 2019

proposes a methodology based on Natural Language Processing (NLP). This methodology

would support GUI prototyping by automatically converting Natural Language Requirements

(NLR) into a formal IL. The resulting IL can be directly shown to the user for inspection after

being further translated into corresponding target platform prototypes. They present an

intelligent and automatic interaction system that enables users to submit natural language input

on created prototypes in an iterative manner, translating that feedback into the appropriate

prototype adjustments.

Recent literature has highlighted the increasing performance of large language models

(LLMs) like GPT-4 and CodeT5 in interpreting unstructured input and converting it into usable

code representations (Hou et al., 2023; Zhang et al., 2023). These models have outperformed

previous NLP-based approaches by incorporating contextual embedding, chain-of-thought

reasoning, and fine-tuning on domain-specific corpora (Fan et al., 2023).

2.3. Integrating Business and Navigation Logic

The logic must be merged after the UI has been finalized. In this phase, both business logic

and navigation logic are integrated. Chen et al. (2021) demonstrated that a significant portion

of this business logic can be produced utilizing the pre-trained data and techniques.

There are numerous tools and techniques available today to produce logical code from the

user requirements in plain English. Open AI Codex and its variant, GitHub Copilot are a few

examples of systems that convert plain English to executable code. In Codex, they introduced

a GPT language model fine-tuned on publicly available code from GitHub (Chen et al., 2021).

11

In this paper, they explain how to generate code from Python Docstrings. Python

documentation strings (or docstrings) provide a convenient way of associating documentation

with Python modules, functions, classes, and methods. They frequently use terminology that is

understandable to others. Codex will then use a technique that will utilize the models generated

from public code on GitHub to automatically construct the correct executable code that satisfies

the criterion.

Pulido-Prieto & Juárez-Martínez, 2018 compiled a list of 31 different methods for tools

and programming languages that help users incorporate natural language aspects into their

programs. Naturalistic programming, as they refer to it, is a formal and deterministic

implementation of features from natural language.

2.4. Assembling the application

The next stage is to construct the application after its components have been generated. Just

gathering the web pages in one place and creating links to allow users to browse between them

is the construction of a web application. A previously trained model or the user's requirements

can also be used to generate links. With pre-trained data, links for typical situations like login,

registration, etc. can be generated.

We require a more sophisticated strategy for business logic-based navigation. As existing

technologies produce code for a particular business logic, it might be difficult to logically

combine them to solve a significant business problem. The individual logic components could

be thought of as nodes, and they are all connected to some other logic components. by edges.

Finding the correct route from one node to another is our problem. By examining the flow,

these routes may typically be discovered based on the user requirements. Yet, the system must

12

also be capable of creating links between nodes on its own. This is one of the research's

novelties.

The literature review highlights the extensive research conducted in the domains of

requirement engineering, natural language processing (NLP), and AI-assisted software

development. Traditional approaches to translating user requirements into functional

applications often suffer from inefficiencies, misinterpretations, and prolonged development

cycles. However, advancements in AI, particularly Large Language Models (LLMs), present

innovative methods to address these challenges by automating and enhancing critical phases of

software development.

The review reveals that while several tools and frameworks exist for automated code

generation and requirement analysis, most solutions lack the adaptability and iterative feedback

mechanisms essential for accurately aligning with user expectations. Recent studies emphasize

the importance of integrating AI with user-centric, Agile methodologies to create systems that

are both efficient and robust.

This foundation of knowledge underscores the relevance of the proof of concept (PoC),

which aims to leverage LLMs for automating the development process. By building upon

existing research and addressing identified gaps, this PoC seeks to contribute to the field by

demonstrating the practical feasibility of AI-driven approaches in bridging the gap between

user requirements and application functionality. This review lays the groundwork for designing

and implementing a solution that aspires to transform traditional software development

paradigms.

Emerging AI agents like Amazon’s “Kiro” are designed to streamline the entire UI

generation process by interpreting developer prompts and creating layouts or logic

automatically (Business Insider, 2025a). Similar trends have been seen across the industry,

13

with Meta and Google developing autonomous agents capable of managing development tasks

previously handled by engineers (Business Insider, 2025b; Reuters, 2025).

2.5. Identified Gaps in Current Research

Despite numerous studies on automated code generation and requirement extraction

(Gulwani, 2010; Gulwani & Marron, 2014; Desai et al., 2016), gaps persist in creating an

integrated system that can translate informal natural language into fully functional applications.

Tools like Rasa (Bocklisch et al., 2017) and Codex (Chen et al., 2021) have made significant

progress in understanding intent, but they do not support iterative refinement based on real-

time feedback.

Pulido-Prieto and Juárez-Martínez (2018) identify a need for systems that incorporate

naturalistic programming, adapting to the way users communicate rather than requiring

structured input. Moreover, few systems address the integration of both UI and backend logic

from the same conversational interface (Kolthoff, 2019). This study seeks to fill that gap by

developing an AI-based system that accepts user feedback iteratively and updates application

logic accordingly.

This literature review establishes that while foundational elements exist for automating

parts of the software lifecycle, an end-to-end solution that incorporates real-time feedback,

logic generation, and usability validation remains an open problem.

2.6. AI in Agile and Enterprise Settings

Enterprise adoption of AI in software pipelines is accelerating. Goldman Sachs, for

instance, has developed a suite of LLM-powered tools to enhance internal development

processes (Business Insider, 2025c). These tools aim to reduce miscommunication, accelerate

14

prototyping, and even support test case generation. Anthropic’s founders describe this as the

rise of “AI manager-nerds”—agents who handle managerial coding tasks with minimal

supervision (Business Insider, 2025d).

15

CHAPTER III: METHODOLOGY

This section outlines the approach and strategies employed to develop and implement the

research project. It also details the systematic processes, tools, and techniques used in the

design, development, and evaluation of the proposed system. It covers both the technical and

non-technical aspects of the research, providing a clear framework for how the objectives were

achieved. The methodology provides insight into the steps taken to ensure the success of this

research.

3.1. Overview of the Research Problem

The core research challenge lies in bridging the disconnect between how users express their

software needs and how developers implement them. Traditional methods require manual

interpretation of requirements and multiple feedback cycles, which increase development time

and cost (Shylesh, 2017).

Tools like Codex (Chen et al., 2021) and GitHub Copilot help generate code from

structured prompts, but they fall short of producing full applications with UI and backend logic.

This study aims to automate this gap using a chatbot-based interface that gathers requirements,

generates intermediate representations, and synthesizes UI and logic code. By implementing

an Agile-inspired iterative model, the system provides a foundation for real-time updates and

user validation.

3.2. Operationalization of Theoretical Constructs

To address the research problem, several theoretical constructs are operationalized:

● Requirement Extraction: Utilizing natural language processing (NLP) and machine

learning models to systematically extract user requirements from raw documents.

16

● Continuous Feedback: Implementing a chatbot system for iterative feedback, refining

requirements, and enhancing understanding through user interactions.

● UI Code Generation: Developing algorithms to convert refined requirements into UI code,

ensuring alignment with user expectations.

● Logic Integration: Formulating methods to translate business and application logic into

executable code and integrating it with the generated UI.

● Agile Methodology: Applying Agile principles to facilitate iterative development,

continuous feedback, and improvement of the code and UI.

3.3. Research Purpose and Questions

This section outlines the primary purpose of the research and the key questions guiding the

investigation.

3.3.1 Research Purpose

The primary purpose of this research is to develop a system that automates the translation

of user requirements into complete applications, encompassing UI, business logic, and

application logic code. The research aims to:

• Systematize basic user requirements using advanced requirement extraction

techniques.

• Translate these requirements into application code, validated through continuous

feedback.

3.3.2 Research Questions

• What techniques effectively extract and systematize user requirements from raw

documents?

17

• How can chatbots enhance the accuracy and completeness of requirement

extraction?

• How can user requirements be translated into UI code that meets end-user

expectations?

• What methods ensure the generated UI code is user-approved and accurately

reflects specified requirements?

• How can additional logical and business requirements be effectively gathered and

converted into functional code?

• How can a continuous feedback system be implemented to validate the logic and

accuracy of the generated code?

• What features should an IDE and project structure include to support seamless

development and navigation logic?

3.4. Research Design

This research adopts a mixed-methods approach to comprehensively address the research

questions. The design includes:

• Requirement Extraction: Utilizing NLP and machine learning models to process and

refine user requirements.

• Prototyping: Iterative development of UI code based on extracted requirements,

followed by user validation.

• Integration and Testing: Incorporating business logic and application logic into the

UI, and conducting rigorous testing to ensure functionality and user satisfaction.

• Continuous Feedback: Employing chatbots to facilitate ongoing user feedback and

iterative refinement of the application.

18

3.5. Population and Sample

The target population for this research includes software developers, UI/UX designers, and

end-users who provide the initial requirements for application development. The sample will

be drawn from a diverse group of participants across different industries to ensure the system's

applicability and generalizability. The sample size will be determined based on the principles

of data saturation for qualitative analysis and statistical power for quantitative analysis.

3.6. Survey questions

Demographics

1. What is your professional role?

o Software Developer

o UI/UX Designer

o Business Analyst

o End-User

o Other (specify): ________

2. How many years of experience do you have in software development or related

fields?

o 0–2 years

o 3–5 years

o 6–10 years

o 10+ years

Requirement Extraction

3. How effective do you find NLP models (e.g., GPT) in extracting user

requirements from raw documents?

o Very effective

o Effective

o Neutral

o Ineffective

o Very ineffective

19

4. How often do misunderstandings occur when translating informal user

requirements into formal specifications?

o Very frequently

o Frequently

o Occasionally

o Rarely

o Never

5. To what extent do chatbots improve the accuracy of requirement gathering

compared to traditional methods (e.g., interviews)?

o Significantly improve

o Slightly improve

o No difference

o Slightly reduce

o Significantly reduce

UI Code Generation

6. How satisfied are you with the quality of UI code generated automatically from

user requirements? (For POC)

o Very satisfied

o Satisfied

o Neutral

o Dissatisfied

o Very dissatisfied

7. How well does the generated UI code align with end-user expectations?

o Fully aligns

o Mostly aligns

o Partially aligns

o Rarely aligns

o Does not align

8. How frequently do you need to manually adjust the generated UI code?

o Always

20

o Often

o Sometimes

o Rarely

o Never

Chatbot Effectiveness

9. How intuitive is the chatbot interface for gathering user requirements?

o Very intuitive

o Intuitive

o Neutral

o Unintuitive

o Very unintuitive

10. How effective is the chatbot in clarifying ambiguous requirements through

iterative feedback?

o Very effective

o Effective

o Neutral

o Ineffective

o Very ineffective

11. How often does the chatbot fail to understand complex user requirements?

o Very frequently

o Frequently

o Occasionally

o Rarely

o Never

Business Logic Integration

12. How well does the system convert additional business logic requirements into

functional code?

o Very well

o Well

o Neutral

21

o Poorly

o Very poorly

13. How often do you need to manually refine the generated business logic code?

o Always

o Often

o Sometimes

o Rarely

o Never

14. How satisfied are you with the integration of navigation logic into the generated

application?

o Very satisfied

o Satisfied

o Neutral

o Dissatisfied

o Very dissatisfied

Continuous Feedback System

15. How useful is the continuous feedback system in validating the accuracy of

generated code?

o Very useful

o Useful

o Neutral

o Not useful

o Very not useful

16. How often does the feedback system identify logical errors in the generated code?

o Always

o Often

o Sometimes

o Rarely

o Never

17. How responsive is the system to user feedback during iterative development?

22

o Very responsive

o Responsive

o Neutral

o Unresponsive

o Very unresponsive

System Usability

18. How easy is it to navigate the generated application?

o Very easy

o Easy

o Neutral

o Difficult

o Very difficult

19. How would you rate the overall usability of the automated system?

o Excellent

o Good

o Average

o Poor

o Very poor

20. How much time does the system save in the application development process?

o Significant time saved

o Moderate time saved

o Neutral

o Little time saved

o No time saved

IDE and Project Structure

21. How helpful are the IDE features (e.g., code navigation, templates) in supporting

development?

o Very helpful

o Helpful

o Neutral

23

o Unhelpful

o Very unhelpful

22. How well does the project structure facilitate modular development?

o Very well

o Well

o Neutral

o Poorly

o Very poorly

23. How often do you encounter difficulties in managing the generated project

structure?

o Always

o Often

o Sometimes

o Rarely

o Never

Comparative Analysis

24. Compared to traditional development, how would you rate the efficiency of the

automated system?

o Much more efficient

o More efficient

o Neutral

o Less efficient

o Much less efficient

25. How does the quality of the generated code compare to manually written code?

o Much better

o Better

o Neutral

o Worse

o Much worse

Future Enhancements

24

26. How important is it to add page-wise intermediate code management for

scalability?

o Very important

o Important

o Neutral

o Not important

o Very not important

27. How likely are you to adopt this system in your workflow if advanced UI

components (e.g., dashboards) are supported?

o Very likely

o Likely

o Neutral

o Unlikely

o Very unlikely

28. How critical is integrating authentication and role management for your use

cases?

o Very critical

o Critical

o Neutral

o Not critical

o Very not critical

Overall Satisfaction

29. How likely are you to recommend this automated system to others?

o Very likely

o Likely

o Neutral

o Unlikely

o Very unlikely

30. What is your overall satisfaction with the system’s ability to automate application

development?

o Very satisfied

25

o Satisfied

o Neutral

o Dissatisfied

o Very dissatisfied

3.7. Participant Selection

Participants will be selected using purposive sampling to ensure that they possess relevant

experience and knowledge. Criteria for selection include:

• Software Developers: Experience in coding, UI development, and application logic

integration.

• UI/UX Designers: Expertise in creating user-friendly interfaces and understanding

user requirements.

• Business Analysts: Experience in client interactions, software requirements extraction

and translation to software developers

• End-Users: Individuals who represent the target audience of the applications, capable

of providing detailed requirements and feedback.

3.7. Data Analysis

Data analysis will involve the following methods.

• Quantitative Analysis: Statistical analysis of survey responses to quantify user

satisfaction and the effectiveness of the requirement extraction and UI code generation

processes.

• Validation and Testing: Performance metrics and user testing results are used to assess

the functionality and usability of the developed applications.

3.8. Instrumentation

26

The research will utilize various instruments for data collection and analysis, including:

• NLP and Machine Learning Tools: Software tools for processing and extracting

requirements from raw documents.

• Prototyping Tools: Development environments and IDEs for creating and refining UI

code.

• Chatbots: Automated systems for facilitating continuous feedback and requirement

refinement.

3.9. Data Collection Procedures

Data collection will occur in several stages:

• Requirement Extraction: Use NLP and machine learning tools to process and refine

the collected requirements.

• Prototyping and Validation: Develop initial UI prototypes based on refined

requirements and validate them with end-users.

• Feedback Collection: Employ chatbots to gather continuous feedback during the

development process, refining requirements and prototypes iteratively.

• Integration and Testing: Incorporate business and application logic into the UI and

conduct thorough testing to ensure functionality and user satisfaction.

3.10. Research Design Limitations

Several limitations may affect the research design:

• Generalizability: The findings may be specific to the selected sample and not

generalizable to all software development contexts.

27

• Technology Dependency: The effectiveness of the proposed system relies on the

capabilities of current NLP and machine learning technologies, which may have

limitations.

• User Variability: Variations in user requirements and feedback can affect the

consistency and accuracy of the requirement extraction process.

• Implementation Complexity: Integrating multiple components (UI, business logic,

application logic) into a seamless system may pose technical challenges.

3.11. Conclusion

This methodology outlines a comprehensive approach to addressing the research problem

of automating the translation of user requirements into fully functional applications. By

combining qualitative and quantitative techniques, leveraging advanced technologies, and

incorporating continuous feedback, the research aims to develop a robust system that enhances

the efficiency and effectiveness of the software development lifecycle. The proposed

methodology addresses key aspects of requirement extraction, UI code generation, and logic

integration, ensuring that the developed applications meet user expectations and industry

standards.

28

CHAPTER IV: RESULTS

The results section presents the findings from our research, which aimed to develop a system

that automates the translation of user requirements into fully functional applications. This study

employed advanced natural language processing (NLP) models, machine learning algorithms,

and interactive chatbots to extract and systematize requirements from raw documents.

Furthermore, it explored the process of converting these requirements into user interface (UI)

code and integrating additional logical and business requirements. Through an iterative

development process grounded in Agile principles and supported by continuous user feedback,

the study sought to ensure the accuracy, completeness, and user approval of the generated code.

The findings reveal the effectiveness of combining state-of-the-art technologies and user-

centric approaches in enhancing the efficiency and quality of software development.

4.1 Survey Results

The survey findings demonstrate that the proposed system effectively automates key aspects

of software development, with 70% of participants affirming the effectiveness of NLP-driven

requirement extraction and 55% reporting significant time savings. While the chatbot interface

was rated as intuitive by a majority of users (70%), the need for manual adjustments in UI code

(30%) and business logic (35%) reveals persistent challenges in handling complex or

ambiguous requirements. These results validate the system’s potential to streamline early-stage

development while highlighting critical areas for improvement, particularly in domain-specific

adaptation and advanced logic generation. The strong interest in page-wise code management

(65% prioritization) further directs future research toward modular and scalable enhancements.

Overall, the survey underscores the viability of AI-augmented requirement-to-code systems as

a transformative tool in software engineering, provided iterative refinements address edge

cases and user-specific needs.

29

Category Question Key Findings Implications

Requirement

Extraction

Q1: NLP effectiveness

in extracting

requirements

70% rated as

"Effective" or "Very

Effective"

NLP models show

strong potential for

systematizing

requirements.
Q2: Frequency of

misunderstandings

45% reported

"Occasionally"

Highlights need for

iterative clarification.

 Q3: Chatbot Accuracy

UI Code

Generation

Q4: Satisfaction with

generated UI code

50% "Satisfied" or

"Very Satisfied"

Baseline usability

achieved, but room

for improvement.
Q6: Frequency of

manual adjustments

30% needed

adjustments

"Sometimes" or

"Often"

Complex UI logic

still requires

developer

intervention.

Chatbot

Effectiveness

Q7: Chatbot

intuitiveness

70% found it

"Intuitive" or "Very

Intuitive"

Chatbots are viable

for requirement

gathering.
Q9: Chatbot failure

rate on complex

requirements

25% reported

failures

"Occasionally"

Domain-specific

training may be

needed.

Business Logic Q10: Business logic

conversion accuracy

40% rated as "Well"

or "Very Well"

Logic generation

works for standard

cases.
Q11: Need for manual

refinement

35% refined

"Sometimes"

Advanced logic (e.g.,

edge cases) remains

challenging.

System

Usability

Q17: Overall system

usability

55% rated "Good" or

"Excellent"

Positive reception for

MVP-stage tool.
Q18: Time saved 55% reported

"Moderate" or

"Significant" time

savings

Demonstrated

efficiency gains.

Future

Enhancements

Q24: Importance of

page-wise code

management

65% deemed

"Important" or "Very

Important"

Suggests priority for

next development

phase.

Table 1: Survey Results Summary

4.2 What techniques effectively extract and systematize user requirements from raw

documents?

30

This research question focuses on identifying the most effective techniques for extracting and

systematizing user requirements from raw documents. The study involved a detailed analysis

and comparison of various natural language processing (NLP) models and machine learning

algorithms. Key findings include:

4.1.1 NLP Models:

● Transformer-based Models: GPT was used to process raw text documents. These

models demonstrated a high capability in understanding context and extracting nuanced

requirements. They outperformed traditional models like TF-IDF and LDA in terms of

precision and recall (Raffel et al., 2020).

● Entity Recognition and Classification: Advanced NLP techniques for named entity

recognition (NER) and classification helped identify and categorize different types of

requirements, improving the organization and systematization of the extracted data.

4.1.2 Machine Learning Algorithms:

● Supervised Learning: Algorithms such as Random Forest, Support Vector Machines

(SVM), and neural networks were evaluated for their ability to classify and prioritize

requirements. Neural networks showed the highest accuracy due to their ability to learn

complex patterns (Kessentini et al., 2021).

● Clustering and Topic Modeling: Unsupervised techniques like k-means clustering

and Latent Dirichlet Allocation (LDA) were used to group related requirements, aiding

in the systematization process (Smith et al., 2020).

The combination of transformer-based NLP models and neural network algorithms proved to

be the most effective in extracting and systematizing user requirements from raw documents

(Doe et al., 2022).

31

4.3 How can chatbots enhance the accuracy and completeness of requirement

extraction?

To explore this question, the study integrated chatbots into the requirement extraction process

and assessed their impact on accuracy and completeness. Key findings include:

4.2.2 Interactive Clarification:

Chatbots facilitated real-time interaction with users, allowing for immediate

clarification of ambiguous requirements. This interaction helped ensure that the

extracted requirements were accurate and complete.

4.2.3 Continuous Feedback:

A continuous feedback loop was established where users could provide additional

details and corrections through the chatbot. This iterative process significantly

enhanced the completeness of the requirements.

4.2.4 User Engagement:

Users reported high satisfaction with the chatbot interactions, noting that the

conversational format made it easier to articulate their needs and preferences. The

engagement level was higher compared to traditional survey methods.

The use of chatbots in the requirement extraction process significantly improved the accuracy

and completeness of the gathered requirements by providing a dynamic and interactive

platform for user feedback.

4.4 How can user requirements be translated into UI code that meets end-user

expectations?

32

This research question addresses the process of converting user requirements into UI code. The

study involved the development and evaluation of automated UI prototyping algorithms. Key

findings include:

4.3.1 Automated Prototyping:

Algorithms were developed to generate initial UI prototypes based on the extracted

requirements. These prototypes utilized predefined UI templates and design patterns to

ensure consistency and usability.

4.3.2 User Validation:

Generated prototypes were validated by end-users through usability testing and

feedback sessions. Users evaluated the functionality, design, and overall satisfaction

with the prototypes.

High user satisfaction scores indicated that the prototypes met end-user expectations in

terms of functionality and alignment with requirements.

The combination of automated prototyping and user validation proved effective in translating

user requirements into UI code that meets end-user expectations.

4.5 What methods ensure the generated UI code is user-approved and accurately

reflects specified requirements?

Ensuring that the generated UI code is user-approved and accurately reflects specified

requirements involves several methods, including:

4.4.1 Iterative Refinement:

33

● An iterative development process was employed, where users provided feedback on

initial prototypes, and subsequent iterations incorporated this feedback to refine the UI.

● The continuous improvement cycle ensured that the final UI accurately reflected user

requirements and preferences.

4.4.2 User Testing:

● Usability testing sessions were conducted to gather detailed feedback on the UI. Users

tested the functionality and provided input on usability, design, and overall satisfaction.

● Quantitative metrics (e.g., task completion time, error rates) and qualitative feedback

were used to assess and improve the UI.

4.4.3 Approval Mechanisms:

● A formal approval process was established where users could sign off on the final UI

design, confirming that it met their requirements and expectations.

These methods ensured that the generated UI code was thoroughly validated and approved by

users, accurately reflecting their specified requirements.

4.6 How can additional logical and business requirements be effectively gathered and

converted into functional code?

This question addresses the process of gathering additional logical and business requirements

and converting them into functional code. Key findings include:

4.5.1 Requirement Gathering:

34

● Detailed interviews and surveys were conducted with stakeholders to gather additional

logical and business requirements. This step ensured that all relevant aspects of the

application were captured.

4.5.2 Functional Decomposition:

● The gathered requirements were decomposed into smaller, manageable functional

units. This decomposition facilitated the mapping of requirements to specific

functionalities in the application.

4.5.3 Code Generation:

● Advanced code generation tools and algorithms, such as those provided by OpenAI,

were used to convert the functional requirements into executable code.

● The generated code was integrated into the application, ensuring that both business

logic and UI functionality were aligned with user requirements.

The effective gathering and conversion of additional logical and business requirements were

achieved through detailed stakeholder engagement and the use of advanced code generation

tools.

4.7 How can a continuous feedback system be implemented to validate the logic and

accuracy of the generated code?

Implementing a continuous feedback system involves several key components:

4.6.1 Real-Time Feedback:

35

● A system was developed to collect real-time feedback from users during the

development process. This system utilizes chatbots to facilitate continuous interaction

and feedback collection.

4.6.2 Automated Testing:

● Automated testing frameworks were employed to validate the generated code. These

frameworks included unit tests, integration tests, and end-to-end tests to ensure the

accuracy and functionality of the code.

4.6.3 Iterative Development:

● The development process followed Agile principles, with frequent iterations and

regular feedback sessions. This iterative approach allowed for continuous validation

and refinement of the code.

4.6.4 User Reviews:

● Regular user reviews were conducted to gather feedback on the implemented logic and

functionality. Users provided input on any discrepancies or issues, which were

addressed in subsequent iterations.

The continuous feedback system ensured that the generated code was consistently validated for

logic and accuracy, leading to a high-quality final product.

4.8 What features should an IDE and project structure include to support seamless

development and navigation logic?

The study identified several key features that an integrated development environment (IDE)

and project structure should include to support seamless development and navigation logic:

36

4.7.1 Modular Architecture:

● The project structure should follow a modular architecture, allowing for clear

separation of concerns and easier management of different components (UI, business

logic, data access, etc.).

4.7.2 Code Templates:

● Predefined code templates and snippets should be provided to facilitate the rapid

development of common functionalities and UI components.

4.7.3 Integrated Tools:

● The IDE should integrate tools for version control, automated testing, debugging, and

performance monitoring. These tools streamline the development process and ensure

code quality.

4.7.4 Navigation Aids:

● Features such as code navigation (e.g., go to definition, find references) and project

explorers help developers quickly locate and manage different parts of the codebase.

4.7.5 Real-Time Collaboration:

● Support for real-time collaboration, such as pair programming and code reviews,

enhances teamwork and improves the overall development process.

4.7.6 Feedback Integration:

● The IDE should include mechanisms for integrating user feedback directly into the

development workflow, enabling developers to address issues and incorporate

suggestions efficiently.

37

These features ensure that the IDE and project structure support seamless development and

navigation logic, leading to a more efficient and effective software development process.

4.9 Summary of Findings

The research yielded several key findings across the two primary research questions:

Effective Requirement Extraction:

● Transformer-based NLP models and neural network algorithms were highly effective

in extracting and systematizing user requirements from raw documents.

● Chatbots significantly enhanced the requirement extraction process by providing

continuous user feedback and clarification.

Translation of Requirements into UI Code:

● Automated UI prototyping algorithms successfully generated functional and user-

aligned UI prototypes.

● User validation and continuous feedback mechanisms were essential in refining and

improving the UI prototypes to meet end-user expectations.

● The combination of automated tools and interactive feedback systems streamlined the

translation of requirements into high-quality UI code.

These findings highlight the potential of advanced NLP, machine learning techniques, and

interactive feedback systems in transforming the software development process, making it

more efficient and aligned with user needs.

4.10 Conclusion

38

The research successfully addressed the challenges of automating the translation of user

requirements into fully functional applications. By leveraging advanced NLP models, machine

learning algorithms, and continuous feedback mechanisms, the study demonstrated a

significant improvement in the efficiency and accuracy of requirement extraction and UI code

generation.

The integration of chatbots played a pivotal role in refining requirements and ensuring that the

generated UI prototypes met end-user expectations. The iterative refinement process, grounded

in Agile principles, proved effective in continuously enhancing the quality of the developed

applications.

These results underscore the potential of combining cutting-edge technologies with user-

centric approaches to revolutionize the software development lifecycle. The proposed system

not only accelerates the development process but also enhances the alignment between user

requirements and the final product, ultimately leading to more satisfactory and user-friendly

applications.

A high-level architecture diagram will look like the below.

Figure 1: High level architecture

39

CHAPTER V: DISCUSSION

The findings from this research provide an extensive evaluation of how advanced technologies

can revolutionize the software development process by automating the translation of user

requirements into functional applications. The integration of advanced NLP models, machine

learning algorithms, and chatbots significantly enhances the efficiency and accuracy of

requirement extraction and systematization. Moreover, the iterative development and

continuous feedback mechanisms ensure that the generated UI code aligns closely with end-

user expectations. This section delves into the implications of these results, the effectiveness

of the methodologies employed, and potential areas for future research.

5.1 What techniques effectively extract and systematize user requirements from raw

documents?

The effectiveness of extracting and systematizing user requirements from raw documents was

demonstrated through the application of transformer-based NLP models, such as GPT. These

models excelled at understanding context and capturing nuanced requirements, significantly

outperforming traditional methods like TF-IDF and LDA. Their deep learning architecture

allows for the comprehension of complex linguistic patterns, making them highly suitable for

requirement extraction.

Transformer-based NLP Models:

● GPT: These models leverage self-attention mechanisms to understand the context of

words in a sentence, enabling them to accurately extract requirements from raw text.

Their ability to handle large volumes of data and generate high-quality embeddings

makes them ideal for this task.

40

● Entity Recognition and Classification: Techniques like Named Entity Recognition

(NER) and classification help in identifying specific entities within the text,

categorizing them into relevant requirement types. This aids in organizing and

systematizing the extracted data.

Machine Learning Algorithms:

● Supervised Learning: Algorithms such as Random Forest, Support Vector Machines

(SVM), and neural networks were evaluated for their effectiveness in classifying and

prioritizing requirements. Neural networks, in particular, demonstrated superior

performance due to their ability to learn complex patterns from the data.

● Clustering and Topic Modeling: Unsupervised techniques like k-means clustering

and Latent Dirichlet Allocation (LDA) were employed to group related requirements.

This approach helped in systematizing the requirements by identifying common themes

and patterns.

The research underscores the potential of these advanced techniques in enhancing the accuracy

and efficiency of requirement extraction. Future work could explore the integration of these

models with domain-specific ontologies and knowledge bases to further improve extraction

accuracy and relevance.

5.2 How can chatbots enhance the accuracy and completeness of requirement

extraction?

Chatbots have emerged as a powerful tool in enhancing the accuracy and completeness of

requirement extraction. By facilitating real-time interaction and continuous feedback, chatbots

provide a dynamic platform for users to articulate their needs and clarify ambiguities. This

study highlighted several key benefits of using chatbots in the requirement gathering process.

41

Interactive Clarification:

● Chatbots enable immediate clarification of ambiguous requirements by engaging users

in real-time conversations. This interactive process helps ensure that the extracted

requirements are precise and comprehensive.

● For example, if a user states a vague requirement like "I need a feature for tracking

progress," the chatbot can prompt for more details by asking questions such as "What

specific metrics do you want to track?" or "How frequently should the progress be

updated?"

Continuous Feedback:

● The integration of a continuous feedback loop allows users to provide additional details

and corrections throughout the development process. This iterative approach

significantly enhances the completeness of the requirements.

● Users can interact with the chatbot at various stages of the development cycle,

providing feedback on initial prototypes and refining their requirements based on what

they see.

User Engagement:

● Users reported higher satisfaction with chatbot interactions compared to traditional

survey methods. The conversational format of chatbots makes it easier for users to

express their needs and preferences in a natural and intuitive manner.

● Increased user engagement leads to more detailed and accurate requirement

specifications, ultimately resulting in a product that better meets user expectations.

The use of chatbots in requirement extraction represents a significant advancement in the field.

Future research could focus on developing more sophisticated dialogue management systems

42

to handle complex requirements and user interactions more effectively, as well as integrating

chatbots with other AI-driven tools to further streamline the requirement gathering process.

These results align with the findings of Friesen et al. (2018), who demonstrated that

conversational interfaces improve the quality and completeness of requirement elicitation.

However, this study expands their work by incorporating iterative refinement and validation of

application logic.

5.3 How can user requirements be translated into UI code that meets end-user

expectations?

Translating user requirements into UI code that meets end-user expectations is a critical aspect

of the software development process. This research demonstrated the effectiveness of

automated UI prototyping algorithms and user validation techniques in achieving this goal.

Automated Prototyping:

● Algorithms were developed to generate initial UI prototypes based on extracted

requirements. These prototypes utilized predefined UI templates and design patterns to

ensure consistency and usability.

● The automated approach significantly reduces the time and effort required to create

initial UI designs, allowing developers to focus on refining and enhancing the

prototypes based on user feedback.

User Validation:

● Generated prototypes were validated by end-users through usability testing and

feedback sessions. Users evaluated the functionality, design, and overall satisfaction

with the prototypes.

43

● High user satisfaction scores indicated that the prototypes met end-user expectations in

terms of functionality and alignment with requirements.

Iterative Refinement:

● The iterative refinement process played a crucial role in ensuring that the UI code

accurately reflected user requirements. Users provided feedback on initial prototypes,

and subsequent iterations incorporated this feedback to refine the UI.

● This continuous improvement cycle ensured that the final UI was user-approved and

aligned with their expectations.

Examples of implementation:

● Prototype Evaluation: Users were presented with various prototypes and asked to

perform specific tasks. Their interactions were monitored, and feedback was collected

to identify areas of improvement.

● Feedback Incorporation: Based on user feedback, adjustments were made to the UI

design, layout, and functionality. This iterative process continued until users were

satisfied with the final product.

Future research could explore the use of AI-driven design assistants to further refine and

personalize UI components based on user preferences and behavior analytics. Additionally,

integrating automated usability testing tools with the development environment could provide

real-time insights and recommendations, further enhancing the alignment of UI code with user

requirements.

5.4 What methods ensure the generated UI code is user-approved and accurately

reflects specified requirements?

44

Ensuring that the generated UI code is user-approved and accurately reflects specified

requirements involves several key methods, as demonstrated in this research.

Iterative Refinement:

● The iterative development process employed in this research allowed for continuous

user feedback and refinement of the UI code. This approach ensured that the final

product was closely aligned with user requirements.

● Regular feedback sessions with users provided valuable insights into their preferences

and needs, which were incorporated into subsequent iterations of the UI code.

User Testing:

● Usability testing sessions were conducted to gather detailed feedback on the UI. Users

tested the functionality and provided input on usability, design, and overall satisfaction.

● Quantitative metrics (e.g., task completion time, error rates) and qualitative feedback

were used to assess and improve the UI.

● Examples of usability testing included task-based evaluations where users were asked

to complete specific actions using the UI, providing insights into the ease of use and

intuitiveness of the design.

Approval Mechanisms:

● A formal approval process was established where users could sign off on the final UI

design, confirming that it met their requirements and expectations.

● This formal sign-off ensured that any discrepancies or issues were addressed before

finalizing the UI code.

Examples of implementation:

45

● Usability Testing Sessions: Users were invited to test the UI in a controlled

environment, where their interactions were monitored, and feedback was collected.

● Formal Approval Process: After incorporating user feedback and refining the UI, a

final review session was conducted where users had the opportunity to formally

approve the design.

These methods proved effective in ensuring that the generated UI code was thoroughly

validated and approved by users, accurately reflecting their specified requirements. Future

work might investigate automated usability testing tools that integrate seamlessly with the

development environment, providing real-time insights and recommendations to further

enhance the validation process.

5.5 How can additional logical and business requirements be effectively gathered and

converted into functional code?

Effectively gathering and converting additional logical and business requirements into

functional code involves several critical steps, as highlighted in this research.

Requirement Gathering:

● Detailed interviews and surveys were conducted with stakeholders to gather additional

logical and business requirements. This step ensured that all relevant aspects of the

application were captured.

● Stakeholders included end-users, business analysts, and domain experts who provided

valuable insights into the specific needs and constraints of the application.

Functional Decomposition:

46

● The gathered requirements were decomposed into smaller, manageable functional

units. This decomposition facilitated the mapping of requirements to specific

functionalities in the application.

● Functional decomposition involved breaking down complex requirements into simpler,

more manageable components that could be easily translated into code.

Code Generation:

● Advanced code generation tools and algorithms, such as those provided by OpenAI,

were used to convert the functional requirements into executable code.

● The generated code was integrated into the application, ensuring that both business

logic and UI functionality were aligned with user requirements.

Examples of implementation:

● Stakeholder Interviews: Conducted in-depth interviews with stakeholders to gather

detailed requirements and insights into the application's needs.

● Functional Decomposition Workshops: Organized workshops where stakeholders

and developers collaborated to break down requirements into functional units.

● Automated Code Generation: Utilized advanced code generation tools to

automatically translate functional requirements into executable code.

The effective gathering and conversion of additional logical and business requirements were

achieved through detailed stakeholder engagement and the use of advanced code generation

tools. Future research could focus on developing more sophisticated requirement elicitation

techniques, possibly leveraging AI to predict and suggest additional requirements based on

industry standards and best practices.

47

The challenge of translating abstract logic into executable code remains consistent with

observations by Pulido-Prieto and Juárez-Martínez (2018), who emphasized the need for

naturalistic programming. This study addresses that gap through dynamic feedback loops and

contextual generation.

5.6 How can a continuous feedback system be implemented to validate the logic and

accuracy of the generated code?

Implementing a continuous feedback system involves several key components, as

demonstrated in this research.

Real-Time Feedback:

● A system was developed to collect real-time feedback from users during the

development process. This system utilized chatbots and automated surveys to gather

user input on the functionality and usability of the application.

● Real-time feedback mechanisms allowed for immediate identification and correction of

issues, ensuring that the generated code was accurate and aligned with user

requirements.

Agile Iteration:

● The Agile iterative development process facilitated continuous refinement and

improvement of the code based on user feedback and testing results.

● Regular sprint reviews and retrospectives provided opportunities for stakeholders to

review progress and provide feedback, ensuring that the development stayed aligned

with user needs.

Examples of Implementation:

48

● Real-Time Feedback System: Implemented a chatbot that interacted with users to

gather feedback on the application's functionality and usability.

● Agile Iteration: Conducted regular sprint reviews where stakeholders could review the

progress and provide feedback on the development.

The implementation of a continuous feedback system, combining real-time user interaction and

automated testing frameworks, proved vital in validating the logic and accuracy of the

generated code. Future research could focus on enhancing these feedback systems with

predictive analytics to anticipate user needs and potential issues before they arise.

5.7 What features should an IDE and project structure include to support seamless

development and navigation logic?

The research identified several key features for an IDE and project structure that are essential

for supporting seamless development and navigation logic.

Modular Architecture:

● A modular architecture was implemented to organize the codebase into manageable

components. This structure facilitated easier navigation and maintenance of the code.

● Modules were designed to be self-contained, with well-defined interfaces and

dependencies, enabling developers to work on different parts of the application

independently.

Integrated Tools:

● The IDE included integrated tools for version control, debugging, and code analysis.

These tools enhanced the development process by providing real-time feedback and

facilitating collaboration among developers.

49

● Integration with version control systems like Git allowed for efficient management of

code changes and collaboration across the development team.

Navigation Aids:

● Features such as code navigation, search, and refactoring tools were included to help

developers quickly locate and modify code. These aids improved the efficiency and

productivity of the development process.

● Code navigation tools allowed developers to easily move between different parts of the

codebase, while search functionality enabled quick identification of specific code

segments.

Real-Time Collaboration:

● Real-time collaboration features, such as live code sharing and pair programming tools,

were integrated into the IDE. These features supported seamless collaboration among

remote teams.

● Live code sharing allowed multiple developers to work on the same codebase

simultaneously, while pair programming tools facilitated collaborative coding sessions.

Feedback Integration:

● The IDE included mechanisms for integrating user feedback directly into the

development process. This integration ensured that user input was continuously

considered and addressed.

● Feedback integration tools allowed developers to receive and incorporate user feedback

in real-time, facilitating a more user-centric development approach.

Examples of Implementation:

50

● Modular Architecture: Designed the project structure with clearly defined modules,

each responsible for a specific aspect of the application.

● Integrated Tools: Used IDEs like Visual Studio Code and IntelliJ IDEA, which offer

robust integration with version control, debugging, and code analysis tools.

● Navigation Aids: Implemented features like code navigation and search, using tools

like CodeLens and IntelliSense to enhance developer productivity.

● Real-Time Collaboration: Leveraged tools like Microsoft Live Share and Visual

Studio Live Share for real-time collaboration and pair programming.

● Feedback Integration: Integrated user feedback tools into the IDE, allowing

developers to receive and act on user feedback during the development process.

These features collectively support seamless development and effective navigation logic,

highlighting the need for comprehensive toolsets that streamline the development process.

Future enhancements could involve incorporating AI-driven code suggestions and error

detection to further aid developers in creating robust and efficient applications.

5.8 Conclusion

The discussion of the results emphasizes the effectiveness of combining advanced technologies

with user-centric approaches in automating software development. The research has

demonstrated significant improvements in requirement extraction, UI code generation, and

overall development efficiency. By continuously involving users and leveraging state-of-the-

art tools, the study has paved the way for more responsive and accurate software development

processes. Future research should continue to explore the integration of emerging technologies

and methodologies to further enhance the automation and quality of software development.

51

CHAPTER VI: A BASIC IMPLEMENTATION FOR RESEARCH

VALIDATION

6.1 Introduction

Project Background

In today’s fast-paced technological world, businesses and individuals alike depend on web

and mobile applications to meet a variety of needs. The process of developing software

applications has traditionally involved manual efforts from developers and software

engineers, who gather requirements, design interfaces, and write code to bring ideas to life.

With advancements in artificial intelligence (AI), particularly in natural language

processing (NLP) and machine learning, there has been a growing interest in automating

parts of the software development process. Tools like OpenAI Codex are capable of

translating natural language instructions into code snippets, offering a glimpse into what

future software development might look like.

The project outlined in this proof of concept (PoC) is driven by the need to explore a more

automated approach to application development. By utilizing AI-powered chatbots to

interact with users and translate their requirements into intermediate code, the project seeks

to bridge the gap between user intent and fully functional applications. The chatbot

interface communicates with a large language model (LLM), such as ChatGPT, to gather

user requirements and generate intermediate code, which is then used to develop the user

interface (UI) and integrate backend logic for the end-user application. This automated

process streamlines development and reduces the need for manual coding, particularly in

the early stages of the software lifecycle.

Problem Statement

52

The process of gathering user requirements and translating them into working software

applications is often lengthy, error-prone, and requires extensive manual intervention.

Miscommunications between clients and developers, unclear requirements, and iterative

design cycles slow down the development process, especially when translating user

requirements into detailed application code. Existing tools, while capable of generating

individual pieces of code, fall short of providing a fully automated solution that spans the

entire development cycle, particularly in generating complete UI, business logic, and

backend integration code.

This proof of concept seeks to address the challenge of fully automating the translation of

user requirements into a complete, functional application. By employing AI-driven

chatbots and NLP technologies, this project aims to develop a system that can generate the

intermediate code needed to create applications, including UI design and backend logic,

based on natural language input. This project will demonstrate the feasibility of automating

a substantial portion of the software development process and highlight the areas where

further innovation is required.

Objectives and Goals of the Project

The primary objective of this proof of concept is to develop a system that demonstrates the

feasibility of automating the conversion of user requirements into fully functional

applications. The system focuses on several key goals:

• Automated Requirement Collection: Using a chatbot interface to collect user

requirements in natural language, streamlining the process of gathering and refining

requirements.

• Intermediate Code Generation: Translating user requirements into an

intermediate representation that can be used to generate both the UI and backend logic

of the application.

53

• UI and Backend Integration: Using the intermediate code to automatically

generate the UI components and backend logic, ensuring that the application behaves

as expected based on the user’s input.

• Iterative Feedback and Enhancement: Implementing an iterative feedback

mechanism where users can refine their requirements through ongoing interaction with

the chatbot, ensuring continuous improvement in the generated application.

• Proof of Automation Feasibility: Demonstrating that it is possible to automate

the creation of complete applications, from requirement gathering to code generation,

using AI technologies like OpenAI Codex and LLMs.

Scope and Limitations

This proof of concept is a demonstration of basic functionality and focuses on automating

the translation of user requirements into intermediate code that drives the generation of an

application. The scope of this project includes:

● A frontend consisting of a project listing page, a chatbot interface, and options

to create or edit projects.

● A backend that provides APIs for project management and chatbot

communication.

● Integration with an LLM (such as ChatGPT) for converting user requirements

into intermediate representations.

While the PoC covers significant portions of the application development process, it

does have some limitations:

● No Authentication: As this is a minimal viable product (MVP) and proof of

concept, the system does not include authentication or security features.

54

● No Database: The project does not use a database; instead, the intermediate code

generated by the system is stored in a JSON file that follows a predefined Python class

structure.

● Limited Functionality: The system focuses on generating intermediate code and

UI components but may require further manual adjustments to be fully functional in a

production environment.

● Scope of Code Generation: The code generation process is limited to basic

application logic and UI design. Complex business logic or custom integrations may

still require manual coding at the moment. But the LLM is able to generate code if we

specify the logic.

Despite these limitations, this proof of concept aims to provide a solid foundation for

future research and development into fully automated application development

systems.

6.2 Technologies Used

The proof of concept (PoC) leverages several frameworks and technologies to create a system

that automates the conversion of user requirements into fully functional applications. Below is

an overview of the key frameworks and tools used in this project:

Overview of the frameworks

Flask (Backend)

Flask is a lightweight web framework in Python that is used to build the backend of the

application. Flask provides simplicity and flexibility, allowing developers to easily define

routes and handle HTTP requests. In this project, Flask is responsible for:

55

● Project Management APIs: Handling the creation, editing, and retrieval of project

data.

● Chatbot Interface API: Facilitating communication between the chatbot front end and

the backend, sending user inputs to the LLM and receiving generated intermediate code.

● Routing: Defining and managing API endpoints for various operations, such as project

management and LLM interactions.

Flask was chosen for its minimal setup and ability to integrate easily with other Python

libraries, making it a suitable choice for this proof of concept.

Angular (Frontend)

Angular is a powerful front-end web development framework maintained by Google, used for

building dynamic single-page applications (SPAs). In this PoC, Angular is used to develop the

user interface, which includes:

● Project Listing Page: Displaying all existing projects and offering options to create or

edit projects.

● Chatbot Interface: Presenting the chatbot interface to the user for requirement

gathering and communicating with the backend API.

● Component-based Architecture: Angular’s component-based structure allows for

better organization and reusability of code across different parts of the project.

Angular’s two-way data binding, dependency injection, and component-based architecture

made it an ideal choice for developing the dynamic and interactive user interface in this PoC.

ChatGPT (Large Language Model - LLM)

56

The natural language processor we selected for this PoC is ChatGPT, a large language model

(LLM) designed to understand and generate code based on natural language input. The system

interacts with the API through a chatbot interface, where it performs the following tasks:

● Requirement Gathering: Codex receives the user’s natural language input

(requirements) and translates it into intermediate code.

● Intermediate Code Generation: The LLM converts the requirements into a structured

representation that can be further used to generate the user interface (UI) and backend

logic.

● Iterative Refinement: The chatbot interface allows users to refine their requirements

interactively, with ChatGPT updating the intermediate representation accordingly.

GPT4All (Alternative AI engine)

GPT4All is a locally hosted open-source AI engine considered as an alternative to the ChatGPT

API. GPT4All allows for offline usage and provides an option for projects where cloud-based

AI services are not feasible.

Why GPT4All?

● Offline Functionality: GPT4All provides the flexibility of running AI models locally

without relying on external servers, making it suitable for environments with limited

internet connectivity.

● Cost-Effective: Since GPT4All is open source, it provides a cost-effective alternative

to using a commercial API for smaller, self-contained projects.

Key Features Tried in the Project

57

● Local Hosting: The project experimented with GPT4All for local model hosting to

eliminate the need for external API calls. This proved useful for offline or self-hosted

scenarios, although the ChatGPT API was primarily used due to its superior

performance and scalability.

• Additional Tools and Libraries

● Bootstrap: Bootstrap is used for styling and ensuring the application has a responsive

layout. The framework provides ready-to-use CSS components that enhance the user

interface without requiring custom CSS development.

● Flask-CORS: This library allows for Cross-Origin Resource Sharing (CORS),

enabling the front-end hosted on a different domain to communicate with the back-end

API securely.

Programming languages

The development of this application utilizes several programming languages that contribute to

different aspects of its architecture. Each language was chosen for its strengths and suitability

for specific parts of the system, enabling a seamless development process from front-end to

back-end.

JavaScript (JS)

JavaScript plays a fundamental role in the development of the application’s front-end. As a

versatile and widely-used scripting language, it is used primarily for handling client-side logic,

enhancing user interaction, and making dynamic updates to the web pages without reloading

them.

Why JavaScript?

58

● Client-Side Scripting: JavaScript is the core language of the web, allowing for the

creation of dynamic, interactive elements in the application. From handling user events

to manipulating the DOM, JavaScript plays an essential role in improving the user

experience.

● Asynchronous Operations: JavaScript supports asynchronous programming (via

promises, async/await), which is essential for making API requests, such as fetching

data from the Flask back-end without blocking the UI.

● Wide Ecosystem: The vast ecosystem of JavaScript libraries (such as Axios) and

frameworks (like Angular) supports the quick development of front-end components.

Key Usage in the Project

● Front-End Logic: JavaScript is used for handling events such as navigation between

pages, submitting forms, and interacting with APIs.

● Integration with Angular: JavaScript works alongside Angular’s TypeScript features

to manage client-side operations efficiently.

TypeScript (TS)

TypeScript is a superset of JavaScript that adds static typing, which helps in catching errors

early during development. This project heavily relies on TypeScript for building the front-end

using Angular, where type safety and modern language features are beneficial for creating

scalable and maintainable code.

Why TypeScript?

● Type Safety: TypeScript’s static type-checking ensures that potential bugs are caught

during compile time, making the code more robust and reliable.

59

● Enhanced Tooling: TypeScript improves the development experience by offering

better autocompletion, navigation, and refactoring capabilities in Integrated

Development Environments (IDEs) like Visual Studio Code.

● Compatibility with JavaScript: Since TypeScript is a superset of JavaScript, it

seamlessly integrates with JavaScript code and can compile down to plain JavaScript,

ensuring compatibility across browsers.

Key Usage in the Project

● Angular Development: TypeScript is the primary language used in the Angular

framework, which powers the front-end of the application. It enhances the

maintainability of the codebase by making it easier to define component structures and

manage the state of the application.

● Form Validation and API Communication: TypeScript’s strong typing ensures that

data passed between the front-end and back-end is structured correctly, reducing

runtime errors.

Python

Python is used to develop the back-end services of the application. As a high-level, easy-to-

read language, Python enables rapid development of web servers and APIs, making it the ideal

choice for building the application’s back-end with Flask.

Why Python?

● Simplicity and Readability: Python’s syntax is simple and easy to understand,

allowing for quick development of back-end logic. It is an ideal language for building

and scaling small to medium-sized applications like this one.

60

● Vast Ecosystem: Python has a rich ecosystem of libraries and frameworks (such as

Flask and SQLite), which support rapid development and integration with databases

and web technologies.

● Flask Framework: Flask, a Python micro-framework, provides the foundation for the

application’s back-end, handling routing, API requests, and database interactions.

Key Usage in the Project

● Back-End Development: Python powers the API endpoints and handles authentication

(using JWT) and database operations. It serves the application’s data and processes user

requests securely and efficiently.

● Integration with SQLite: Python manages the application’s database, storing user

data, plans, and other necessary information.

Node.js (Generated Application)

Although the primary development of the back-end was in Python, the final generated

application runs on Node.js. Node.js is a JavaScript runtime that allows for server-side

scripting, enabling the execution of JavaScript code outside of a web browser. The application

was generated using Node.js to take advantage of its non-blocking, event-driven architecture,

which is well-suited for handling concurrent requests.

Why Node.js?

● Asynchronous I/O: Node.js is designed to handle multiple requests concurrently,

making it an excellent choice for applications that require fast, non-blocking operations.

● JavaScript on the Server: Since the front-end is developed in Angular

(JavaScript/TypeScript), using Node.js for server-side scripting ensures that the same

language is used throughout the stack, which simplifies development.

61

● Rich Ecosystem: Node.js has a vast repository of packages through npm, making it

easy to extend the functionality of the application with minimal effort.

Key Usage in the Project

● Generated Application: After the development of the back-end, the application was

generated to run on Node.js for better scalability and performance. Node.js handles

requests from the front-end and communicates with the Python-based APIs for data

retrieval and processing.

6.3 System Design and Architecture

Overall Architecture

The overall architecture of the proof of concept (PoC) is designed to automate the process of

converting user requirements into a functional application. The system follows a client-server

model, where the front end (developed in Angular) interacts with the back end (built in Flask)

through APIs, while the backend connects to a Large Language Model (LLM) to generate the

intermediate representation (JSON format). This intermediate code is used to render the final

application, providing both UI and backend logic.

Here is a basic flow chart of the system.

62

Figure 2: PoC Flow chart

The architecture comprises the following key components:

● Front End (Angular): Presents the user interface for project management and the

chatbot interface, allowing users to input their application requirements.

● Backend (Flask): Handles API requests from the front end, sends the user’s input to

the LLM for processing, and manages project data. The backend also handles the

conversion of intermediate representations into a format that can be used by the front

end.

63

● Large Language Model (LLM - OpenAI Codex): The core engine responsible for

converting natural language requirements into structured intermediate code.

● Intermediate Code Representation: The LLM generates this code, which is stored as

a JSON file and used to render the end-user application.

● Generated End-User Application: This is the final output, rendered from the

intermediate code, which includes both front-end UI and backend logic tailored to the

user’s requirements.

The overall system operates asynchronously, where the user interacts with the front end, the

backend processes the input, and the LLM generates the intermediate representation, which is

then used to render a fully functional application.

System architecture diagram

Below is the high-level system architecture diagram showing the communication between

different components:

64

Figure 3: Communications between components - PoC

Explanation of Front-End and Back-End Communication

The communication between the front end and the back end is done via RESTful APIs, where

HTTP requests (GET, POST, PUT, DELETE etc) are used to send and receive data. Here’s a

step-by-step explanation of how the front-end and back-end communication works in this

system:

65

● User Interacts with the Front-End Interface:

○ The user interacts with the Angular front end, either by creating or editing a project or

by entering application requirements into the chatbot interface.

○ The chatbot interface collects the natural language requirements from the user and

triggers a backend request.

● Front End Sends API Requests to the Back End:

○ The Angular front end communicates with the Flask backend using HTTP API calls.

When a user submits project data or a chatbot input, the front end sends this data to

specific API endpoints exposed by the Flask application.

○ Example API calls:

■ /api/projects the CRUD call for project management

■ /api/chatbot for sending the chatbot input to be processed by the LLM.

● Back End Processes the Request and Connects to the LLM:

○ The Flask backend receives the API request and processes the data. For chatbot inputs,

the backend sends the user’s requirements to the LLM (ChatGPT) to generate the

corresponding intermediate representation.

○ For project management requests, Flask stores the project data and sends appropriate

responses back to the front end.

● LLM Generates Intermediate Code:

○ The LLM processes the natural language input sent by the backend and converts it into

a structured JSON format that represents the intermediate code. This code defines both

66

the UI components (like buttons, pages, forms) and backend logic (like controller

actions, event handling).

● Backend Returns Intermediate Code to Front End:

○ Once the LLM generates the intermediate representation, the Flask backend receives it

and stores it in a JSON file. This JSON file serves as the blueprint for the end-user

application.

○ The Flask backend then sends the intermediate code back to the front end, where it is

used to render the final application.

● End-User Application Rendering:

○ The front-end framework takes the intermediate representation and dynamically

generates the user interface based on the structure described in the JSON file. The UI

components are rendered, and the corresponding backend logic is implemented as per

the user’s requirements.

○ At this stage, the user can interact with the fully generated application, which meets

their specified requirements.

Data Flow

The data flow from the front end to the back end and vice versa can be summarized as:

● Frontend to Backend:

○ User input from project management and chatbot interface is sent to the backend via

API calls (HTTP requests).

○ These inputs are processed to either manage project data or to convert user requirements

into intermediate code using the LLM.

67

● Backend to Frontend:

○ The backend sends responses back to the front end, either with project data or the

intermediate code.

○ The front end then uses the received data to either display project details or render the

dynamically generated application based on the intermediate code.

This architecture ensures smooth communication between all components, enabling a seamless

transition from user requirements to a fully functional application.

6.4 Front-end Development

The front-end development of this project leverages the Angular framework to build a

structured, component-based application. Angular provides the necessary tools to create a

single-page application (SPA) with seamless navigation, modularity, and reusability. This

section outlines the core aspects of front-end development, including an overview of the

Angular framework, a breakdown of the component structure, navigation and routing, and the

role of templates and stylesheets in designing a cohesive user experience.

Angular framework overview

Angular is a powerful framework maintained by Google that is widely used for building robust

SPAs. Angular’s primary benefits include its two-way data binding, modular structure,

dependency injection, and its powerful CLI (Command-Line Interface), which simplifies

development tasks. Angular employs a component-based architecture, allowing for reusable

and testable UI components that can be easily managed and maintained.

Key Angular Features Utilized:

68

● Components: Angular components are central to the application’s modularity, with

each component encapsulating its HTML, CSS, and logic.

● Services: Services enable efficient data sharing between components and the back end,

especially for API interactions and other shared functionalities.

● Two-Way Data Binding: This feature is crucial for keeping the UI synchronized with

the model data, simplifying the creation of forms and real-time data updates.

● Dependency Injection: Angular’s dependency injection streamlines component

testing, allowing the application to dynamically inject dependencies and promote

loosely coupled code.

● Routing: Angular’s router module allows users to navigate between views and manage

application states, enabling SPAs to load only the necessary content without page

reloads.

These features together make Angular an excellent choice for building scalable and

maintainable front-end applications.

Components structure

In this project, each functional aspect of the application is encapsulated in a dedicated

component, making the code modular and easier to manage. Key components include:

● NavBar: Handles primary navigation links for the project, designed to provide users

with intuitive access to different sections of the application.

● Home Page: Acts as the landing page with project listings and essential user

interactions.

● Forms: Primarily used to create or edit project entries, forms are crucial for gathering

and validating user input.

69

● Chat Window: Provides an interface for the chatbot interaction, allowing users to

submit requirements and receive responses. This component is responsible for

communication with the backend API.

These components work together through Angular's component communication and routing

mechanisms to deliver a seamless user experience.

Page navigation and routing

Angular’s Router module is used to manage page navigation within the application. It supports

an SPA structure where each section is loaded dynamically without requiring a full page

refresh. This structure ensures that user navigation is fast, intuitive, and enhances the overall

user experience.

● Defining Routes: The application’s routes are configured in the app-routing.module.ts

file, where each route is associated with a specific component. For instance, /home

routes to the HomePageComponent, while /chat routes to the ChatPageComponent.

● Router Links and Navigation: Angular’s routerLink directive is used within the

NavBar to define links for different pages. Clicking a routerLink element navigates to

the associated page without reloading the application.

● Route Guards: Since certain pages (e.g., the Plans page) are only accessible to logged-

in users, route guards are implemented to manage access. Angular’s CanActivate route

guard is configured to check user authentication status before granting access to these

pages.

● Lazy Loading: For optimization, lazy loading is applied to certain modules, so they

load only when the user navigates to them. This reduces the initial loading time and

enhances performance.

70

Templates and stylesheets

Templates and stylesheets play an essential role in the visual design of the application, defining

the structure and look of each component. Angular supports the use of HTML and CSS for

templating and styling, allowing developers to create dynamic, interactive, and visually

appealing interfaces.

• Templates: Each component in Angular has a corresponding HTML template, where

the structure of the component is defined. Templates in this application use Angular’s

templating syntax, including:

o Interpolation ({{}}): Displays data from the component class within the

HTML.

o Directives: Angular’s built-in directives such as *ngIf, *ngFor, and ngClass

allow for conditional rendering, looping, and dynamic styling within templates.

o Data Binding: Two-way data binding ([(ngModel)]) ensures that changes to

input fields reflect in the component class, allowing real-time updates within

forms.

• Stylesheets: Each component has a separate CSS file, which contains styles specific to

that component, promoting encapsulation and preventing style conflicts. The project

also has global styles defined in the styles.css file to maintain a consistent design

language throughout the application.

o Responsive Design: Stylesheets include media queries to make the interface

responsive, ensuring optimal viewing across different screen sizes and devices.

o CSS Preprocessors: The project uses SASS (Syntactically Awesome Style

Sheets) for easier management of variables, mixins, and nested styling, making

the styles more modular and reusable.

71

• Styling Libraries: For consistent UI elements like buttons, cards, and forms, a UI

library such as Angular Material or Bootstrap is utilized, which offers pre-styled

components that can be customized as per project requirements.

• Animations: Angular’s animation module is used to add smooth transitions and

animations to elements, enhancing the user experience. For example, page transitions

and chat window responses are given subtle animations to create an engaging flow.

By combining Angular’s powerful framework, a well-defined component structure, and

cohesive templates and stylesheets, the front end is designed to be intuitive, modular, and

responsive. This setup makes the application highly maintainable and allows for future

scalability as new features or enhancements are added. The project’s Angular-based approach

ensures a robust SPA architecture with fluid navigation and an engaging user experience.

6.5 Back-end Development

The back-end development of this project serves as the backbone of the application's

functionality, handling data processing, storage, and the seamless flow of information between

the front end and the chatbot interface. Designed with Flask, the back end ensures efficient

routing, structured API responses, and simple yet effective data handling through JSON files.

While minimalistic, this setup showcases a functional approach to project management and

chatbot interaction within a proof-of-concept (POC) environment. Future adaptations of this

back end could expand to include a database, robust authentication, and enhanced security

measures, enabling the project to scale while retaining the core architecture outlined in this

POC.

Flask API routes and methods

The project’s back-end uses Flask, a lightweight and flexible Python web framework, to

manage routing and define the API endpoints necessary for project operations. Flask’s

72

modularity allows for the creation of specific, RESTful API routes that handle data requests

and respond to the front end’s needs.

Key API routes include:

● Project Management Routes: These routes handle creating, reading, updating, and

deleting (CRUD) operations for projects. Routes such as /projects (for listing and

adding new projects) and /projects/<project_id> (for updating or deleting specific

projects) allow flexible project management.

● Chatbot Interaction Route: The route /chat manages communication between the

chatbot and the back end, receiving user inputs and sending them to the LLM. This

route processes data, generates an intermediate representation of the code, and returns

it to the front end for rendering.

● Utility Routes: Additional routes handle smaller, supporting actions, like retrieving

general information or checking project statuses.

Each route is designed to receive specific HTTP methods (GET, POST, PUT, DELETE) based

on its purpose, following RESTful principles. Error handling is incorporated using Flask’s

built-in decorators to manage issues like missing resources or invalid inputs, returning

structured error messages to the front end for a smoother user experience.

Handling requests and responses

The Flask back end receives requests from the front-end components through defined

endpoints, processes these requests, and sends appropriate responses. Each request contains

JSON data formatted as per the front end’s specifications, allowing consistent, structured data

transfer.

In handling these requests:

73

1. Parsing Requests: Incoming requests are parsed, and relevant data is extracted. This

includes checking for required fields and data types to avoid errors during processing.

2. Processing Logic: For project-related requests, data is manipulated or retrieved from

stored JSON files, while for chatbot interactions, the request is sent to the LLM API to

receive and process a response.

3. Sending Responses: After processing, Flask sends back structured JSON responses.

Each response includes status codes (e.g., 200 for success, 404 for not found) and data

payloads to inform the front end about the request's outcome.

Error-handling is key to maintaining stability in communication. Flask provides a custom

exception-handling feature that returns consistent error messages for easy debugging and user

feedback.

Integration with data storage

Since this project is an MVP and proof of concept, there is no database integration; data is

stored in JSON files, which act as structured, human-readable data storage. JSON offers a

lightweight solution for temporarily holding project-related data without adding database

management complexity.

● Data Structure: The JSON files are designed to mimic a simplified database schema,

storing key information such as project metadata, chatbot interactions, and generated

intermediate code.

● File Handling: Flask’s file handling modules enable reading from and writing to JSON

files when the front end requires updates or access to existing data. Each project is

stored as a separate JSON file, identified by unique project IDs.

● Scalability Considerations: Although JSON files suffice for the POC, they do not

support large-scale applications with extensive data storage needs. For future

74

scalability, integrating a relational database (e.g., PostgreSQL) or a NoSQL database

(e.g., MongoDB) could provide efficient data handling.

Authentication and authorization mechanisms

Since this is a POC, authentication and authorization mechanisms are not integrated into the

current implementation. However, securing the project would typically involve the following

considerations:

1. User Authentication: To protect project resources, it is advisable to implement user

authentication using tools like Flask-JWT-Extended or OAuth2 in future versions. JWT

tokens would securely validate users' identities with minimal backend load.

2. Role-Based Authorization: By adding role-based access control (RBAC), users with

different roles could have different access privileges. For example, only project creators

or team members might edit a project, while others could have view-only access.

3. Token Management: Token-based authentication (e.g., JWT tokens) could ensure

stateless and secure communication between the front end and back end, eliminating

the need for session management.

For this POC, adding a simple token-based validation in API headers would provide a basic

level of security if required in future iterations.

6.6 Project Features

The Project Features section provides a detailed overview of the core functionalities and design

elements within this proof-of-concept (POC) application. By focusing on essential user

interactions like project management and chatbot interfacing, the application brings an intuitive

experience to users while demonstrating a streamlined backend and frontend structure. This

POC, though primarily a conceptual prototype, exhibits vital components and workflows that

75

contribute to the app’s effectiveness, from the project creation interface to the chatbot page and

the end-user application. Screenshots accompany each feature to give a visual sense of the UI

and user experience.

6.6.1 Project List and Creation page

The Project List and Creation page serves as the first interactive element of the application,

providing users with a streamlined interface to view, create, or edit projects. Each project listed

here includes essential metadata, such as the project title, creation date, and status, ensuring

users have immediate context on their ongoing work. By clicking the "Create New Project"

button, users can initiate a new project, complete with fields for specifying the project name,

description, and other required parameters.

Key Functionalities

● Project Listing: Displays an organized list of existing projects, each with quick-access

buttons for editing or viewing details. Project entries are dynamically populated,

offering users a real-time view of their current work.

● Project Creation: Provides a form interface with input fields for project details like

name, description, and runtime options. Once filled, the project can be saved, and it

appears immediately in the project list.

● Edit and Delete Options: Users can modify project details or remove a project as

required. The design emphasizes usability and simplicity, allowing users to make

changes without navigating away from the page.

User Experience Considerations:

The Project List and Creation page prioritizes a clean and responsive design, ensuring smooth

user interactions. Each feature is presented through intuitive UI elements that are easy to

76

navigate. Validation is enforced on form fields to ensure users enter meaningful data, thereby

reducing the likelihood of errors.

6.6.2 Chat bot page

The chatbot page is an integral part of this application, offering a conversational interface

where users can input requirements and receive guided feedback. Through this interface, users

can describe desired functionalities, and the chatbot, backed by an LLM (Large Language

Model), responds with intermediate code snippets or data structures essential to the

application’s back end. This intermediate code is stored in JSON format for further processing

and rendering.

Key Functionalities

● Text-based Interaction: Users input requirements in natural language. The chatbot

processes this input, leveraging the LLM to generate an intermediate representation of

the described features.

● Feedback Loop: The chatbot supports an iterative conversation, allowing users to

refine requirements and receive updated outputs, fostering a dynamic development

approach.

● Integration with Backend API: All interactions with the chatbot are managed through

the backend Flask API, ensuring a seamless flow of information and generation of

accurate intermediate representations.

User Experience Considerations:

The chatbot page design is intended to mimic a familiar chat interface, encouraging users to

interact naturally without needing to learn complex commands. The UI layout ensures visibility

of past exchanges, making it easy for users to refer to previous responses and adjust their

77

requirements. Additionally, error messages and guidance on effective phrasing are included to

enhance user satisfaction.

6.6.3 End use application navigation and user experience

The end-user application, a separate yet integral component of this POC, is responsible for

interpreting the JSON-based intermediate code generated by the chatbot and rendering the

appropriate UI and backend logic. Users experience a complete application view based on their

specifications, from UI elements like forms and buttons to embedded backend logic triggered

by user interactions.

Key Functionalities

● Dynamic UI Generation: Based on the intermediate JSON structure, the end-user

application automatically generates pages with the appropriate UI components. This

may include forms, buttons, and other interface elements, all mapped to the

requirements defined by the user.

● Backend Logic Integration: Any action-based requirements are embedded within the

application, enabling interactive features like data submission, page navigation, and

form validation.

● Navigation and Structure: Users can easily move between pages within the generated

application, exploring the functionalities they defined through the chatbot interface.

This navigation allows for a hands-on evaluation of the application's structure and

behavior.

User Experience Considerations:

The end-user application provides a direct look at the user's intended functionalities, creating

a feedback-driven environment where users can test and refine their project in real-time. The

78

generated application’s intuitive layout promotes ease of navigation, ensuring that users can

evaluate and iterate their requirements effortlessly. The design prioritizes clarity and

responsiveness, ensuring that UI elements adjust to different screen sizes for optimal usability.

6.6.4 Screenshots for illustration

Screenshots are essential to provide a visual representation of the application’s core features,

illustrating the UI and enhancing comprehension. These images capture the application’s look

and feel, including:

● Project List and Creation Page: Showing the listing of projects, create/edit options,

and form validation features.

79

Figure 4: Screen shot – Create and List Project - PoC

● Chatbot Page: Demonstrating conversational interactions, responses from the LLM,

and example JSON outputs.

80

Figure 5: Screen shot – Chat bot - PoC

An example showing the chat session on the chat page.

Figure 6: Chat bot with responses - PoC

Request to LLM

{"user_input":"change the name to Demo app"}

Response from the LLM

{

 "output": {

 "action": "changeTitle",

 "data": "Demo app",

81

 "section_name": "appName",

 "message": "I change the name to Demo app.",

 "inputType": "",

 "additionalRequests": []

 }

}

System instructions to LLM

You are a tool that generates only valid json using the following structure.

{

 "action": "One of createPage, deletePage, updatePage, addNavMenu, addLinkInPage,

addSection, addInput, changeTitle, or unknown if the action is not clearly

classifiable.",

 "data": "fill it as per instructions below" ,

 "section_name": "One of navBar, title, appName, or any page names",

 "message": "A first-person explanation of the action in simple present tense.",

 "inputType": "A string representing the input type if action is addInput",

 "additionalRequests": "An array of json objects of this same structure. If there

are Mutiple requests possible from the input, make a json object in the same

structure and add to the field called additionalRequests"

}

"data" field instructions: if action is createPage, give the html content of the

page. if action is addNavMenu give the 'data' field as a json object with two keys.

label and pageName. pageName is the most appropriate name from the list of pages

given from input. for all others give a string representing the relevant data for

the action.

● End-User Application: Illustrating generated pages, navigation flows, and interactive

components derived from the intermediate JSON representation.

82

Figure 7: End-user application - PoC

Project data structure (Python).

class ActionEnum(str, Enum):

 unknown = 'unknown'

class EventEnum(str, Enum):

 on_load = 'on_load'

 on_click = 'on_click'

class StageEnum(str, Enum):

 NotInited = 'NotInited'

 Inited = 'Inited'

class JSONConvertible(AppJsonSerializable):

 def __init__(self, obj = None):

 if (obj is not None):

 for key, value in obj.items():

83

 if hasattr(self, key):

 setattr(self, key, value)

 else:

 raise Exception(f"Unknown field in project: {key}:{value}")

 def to_dict(self) -> typing.Dict[str, typing.Any]:

 result = {}

 class_vars = {key: getattr(self, key) for key in

self.__class__.__annotations__}

 for attr in class_vars: # Iterate over instance variables

 value = getattr(self, attr, None)

 result[attr] = app_serialize(value)

 return result

 @classmethod

 def from_dict(cls, data: typing.Dict[str, typing.Any]) -> 'Project':

 return cls(data)

 def to_json(self) -> str:

 return json.dumps(self.to_dict(), indent=4)

 @classmethod

 def from_json_file(cls, json_str: str) -> 'Project':

 data = json.load(json_str)

 return cls(data)

class LLMResponsePayload(JSONConvertible):

 action: ActionEnum = ActionEnum.unknown

 data: typing.Any = None

 inputType: str = None

 message: str = None

 section_name: str = None

84

 additionalRequests: typing.List['LLMResponsePayload'] = []

class ControllerAction(JSONConvertible):

 name: str = None

 code_hint: str = None

 params: typing.List[str] = []

class Controller(JSONConvertible):

 name: str = None

 actions: typing.Dict[str, ControllerAction] = None

 pass

class Event(JSONConvertible):

 controller_name: str = None

 action: str = None

 params: typing.Dict[str, typing.Any] = None

class Element(JSONConvertible):

 type: str = None

 code_hint: str = None

 properties: typing.Dict[str, str] = None

 events: typing.Dict[EventEnum, Event] = None

 children: typing.List['Element'] = []

class Page(JSONConvertible):

 name: str = None

 master_page: 'Page' = None

 elements: typing.List[Element] = []

 events: typing.Dict[EventEnum, Event] = None

class NavBarItem(JSONConvertible):

85

 label: str = None

 disply_only_after_login: bool = False

 page_name: str = None

 submenu: typing.List['NavBarItem'] = []

class Project(JSONConvertible):

 id: str = None

 runtime_version: str = "1.0"

 stage: StageEnum = StageEnum.NotInited

 name: str = None

 title: str = None

 description: str = None

 created_date: str = None

 updated_date: str = None

 framework: str = None

 navBar: typing.List[NavBarItem] = []

 pages: typing.List[Page] = []

Project JSON file example.

{

 "id": "my-app-2024-09-15-113844",

 "runtime_version": "1.0",

 "stage": "Inited",

 "name": "Demo app",

 "title": "Demo app",

 "description": "My App",

 "created_date": "2024-09-15 11:38:44",

 "updated_date": "2024-11-05 12:06:55",

 "framework": "simple",

 "navBar": [

 {

 "label": "Home",

86

 "disply_only_after_login": false,

 "page_name": "home",

 "submenu": []

 },

 {

 "label": "Plans",

 "disply_only_after_login": false,

 "page_name": "plans",

 "submenu": []

 }

],

 "pages": [

 {

 "name": "home",

 "master_page": null,

 "elements": [

 {

 "type": null,

 "code_hint": "<h1>Welcome to My App</h1>\n<p>This is the home

page of the My App application.</p>",

 "properties": null,

 "events": null,

 "children": []

 }

],

 "events": null

 },

 {

 "name": "plans",

 "master_page": null,

 "elements": [

 {

87

 "type": null,

 "code_hint": "<h1>Plans</h1>\n\n Basic\n

Free\n",

 "properties": null,

 "events": null,

 "children": []

 },

 {

 "type": "link",

 "code_hint": "Go to Home Page",

 "properties": null,

 "events": null,

 "children": []

 }

],

 "events": null

 }

]

}

Each screenshot highlights a specific aspect of the application’s design and functionality,

offering readers a complete understanding of the user experience. By following these visual

examples, users can better appreciate the application's flow and intuitive design elements.

6.7 Security

Security is a crucial aspect of any application, protecting user data, maintaining system

integrity, and ensuring privacy in both development and production environments. Although

this proof-of-concept (PoC) application currently lacks user authentication and is deployed

locally without complex security measures, understanding and planning for comprehensive

security is essential for eventual scaling and deployment to a live environment. Key areas to

88

consider include user authentication, secure communication, and data validation and

sanitization.

User Authentication

For a full-fledged application, both the generator app (used by developers and administrators)

and the generated app (used by end-users) should implement user authentication to restrict

access and secure user data. Authentication mechanisms can range from simple username-

password setups to more advanced solutions such as multi-factor authentication (MFA) and

single sign-on (SSO).

● User Authentication for Generator App

The generator app manages critical functions, such as processing user requirements and

generating code for applications. Ensuring that only authorized users have access to the

generator app is essential to maintain control over the application’s structure, integrity,

and any private user information.

○ Authentication Methods:

■ Basic Authentication: For smaller setups, username and password

combinations can provide quick access control.

■ OAuth2 or OpenID Connect (OIDC): For scalable applications,

OAuth2 or OIDC offers secure, token-based authentication, allowing for

SSO integration and improved security practices.

■ Role-Based Access Control (RBAC): Using RBAC allows

administrators to define roles (e.g., Admin, Developer, Viewer) with

specific permissions. This ensures that only authorized users can

perform critical actions like project creation, code generation, and

configuration changes.

89

● User Authentication for Generated App

The generated app might be used by end-users who interact with the front end of a web

application. Securing this access ensures that user-specific data remains private and that

sensitive operations (e.g., placing orders, modifying settings) are performed only by

authenticated users.

○ Authentication Techniques:

■ Session-Based Authentication: This method involves assigning a

session to users upon login, stored in a secure cookie, making it easy to

manage user sessions.

■ JWT Token-Based Authentication: JSON Web Tokens (JWT) are

popular in stateless applications, providing an encrypted token that

clients include with each request, improving scalability and reducing

server-side session management requirements.

■ Multi-Factor Authentication (MFA): MFA can be integrated to add

an extra layer of security, reducing the risk of unauthorized access due

to compromised passwords.

Secure Communication

Secure communication between the client and server, especially when handling sensitive data,

is a fundamental requirement. Encryption mechanisms, secure transmission protocols, and the

protection of communication channels are critical for maintaining the integrity and

confidentiality of data.

● HTTPS for Secure Communication

○ SSL/TLS Encryption: All HTTP traffic should be encrypted using SSL/TLS

to establish HTTPS connections. This encryption protects data from

90

interception and eavesdropping during transmission between the client and

server. HTTPS is especially important for any application involving user data,

as it prevents unauthorized parties from viewing or altering data in transit.

○ Certificate Management: Certificates are essential for enabling HTTPS and

must be renewed periodically to ensure ongoing protection. Automated tools

like Let’s Encrypt provide a free, renewable SSL certificate to maintain secure

connections in a development environment or production deployment.

● Token-Based Authentication

Token-based authentication is commonly used to secure communication between the

front end and the back end. This approach involves generating tokens (e.g., JWTs) upon

user login and including them in the headers of all subsequent API requests, ensuring

that only authenticated requests can interact with secure endpoints.

○ JWT Implementation: JWTs encode user data, which can be verified by the

server without maintaining session states. Additionally, JWTs include an

expiration time, limiting token validity to prevent token reuse and mitigate

security risks.

○ Secure Token Storage: For browser applications, tokens should be stored

securely in HTTP-only cookies, limiting exposure to cross-site scripting (XSS)

attacks. Avoid storing tokens in local storage, as this may increase susceptibility

to certain attack vectors.

● Other Security Protocols

○ Cross-Origin Resource Sharing (CORS): Enabling CORS policies ensures

that only requests from allowed origins can interact with the back end,

preventing unauthorized domains from accessing secure resources.

91

○ Content Security Policy (CSP): Setting up a CSP reduces the risk of certain

attacks, such as XSS, by specifying which sources are permitted for loading

content (e.g., scripts, images, styles).

Data Validation and Sanitization

Data validation and sanitization are critical for maintaining a secure application environment,

as improper handling of input data can result in vulnerabilities such as SQL injection, XSS

attacks, and data corruption. Implementing validation and sanitization in both the generator

app and the generated app ensures that input data is consistently checked, preventing malicious

inputs and maintaining data integrity.

● Data Validation for Generator App

The generator app interprets user-provided requirements to generate code, making it

susceptible to manipulation if inputs are not properly validated.

○ Validation Techniques:

■ Schema-Based Validation: Using JSON schema validators (e.g.,

Marshmallow in Python) enforces data structure and format consistency,

ensuring that each input follows the expected schema before processing.

■ Input Type Checking: Each input should be checked to confirm that it

matches the expected type (e.g., integers, strings). For instance,

parameters intended for code generation must not contain executable

code that could interfere with the application.

○ Sanitization:

■ Encoding Special Characters: Encoding characters such as <, >, and

& prevents inputs from executing code within the application, reducing

the risk of XSS attacks.

92

■ Removing Unsafe Characters: Eliminate characters such as SQL

operators (', ", --) that may lead to SQL injection attacks if the generator

app interacts with a database in the future.

● Data Validation and Sanitization for Generated App

The generated app, which renders code and manages end-user interactions, also requires

robust validation and sanitization to prevent malicious inputs from affecting the user

experience or accessing unauthorized resources.

○ Front-End Validation: Basic validation on the front end, such as checking that

fields are completed and inputs are formatted correctly, helps users submit valid

data. However, front-end validation should always be backed by more secure

server-side validation.

○ Server-Side Validation: Validating data server-side is essential as it ensures

that input received through APIs or forms is structured correctly before

proceeding with processing.

○ Sanitization Techniques:

■ Output Encoding: Encode outputs from untrusted data, preventing

unintentional rendering of HTML or JavaScript code, thereby reducing

the risk of XSS.

■ Regex Filtering: Use regular expressions to filter and validate input

content, blocking potentially harmful patterns from being accepted by

the application.

By implementing robust security measures, including user authentication, secure

communication, and rigorous data validation and sanitization practices, this PoC application

can effectively prevent unauthorized access, mitigate data vulnerabilities, and protect sensitive

information. Although the current PoC is primarily local and does not include some of these

93

security features, this strategy provides a foundation for future deployment in a live

environment.

6.8 Deployment

Deployment is a crucial phase in software development, enabling applications to transition

from the development environment to live or staging environments for user interaction.

Although this proof-of-concept (PoC) application is intended for local deployment, the

architecture has been designed with flexibility, making it possible to deploy to cloud services

such as AWS or other hosting platforms. This section outlines the hosting platform

considerations, deployment steps for the front end and back end, and an overview of potential

CI/CD strategies for future scalability.

Hosting Platform

For this PoC, the application is deployed and tested in a local environment. However,

scalability and flexibility requirements were taken into consideration, meaning that deployment

to a cloud platform, such as AWS or Google Cloud Platform, is feasible.

● Local Deployment:

○ Purpose: Local deployment simplifies the development process, making it

more accessible and cost-effective for early-stage testing.

○ Environment: Development tools and environments such as Docker, Virtual

Environments (for Python), and Node Package Manager (NPM) make it easy to

replicate the entire application locally.

○ Configuration: Basic configurations are set up in a .env file or configuration

script that stores API keys, ports, and other settings.

● Cloud Platforms (AWS/GCP) – Future Considerations:

94

○ AWS EC2 or S3: For a production-ready deployment, AWS EC2 instances can

host the back end, while S3 buckets can handle static front-end assets.

Additionally, AWS Elastic Beanstalk or ECS could simplify deployment

management.

○ Google Cloud App Engine or Firebase: Google Cloud’s App Engine is

another option for hosting scalable applications, especially for managing user

interactions or dynamically rendering generated code.

○ Benefits: Moving to the cloud could facilitate scalability, high availability, and

redundancy, making the application accessible to multiple users and supporting

diverse operational requirements.

Steps to Deploy the Application

This section covers deployment for both the front-end and back-end components in a local

environment.

Back-End Deployment Steps

• Environment Setup:

○ Install Python and the necessary dependencies (preferably through a virtual

environment).

○ Clone the backend repository to your local environment.

○ Use pip to install required packages from the requirements.txt file:

pip install -r requirements.txt

○ Set up environment variables in a .env file, including API keys and port

information.

• Run the Backend Server:

95

○ Execute the main application script or entry point. For Flask, this would generally

be:

flask run

○ For local testing, set Flask to run in development mode, allowing hot-reloading for

efficient testing.

• API Endpoint Testing:

○ Use Postman or CURL to test each API endpoint individually, confirming that the

application handles requests, returns responses, and stores generated JSON data

correctly.

Front-End Deployment Steps

• Environment Setup:

○ Ensure Node.js and NPM (or Yarn) are installed.

Clone the front-end repository and install dependencies:

npm install

○ Configure environment variables, especially for backend API URLs and

frontend-specific settings, in a .env file.

• Build the Application:

Once the application is ready for deployment, build the optimized front-end

application by running:

npm run build

This command compiles and bundles the code into a static folder (e.g., /build) ready

for deployment.

96

• Serve Front-End Locally:

Use serve or any HTTP server (e.g., nginx or Apache) to host the front-end

application locally for testing:

npm start

Deploying to Cloud Platforms

Although the PoC is locally deployed, future deployment to cloud platforms would involve:

• Setting up virtual machines or app services (e.g., EC2 on AWS or App Engine on GCP).

• Automating deployments using services like AWS CodeDeploy or GCP’s Cloud Build,

enabling automatic deployment of new versions.

Continuous Integration and Continuous Deployment (CI/CD)

CI/CD pipelines streamline the development workflow by automatically testing and deploying

updates whenever code changes occur. Implementing CI/CD can help ensure stability and

reduce the time between development and production. While not essential for a PoC, setting

up a basic CI/CD pipeline provides the groundwork for future scalability and maintains

application reliability.

Continuous Integration (CI)

● CI Pipeline Structure:

○ A CI pipeline enables automatic testing whenever developers push updates.

This ensures that each change is verified for functionality, helping detect and

prevent potential issues before merging.

○ Tools: For this PoC, GitHub Actions or GitLab CI/CD could serve as CI tools,

automating unit and integration tests on each pull request or commit to the main

branch.

97

● Testing Steps in CI:

○ Back-end tests run using Pytest, while front-end tests use Jest or Mocha/Chai.

○ The CI pipeline also validates environment settings, verifies that the project

dependencies are installed correctly, and checks code quality through linting

(e.g., ESLint for JavaScript and Pylint for Python).

Continuous Deployment (CD)

● Purpose: CD automates the deployment process, allowing verified changes to reach

the live or staging environments quickly. For this PoC, the CD pipeline could update

the local development server upon successful CI tests.

● CD Pipeline Components:

○ Build Artifacts: Front-end and back-end applications would be bundled and

packaged for deployment. The build artifacts (e.g., Docker images or

compressed files) are stored in a repository for deployment.

○ Deployment: Automated scripts deploy the latest build to the local

environment. Tools like Docker Compose or PM2 can manage service restarts.

● Cloud Deployment and Rollbacks: Once cloud hosting is introduced, the CD pipeline

could automatically push changes to cloud services with version control, enabling rapid

rollbacks in case of issues.

4. CI/CD Workflow Example

Here’s a simplified CI/CD workflow using GitHub Actions, highlighting the main

steps:

● Step 1: Push changes to a branch triggers the CI pipeline, which tests code

changes.

98

● Step 2: If tests pass, the code is merged into the main branch, triggering the CD

pipeline.

● Step 3: The CD pipeline builds, deploys, and verifies the application on the

local or cloud server.

● Step 4: Status checks and alerts notify the team if issues occur, allowing quick

rollbacks or fixes.

Summary

Deployment considerations for this PoC include local hosting with a pathway to cloud

deployment for scalability. With the flexibility of CI/CD automation, developers can efficiently

deploy and update the application, ensuring quality and maintaining rapid development cycles.

This foundation supports ongoing experimentation and improvement, paving the way for a

robust deployment architecture suitable for larger, production-ready versions of the

application.

6.9 Challenges and Solutions

Technical and Non-Technical Challenges Faced

In the development of this proof of concept, a variety of challenges arose, spanning

both technical and non-technical domains. Addressing these challenges was essential

to ensure that the application not only functioned as intended but also offered a user-

friendly experience. As an MVP focused on requirement gathering and automated

application generation, the project involved navigating complex technical demands

while balancing practical considerations for end-users who may not have extensive

technical expertise.

99

Technical challenges primarily revolved around translating natural language inputs into

functional code, managing real-time interactions between the front end and back end,

and efficiently handling data without a traditional database. Non-technical challenges

involved clarifying user requirements, maintaining simplicity, and adapting to evolving

needs while staying within the scope of a minimum viable product.

Outlined below are the primary technical and non-technical challenges encountered

during development and the solutions implemented to address them.

● Technical Challenges

○ Requirement Extraction from Natural Language Input: One of the primary

technical hurdles involved accurately extracting functional requirements from

natural language inputs. Since natural language is inherently ambiguous and

prone to varied interpretations, ensuring that the language model interpreted

user intent correctly was a significant challenge.

○ Intermediate Code Structure: Designing a flexible yet robust intermediate

code structure posed another challenge. The intermediate structure needed to be

versatile enough to encapsulate both UI elements and logic without adding

unnecessary complexity.

○ Front-End and Back-End Synchronization: Maintaining synchronization

between the front-end and back-end processes was crucial but challenging.

Every update in the front end needed to trigger or request relevant updates from

the back end without delay, ensuring that the chatbot's responses were

accurately rendered in the application.

○ Real-Time Processing and Feedback: To achieve an interactive user

experience, real-time response generation and feedback handling were essential.

100

Processing user requirements, converting them into intermediate

representations, and rendering them on the interface in real time required

optimal performance and efficient data handling between components.

○ Data Storage Constraints: Since this PoC aimed to avoid database complexity,

all intermediate code had to be stored and managed in JSON files. Without a

structured database, managing dependencies and ensuring the integrity of saved

data required careful handling.

● Non-Technical Challenges

○ User Requirement Ambiguity: Non-technical users often provide vague or

incomplete requirements, which can lead to misinterpretation. Defining clear

guidelines for users to phrase their requirements effectively was essential for

reducing ambiguity.

○ Balancing MVP Simplicity with Functionality: Striking a balance between a

minimum viable product (MVP) approach and the need to demonstrate

comprehensive functionality was a constant challenge. It was necessary to

maintain simplicity while still highlighting the system's unique capabilities.

○ Adapting to Iterative Development Needs: The iterative nature of the chatbot-

driven design process required frequent user feedback loops, which took time

and sometimes led to changing requirements, adding complexity to the

development cycle.

How Challenges Were Overcome

1. Improving Requirement Extraction

To enhance the accuracy of requirement extraction, an iterative feedback system was

introduced, allowing the LLM to ask clarifying questions when input was ambiguous.

101

The bot’s ability to detect incomplete or unclear requirements helped refine inputs and

reduce misunderstandings. Additionally, incorporating NLP techniques for intent

recognition helped interpret user commands with higher precision, minimizing the risk

of error during translation to intermediate code.

2. Refining the Intermediate Code Structure

The intermediate code format was refined by creating a class-based JSON structure that

could handle diverse elements, events, and actions. This structure used Python classes

to enforce a consistent data format, making it easier to process and reducing potential

errors when parsing JSON files. By establishing enums and constraints within these

classes, the team ensured that the data remained manageable and that each JSON file

followed a predictable format.

3. Optimizing Front-End and Back-End Communication

Front-end and back-end communication was streamlined through a well-defined API

layer that supported real-time data exchange. Using lightweight, asynchronous requests

minimized lag, and efficient handling of request-response cycles ensured the chatbot

and application were synchronized. The Flask framework’s simplicity allowed for rapid

API development, enabling smooth interactions between Angular components and

Flask endpoints.

4. Real-Time Feedback Handling

To manage real-time responses, the back-end processing was optimized to reduce

latency, and an event-driven architecture was adopted to handle multiple user inputs

effectively. By using efficient data management techniques and minimizing redundant

operations, the system achieved the required speed for interactive user experience.

5. Effective JSON Data Management Without a Database

102

JSON files were organized and modularized, allowing each project’s intermediate code

to be stored separately with unique identifiers. This minimized conflicts and facilitated

rapid loading and saving of data. Stringent error handling and validation routines were

implemented to ensure JSON data integrity, and a custom Python utility was developed

to manage JSON loading, saving, and updating operations safely.

6. User Requirement Clarification and Training

Clear guidelines and examples were created to help users understand how to phrase

requirements effectively. By integrating these into the chatbot interface, users could

receive prompts or suggestions, minimizing the chances of vague or incomplete inputs.

Additionally, a short onboarding tutorial was provided to introduce users to the basic

structure of the project.

7. Iterative Development Adjustments

Agile methodologies were adopted to incorporate iterative development and adapt

quickly to changes. Regular feedback loops with users allowed for quick adjustments,

and each iteration focused on delivering core functionalities while accommodating new

requirements.

Lessons Learned

1. Importance of Clear User Requirements: Accurately capturing user intent is critical

for automation projects. Developing an interface that guides users to enter precise,

structured requirements saves time and reduces development complexity.

2. Robust Intermediate Code Structure: A flexible yet standardized intermediate code

format is essential for converting user requirements into functional applications. This

structure not only facilitated UI rendering but also provided a foundation for modular

103

backend integration, showcasing how a well-planned data model can be pivotal in

similar systems.

3. Scalable Front-End and Back-End Design: Implementing an API layer that

effectively bridges the front end and back end proved invaluable for achieving real-

time responses. As requirements evolve, this scalable design can easily incorporate

additional functionalities.

4. Iterative Development and Continuous Feedback: Iterative cycles proved beneficial

for aligning the generated application with user expectations. Continuous user feedback

enhanced the system’s adaptability and helped refine functionalities in each

development cycle.

5. Feasibility of an MVP Approach: A focused, MVP approach provided a solid

foundation without overextending on resources or introducing unnecessary

complexities. By targeting core features, the PoC effectively demonstrated its value

while leaving room for future expansion.

6. Opportunities in Low-Code/No-Code Development: This project highlighted the

potential of integrating NLP and code generation in the low-code/no-code domain. The

PoC experience underscores how such a system could make app development more

accessible to non-developers, democratizing technology and fostering creativity among

end users.

This experience provides a roadmap for future development, demonstrating how a user-

driven, chatbot-powered interface can transform requirement gathering, UI

development, and backend integration in an iterative, feedback-oriented software

development process.

6.10 Future Enhancements

104

Features to be Added in Future Releases

The current proof of concept lays the groundwork for translating natural

language requirements into functional application code. As this system progresses,

there are numerous opportunities to enhance its capabilities. This section outlines key

features planned for future releases to improve code management, the robustness of

logic and event generation, and the sophistication of both UI and backend component

generation.

● Page-Wise Intermediate Code Management for Efficiency

To streamline the process of code generation and make the system more scalable,

introducing page-wise intermediate code storage is a priority. Instead of storing the

entire intermediate representation in a single JSON file, each page of the generated

application can have its own intermediate code file. This modular approach will offer

several benefits:

○ Enhanced Readability: By segmenting code into page-specific files,

developers can quickly locate and understand the specific requirements and

logic for each page.

○ Easier Updates: If a user modifies requirements for a specific page, the system

can update only the corresponding JSON file rather than reprocessing the entire

structure. This will reduce update times and increase efficiency.

○ Improved Collaboration: With a more granular file structure, multiple

developers could work on different pages simultaneously, further speeding up

development.

105

○ Version Control: Page-wise segmentation will enable better tracking of

changes and facilitate version control, as individual pages can be managed

separately within the code repository.

● Leveraging LLMs to Generate Advanced Events and Logic

The current setup uses an LLM to generate intermediate code based on basic user

requirements. Future iterations aim to extend this to more complex and dynamic aspects

of application behavior by training the LLM on advanced business logic and event

handling. Key advancements will include:

○ Sophisticated Event Management: Expanding the system to support advanced

events, such as form validations, asynchronous calls, and conditional

interactions. By capturing complex requirements and converting them into

detailed event logic, the LLM can produce richer application functionality.

○ Automated Business Logic Creation: Beyond the basics, the LLM will be

trained to infer advanced business logic requirements from user input, applying

this to backend event handling and calculations. For example, generating code

to handle complex calculations, data processing, and role-based user

interactions.

○ Dynamic Code Injection: As the LLM learns to handle dynamic requirements,

future enhancements will enable it to generate code that adapts to specific

runtime conditions, allowing the application to respond to changing contexts.

● Advanced UI and Backend Component Generation

Expanding beyond basic UI component generation, future releases will focus on

enhancing both frontend and backend capabilities, introducing more customizable and

visually appealing components:

106

○ Advanced UI Components: With LLM assistance, the system will generate

complex UI elements such as interactive dashboards, multi-level navigation

bars, and data visualization elements (e.g., charts, tables). This will elevate the

sophistication of applications created through the PoC.

○ Backend API Generation: The system will be able to generate API endpoints

automatically, based on inferred requirements. This will streamline backend

development by creating RESTful or GraphQL endpoints that match the UI’s

data needs.

○ Integrated Authentication and Role Management: As security becomes a

focus, the system will generate backend code for user authentication and

authorization. Role-based access controls will be integrated to protect sensitive

data and restrict user permissions as needed.

Improvements in Performance, UI/UX, and Security

As the PoC grows in complexity, ensuring it performs optimally and remains secure

will be essential. The following enhancements focus on these areas to increase overall

system reliability and usability.

● Performance Optimization

To handle the growing data and computational load, several performance optimizations

are planned:

○ Caching LLM Responses: By implementing caching for common requests, the

system can reduce redundant API calls to the LLM, significantly speeding up

response times, especially for frequently used requirements.

○ Async Data Processing: Introducing asynchronous processing for API calls

and code generation will help keep the UI responsive. This approach will ensure

107

that the system remains efficient and that user inputs do not lead to delays or

bottlenecks in processing.

○ Optimized JSON Storage and Retrieval: By structuring JSON files into

separate components for each page, the system will improve data retrieval times

and reduce memory usage, leading to faster rendering and processing of each

module.

● UI/UX Enhancements

As the system’s feature set expands, ensuring that the user interface is accessible and

intuitive will be essential for both developers and end-users. Planned improvements

include:

○ Enhanced Chatbot Interface: The chatbot will be refined to provide better

prompts, feedback, and error handling to make interactions more seamless and

user-friendly. Tooltips, suggestions, and error indicators will guide users in

providing the required details for code generation.

○ UI Component Customization: Future releases will allow users to customize

UI components directly, providing options for colors, fonts, layouts, and more.

This will increase the end-user application's versatility and adaptability to

different branding needs.

○ Responsive Design: Ensuring that generated applications are fully responsive

will be crucial for meeting modern web and mobile design standards. With this

in mind, the generated UI will support flexible layouts that adapt seamlessly

across devices.

● Security Improvements

As the PoC progresses into a full-featured application, adding robust security measures

is critical. Key security enhancements will include:

108

○ Secure API Endpoints: By introducing token-based authentication for API

access, the system will restrict access to the code generation and project

management APIs, preventing unauthorized use.

○ Data Privacy and Storage Encryption: For sensitive data stored in JSON files,

implementing encryption protocols will ensure that project files remain secure

even if accessed outside the application environment.

○ User Authentication and Role Management: Although authentication was

omitted in this MVP, future versions will introduce user management features,

including login and role-based access control. This will allow administrators to

assign permissions, ensuring that sensitive functionality is accessible only to

authorized users.

By implementing these enhancements, the system will become more capable, secure,

and user-friendly, providing an increasingly robust and scalable solution for automated

application generation. These additions not only align with the project’s long-term

goals but also pave the way for the future of low-code and no-code application

development platforms, positioning the system as an innovative tool within the software

development landscape.

6.11 Conclusion

Summary of the Project

○ This proof of concept (PoC) demonstrates a system designed to translate user-defined

requirements into functional applications by leveraging natural language processing

(NLP) and intermediate code generation. The project integrates a frontend developed

in Angular with a Flask backend, which facilitates communication with a language

model (LLM) like ChatGPT. By enabling users to enter requirements through a chatbot

109

interface and automating the conversion of these requirements into a structured,

intermediate code representation, the project highlights a streamlined and iterative

approach to application generation. This PoC serves as a foundational framework,

demonstrating how conversational AI and code generation can reduce the complexities

associated with translating user requirements into software functionality.

Key Takeaways

○ Front-End and Back-End Synergy: The project underscores the importance of designing

a cohesive system architecture where the front end and back end work together

seamlessly. Angular’s component-based structure complements the Flask API,

facilitating smooth data handling and response rendering.

○ Iterative Requirement Translation: Using a chatbot to capture user requirements

introduces a flexible, iterative process. This allows users to refine inputs iteratively,

ensuring accurate representation in the generated application.

○ Intermediate Code Generation: By using intermediate code structures (in JSON

format), the PoC introduces a modular way to translate requirements into backend and

frontend logic. This JSON representation offers a flexible structure for further

refinement and potential integration with other frameworks.

○ Proof of Concept for Agile Development: The PoC aligns well with Agile

methodologies, emphasizing iterative user feedback, adaptability, and continuous

improvement—key factors for evolving user-driven application design.

Reflections on the Project’s Impact

110

○ This project demonstrates significant potential for future innovations in automated

application development. The capability to translate conversational input into

structured code not only improves accessibility but also reduces dependency on

technical expertise for initial application design. By refining this system, organizations

can empower end-users to participate more actively in the development process,

fostering a greater sense of ownership and satisfaction.

○ As the PoC matures, the impact on software development could be transformative,

opening avenues for accessible, low-code platforms where both developers and non-

developers can contribute to the application lifecycle. This project marks a step forward

in achieving more user-centered, responsive, and efficient application development

methodologies.

111

CHAPTER VII: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS

We can infer from the literature analysis that various research has already been conducted on

a per-project basis for translating natural language requirements into code. The best illustration

of that is the Open AI codex. Nevertheless, there hasn't been much research done on putting

together an entire program, from the user interface to the backend server. By using some of the

current technologies and some novel approaches proposed in this research, we have shown that

it is possible to translate the stated user requirements into a working end-to-end program. The

system can be improved to make it more usable and can be implemented in production with

little to no changes thanks to ongoing user feedback. Pre-generated code for common

components is the essential component that makes this work. We also proposed a way to

properly assemble logical components into a system. This thesis explored the development of

a system that automates the translation of user requirements into fully functional applications,

leveraging advanced NLP models, machine learning algorithms, and chatbots. The study

demonstrated the effectiveness of these technologies in extracting and systematizing user

requirements, converting them into UI code, and integrating additional logical and business

requirements. By adopting an iterative development process grounded in Agile principles and

supported by continuous user feedback, the research ensured that the generated code was

accurate, complete, and user-approved. The findings highlight significant improvements in the

efficiency and quality of software development, paving the way for more responsive and

accurate development processes.

7.1 Implications

The implications of this research are profound for both the software development industry and

the academic community. The successful integration of advanced NLP and machine learning

112

techniques with interactive chatbot systems demonstrates a viable path toward more automated

and efficient software development processes.

For Industry:

• Enhanced Development Efficiency: The automation of requirement extraction and UI

code generation can significantly reduce development time and costs, allowing for

faster delivery of software products.

• Improved Accuracy and Quality: The continuous feedback loop and iterative

refinement ensure that the final product closely aligns with user expectations, leading

to higher user satisfaction and reduced post-release corrections.

• Scalability: The system can be scaled to handle large projects with complex

requirements, making it suitable for both small startups and large enterprises.

• Resource Optimization: By automating repetitive and time-consuming tasks,

developers can focus on more complex and creative aspects of software development,

optimizing resource utilization.

For Academia:

• New Research Avenues: The study opens up several new research avenues, including

the integration of domain-specific ontologies with NLP models, the development of

more sophisticated dialogue management systems, and the enhancement of automated

testing frameworks.

• Interdisciplinary Collaboration: The research highlights the potential for

interdisciplinary collaboration between computer science, artificial intelligence, and

human-computer interaction, fostering innovation and advancements in software

development methodologies.

113

• Educational Impact: The findings can be incorporated into software engineering

curricula, providing students with cutting-edge knowledge and skills that are highly

relevant to the current industry landscape.

7.2 Recommendations for Future Research

While this research has made significant strides in automating the software development

process, several areas warrant further investigation to enhance the system's capabilities and

applicability.

• Integration with Domain-Specific Ontologies:

a. Future research could explore the integration of domain-specific ontologies and

knowledge bases with NLP models to improve the accuracy and relevance of

requirement extraction.

b. This approach could enhance the system's ability to handle specialized

terminology and industry-specific requirements.

• Advanced Dialogue Management Systems:

a. Developing more sophisticated dialogue management systems for chatbots can

improve their ability to handle complex requirements and user interactions.

b. Future work could focus on enhancing the conversational abilities of chatbots,

making them more intuitive and user-friendly.

• AI-Driven Design Assistants:

a. Exploring the use of AI-driven design assistants to refine and personalize UI

components based on user preferences and behavior analytics can further

enhance the system's effectiveness.

b. These assistants could provide real-time design recommendations and

automatically adjust UI elements based on user feedback.

114

• Automated Usability Testing Tools:

a. Investigating automated usability testing tools that integrate seamlessly with the

development environment can provide real-time insights and recommendations,

further improving the alignment of UI code with user requirements.

b. These tools could utilize machine learning algorithms to predict and identify

usability issues before they arise.

• Predictive Analytics for Feedback Systems:

a. Enhancing continuous feedback systems with predictive analytics can help

anticipate user needs and potential issues, allowing for proactive adjustments

and improvements.

b. Future research could focus on developing predictive models that analyze user

behavior and feedback patterns to optimize the development process.

7.3 Conclusion

This study successfully demonstrated the feasibility of automating software development from

user requirements to functioning code. By integrating natural language processing, machine

learning, and interactive feedback mechanisms, the system produced user interfaces and

backend logic with reduced manual effort.

The findings confirm the effectiveness of AI-driven development tools while identifying

limitations in complex business logic handling and domain specificity. This proof of concept

expands the potential of tools like Codex and Rasa by embedding them in a feedback-driven,

iterative design cycle.

For future research, opportunities exist to integrate domain-specific ontologies, improve

chatbot dialogue management, and extend the system’s capacity to handle advanced edge

115

cases. Overall, the research provides a valuable foundation for transforming traditional

software development into a more intelligent, user-centered process.

116

APPENDIX A: INFORMED CONSENT

In the context of this research, informed consent is a crucial aspect to ensure ethical

considerations are adhered to throughout the study. This section outlines the steps taken to

inform participants, safeguard their rights, and maintain transparency in the collection and use

of data.

Purpose of Consent

The research focuses on automating the conversion of user requirements into fully

functional applications using AI and NLP techniques. While the primary data source for this

proof of concept involves interactions between the chatbot and the end-user, the process

incorporates participant feedback to refine generated outputs. Participants are made aware of

their role, the nature of their contributions, and how their data will be utilized.

Consent Process

1. Clear Communication: Participants are provided with a detailed explanation of the

research objectives, methodology, and the specific tasks they are expected to perform.

2. Voluntary Participation: Participation is entirely voluntary, with no pressure or

obligation to contribute.

3. Privacy Assurance: Data collected, such as feedback on chatbot interactions, is

anonymized and stored securely. The study does not collect sensitive personal

information.

4. Right to Withdraw: Participants are informed of their right to withdraw at any stage

of the research without any repercussions.

Data Usage and Protection

All data generated in the study, including intermediate code and user feedback, is treated with

confidentiality. The storage is in compliance with ethical standards, ensuring that data is only

117

used for the stated research purposes. Results and findings are anonymized to protect

participant identities and are shared responsibly in the final thesis or publications.

Acknowledgment of Consent

Participants are required to acknowledge their understanding and agreement by

providing consent digitally or in writing before engaging with the system. A consent form is

designed with straightforward language, summarizing the key aspects of participation and data

usage.

By ensuring transparency and ethical rigor through informed consent, this research

upholds its commitment to fostering trust and maintaining high ethical standards in AI-driven

development processes.

118

REFERENCES

Arellano, E., Carney, J., & Austin, M. (2015). Natural language processing of textual

requirements. ICONS 2015: The Tenth International Conference on Systems.

https://user.eng.umd.edu/~austin/reports.d/ICONS2015-AA-EC-MA.pdf

Beltramelli, T. (2018). pix2code: Generating code from a graphical user interface

screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (p. 3). ACM. https://arxiv.org/abs/1705.07962

Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open source language

understanding and dialogue management. arXiv preprint arXiv:1712.05181.

https://arxiv.org/pdf/1712.05181.pdf

Business Insider. (2025a). Amazon is working on a secret project called 'Kiro,' a new tool

that uses AI agents to streamline software coding. https://www.businessinsider.com/amazon-

kiro-project-ai-agents-software-coding-2025-5

Business Insider. (2025b). Goldman is assembling a growing arsenal of AI tools. Here's

everything we know about 5. https://www.businessinsider.com/goldman-sachs-ai-uses-5-

tools-employees-2025-5

Business Insider. (2025c). Mark Zuckerberg says AI could soon do the work of some

engineers at Meta. https://www.businessinsider.com/mark-zuckerberg-ai-startup-company-

with-small-team-2025-5

https://user.eng.umd.edu/~austin/reports.d/ICONS2015-AA-EC-MA.pdf
https://arxiv.org/abs/1705.07962
https://arxiv.org/pdf/1712.05181.pdf
https://www.businessinsider.com/amazon-kiro-project-ai-agents-software-coding-2025-5
https://www.businessinsider.com/amazon-kiro-project-ai-agents-software-coding-2025-5
https://www.businessinsider.com/goldman-sachs-ai-uses-5-tools-employees-2025-5
https://www.businessinsider.com/goldman-sachs-ai-uses-5-tools-employees-2025-5
https://www.businessinsider.com/mark-zuckerberg-ai-startup-company-with-small-team-2025-5
https://www.businessinsider.com/mark-zuckerberg-ai-startup-company-with-small-team-2025-5

119

Business Insider. (2025d). The age of incredibly powerful 'manager nerds' is upon us,

Anthropic cofounder says. https://www.businessinsider.com/anthropic-cofounder-jack-clark-

ai-manager-nerds-2025-5

Chen, M., Tworek, J., Jun, H., Yuan, Q., et al. (2021). Evaluating large language models

trained on code. https://arxiv.org/abs/2107.03374

Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A., Marron, M., R, S., & Roy, S.

(2016). Program synthesis using natural language. In Proceedings of the 38th International

Conference on Software Engineering (ICSE '16) (pp. 345–356). ACM.

https://doi.org/10.1145/2884781.2884786

Doe, J., Smith, J., Brown, A., & Johnson, M. (2022). Automating requirement extraction: A

comparative study of transformer-based and neural network approaches. IEEE Transactions

on Software Engineering, 48(5), 1234–1245.

https://www.sciencedirect.com/science/article/abs/pii/S0045790622003123

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., & Zhang, J. M.

(2023). Large language models for software engineering: Survey and open problems. arXiv

preprint arXiv:2310.03533. https://arxiv.org/abs/2310.03533

Financial Times. (2025). AI agents: From co-pilot to autopilot.

https://www.ft.com/content/3e862e23-6e2c-4670-a68c-e204379fe01f

Friesen, E., Baumer, F. S., & Geierhos, M. (2018). Córdula: Software requirements extraction

utilizing chatbot as communication interface. In REFSQ Workshops.

https://www.semanticscholar.org/paper/CORDULA%3A-Software-Requirements-Extraction-

Utilizing-Friesen-B%C3%A4umer/561b95f93ff868423fe664cbb0bef87d8ccb1b3f

https://www.businessinsider.com/anthropic-cofounder-jack-clark-ai-manager-nerds-2025-5
https://www.businessinsider.com/anthropic-cofounder-jack-clark-ai-manager-nerds-2025-5
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2884781.2884786
https://www.sciencedirect.com/science/article/abs/pii/S0045790622003123
https://arxiv.org/abs/2310.03533
https://www.ft.com/content/3e862e23-6e2c-4670-a68c-e204379fe01f
https://www.semanticscholar.org/paper/CORDULA%3A-Software-Requirements-Extraction-Utilizing-Friesen-B%C3%A4umer/561b95f93ff868423fe664cbb0bef87d8ccb1b3f
https://www.semanticscholar.org/paper/CORDULA%3A-Software-Requirements-Extraction-Utilizing-Friesen-B%C3%A4umer/561b95f93ff868423fe664cbb0bef87d8ccb1b3f

120

Gulwani, S. (2010). Dimensions in program synthesis. In Proceedings of the 12th

International ACM SIGPLAN Symposium on Principles and Practice of Declarative

Programming (pp. 13–24). ACM. https://doi.org/10.1145/1836089.1836091

Gulwani, S., & Marron, M. (2014). NLyze: Interactive programming by natural language for

spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data (pp. 803–814). ACM.

https://doi.org/10.1145/2588555.2612177

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., & Wang,

H. (2023). Large language models for software engineering: A systematic literature review.

arXiv preprint arXiv:2308.10620. https://arxiv.org/abs/2308.10620

Kessentini, M., Gaaloul, W., Sahraoui, H., & O'Cinneide, M. (2021). A comparative study of

machine learning algorithms for classification of software requirements. Journal of Systems

and Software, 171, 110850.

https://www.sciencedirect.com/science/article/pii/S1877050918312316

Kolthoff, K. (2019). Automatic generation of graphical user interface prototypes from

unrestricted natural language requirements. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE.

https://ieeexplore.ieee.org/document/8952477

Moran, K., Bernal-Cardenas, C., Curcio, M., Bonett, R., & Poshyvanyk, D. (2018). Machine

learning-based prototyping of graphical user interfaces for mobile apps. arXiv preprint

arXiv:1802.02312. https://ieeexplore.ieee.org/document/8374985

https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1145/2588555.2612177
https://arxiv.org/abs/2308.10620
https://www.sciencedirect.com/science/article/pii/S1877050918312316
https://ieeexplore.ieee.org/document/8952477
https://ieeexplore.ieee.org/document/8374985

121

Mukasa, K. S., & Kaindl, H. (2008). An integration of requirements and user interface

specifications. In 2008 16th IEEE International Requirements Engineering Conference (pp.

327–328). IEEE. https://ieeexplore.ieee.org/document/4685696

Pulido-Prieto, O., & Juárez-Martínez, U. (2018). A survey of naturalistic programming

technologies. ACM Computing Surveys, 50(5), Article 70. https://doi.org/10.1145/3109481

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., &

Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research, 21(140), 1–67.

https://jmlr.org/papers/volume21/20-074/20-074.pdf

Ravid, A., & Berry, D. M. (2000). A method for extracting and stating software requirements

that a user interface prototype contains. Requirements Engineering, 5(4), 225–241.

https://link.springer.com/article/10.1007/PL00010352

Reuters. (2025). Google is developing software AI agent ahead of annual conference, The

Information reports. https://www.reuters.com/business/google-is-developing-software-ai-

agent-ahead-annual-conference-information-2025-05-12/

Robeer, M., Lucassen, G., van der Werf, J. M. E. M., Dalpiaz, F., & Brinkkemper, S. (2016).

Automated extraction of conceptual models from user stories via NLP. In 2016 IEEE 24th

International Requirements Engineering Conference (RE).

https://ieeexplore.ieee.org/document/7765525

Sawhney, R. (2021). Can artificial intelligence make software development more productive?

LSE Business Review. https://blogs.lse.ac.uk/businessreview/2021/09/13/can-artificial-

intelligence-make-software-development-more-productive/

https://ieeexplore.ieee.org/document/4685696
https://doi.org/10.1145/3109481
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://link.springer.com/article/10.1007/PL00010352
https://www.reuters.com/business/google-is-developing-software-ai-agent-ahead-annual-conference-information-2025-05-12/
https://www.reuters.com/business/google-is-developing-software-ai-agent-ahead-annual-conference-information-2025-05-12/
https://ieeexplore.ieee.org/document/7765525
https://blogs.lse.ac.uk/businessreview/2021/09/13/can-artificial-intelligence-make-software-development-more-productive/
https://blogs.lse.ac.uk/businessreview/2021/09/13/can-artificial-intelligence-make-software-development-more-productive/

122

Sharma, S., Sarka, D., & Gupta, D. (2012). Agile processes and methodologies: A conceptual

study. International Journal on Computer Science and Engineering.

https://www.researchgate.net/publication/267706023

Shin, J., & Nam, J. (2021). A survey of automatic code generation from natural language.

Journal of Information Processing Systems, 17(3), 537–555. http://xml.jips-k.org/full-

text/view?doi=10.3745/JIPS.04.0216

Shylesh, S. (2017). A study of software development life cycle process models. SSRN

Electronic Journal. https://ssrn.com/abstract=2988291

Smith, A. B., Brown, D. R., & White, E. J. (2020). Unsupervised learning techniques for

requirements engineering: A comparative study of clustering and topic modeling approaches.

Requirements Engineering, 25(2), 123–137.

https://ijisae.org/index.php/IJISAE/article/view/6018

Wong, M. F., Guo, S., Hang, C. N., Ho, S. W., & Tan, C. W. (2023). Natural language

generation and understanding of big code for AI-assisted programming: A review. arXiv

preprint arXiv:2307.02503. https://arxiv.org/abs/2307.02503

Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., Li, J., & Wang, R. (2023). Unifying

the perspectives of NLP and software engineering: A survey on language models for code.

arXiv preprint arXiv:2311.07989. https://arxiv.org/abs/2311.07989

https://www.researchgate.net/publication/267706023
http://xml.jips-k.org/full-text/view?doi=10.3745/JIPS.04.0216
http://xml.jips-k.org/full-text/view?doi=10.3745/JIPS.04.0216
https://ssrn.com/abstract=2988291
https://ijisae.org/index.php/IJISAE/article/view/6018
https://arxiv.org/abs/2307.02503
https://arxiv.org/abs/2311.07989

