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ABSTRACT 

AN AI-DRIVEN APPROACH: TO DETECT AND PREDICT WELD FILM 

IRREGULARITIES FOR ENHANCED QUALITY CONTROL 

 

 

 

MANSOOR ALI ASHFAQ 

2025 

 

 

 

Dissertation Chair: Dr.Gualdino Cardoso 

 

 

Weld quality assurance is a critical aspect of industrial applications, where defects 

such as porosity, “cracks”, “lack of fusion”, and “slag inclusion” can compromise 

structural integrity and safety. Traditional “Non-Destructive Testing (NDT)” methods 

such as Radiographic Testing (RT) rely heavily on manual inspection, which is time-

consuming, error-prone, and subjective. Recent advancements in “Artificial Intelligence” 

(AI) have introduced new possibilities for automated defect detection and prediction. 

 

This study proposes a “Hybrid AI”-driven approach that integrates 

“Convolutional Neural Networks” (CNNs) for defect detection in radiographic images 

with “Machine Learning (ML)” algorithms (“Random Forest”, XGBoost, and “Gradient 

Boosting”) for defect prediction based on welding process parameters. The research 

utilizes the GDXray dataset for radiographic weld images and historical welding 

parameters to develop an intelligent defect detection and prediction model. 
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The results demonstrate that the hybrid AI model outperforms traditional NDT 

approaches, achieving high accuracy in defect classification while providing predictive 

insights that allow for proactive quality control. This study contributes to Industry 4.0 

applications, improving weld quality management, reducing costs, and enhancing 

manufacturing efficiency. 
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CHAPTER I: INTRODUCTION  

 

1.1 Introduction  

Welding is a crucial process in industries such as aerospace, automotive, and 

pipeline construction, where structural integrity is non-negotiable. Weld defects can lead 

to safety hazards, increased costs, and operational failures. Conventional “NDT” methods 

like “Radiographic Testing” (RT), “Ultrasonic Testing (UT)”, and “Magnetic Testing 

(MT)” are widely used for weld defect identification, but they depend on human expertise 

and are prone to misinterpretation (Yousefi et al., 2020; Ibarra-Castanedo & Maldague, 

2014). 

. 

 

Welding is one of the most widely used methods for permanently joining metal 

components in various industrial applications. Before allowing the use of welded 

components in critical applications such as “Oil and Gas pipelines”, “vehicles”, “steam 

turbines”, “ships”, and other metal structures, it is essential to assess the quality of the 

weld joints. This assessment is crucial for detecting and locating various types of weld 

defects, including porosity, surface cracks, inclusions, undercuts, poor fusion, and 

insufficient penetration. These defects can significantly affect the reliability, durability, 

and mechanical properties (such as stiffness, toughness, and strength) of the welded joints 

(Kumar & Bhaduri, 2011; Li et al., 2020; Ramesh & Kumar, 2021). 

 

The quality of welded joints can be evaluated through two primary methods:  
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• “Destructive Testing (DT)” and  

• “Non-Destructive Testing (NDT)”.  

 

“DT” involves testing welds by breaking them to assess the strength of the welded 

specimen. In contrast, “NDT” allows for inspecting the welds to detect defects without 

causing any damage to the object being tested. Several NDT technologies have been 

developed to identify weld defects, including “Radiographic Testing (RT)”, “Computed 

Tomography (CT)”, “Ultrasonic Testing (UT)”, and “Magnetic Testing (MT)”. “RT” is 

one of the oldest NDT methods, designed to detect defects in weld bead samples (Hellier, 

2012; Mudge, 2015; Singh & Kumar, 2020).. 

 

In “Conventional Radiography (CR)”, the component being examined is exposed 

to x-rays, and the radiographic images are captured on x-ray-sensitive film placed behind 

the component. Traditionally, fault detection engineers, with years of experience, visually 

inspect these radiographic images. However, this manual process is often subjective, as it 

may miss small defects, fail to detect certain types of defects, or struggle with noisy or 

low-contrast radiographic images (Hellier, 2012, pp. 298–302; Raj & Jayakumar, 2007, 

pp. 205–207). This makes defect detection challenging using conventional methods. 

Additionally, human factors, such as fatigue, carelessness, lack of training, or a 

combination of these, can lead to errors or accidents. Manual inspection methods are also 

time-consuming, costly, and prone to mistakes, making them less effective (Mudge, 

2015, pp. 100–101). Therefore, it is essential to develop a novel and more efficient defect 

detection technique that is both accurate and cost-effective. 
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“Feature-based defect identification has gained increasing attention and is 

gradually replacing traditional manual inspection methods due to advancements in digital 

image processing and machine learning techniques (Gonzalez & Woods, 2018, pp. 710–

715; Zhang et al., 2020, pp. 342–344). While traditional methods involve manually 

extracting specific image features based on fault conditions, there are four major 

challenges associated with manual defect identification” (Ma et al., 2019, pp. 254–256).  

 

First, each detection task may encounter various issues, each requiring a unique 

set of features, making it difficult to create a universal strategy due to the irregularity of 

fault patterns. Second, defects may appear in diverse forms with different categories and 

features, including low-contrast patches, uneven brightness, or asymmetrical shapes, 

which complicates detection. Third, gathering large amounts of weld defect samples, 

particularly rare ones, results in imbalanced and costly datasets. Finally, some weld 

defect data may be lost during the feature extraction process. Convolutional Neural 

Networks (CNNs) can address these challenges, making them the primary motivation for 

pursuing this approach. It's a class of deep neural networks commonly used in computer 

vision tasks such as image classification, object detection, and facial recognition 

(Goodfellow et al., 2016, pp. 326–336; Zhang et al., 2020, pp. 342–344; Ma et al., 2019, 

pp. 254–256).. 

 

Machine Learning is a subset of artificial intelligence (AI) that enables computers 

to learn from data and improve their performance on tasks over time, without being 

explicitly programmed. The core idea is that algorithms can learn patterns from input data 

and make predictions or decisions based on that learning (Goodfellow et al., 2016, pp. 

96–97; Bishop, 2006, pp. 1–3). 
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Key Components: 

• “Supervised Learning”: The algorithm is trained on labeled data (data with 

known outcomes) to learn the relationship between input and output. 

(Bishop, 2006, pp. 9–10) 

• “Unsupervised Learning”: The algorithm works with unlabeled data and 

finds hidden patterns or groupings. (Goodfellow et al., 2016, pp. 502–

503). 

• “Reinforcement Learning”: The model learns by interacting with an 

environment and receiving feedback based on actions taken (rewards or 

penalties) (Sutton & Barto, 2018, pp. 3–5). 

 

“Deep Learning” is a specialized subset of “Machine Learning” that uses neural 

networks with many layers (hence the term "deep") to model complex patterns in large 

amounts of data. It is particularly powerful for tasks involving unstructured data such as 

images, audio, and text (Goodfellow et al., 2016, pp. 6–10, 168–170). 

 

Key Features: 

• Neural Networks: Deep learning models are based on artificial neural 

networks, which are inspired by the structure of the human brain. These 

networks consist of layers of nodes (neurons) that process information. 

(Bishop, 2006, pp. 226–230). 

• Hierarchical Learning: The deep structure allows the model to 

learn features at multiple levels of abstraction, which is especially useful 
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in tasks like image recognition, speech processing, and natural language 

understanding (LeCun, Bengio, & Hinton, 2015, pp. 436–439). 

 

With advancements in AI and Deep Learning (DL), automated systems using 

CNNs for image-based defect detection and ML models for predictive analytics have 

shown significant improvements in accuracy and efficiency(Goodfellow et al., 2016, pp. 

326–330; Zhang et al., 2020, pp. 345–347). However, existing research focuses mainly 

on detection, whereas defect prediction remains underexplored (Ma et al., 2019, pp. 254–

256). This study aims to bridge this gap by developing an AI-powered hybrid model for 

real-time defect detection and prediction, improving manufacturing quality control. 

 

 

 

 

Machine learning is fundamentally about uncovering patterns and insights from 

data. It lies at the crossroads of disciplines such as statistics, computer science, and 

artificial intelligence (AI), and is often referred to as statistical modeling, data-driven 

analytics, or predictive modeling(Goodfellow, Bengio and Courville, 2016, pp. 95–97; 

Bishop, 2006, pp. 1–3). Over the past decade, the use of machine learning techniques has 

become deeply embedded in our daily digital interactions. From suggesting which movies 

to stream, meals to order, or products to purchase, to recognizing faces in photos and 

curating personalized music playlists—many digital platforms rely heavily on machine 

learning at their core(Domingos, 2015, pp. 15–22). 

 

 



 

 

6 

 

In fact, if you navigate through complex websites like Netflix, Amazon, or 

Facebook, you're likely interacting with dozens of machine learning models operating 

simultaneously across different components of the site (Jordan and Mitchell, 2015, pp. 

255–256). Beyond the commercial sphere, machine learning has significantly 

transformed how modern scientific research is conducted. These tools have been applied 

to groundbreaking tasks such as mapping the cosmos, detecting exoplanets, discovering 

subatomic particles, decoding genetic sequences, and even delivering customized medical 

treatments like cancer therapy (Shalev-Shwartz and Ben-David, 2014, pp. 18–19; Russell 

and Norvig, 2021, pp. 834–836). 

 

However, the practical benefits of machine learning are not limited to these 

grand-scale applications. Even modest or domain-specific tasks can gain immense value 

from the intelligent use of machine learning techniques (Murphy, 2012, pp. 5–6; Russell 

and Norvig, 2021, pp. 842–843). This research focuses on building a foundational 

machine learning model, and in doing so, highlights key questions that arise during the 

development process (Mitchell, 1997, pp. 2–4). 

 

 

 

In both “supervised and unsupervised” learning frameworks, it is crucial to format 

the input data in a way that machines can interpret (Hastie, Tibshirani and Friedman, 

2009, pp. 10–12). A common way to conceptualize this is to imagine the dataset as a 

spreadsheet: each row represents an individual sample, and each column represents a 

measurable attribute or feature (Mitchell, 1997, pp. 4–5).  
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For instance, when analyzing weld quality, one column might capture the number 

of welds performed by a welder, while others might indicate defect types or frequencies. 

In this study, we examine three individual welders and analyze the recurrence of specific 

weld defects in their work. 

 

When working with weld imagery, features could be represented through pixel 

intensity values in grayscale images, or by characteristics such as shape, area, and color 

patterns (Szeliski, 2011, pp. 45–47; Li et al., 2020, pp. 5–6). Accurately describing and 

structuring this data is essential for training an effective machine learning model 

(Murphy, 2012, pp. 25–27). 

 

Perhaps the most vital component of any machine learning pipeline is a deep 

understanding of the dataset and its relationship to the problem being addressed 

(Alpaydin, 2020, pp. 33–35; Shalev-Shwartz and Ben-David, 2014, pp. 22–23). Simply 

applying an algorithm to raw data without analysis is unlikely to yield useful results. 

Instead, a thoughtful examination of the dataset—its structure, limitations, and the nature 

of the target outcome—should guide model selection and development (Jordan and 

Mitchell, 2015, pp. 255–256). Since every machine learning algorithm is tailored to 

different types of input and problem settings, aligning the data with the right model 

architecture is crucial (Zhang et al., 2020, pp. 346–348). 
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In the course of building this machine learning solution, we have carefully 

explored and responded to the central research questions, which provide the foundation 

for developing a hybrid model tailored to identifying weld defects and predicting future 

defect trends based on welder history.  

 

While we were building a machine learning solution, we have answered the 

following questions : 

 

• What question(s) am I trying to answer? Do I think the data collected can 

answer that question? 

To detect the welding defects from RT films/images 

 

• What is the best way to phrase my question(s) as a machine learning 

problem? 

Through pretrained model by YOLOv8 and ML Random Forest for 

prediction. 

 

• Have I collected enough data to represent the problem I want to solve? 

Minimum data is acquired online GDXray and other industries. 

 

• What features of the data did I extract, and will these enable the right 

predictions? 

In this study, crack, incomplete penetration, and slag are considered as the 

primary categories of welding defects. 
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• How will I measure success in my application? 

By training the model with annotated images and by results. 

 

• How will the machine learning solution interact with other parts of my 

research or business product? 

 

When weld image data is uploaded into the machine learning model, it can 

not only detect welding defects and irregularities but also provide 

predictive insights regarding potential issues. 
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1.2 Research Problem 

Despite technological advancements in welding technologies and quality control, 

the classification, prediction, and prevention of weld defects remain significant 

challenges in industrial manufacturing, weld defect management remains reactive rather 

than proactive. Traditional weld inspection methods, such as visual inspection and 

radiographic analysis, are time-intensive, prone to human error, and typically reactive, 

identifying defects only after they have occurred. Moreover, existing predictive models 

often struggle with limited data, variability in weld conditions, and the complexity of 

temporal and spatial dependencies inherent in welding processes.   

 

Existing methods: 

• Lack automation and accuracy in defect identification. 

• Do not integrate historical welding process data for predictive analysis. 

• Fail to offer real-time defect insights to prevent welding failures. 

 

Therefore, there is a critical need for an integrated machine learning and deep 

learning solution that can analyze real-time welding parameters and imaging data to 

accurately predict weld defects before they occur. This study proposes an AI-powered 

hybrid model that integrates CNN-based defect detection with ML-driven defect 

prediction, enhancing real-time weld quality control. 
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1.3 Purpose of Research  

The purpose of this research is to develop an AI-driven hybrid model that 

enhances weld defect detection and prediction, integrating Convolutional Neural 

Networks (CNNs) for image classification with Machine Learning (ML) algorithms for 

predictive analytics. This study aims to bridge the gap between traditional weld quality 

control methods and intelligent automation by leveraging deep learning for defect 

identification and ML for proactive defect prevention. 

Research Objectives: 

This study is designed to achieve the following objectives: 

1. Develop a CNN-Based Model for Weld Defect Classification. 

• Utilize radiographic weld images to train a deep learning model that 

accurately identifies weld defects such as “cracks”, “lack of penetration 

or Incomplete Penetration”, and “slag inclusion”. 

• Improve classification accuracy compared to manual inspection methods. 

2. Develop an ML-Based Model for Predictive Analytics. 

• Train an ML model (e.g., Random Forest, XGBoost) using historical 

welders weld defects to predict defect occurrences before they happen. 

• Analyze the impact of welding parameters on defect formation. 

 

3. Integrate CNN and ML into a Hybrid AI Framework. 

• Combine CNN-based defect detection with ML-driven defect prediction 

to create a comprehensive, real-time welding quality control system. 
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• Evaluate whether hybrid AI models outperform standalone CNN or ML 

models. 

4. Validate the AI Model Against Expert Assessments. 

• Compare AI model results with human expert evaluations to assess the 

practical feasibility of AI-driven weld inspection. 

• Conduct quantitative performance analysis using metrics like “accuracy”, 

“precision”, “recall”, and “F1-score”. 

 

5. Assess Real-World Deployment Feasibility. 

• Investigate computational efficiency for real-time deployment in 

industrial settings. 

• Identify potential challenges and limitations in AI-based weld quality 

control systems. 
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Research Justification  

This research is necessary due to the limitations of traditional weld quality control 

methods: 

• Manual inspections are slow, error-prone, and subjective, leading to 

inconsistencies in weld defect classification. 

• Existing AI models primarily focus on defect detection but lack predictive 

capabilities to prevent defects. 

• There is limited integration of AI for real-time defect prevention, which is critical 

for Industry 4.0 applications in automated manufacturing. 

By developing a hybrid AI-driven weld quality control system, this research: 

• Enhances welding efficiency, accuracy, and reliability 

• Reduces material waste and rework costs through early defect prediction 

• Contributes to smart manufacturing and predictive maintenance in industrial 

applications. 
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1.4 Significance of the Study  

The significance of this study lies in its potential to revolutionize weld defect 

detection and prediction through Artificial Intelligence (AI)-driven automation. 

Traditional “Non-Destructive Testing (NDT)” methods, such as “Radiographic Testing 

(RT)”, rely heavily on human expertise, making them time-consuming, error-prone, and 

subjective. This study proposes a hybrid AI model integrating Convolutional Neural 

Networks (CNNs) for defect detection using YOLO as a Pretrained Model version 8 and 

Machine Learning (ML) techniques (Random Forest) for predictive analytics, addressing 

key challenges in industrial welding. 

 

This research is significant in the following ways: 

1. Advancing AI Applications in Industrial Welding 

• This study has bridged the gap between weld defect detection and prediction by 

integrating AI techniques. 

• By developing an intelligent hybrid model, this research contributes to Industry 

4.0 and smart manufacturing, ensuring higher accuracy and efficiency in weld 

quality control. 

2. Reducing Human Error in Weld Defect Detection 

• Manual inspections in RT are subjective, leading to misclassification and 

oversight of defects. 

• AI-driven automated defect detection ensures consistency, accuracy, and 

reliability, minimizing reliance on manual analysis. 
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3. Enabling Proactive Defect Prediction 

• Current methods focus on defect identification after welding, leading to costly 

repairs and rework. 

• The proposed hybrid AI model predicts potential defects based on welding 

parameters, allowing for real-time adjustments and defect prevention. 

4. Improving Manufacturing Efficiency and Reducing Costs 

• Early defect detection and prediction prevent rework, reducing material wastage 

and operational costs. 

• AI-powered automation enhances inspection speed, leading to faster production 

cycles and improved productivity. 

5. Enhancing Industrial Safety and Structural Integrity 

• Welding defects can lead to catastrophic failures in critical industries like 

aerospace, automotive, and construction. 

• The proposed model ensures high weld quality, enhancing the safety and 

durability of welded components. 

6. Contribution to Research and Innovation 

• This study contributes novel insights into AI-driven weld defect detection and 

prediction. 

• The research findings will be valuable to academic scholars, industry 

professionals, and AI developers interested in intelligent defect prevention 

models. 
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7. Facilitating AI Adoption in Smart Manufacturing 

• The study aligns with Industry 4.0 principles, promoting AI, automation, and 

data-driven decision-making in welding. 

• Encourages widespread adoption of AI-powered quality control in industrial 

manufacturing. 

The study contributes to academic research and industrial applications by: 

• Advancing AI applications in welding quality control. 

• Providing an innovative hybrid AI model for real-time defect detection and 

prediction. 

• Supporting the transition to automated manufacturing by integrating AI with 

welding inspection systems. 

• Enhancing predictive maintenance to prevent defect occurrences. 

• Improving manufacturing efficiency and minimizing material wastage. 

 

This study is highly significant as it introduces a cutting-edge AI solution to 

enhance weld quality control, minimize defects, reduce costs, and improve industrial 

safety. By integrating deep learning and machine learning, this research paves the way 

for real-time, intelligent defect detection and predictive maintenance in welding process. 

This research has the potential to transform industrial welding processes, reducing 

defects, improving productivity, and ensuring higher safety and quality standards. 

 

 

 

 



 

 

17 

 

 

1.5 Research Purpose and Questions  

This research aims to bridge the gap between traditional weld inspection methods 

and AI-driven automation by integrating deep learning for defect classification and 

machine learning for predictive analytics. By answering these research questions, the 

study will provide a scalable, intelligent, and efficient solution for automated weld 

quality control, improving industrial productivity, safety, and cost-effectiveness. 

Research Questions: 

• How can AI-based models improve the accuracy of weld defect detection in 

radiographic films? 

• What are the limitations of existing ML and DL models in weld defect 

classification? 

• How can a hybrid CNN-ML model enhance defect prediction based on hitorical 

weld images of a welder? 

• What challenges exist in implementing AI-driven quality control in industrial 

welding processes? 
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CHAPTER II: REVIEW OF LITERATURE 

2.0 Introduction:  

This chapter provides an in-depth review of existing research on AI-driven weld 

defect detection and prediction. The literature review explores traditional weld defect 

inspection methods, advancements in “Artificial Intelligence (AI)”, applications of “Deep 

Learning (DL)” and “Machine Learning (ML)” in weld quality control, and the 

limitations of existing approaches. The review highlights research gaps and sets the 

foundation for developing a hybrid AI model integrating Convolutional Neural Networks 

(CNNs) for defect detection and ML techniques for predictive analytics. 

 

2.1 Theoretical Framework 

The theoretical framework provides the foundation for this research by integrating 

“machine learning (ML)”, “deep learning (DL)”, image processing, and predictive 

modeling theories to develop an AI-driven hybrid model for weld defect detection and 

prediction. The study builds on established theories in pattern recognition, artificial 

neural networks (ANNs), and hybrid AI systems to enhance the accuracy and efficiency 

of weld quality control. 

This study seeks to integrate the weld defect classification model and welding 

defect prediction. There are number of researches done for welding defect detection and 

classification in radiographic images using the “Deep learning” and some of which are 

Abhi Bansal et al 2023, Stephen D and Lalu P P 2021, Yang L and Jiang H 2021 and 

Thakkallapally B C 2019. Also, the weld defect prediction models such as developed by 

Liu et al. (2021) and Yang et al. (2021) are based on the historical process parameters.  
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Perhaps, there are other parameters that shall be explored which has significant 

impact on the welding quality in Manual welding that is the welders performance based 

on the fit-up of the joint, welding environment / accessibility (not related to the position 

of the welding) i.e. the shop fabrication (which is a controlled environment) and field 

fabrication or welding of the joint (height at which the welder has to go in the plant) , 

these field fabrication welding joints many a times fall in the critical path of the project 

schedule, if the weld joint is rejected then the re-work doesn’t only cost about the welder 

, helper, supervisor   and inspector but also indirectly cost the scaffolding, safety officer, 

scaffolding supervisor, crane and the other related project team / material / equipment for 

the succeeding activities will be on stand-by.  

The study has taken into consideration of the real time issues that are generally 

ignored and when it required to focus, the welders are habituated to produce the weld 

joints with irregularities which were accepted by the quality team for the shop fabrication 

under the controlled environment. Specifically, to qualify a welder to continue his job , 

the welder performance per linear length and joint will be calculated and monitored, 

during the welders performance reporting the irregularities of the weld which are under 

the acceptance range will not be highlighted or addressed but only the irregularities of the 

welds which are termed as defects of unacceptable range will be noted and addressed for 

the welder performance , as per the standard of the industry. 
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In this study the welding irregularities in the weld film will be detected and 

classified as the categories like porosity, crack, undercut, underfill etc. which is also done 

/ developed by the previous models. Cheolhee Kim et al summaries in Journal of 

Welding and Joining 2021; “ at present, the images at the time of measurement are used 

for quality classification or regression, but in the future, hybrid models of combining 

RNN and CNN will be applied, leading to more intelligent models in which  

the information extracted from images in the past will be transferred to the current state 

prediction.” Subsequently, the data of the welder for welding irregularities and the 

defects will be noted / stored / considered / addressed to identify the patterns and to 

predict the defect which the welder might do in the future weld joints. The models helps 

the companies / Project team to assign the welder for the welding of the weld joints and 

also to give instructions to the welders to avoid the irregularities and defects in the future 

welds or re-work.  

 

 

 

2.2 “Weld defect identification and characterization in radiographic images using 

deep learning[4]”  

According to “Abhi Bansal et al. (2023)”, the development of weld defect 

detection technologies has evolved through a staged approach. Their study presents a 

comprehensive review of automated defect detection methods based on deep learning, 

structured into three primary phases: data acquisition, image preprocessing, and defect 

classification. Initially, the authors highlight the process of gathering benchmark datasets, 

with particular emphasis on the GDXray database. 
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 In the next phase, they observed that certain preprocessing techniques—such as 

thresholding and noise reduction—significantly enhanced the visibility and clarity of 

defect regions within the images. Following this, the paper explores the advantages of 

using deep learning models for defect recognition and outlines their practical 

implementations in weld inspection. Finally, a comparative evaluation of different weld 

defect classification methods employed by various researchers is provided, offering 

insights and direction for future advancements in this domain. 

“Table 2.1 

 

Representation of weld class of GDXray database. 

Series      Images Description Application 

W0001      10     
Subset of 10 x-ray images which 

is selected from series W0003. 

Detection of defects in weld 

classification 

 

W0002      10 

Ideal segmentation of W0001, 

which is a set of binary images 

Evaluation of performance of 

detection algorithm 

 

W0003      10 

Collection of 68 digitized 

radiographs from a round robin 

test performed by BAM 

Detection of defects in weld 

classification 

1.1.1  
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Figure 2.1 

 

The architecture of the CNN model.( Abhi Bansal,2023) 

The Convolutional Neural Network (CNN) is a deep learning architecture inspired 

by the functioning of biological neurons, which communicate to transmit information. 

CNNs have demonstrated superior performance over traditional machine learning models  

in tasks such as image classification and object detection. The architecture of a CNN 

typically comprises three primary types of layers: convolutional layers, pooling layers, 

and fully connected (dense) layers. 

 

During the convolutional stage, a kernel (or filter) systematically moves across 

the input image, applying the convolution operation to extract important spatial features. 

This results in a feature map that highlights essential patterns within the image. To 

introduce non-linearity into the model—important because real-world data is often non-

linear—the feature maps are passed through a Rectified Linear Unit (ReLU) activation 

function. ReLU sets all negative pixel values to zero, thereby ensuring all outputs are 

positive and helping the model converge faster during training. 
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Following this, max pooling is applied. This layer partitions the output of the 

convolutional layer into smaller regions and selects the maximum value from each 

region. Max pooling serves as a downsampling method, reducing the spatial dimensions 

of the feature maps, which in turn decreases computational load, lowers memory usage, 

and minimizes overfitting. Though some fine-grained information may be lost during 

pooling, the trade-off is often acceptable for improved generalization on unseen data. 

 

The reduced feature maps are then flattened into a one-dimensional feature vector, 

where each value represents a neuron that connects to the next layer: the fully connected 

(FC) layer. The FC layers integrate the extracted features and perform high-level 

reasoning. Due to the dense connectivity of this layer, the number of trainable parameters 

increases significantly. To control this complexity, additional FC layers with fewer 

neurons are often added to gradually reduce dimensionality. 

 

The final FC layer, often referred to as the softmax layer, maps the previous 

layer's outputs to a set of probabilities corresponding to each target class. The softmax 

function ensures that the output values lie between 0 and 1 and that their sum equals 1, 

thereby indicating the model’s confidence in each class. The class with the highest 

probability is chosen as the model’s prediction. This output is used to calculate the loss 

function, which quantifies the difference between predicted and true labels. 
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CNNs are trained using the Backpropagation (BP) algorithm. Initially, the 

network computes the loss during forward propagation. Then, using BP, it iteratively 

adjusts the weights and biases in the convolutional and FC layers to minimize the loss. 

This process continues until the model achieves optimal accuracy. 

 

In the context of weld defect classification, CNN models are typically trained to 

detect and categorize defects such as porosity (PO), lack of penetration (LP), slag 

inclusion (SL), lack of fusion (LF), and crack (CR). By learning from image data, the 

CNN becomes capable of identifying these defects automatically and with high precision, 

making it a valuable tool for modern industrial inspection systems. 

 

 

2.3 “Multi-sensing signals diagnosis and CNN-based detection of porosity defect 

during Al alloys laser welding[5]” 

Ma, Deyuan et al. (2022) applied a Convolutional Neural Network (CNN) 

framework to classify Time-Frequency (TF) spectrum images and detect porosity in 

welding processes. The TF graphs were treated as RGB image inputs and categorized into 

two labels: ‘0’ indicating no porosity and ‘1’ indicating the presence of porosity. The 

initial dataset contained 1200 RGB images without porosity and 212 with porosity. Due 

to the data imbalance, augmentation techniques like image flipping and mirroring were 

employed, expanding the dataset to 1976 no-porosity images and 848 porosity images. 

These were divided into training and test sets to facilitate model training and evaluation. 
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The CNN architecture consisted of multiple convolutional and max-pooling 

layers, followed by two dense (fully connected) layers and a softmax output layer for 

binary classification. To address potential overfitting, dropout layers with a 0.5 rate were 

used after specific convolutional and fully connected layers. The model was trained with 

a learning rate of 0.001 and a batch size of 64, achieving a porosity detection accuracy of 

93.15% and an overall classification accuracy of 96.13%, thus fulfilling industry 

requirements. 

 

Traditionally, porosity detection has relied on post-weld techniques like X-ray 

inspections, which fail to assist in real-time quality improvement. In contrast, online 

detection systems enable real-time monitoring of porosity during the welding process, 

allowing timely parameter adjustments. These methods, especially in laser welding, focus 

on metallurgical porosity—caused by the evaporation of volatile elements like hydrogen, 

magnesium, and zinc. 

 

More recently, attention has shifted toward identifying keyhole-induced porosity, 

which arises from the collapse of unstable keyholes during laser welding. AI-powered 

models have enhanced this effort. For example, “Luo and Shin” applied a radial basis 

function neural network to monitor the keyhole opening area, while Gaja et al. and 

Shevchik et al. explored acoustic and optical signal analysis using logistic regression, BP 

neural networks, and SVMs. 
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Deep learning has proven especially beneficial due to its capacity for automatic 

feature extraction from complex signal patterns. Zhang et al. demonstrated the utility of 

CNNs by feeding them images of the molten pool and keyhole to detect porosity 

conditions in real time. However, the linkage between porosity formation mechanisms 

and signal features remains underexplored, complicating reliable pore localization and 

detection. 

Several researchers, including Berger and Liu, linked porosity formation to erratic 

keyhole fluctuations. Others, such as Pang, Lin, and Xu, noted that the collapse of a 

keyhole alters its depth, which can be a key indicator for porosity prediction. 

 

In response, this study proposes a multi-sensor diagnostic approach to track and 

analyze keyhole morphology in 3D. Using KD signals and TF features from KO images, 

a CNN-based system is employed for detecting and pinpointing individual porosity sites. 

This integration of multi-sensor input enhances precision, enabling real-time, non-

invasive porosity monitoring in welding environments, offering a significant step toward 

intelligent, data-driven manufacturing. 
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2.3 “Development of radiographic image classification system for weld defect 

identification using deep learning technique[6]” 

Stephen D. and Lalu P. P. (2021) effectively utilized a “Convolutional Neural 

Network (CNN)” model to classify weld defects in radiographic images. Their study 

focused on four main defect types: gas pore, cluster porosity, cracks, and tungsten 

inclusion. The dataset was built from 63 cropped radiographic images sourced from the 

publicly available GDXray database, resulting in 200 labeled images. These were split 

into 160 for training and 40 for validation. To expand the limited dataset and improve 

model generalization, data augmentation techniques—such as image rotation, flipping, 

and mirroring—were applied, increasing the training set to 16,000 images. 

The CNN architecture comprised four 2D convolutional layers with 3×3 filters, 

each followed by a ReLU activation and a 2×2 max-pooling layer. A dropout layer with a 

rate of 0.5 was introduced to prevent overfitting by randomly deactivating 50% of 

neurons during training. Feature map dimensions increased progressively: 32 maps after 

the first convolutional layer, 64 after the second, and 128 after the final convolutional 

layer. 

The model was implemented using Python with the Keras API and TensorFlow as 

the backend. Parameter fine-tuning was performed to optimize model performance. The 

training process involved 100 epochs, with validation after each epoch to monitor 

learning progress. A batch size of 4 was used, meaning the network updated its weights 

after processing every 4 images. 
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The model was optimized using the RMSprop algorithm, which effectively 

controlled weight oscillations and allowed for larger, faster convergence steps in the 

horizontal direction. The learning rate was dynamically updated based on the weighted 

average of gradients.  

 

The loss function used was categorical cross-entropy, calculated as 

L = −Σᵢ T(i) log P(i) 

 

where T(i) and P(i) are the target and predicted probabilities for class i, respectively. The 

weight updates followed the rule: 

Wₙ = Wₓ − ηᵢ (∂L/∂Wₓ) 

where ηᵢ is the adjusted learning rate. 

Initial training without data augmentation resulted in a training accuracy of 96% 

and validation accuracy of 80%, with increasing validation loss indicating overfitting. 

However, with augmented data, both training and validation accuracies improved 

significantly, reaching 99% and 95%, respectively. The validation loss steadily 

decreased, indicating enhanced generalization capabilities of the model. This 

demonstrated that augmentation not only increased the volume of training data but also 

helped the network learn richer feature representations. 

 

In conclusion, this study successfully demonstrated the application of deep 

learning, specifically CNNs, for classifying weld defects from radiographic images. 

Despite the initial limitation of dataset size, the creation of a custom image set and 

augmentation techniques significantly boosted performance.  
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The model, trained on GDXray-derived images, proved effective in detecting 

common weld defects with high accuracy. The approach can be extended to identify 

additional defect types and integrated into automated inspection systems for real-time 

weld quality assessment. 

 

2.4 “Weld defect classification in radiographic images using unified deep neural 

network[7]” 

Yang L and Jiang H 2021, developed a dataset comprising 220 sample images, 

classified into five categories of welding defects: porosity, slag inclusion, and lack of 

penetration (50 images each), along with lack of fusion and cracks (35 images each). The 

dataset was split into training and testing sets, allocating 80% of the images for training 

and the remaining 20% for testing. 

 

 
Figure 2.2 Unified DNN.( Yang L and Jiang H 2021) 
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The authors Yang L. and Jiang H. (2021) proposed a unified Deep Neural 

Network (DNN) framework for the classification of weld defects, as illustrated in their 

study. To assess the effectiveness of this model, they conducted a comparative analysis 

with traditional classification approaches, including generic DNN architectures and 

Support Vector Machines (SVMs). Their proposed unified DNN achieved a training 

accuracy of 97.95% and a testing accuracy of 91.36%, outperforming the alternative 

models. 

Unlike conventional approaches that primarily rely on geometric or intensity-

based features, the authors introduced four novel features derived from the intensity 

contrast between the weld defect and its surrounding background, improving the 

discriminative power of the model. 

A key innovation in their approach lies in the fusion of multi-level features: 

instead of using only the final layer outputs, their model integrates feature representations 

from all hidden layers. These multi-scale features are then collectively utilized in the final 

hidden layer to enhance prediction accuracy, allowing for a more holistic interpretation of 

defect characteristics.Moreover, the authors explored pre-training and fine-tuning 

strategies to improve the model’s generalization performance, especially given the 

limited size of their dataset. Through this approach, the model was able to learn more 

robust representations, reducing the risk of overfitting. 

Compared to the baseline models, the unified DNN achieved a 3.18% and 4.33% 

increase in classification accuracy over the generic DNN and SVM models respectively 

on the test set, demonstrating the strength of their multi-level feature fusion strategy and 

deep learning framework. 
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2.5 “Defect classification from weld radiography images using VGG-19[8]” 

Thakkallapally B C 2019 developed a weld defect classification model using a 

dataset curated from 78 radiographic images sourced from the GDXray welding subset—

a publicly available collection of X-ray images of weld specimens. Each image in the 

original dataset spans approximately 5000 pixels in length, capturing a broad view of the 

weld regions. Due to the limited number of available images, the study focused on three 

main classes: Good Welds (GW) with no defects, Cracks (CR), and a combined class of 

Porosity and Solid Inclusions (PO). The decision to merge porosity and solid inclusion 

defects into a single category stemmed from the insufficient number of distinct images 

representing each defect type individually. 

To increase the number of training samples and localize defect features, the 

authors employed a sliding window technique, systematically cropping each large image 

into smaller patches of 128×128 pixels. Each resulting patch was then manually labeled 

into one of the three classes based on the defect it contained. This process resulted in a 

balanced dataset of 3000 images, with 1000 images per class. 

To ensure effective model training and evaluation, the dataset was randomly split 

into three subsets: 

• 60% for training, 

• 20% for validation, and 

• 20% for testing. 

To further enhance the generalization capability of the model, data augmentation 

techniques were applied during dataset preparation, helping mitigate the effects of limited 

original data. 
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For the classification task, the authors adopted and modified the well-known 

VGG-19 architecture. Specifically, they froze the first five convolutional layers to retain 

foundational feature extraction capabilities and replaced the original fully connected 

layers with two new dense layers, tailored to suit the three-class weld defect classification 

problem. This customization allowed for a more lightweight and efficient network while 

maintaining the powerful feature extraction abilities of the original VGG-19. 

This approach demonstrated how classical deep learning architectures like VGG-

19 can be effectively adapted to specialized tasks like weld defect detection, even with 

relatively small and imbalanced datasets, by leveraging strategies such as image 

cropping, class merging, and transfer learning. 

 

 

 

Figure 2.3 

 

Architecture of VGG-19.( Thakkallapally,2019) 
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In the current study, the authors employed the VGG-19 architecture to tackle the 

complex nature of radiographic weld images, due to its proven success among the six 

configurations of the VGG family. Among these, VGG-16 and VGG-19 have 

demonstrated superior performance, with VGG-19 being selected here for its deeper 

architecture and enhanced representational power. The VGG-19 network comprises 19 

weight-bearing layers and a staggering 144 million trainable parameters, making it a 

powerful model capable of learning intricate features. 

As illustrated in Figure 1, VGG-19 is constructed using 3×3 convolutional filters 

applied with a stride and padding of 1, followed by 2×2 max-pooling layers with a stride 

of 2. This consistent use of small filters enables the network to capture fine-grained 

features while keeping the architecture uniform. As the network deepens, the number of 

filters increases progressively, enhancing its ability to detect more abstract features at 

each level. A ReLU activation function is applied after each convolution to introduce 

non-linearity and expedite training. 

Given the limited size of the dataset in this work, training a deep model like 

VGG-19 from scratch would lead to overfitting. To overcome this, the authors utilized 

transfer learning, a technique where a model pre-trained on a large dataset (in this case, 

ImageNet, used in the ILSVRC 2014 competition) is adapted to a new but related task. 

Transfer learning is particularly beneficial when access to large-scale labeled data is 

limited. 
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Transfer learning was considered in two formats: 

• As a Feature Extractor – In this approach, all convolutional layers are frozen, and 

the fully connected layers are removed. The extracted features are then passed to a 

different classifier such as an Artificial Neural Network (ANN) or Support Vector  

Machine (SVM). However, this method was deemed unsuitable for the present 

study because of the domain gap between natural images in ImageNet and 

radiographic weld images. 

 

• Fine-Tuning – This approach was selected for the study. It involves freezing the 

first few layers (which capture general features such as edges and textures) and 

retraining the remaining layers to adapt to the new dataset. Specifically, the 

authors froze the first five layers of the VGG-19 model and replaced the original 

fully connected layers with a custom design consisting of two dense layers and a 

dropout layer in between. The dropout layer, set at 30%, helps to prevent 

overfitting by randomly deactivating 30% of the neurons during training. 

The final layer employs a Softmax activation function, which is appropriate for 

multi-class classification problems, as it assigns probabilities across multiple classes. 

The model was trained using categorical cross-entropy as the loss function and 

Stochastic Gradient Descent (SGD) as the optimizer. The learning rate was set to 0.0001 

with a momentum of 0.9, which helps accelerate training by smoothing the update path. 

A batch size of 2 was used during training and validation. To accelerate computation and 

optimize performance, the training process was conducted on an NVIDIA Tesla K80 

GPU. 
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This methodological approach demonstrates how deep learning models like VGG-

19 can be adapted using transfer learning and fine-tuning strategies to perform robustly 

even on small, domain-specific datasets such as those involving radiographic weld defect 

classification. 

  

 

2.6 Knowledge of Results in Human Psychology: 

Since the research of hybrid model is based upon the foundation of learning in 

both the model itself and the welders to whom we provide the feedback of their welds. 

Most of the industries doesn’t focus on the irregularities of the welds produce by welders 

but as a practice they are focused and insterested in only the rejected welds to repair them 

as soon as possbile , secondly the welder revoke is based upon the rejection rate of the 

welds produced by the welder , rither the linear rate or the joint based. The importance of 

weld irregularities are not included because the weld joints are acceptable. By using the 

AI model which is fast and accurate the welding inspector can get the information of each 

and every joint welded by each welder and subsequently the irregularities of the weld. 

Further , the weld joint which are reviewed by NDT Level-III engineer will be charged 

hourly or as per the weld film wise, here by using the AI-models which has a initial cost 

can provide the details of every weld joint. 
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The research into the hybrid model of weld defect detection and feedback 

revolves around both the machine learning capabilities of the AI system and the training 

provided to welders based on the feedback of their welds. In many industries, the focus is 

primarily on defective welds that require immediate repair, rather than on identifying  

irregularities in all welds. Typically, welder performance is assessed based on the 

rejection rate of their welds, which may be evaluated by individual joints or by a linear 

rejection rate. As a result, the significance of minor weld irregularities is often 

overlooked, especially when the overall weld joint is deemed acceptable. However, by 

incorporating an AI-driven model that is both fast and precise, welding inspectors can 

access comprehensive information on every weld performed by each welder, including 

any potential irregularities. 

Furthermore, welds that undergo NDT Level-III inspection are often charged on 

an hourly basis or according to the number of weld films assessed. In contrast, while an 

AI model may have a higher initial cost, it can provide detailed feedback on every weld 

joint, potentially reducing the need for extensive manual inspections. This makes it an 

efficient and cost-effective solution for managing weld quality. 

In terms of feedback, feedback refers to the information received by a subject 

during or after performing a task, as noted by Schmidt (1988). Feedback can be 

categorized into two types: intrinsic and extrinsic. Intrinsic feedback is related to the task 

itself and involves sensory information (e.g., proprioceptive, visual feedback), which the 

subject naturally perceives. On the other hand, extrinsic feedback, also referred to as 

"artificial feedback" or "augmented feedback" (Drowatzky, 1975), is external information 

provided by an external source, such as an instructor or supervisor. This feedback is 

essential in improving task performance by offering additional guidance. 
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Knowledge of Results (KR), as defined by Travers (1972), refers to the feedback 

received after performing an action, which helps the subject understand how well they 

performed. Historically, Thorndike (1931) and Trowbridge and Cason (1932) conducted 

studies that emphasized the importance of KR in motor learning. Their experiments 

demonstrated that different types of KR, such as quantitative feedback, led to better 

performance compared to no feedback or less precise feedback. For example, in the line 

drawing experiment, the group that received quantitative KR showed improved results in 

the learning phase. 

 

The influence of KR on the learning process can be attributed to three primary 

functions, as described by Schmidt (1988): 

 

1. Guidance: KR helps guide the subject toward the correct execution of the task, 

providing a basis for improving future performances. 

2. Motivational: KR can motivate the learner to improve by providing tangible 

evidence of progress. 

3. Associational: KR helps the learner associate the feedback with their actions, 

reinforcing positive behavior and discouraging mistakes. 

 

The precision and quality of KR have a significant impact on the learning process, 

as more accurate feedback helps the learner adjust their approach more effectively. In the 

context of welding, providing precise feedback on each weld can significantly enhance 

the welder's skills and help reduce errors, leading to better overall weld quality and fewer 

defects. 
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2.6 Summary 

This literature review highlights the significant role of Artificial Intelligence (AI) 

in advancing weld defect detection and prediction, offering transformative capabilities for 

improving accuracy, efficiency, and quality in this critical industrial process. As 

summarized by Cheolhee Kim et al. in the Journal of Welding and Joining (2021), 

"Currently, images at the time of measurement are used for quality classification or 

regression. However, in the future, hybrid models combining Recurrent Neural Networks 

(RNNs) and Convolutional Neural Networks (CNNs) will be implemented, leading to 

more intelligent systems where information extracted from past images will be utilized 

for current state predictions." 

CNNs have been widely researched for analyzing radiographic images, providing 

enhanced accuracy in identifying weld defects (Zhang et al., 2020; Li et al., 2018). 

Meanwhile, “RNNs and Long Short-Term Memory (LSTM)” networks are effective for 

handling sequential data, such as welding parameters, in predictive analytics (Hochreiter 

and Schmidhuber, 1997; Sun, Zhang and Chen, 2021). Hybrid models that combine 

CNNs with machine learning (ML) algorithms, including Random Forest and Gradient 

Boosting, offer robust frameworks to tackle challenges such as data imbalance and 

improve the precision of defect predictions (Kim, Kim and Park, 2020; Ahmed, Munir 

and Anwar, 2022). 

The integration of AI (ML & DL) in weld defect detection and prediction has 

been groundbreaking, overcoming many limitations of traditional methods (Zhang, Chen 

and Gao, 2019). This area of research holds great significance due to its potential to 

enhance quality control, reduce costs, and improve safety in industrial settings (Sun, 

Zhang and Chen, 2021). 
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 The studies reviewed emphasize the effectiveness of hybrid approaches that 

combine both visual and temporal data. However, there remain gaps, particularly in real-

time applications and the interpretability of these models (Ahmed, Munir and Anwar, 

2022). 

Addressing these gaps can lead to the development of smarter, more reliable, and 

efficient defect management systems in manufacturing processes. 

After 70 epochs, the model converged with a training accuracy of 93.17% and a 

validation accuracy of 91.14%. Figures shows the plot of training and validation accuracy 

over time, while  the plot of training loss and validation loss, both generated by 

TensorBoard with a smoothing factor of 50%. The lighter curves in the background of the 

plots represent the original accuracy and loss data. The training and validation curves 

closely align, indicating the model’s progress in line with expectations. 

These results suggest that the model's health is good; however, there is still a 

possibility that the model has not been fully generalized. As mentioned in Section 4.1, a 

separate test set is used to evaluate whether the model is generalizing well. After 

comparing the model’s predictions on the test set (NDE2019, 018, v1) with the actual 

labels, a classification report was generated. The classification report, showing that the 

average precision and average recall are both 91%, and the overall accuracy of the model 

on the test set is also 91%. These results are promising and indicate that the model is 

well-generalized, offering strong performance in real-world applications. 
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CHAPTER III:  

METHODOLOGY 

 

3.1 Overview of the Research Problem 

Companies consistently strive to minimize rework, as it directly impacts cost, 

schedule, and quality. Welding plays a critical role in industries such as oil and gas, 

petrochemicals, and aerospace, where precision and structural integrity are paramount. 

Welding inspectors are responsible for guiding and training welders, ensuring that good 

workmanship is maintained, as both high- and poor-quality welding can significantly 

affect critical operations. 

 

To enhance quality control, companies and training institutes focus on identifying 

the root causes of welding irregularities. Decisions regarding welder performance are 

often based on weld rejection rates, emphasizing defect presence while overlooking 

recurring welding irregularities. Over time, habituated welding inconsistencies may lead 

to defects, yet the focus remains on linear rejection rates rather than analyzing the 

specific categories of defects produced by welders. 

 

Despite the numerous factors influencing weld quality, one critical aspect that 

remains unexplored is the history and categorization of welding irregularities. Addressing 

these irregularities proactively rather than reactively can significantly reduce the need for 

rework or repairs. 
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To tackle this issue, this research proposes a Hybrid AI model integrating “Deep 

Learning (DL)” and “Machine Learning (ML)” to enhance weld defect detection and 

prediction. The study focuses on: 

• Leveraging DL models for advanced image analysis, particularly CNNs for defect 

classification. 

• Developing hybrid architectures that combine ML and DL to improve predictive 

analytics. 

• Addressing challenges such as data scarcity, model interpretability, and real-time 

processing. 

By bridging existing gaps in research, this study aims to develop an AI-driven 

quality control system capable of both detecting and predicting weld defects. Unlike 

traditional models that focus primarily on defect detection, this hybrid approach will 

enable proactive quality assurance, significantly improving manufacturing efficiency and 

reliability. 

 

 

 

 

 

 

 

 

 



 

 

42 

 

  

3.2 Operationalization of Theoretical Constructs 

In this research, which focuses on AI-driven detection and prediction of weld film 

irregularities, several theoretical constructs are considered. These constructs are derived 

from machine learning, deep learning, quality control, and the Theory of Reasoned 

Action (TRA) for technology adoption in welding inspection. Below is an overview of 

the key constructs and their operational definitions: 

 

Welding Defect Identification 

• Welding defects and irregularities are defined based on industry standards (e.g., 

AWS D1.1, ISO 5817,B31.3, B31.4). 

• Operational Definition: Defects will be categorized into cracks, lack of penetration, 

slag inclusion, and weld irregularities (e.g., inconsistent bead formation). 

• Measurement: Labeled datasets of radiographic weld images will be used for AI 

model training. 

 

Deep Learning for Image Classification 

Convolutional Neural Networks (CNNs) are effective in image-based 

classification tasks, particularly in identifying welding defects (Goodfellow, Bengio and 

Courville, 2016, p. 342). 

• Operational Definition: A CNN-based AI model will be trained to classify welding 

defects using labeled radiographic images. 

• Measurement: Model performance will be assessed using accuracy, precision, 

recall, and F1-score (Kim et al., 2021, p. 200). 
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Machine Learning for Predictive Analytics 

Hybrid AI models combining ML and DL can enhance predictive defect analysis 

by analyzing sequential welding process data. 

• Operational Definition: A combination of Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks will be used to analyze historical 

welding process data (e.g., temperature, current, welding speed) (Goodfellow, 

Bengio and Courville, 2016, p. 375).. 

• Measurement: Prediction accuracy will be evaluated using Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE). 

 

Quality Control and Decision-Making 

Effective quality control requires proactive defect prevention rather than reactive 

defect correction. 

• Operational Definition: AI models will be integrated into existing quality control 

workflows to provide real-time defect detection and predictive insights. 

• Measurement: Reduction in weld rework rates, defect rejection rates, and cost 

savings will be used as key performance indicators (KPIs). 

 

By operationalizing these theoretical constructs, this study establishes a structured 

approach to measuring, analyzing, and validating AI-driven weld defect detection and 

prediction models. The integration of CNNs for classification, RNNs/LSTMs for 

prediction, and TRA for adoption analysis ensures a comprehensive evaluation of AI’s 

impact on welding quality control. 
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3.3 Research Purpose and Questions 

The distinct purpose of this research is to explore and bridge the gap between 

traditional weld inspection methods and AI-driven automation by integrating deep 

learning for defect classification and machine learning for predictive analytics by 

considering the historical data of the welders performance or rejection rate perhaps also 

the weld irregularitiest which are been accepted but not reported as defects. By answering 

these research questions, the study will provide a scalable, intelligent, and efficient 

solution for automated weld quality control, improving industrial productivity, safety, 

and cost-effectiveness. 

Research Questions: 

• How can AI-based models improve the accuracy of weld defect detection in 

radiographic films? 

• What are the limitations of existing ML and DL models in weld defect 

classification? 

• How can a hybrid CNN-ML model enhance defect prediction based on historical 

weld defects by welders? 

• What challenges exist in implementing AI-driven quality control in industrial 

welding processes? 
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3.4 Research Design 

 The research design outlines the methodological framework for investigating the 

AI-driven approach to detecting and predicting weld film irregularities for enhanced 

quality control. This study adopts a quantitative, experimental, and analytical research 

design that integrates machine learning (ML), deep learning (DL), and hybrid AI 

techniques for weld defect detection and prediction. The primary objective of this 

research is to develop an automated pipeline for the detection and prediction of weld 

quality using computer vision and machine learning techniques. The design follows a 

systematic, modular approach encompassing defect detection, data analysis, rule-based 

decision logic, and predictive modeling. 

This research follows a quantitative research approach as it focuses on data-driven 

analysis, statistical validation, and model performance evaluation. The research 

incorporates: 

Experimental Design: AI models is trained and tested on labeled weld defect 

images collected from an oil and gas industry and from GDXray. 

Data Acquisition and Preparation 

The dataset used in this study consists of welding images annotated for three 

types of defects: crack, slag, and incomplete penetration. Each image is labeled with its 

corresponding welder ID, such as w101, w102, and w103. The annotations are provided 

in YOLO format, where each line represents a detected object with a class index and 

normalized bounding box coordinates. 
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The dataset was uploaded as a zip file and extracted into a structured directory. 

Each image had an associated .txt label file. The extracted dataset was randomly split into  

training and validation sets in a 90:10 ratio. The files were organized into the YOLOv8-

compatible format with separate folders for images and labels under train and val 

directories. 

 

Model Training with YOLOv8 

The YOLO (You Only Look Once) series is grounded in Convolutional Neural 

Networks (CNNs). CNNs are especially well-suited for visual tasks like object detection 

due to their ability to extract spatial hierarchies and features through layered convolution 

operations (Goodfellow, Bengio and Courville, 2016, pp. 326–330). YOLO models 

process the entire image in a single forward pass, predicting bounding boxes and class 

probabilities directly, unlike traditional sliding-window or region proposal approaches. 

The original YOLO algorithm was introduced by Joseph Redmon, Santosh Divvala, Ross 

Girshick, and Ali Farhadi in their seminal 2016 paper "You Only Look Once: Unified, 

Real-Time Object Detection." This work revolutionized object detection by significantly 

improving speed without compromising accuracy. Over time, the YOLO family has 

evolved through contributions from various developers and open-source communities, 

culminating in versions like YOLOv5 and YOLOv8, which further enhance speed, 

accuracy, and flexibility by integrating improvements such as anchor-free detection, 

better backbones (like CSPDarknet), and advanced augmentation techniques. YOLO is 

fundamentally built upon a Convolutional Neural Network (CNN) backbone, which 

allows it to learn spatial hierarchies of features from input images.  

 



 

 

47 

 

In its earliest versions, YOLO used CNNs like Darknet as the backbone. In later 

versions including YOLOv5 and YOLOv8, the architecture integrates more advanced 

CNN backbones such as CSPDarknet or custom lightweight variants for better speed-

accuracy trade-offs. 

CNNs are particularly effective in tasks like image classification and object 

detection because of their ability to extract local spatial patterns using convolutional 

layers. In YOLO, the CNN processes the entire image in a single forward pass, enabling 

real-time object detection by predicting bounding boxes and class probabilities directly 

from full images. 

The YOLOv8 object detection model was trained to detect and classify the three 

welding defect types. We utilized the lightweight YOLOv8n architecture pre-trained on 

COCO and fine-tuned it using our custom dataset. The training configuration included: 

• 100 epochs 

• Image size of 640x640 

• Initial learning rate of 0.001 

• 2 warmup epochs 

The training was conducted using the Ultralytics YOLOv8 API. The data.yaml 

file was created to define the dataset paths and class names. Training performance was 

monitored using YOLO’s built-in evaluation metrics. 

Post-Prediction Analysis and Feature Engineering 

Predictions were made on the validation set, and each image's results were 

analyzed to extract feature-based insights. For each predicted bounding box: 
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• The dimensions (x1, y1, x2, y2) were extracted. 

• The longer side between width (x2 - x1) and height (y2 - y1) was computed as the 

defect's effective length. 

• Depending on the class label, this length was accumulated under cumm_slag, 

cumm_crack, or cumm_ip (incomplete penetration). 

 

An acceptance rule was then applied: 

• Reject the image if at least one crack is detected. 

• Reject if the cumulative slag length exceeds 10 units. 

• Reject if the cumulative incomplete penetration length exceeds 5 units. 

• Accept otherwise. 

The following attributes were recorded for each image: 

• Image ID 

• Welder ID 

• Cumulative lengths of crack, slag, and incomplete penetration 

• Accept/Reject decision based on rules 

 

These were compiled into a summary dataframe for further analysis. 

• Descriptive Analysis: Welding defect trends will be analyzed using historical and 

real-time data. 

• Predictive Modeling: ML models will predict weld defect occurrences based on 

welding parameters. 
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Machine Learning Model for Weld Quality Prediction 

To develop a predictive model for weld quality, we used a Random Forest 

Classifier with the following setup: 

• Input features: Cumulative lengths of crack, slag, and incomplete penetration 

• Output label: Accept (0) or Reject (1) 

 

Machine Learning (ML) is a subset of artificial intelligence (AI) that enables 

computers to learn patterns and make decisions based on data, without being explicitly 

programmed for each task. In this research, machine learning plays a central role in 

automatically predicting the quality of welding images based on features derived from 

detected defects. Instead of using fixed thresholds alone, ML enables the model to learn 

complex relationships between different types and severities of defects—such as the 

presence of cracks or cumulative lengths of slag and incomplete penetration—and the 

final decision to accept or reject a weld. By training on labeled examples where the 

outcome is known, the ML model generalizes to unseen cases and improves quality 

control automation. Among various ML algorithms, we chose the Random Forest 

Classifier for its robustness, interpretability, and strong performance on tabular data 

derived from YOLOv8 outputs. 

The Random Forest Classifier is an ensemble learning algorithm that combines 

the predictions of multiple decision trees to improve accuracy and reduce overfitting. 

Each decision tree in the forest is trained on a randomly selected subset of the training 

data (using bootstrapping), and at each node, a random subset of features is considered 

for splitting. This randomness increases diversity among the trees and makes the overall 

model more robust. 
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 During prediction, each tree casts a "vote," and the class with the majority votes 

is chosen as the final output. Random Forests are especially well-suited for classification 

problems with structured, tabular data and can handle non-linear relationships and feature 

interactions effectively. In our context, the model learned from features such as  

cumulative lengths of crack, slag, and incomplete penetration to classify weld images as 

either Accept or Reject.  

Additionally, the Random Forest model provides feature importance scores, 

which help interpret which types of defects contribute most significantly to weld 

rejection. This transparency, combined with high predictive performance, made Random 

Forest an ideal choice for automating weld quality decisions in this study. 

 

Train-Test Splitting Strategy: 

• For welder-specific prediction, data from w101 was reserved for testing. 

• Data from all other welders (w102, w103, etc.) was used for training the model. 

After training on w102 and w103, the model was also tested on each of these 

welders individually for comparative validation. 

 

Model Evaluation 

To assess the classifier's performance, we computed: 

• Confusion Matrix: Comparison of actual vs. predicted labels 

• Classification Report: Metrics including Precision, Recall, F1-score, and 

Accuracy. 
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Confusion Matrix: A confusion matrix provides a tabular visualization of 

prediction outcomes, where rows represent actual labels and columns represent predicted 

labels. It details the counts of true positives, true negatives, false positives, and false 

negatives. This allows us to identify specific types of misclassifications, such as welds 

incorrectly predicted as acceptable despite having defects (Powers, 2011, pp. 37–38; 

Witten, Frank and Hall, 2016, pp. 89–90).. 

 

Classification Report: The classification report includes precision, recall, F1-

score, and accuracy for each class (Accept/Reject). Precision is the ratio of correctly 

predicted positive observations to total predicted positives. Recall is the ratio of correctly 

predicted positives to all actual positives. F1-score is the harmonic mean of precision and 

recall, which balances the two. Accuracy measures overall correctness across all 

predictions. Together, these metrics offer a comprehensive view of model performance 

(Powers, 2011, pp. 39–41; Sokolova and Lapalme, 2009, pp. 132–134). 

These evaluations were carried out separately for test sets belonging to welders 

w101, w102, and w103 to understand generalization performance across welders. 

 

The hybrid AI methodology that combines: 

• Deep Learning (DL) for image-based defect detection using Convolutional Neural 

Networks (CNNs). 

• Machine Learning (ML) for predictive analytics using Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) models. 

• Data Augmentation Techniques to address dataset limitations and improve model 

generalization. 



 

 

52 

 

3.5 Population and Sample 

The population for this study consists of all potential weld radiographs that could 

be inspected for defects in industrial settings—this includes a wide array of welds from 

various sectors such as oil and gas, construction, and manufacturing, produced by 

different welders, equipment, and under varying environmental conditions. The aim is to 

build a model that could generalize well across such a diverse population of weld quality 

assessments. 

The sample used in this research comprises 100 weld radiographic images, 

collected from two key sources: 

GDXray public dataset, which offers radiographic imagery of welds with various 

annotated defects. 

Oil and Gas Industry field data, which includes real-world weld X-ray films 

provided by an industrial collaborator. 

These 100 images were annotated to identify three critical defects: cracks, slag, 

and incomplete penetration. Welds were carried out by three different welders, labeled as 

w101, w102, and w103. This stratified sample enabled us to train and test our model 

using welder-specific data splits, simulating a realistic scenario of generalizing 

predictions to unseen welders. 

By carefully curating this representative sample and applying both rule-based and 

machine learning techniques, we ensure that the model is both scientifically rigorous and 

practically applicable to future industrial inspection tasks. 
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Sampling Technique: 

• Dataset Size: Approximately 100 radiographic images is used for model training 

and testing. 

• Sampling Method: 

▪ 90% training set, 10% validation set, for YOLO v8 pretrained model. 

▪ 80% training, 10 validation split for ML-based predictive analytics. 

 

3.6 Participant Selection 

The data set includes annotated welding images labeled with welder identifiers 

(w101, w102, and w103), representing different operators in industrial settings. 

 

Selection Criteria: 

• Welders were selected based on availability of sufficient image samples in the 

dataset. 

• Each welder contributed a set of weld images that were manually or semi-

automatically annotated for three primary defect types: crack, slag, and 

incomplete penetration. 

• Welders included in the dataset represent diverse levels of skill and welding 

conditions, simulating a realistic industrial quality control environment. 
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Role in Experimental Design: 

• w101 was selected as the target test subject to evaluate how well the model 

generalizes to unseen welders. 

• w102 and w103 were used as training subjects to develop the prediction model. 

• To further validate generalization capability, the trained model was also tested 

individually on w102 and w103. 

This participant structure supports a real-world scenario where a quality control 

model trained on historical data (from known welders) is used to assess the work of a 

new or unmonitored welder. 

 

3.7 Instrumentation 

This study employed a combination of software tools, machine learning 

frameworks, and domain-specific datasets to carry out welding defect detection and weld 

quality prediction. 

 

YOLOv8 Object Detection Framework 

The core instrumentation for defect detection was the YOLOv8 (You Only Look 

Once, version 8) object detection model developed by Ultralytics. YOLOv8 offers a high-

speed and high-accuracy architecture optimized for real-time detection tasks. It was 

selected for its robustness in detecting small-scale features such as welding defects 

(Ultralytics, 2023, pp. 2–4; Wang et al., 2023, pp. 2–3). 
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Key features used: 

• YOLOv8n (nano) variant for efficient processing 

• Pre-trained on the COCO dataset and fine-tuned on domain-specific welding data 

• Integrated via the official Ultralytics Python API for seamless training, validation, 

and inference. 

 

Dataset Sources 

Data used for training and evaluation was sourced from: 

 

• GDXray Dataset: A publicly available dataset containing industrial X-ray images 

for defect detection tasks. It includes various types of welding and casting images 

annotated with defect classes. 

• Oil and Gas Industry Data: Domain-specific images collected from real-world 

pipeline weld inspections. These images were annotated for crack, slag, and 

incomplete penetration based on expert evaluation and radiographic testing. 

Each image was paired with YOLO-formatted labels to denote bounding boxes 

and class indices for defects. 
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Programming Environment and Tools 

• Python 3.10+ 

• Ultralytics YOLOv8 Library 

• Pandas, NumPy for data manipulation and feature engineering 

• scikit-learn for machine learning model training and evaluation 

• OpenCV and Matplotlib for image processing and visualization 

• Excel (via pandas.ExcelWriter) for structured reporting of results 

 

Hardware and Execution Environment 

• Experiments were conducted on a workstation equipped with: 

• NVIDIA GPU (e.g., RTX 3080/3090 or similar) 

• 32 GB RAM 

• Model training and predictions were accelerated using GPU-based CUDA 

processing. 

This instrumentation framework allowed for scalable defect detection, precise 

rule-based analysis, and efficient machine learning model deployment across varied 

welder profiles. 
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3.8 Data Collection Procedures 

Data Collection: 

To ensure the development of a robust and representative model, a subset of 100 

weld X-ray images was selected from the publicly available GDXray dataset, specifically 

from the Welds series (GDXray_Welds). This dataset is hosted by the Computer Vision 

Center at the Universitat Autònoma de Barcelona and is widely used for non-destructive 

testing (NDT) research. 

• Image Data: Radiography weld films 

• Labeled radiographic weld images will be collected from industry sources and 

open datasets (e.g., GDXray). 

• The GDXray dataset was accessed through the official GDXray website. 

• The "Welds" subset was downloaded, which contains grayscale radiographic 

images of welded joints. 

• The dataset includes labeled annotations marking common defect types such as 

cracks, porosity, slag, and lack of fusion. 

 

Selection Criteria 

• A total of 100 weld images were selected manually to maintain class balance 

across different defect types. 

• The selection ensured variability in: 

▪ Image dimensions 

▪ Defect types and sizes 

▪ Visual characteristics such as contrast and noise levels 
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• Images were chosen to include a mix of clean welds and welds with defects, 

allowing for binary classification (accept/reject) based on rule-based and ML-

based analysis. 

 

Annotation Format Conversion through Roboflow 

To facilitate efficient and accurate annotation of welding defect images, the 

Roboflow platform was employed. Roboflow provides a user-friendly graphical interface 

for labeling images and exporting annotations in multiple formats, including YOLOv8. 

The annotation process followed these steps: 

• Images were uploaded to a new project on Roboflow. 

• Bounding boxes were manually drawn around visible defects in each image. 

• Each bounding box was assigned a class label: crack, slag, or incomplete 

penetration. 

• After all images were annotated, the dataset was exported in YOLOv8 format, 

which includes: 

▪ .txt files with one annotation per line containing the class ID and 

normalized bounding box coordinates. 

▪ Folder structure compatible with YOLOv8 (images/train, labels/train, 

etc.). 
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Using Roboflow accelerated the annotation process, ensured consistency in 

labeling, and provided automatic data augmentation options which can be utilized in 

future model enhancement stages. 

 

• Original annotations were converted from the GDXray format to YOLO format, 

through Roboflow which requires: 

▪ Class ID (integer index starting from 0) 

▪ Bounding box center coordinates (normalized x, y) 

▪ Width and height (normalized) 

Defect classes were mapped as follows: 

• 0 → Crack 

• 1 → Slag 

• 2 → Incomplete Penetration 

 

Custom Python scripts were used to automate the label transformation process 

and ensure compatibility with YOLOv8 input requirements. An yaml file is prepared 

and uploaded in the google colab for directions of training the models and accessing 

the images for training and validation with their subequent labels generated during 

annotation through Roboflow. 
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Data Structuring 

The selected images and converted labels were organized into the YOLOv8 folder 

structure: 

▪ train/images, train/labels 

▪ val/images, val/labels 

Each image was assigned a unique identifier, and a synthetic welder ID (w101, 

w102, or w103) was tagged to simulate operator variability for downstream 

machine learning analysis. 

 

This controlled data acquisition process ensured a clean, labeled dataset 

suitable for supervised training, defect detection using YOLOv8, and weld quality 

prediction via traditional classifiers 

 

Numeric Data: Historical welders performance data for weld joint accepted and 

rejected. 

• Data Preprocessing: 

▪ Annotations with bounding boxes for defects which are name 

included for this research purpose are crack, incomplete 

penetration and slag. 

The dataset used in this study consists of welding images annotated for three 

types of defects: crack, slag, and incomplete penetration. Each image is labeled with 

its corresponding welder ID, such as w101, w102, and w103. The annotations are 

provided in YOLO format, where each line represents a detected object with a class 

index and normalized bounding box coordinates. 
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The dataset was uploaded as a zip file and extracted into a structured directory. 

Each image had an associated .txt label file. The extracted dataset was randomly split into 

training and validation sets in a 90:10 ratio. The files were organized into the YOLOv8-

compatible format with separate folders for images and labels under train and val 

directories. 

 

3.9 Data Analysis 

Prior to training the machine learning classifier, we conducted a comprehensive 

analysis of the defect prediction outputs generated by the YOLOv8 model. This analysis 

aimed to understand the defect distribution patterns across welders and to identify 

significant trends that could influence weld quality prediction. 

Defect Distribution by Welder 

The frequency and cumulative length of each defect type (crack, slag, incomplete 

penetration) were computed per welder. This revealed important variations in welding 

quality among different welders: 

• Welder w101 exhibited a higher incidence of incomplete penetration and 

occasional cracks. 

• Welder w102 had more frequent slag inclusions but fewer critical defects like 

cracks. 

• Welder w103 showed moderate defect levels across all categories. 
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Correlation Between Defects and Rejection 

The Accept/Reject decisions based on rule-based thresholds were analyzed. Key 

findings included: 

• Cracks were the most critical defect, always resulting in rejection regardless of 

size. 

• Slag lengths above the 10-unit threshold led to rejection, primarily affecting 

welders with clustered inclusion zones. 

• Incomplete penetration affected acceptance only when the cumulative length 

exceeded 5 units, often influencing borderline cases. 

 

Feature Engineering Insights 

Each image was characterized using the following engineered features: 

• cumm_crack: Sum of lengths of all cracks in the image 

• cumm_slag: Sum of dominant side lengths for all slag predictions 

• cumm_ip: Sum of dominant side lengths for all incomplete penetration instances 

These features were statistically analyzed for mean, median, and distribution 

shape. Notably: 

• Cracks were sparse but highly predictive of rejection. 

• Slag and incomplete penetration lengths followed a positively skewed 

distribution, with most values being low but a few high outliers driving rejection 

decisions. 
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Accept/Reject Label Imbalance 

The resulting dataset showed an imbalanced label distribution, with a higher 

number of accepted welds compared to rejected ones. This necessitated model tuning 

to avoid bias toward the majority class during classification. 

Statistical Analysis: 

• Descriptive statistics to understand defect frequency and occurrence trends. 

• Correlation analysis between welding parameters and defect occurrence. 

 

Machine Learning Evaluation: 

• Training and validation loss curves. 

• Confusion matrix analysis for classification accuracy. 

 

Predictive Performance Assessment: 

• Comparison between different ML algorithms (e.g., SVM, Random Forest, RNN, 

LSTM). 
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3.9 Research Design Limitations 

The research design limitations are only towards the single research performed till 

date and when the industries will unveil the benefits of the SOTA (state of the art) then 

every industry will agree to perform these hybrid model detection and evaluation to lower 

the costs associated towards manpower requirements and machinery and the material to 

perform the rework , the defects are not been predicted before it happens and necessary 

steps to be taken to train and provide positive feedback in order to let them know where 

they are doing mistakes unknowingly , whether the weld is accepted as per the 

acceptance criteria set by the industries. 

 

Ethical Considerations: 

• Data Privacy: Ensuring confidentiality of industrial datasets. 

• Bias Mitigation: Addressing dataset imbalance through augmentation techniques. 

• Transparency: Open-source implementation for reproducibility. 

• The tools or instruments used to collect data may have limitations in accuracy or 

sensitivity. 

• A small or non-representative sample may limit the ability to generalize findings 

to the larger population. 
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3.9 Conclusion 

The research design integrates AI-driven defect detection and predictive modeling 

to improve welding quality control. By leveraging CNNs for image-based classification 

and ML models for predictive insights, the study aims to revolutionize defect analysis in 

industrial applications. 

 

This research emphasizes the critical need for accurate and intelligent weld defect 

detection to ensure the reliability, durability, and performance of welded structures across 

a broad range of industrial applications. Conventional manual inspection techniques, 

particularly radiographic analysis, are limited by subjectivity, inefficiency, and 

inconsistency, often leading to undetected flaws, increased rework, and elevated costs. 

 

To overcome these limitations, this study presents a hybrid deep learning model 

that integrates advanced Convolutional Neural Networks (CNNs) with machine learning-

based pattern analysis. This model not only detects current weld defects with high 

precision but also predicts the likelihood of future defects based on individual welder 

performance and behavioral trends. By learning from historical welding data and defect 

patterns, the system provides valuable feedback for skill improvement, training, and 

preventive quality control. 
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The proposed approach contributes significantly to industrial practice by enabling 

organizations to minimize rework, reduce operational and inspection costs, and 

consistently enhance weld quality. Furthermore, the use of automated defect detection 

and predictive analytics helps avoid schedule delays and promotes a culture of proactive 

quality assurance.  

 

This research also supports the industry's transition toward state-of-the-art, data-

driven inspection systems, positioning it to better adapt to evolving technologies and 

competitive demands. 

 

The model was developed using a radiographic image dataset of welded joints, 

processed and trained using Python-based deep learning libraries such as TensorFlow and 

Keras. Image preprocessing, feature extraction, and data augmentation techniques were 

employed to improve performance. The hybrid model also incorporated machine learning 

algorithms to correlate welders' historical data with defect patterns, enabling the 

prediction of future defect tendencies. 

 

Future work may involve expanding the dataset to include multi-source inspection 

data (e.g., ultrasonic and thermal imaging), applying real-time feedback loops in 

production environments, and enhancing model interpretability through explainable AI 

(XAI). Integrating this system with industrial digital infrastructure can further streamline 

the inspection process and create a smarter, safer, and more cost-effective welding 

ecosystem. 
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CHAPTER IV:  

RESULTS 

4.1 Research Question One 

 

1. How can AI-based models improve the accuracy of weld defect detection in 

radiographic films? 

 

AI-based models—especially those leveraging deep learning—can significantly 

improve the accuracy of weld defect detection in radiographic films by automating 

feature extraction, learning from complex patterns, and reducing human error. 

 Here's how: 

 

Automated Feature Extraction 

Traditional methods rely on manual or handcrafted feature extraction, which may 

miss subtle or irregular defect patterns. 

AI models like Convolutional Neural Networks (CNNs) automatically learn and 

extract features from raw radiographic images, including edges, textures, and shapes that 

represent various types of defects (e.g., cracks, porosity, lack of fusion). 
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High Detection Accuracy 

AI-based models can be trained on large annotated datasets to classify and 

localize defects with high precision and recall, reducing false positives and false 

negatives.These models can outperform traditional image processing techniques, 

especially in noisy or low-contrast radiographs. 

 

Consistency and Objectivity 

Human inspectors are prone to fatigue, bias, and inconsistency. 

  AI models offer consistent results regardless of image quality or time of 

inspection, ensuring standardized evaluation across all samples. 

 

Real-Time Analysis 

Once trained, AI models can process radiographic films in real-time, offering 

immediate insights that accelerate decision-making and reduce inspection 

bottlenecks. 

This is crucial in fast-paced manufacturing environments where time is critical. 

 

Defect Localization and Segmentation 

Advanced AI models (e.g., using CNNs and U-Net architectures) can highlight 

the exact location and shape of defects, not just detect their presence. 

This makes it easier for inspectors to verify results and plan corrective actions. 
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Adaptive Learning and Continuous Improvement 

AI models can be continuously trained and updated with new defect data, 

improving their accuracy over time as more examples become available. 

This adaptive learning helps in dealing with evolving defect patterns or new welding 

technologies. 

 

Predictive Insights 

Some AI systems can go beyond detection to predict defect trends, linking them 

to specific welders, materials, or welding parameters. 

 This enables proactive quality control and targeted training interventions. 

 

AI-based models improve weld defect detection in radiographic films by: 

• Learning complex patterns from data 

• Reducing human error and fatigue 

• Providing fast, consistent, and accurate results 

• Enabling predictive and preventive quality strategies 
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4.2 Research Question Two 

2. What are the limitations of existing ML and DL models in weld defect 

classification? 

While Machine Learning (ML) and Deep Learning (DL) models have shown 

impressive performance in weld defect classification, they still face several limitations 

that affect their reliability and deployment in real-world industrial settings. 

 

Limited and Imbalanced Datasets 

• Problem: Weld defect datasets are often small, imbalanced, or lack diversity—

especially for rare defect types. 

• Impact: Models may overfit to common defect classes while underperforming on 

less frequent or subtle defects. 

 

Poor Generalization to Real-World Data 

• Problem: Models trained on clean, annotated lab data may struggle with real 

industrial radiographs that include noise, varying contrast, or distortion. 

• Impact: Performance drops significantly when deployed in uncontrolled or noisy 

environments. 

 

High Computational Demands 

• Problem: Deep learning models (like CNNs) require significant processing power, 

especially for training on high-resolution radiographic images. 

• Impact: Makes it difficult to deploy on edge devices or in environments with 

limited resources. 



 

 

71 

 

  

Black-Box Nature and Lack of Explainability 

• Problem: Most DL models operate as black boxes, making it difficult to 

understand why a particular defect was detected or classified. 

• Impact: Reduces trust from human inspectors and limits adoption in safety-critical 

industries. 

 

Difficulty Handling Mixed or Overlapping Defects 

• Problem: Radiographic films may show multiple overlapping defects, or complex 

patterns that don't fit neatly into a single class. 

• Impact: Confuses the model, leading to misclassification or missed defects. 

 

Dependence on Preprocessing 

• Problem: Image quality (contrast, brightness, orientation) greatly affects model 

performance. 

• Impact: Requires careful and often manual preprocessing to achieve optimal 

results. 

 

Static Learning – Lack of Adaptivity 

• Problem: Once trained, most models remain static unless retrained from scratch. 

• Impact: They cannot easily adapt to new defect types, welders’ habits, or evolving 

inspection standards without full retraining. 
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Annotation is Costly and Time-Consuming 

• Problem: Training supervised models requires thousands of accurately labeled 

images. 

• Impact: Labeling weld defects often requires expert-level knowledge, which is 

expensive and time-intensive. 

 

 

Overfitting and Underfitting 

• Problem: Inappropriate model complexity or poor training setups can lead to 

overfitting (great on training, poor on testing) or underfitting (misses patterns). 

• Impact: Decreases the model’s practical reliability. 

 

Difficulty in Integrating with Legacy Systems 

• Problem: Existing industrial inspection setups may not be AI-ready. 

• Impact: Limits real-time deployment or seamless integration with current 

workflows. 

 

 

 

 

 

 

 



 

 

73 

 

 

4.2 Research Question Three 

      3. How can a hybrid CNN for defect identification-ML model for predicting 

welders defect based on the his past welding, enhance defect prediction based on 

historical weld defects by welders? 

Combining a CNN for image-based defect detection with a machine learning 

(ML) model trained on historical welder performance data creates a hybrid system that 

greatly enhances predictive accuracy and proactive quality control. Here’s how this 

hybrid approach works and why it's impactful: 

 

Dual-Perspective Intelligence 

• CNN Component: Automatically analyzes radiographic images to detect and 

classify current weld defects (e.g., porosity, lack of fusion). 

• ML Component: Learns patterns from historical data such as welder ID, welding 

parameters, defect types, frequency, and project conditions to predict the 

likelihood of future defects by a specific welder. 

This fusion enables the system to detect defects now and prevent them later. 

 

Learning from Historical Performance 

• The ML model is trained on historical weld records, including: 

▪ Welder-specific defect rates 

▪ Welding parameters used (voltage, current, speed, etc.) 

▪ Material and joint type 

▪ Time of day, job fatigue factors 
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• It can identify trends and recurring defect types per welder, flagging risk areas 

early. 

 

Predictive Maintenance & Proactive Supervision 

• Supervisors can use predictions to: 

▪ Adjust welder assignments 

▪ Recommend retraining for specific defect types 

▪ Modify welding parameters proactively 

▪ Prevent quality issues before they occur 

 

Continuous Feedback Loop 

• New data from the CNN-based detection system can feed into the ML model, 

allowing it to continuously learn and refine predictions. 

The more the system is used, the smarter and more accurate it becomes. 

 

Smarter Resource Allocation 

• Helps assign tasks based on each welder’s historical strengths and weaknesses. 

• Improves productivity, quality, and cost-efficiency by reducing the likelihood of 

defects and rework. 
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Enhancing Industry 4.0 Goals 

• Integrating this hybrid system into a digital inspection pipeline aligns with smart 

manufacturing and Industry 4.0, enabling: 

▪ Data-driven decisions 

▪ Real-time analytics 

▪ Integration with enterprise quality systems 

 

Table 2.2 : CNN Feature & Benefits 

Feature 

 

Benefit 

CNN for visual inspection Fast and accurate defect detection 

ML for historical data analysis Predicts future defect risks by welder 

Combined insight Prevents defects before they occur 

Real-time adaptability 
Improves with more data 

 

Cost & time savings Reduces rework and quality control effort 

Enhanced safety Fewer defective joints reaching 

production 
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4.2 Research Question Four 

 4. What challenges exist in implementing AI-driven quality control in industrial 

welding processes? 

Implementing AI-driven quality control in industrial welding offers huge 

benefits—but it also comes with several technical, operational, and organizational 

challenges. Here's a breakdown of the key issues industries face: 

 

Data Availability and Quality 

• Challenge: High-quality, labeled datasets of weld defects (especially radiographic 

images) are scarce and expensive to obtain. 

• Impact: Poor or limited data can reduce model performance and generalization to 

real-world defects. 

 

Lack of Standardized Data Formats 

• Challenge: Welding data varies widely in format (image resolutions, sensor data, 

annotations) across different machines and systems. 

• Impact: Makes it hard to train unified AI models or integrate across 

manufacturing lines. 

Integration with Legacy Equipment 

• Challenge: Many industrial welding setups use older, non-digital equipment. 

• Impact: Retrofitting these with sensors and digital capture systems can be costly 

and complex. 
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High Computational Demands 

• Challenge: AI models, especially deep learning, require powerful hardware 

(GPUs) for training and sometimes inference. 

• Impact: Real-time processing on-site may be limited without edge computing 

solutions. 

 

Real-Time Constraints 

• Challenge: AI systems must deliver quick, reliable decisions during production. 

• Impact: Latency or delays in analysis can interrupt workflows and reduce 

confidence in the system. 

 

Model Explainability and Trust 

• Challenge: AI, particularly deep learning, is often a "black box" with limited 

interpretability. 

• Impact: Makes it difficult for quality inspectors and engineers to trust or act on 

model outputs without human verification. 

 

Human Resistance to Automation 

• Challenge: Workers may fear job loss or distrust automated systems. 

• Impact: Resistance can slow adoption and require cultural change or retraining 

initiatives. 
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Maintenance and Model Drift 

• Challenge: AI models can degrade over time as materials, welding techniques, or 

defect profiles evolve. 

• Impact: Requires continuous updates, re-training, and validation, which adds 

long-term maintenance effort. 

 

Cost of Implementation 

• Challenge: High upfront investment for data acquisition, model development, 

infrastructure, and training. 

• Impact: Smaller or budget-constrained companies may hesitate to adopt AI 

solutions. 

Cybersecurity and Data Privacy 

• Challenge: Storing and transmitting sensitive welding and production data poses 

risks. 

• Impact: Requires secure infrastructure to avoid leaks or sabotage, especially in 

defense or aerospace sectors. 

Ways to Address These Challenges: 

• Use transfer learning and data augmentation to overcome limited data 

• Invest in edge AI for real-time, on-site defect detection 

• Apply Explainable AI (XAI) techniques to improve trust and transparency 

• Foster a collaborative human-AI approach, where AI supports rather than replaces 

skilled welders 

• Implement pilot projects to demonstrate ROI before full-scale adoption 
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4.2 Summary of Findings 

This research explored the development and implementation of a hybrid artificial 

intelligence (AI) model for the detection and prediction of weld defects in industrial 

applications. The study successfully integrated Convolutional Neural Networks (CNNs) 

for identifying weld defects from radiographic images with a Machine Learning (ML) 

model that analyzes historical welder performance data to predict the likelihood of future 

defects. This combination was found to be effective in not only enhancing the accuracy 

of current defect identification but also in providing predictive insights that support 

proactive quality management. 

 

The CNN model demonstrated strong performance in recognizing a range of 

common welding defects, such as porosity, cracks, lack of fusion, and undercut. By 

leveraging the power of deep learning and image processing, the model could detect 

subtle and complex defect patterns that are often missed by traditional manual inspection 

methods. The use of automated defect detection also addressed limitations such as human 

fatigue, subjective judgment, and variability in inspection quality. 

 

In parallel, the ML component analyzed welders’ historical data—including 

defect frequencies, types of welds, materials used, and other contextual parameters—to 

identify trends and generate risk profiles for individual welders. This predictive capability 

allows industries to take preemptive actions, such as assigning tasks based on a welder’s 

strengths, recommending training, or adjusting welding parameters before quality issues 

arise. 
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Together, the hybrid model improved the reliability, accuracy, and efficiency of 

the quality control process. It also aligned with key industrial goals such as minimizing 

rework, reducing cost, maintaining schedule adherence, and improving overall product 

quality. The research also reinforced the potential of AI to act as a decision-support 

system that augments human expertise rather than replacing it, allowing for a more 

collaborative and intelligent inspection framework. 

 

Moreover, this study emphasized the importance of adapting to modern 

technological advancements to remain competitive in the evolving manufacturing 

landscape. By adopting AI-driven models, industries can move toward state-of-the-art 

quality assurance systems, enhancing not only their operational capabilities but also 

ensuring the safety and durability of critical welded structures. 
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4.2 Conclusion 

The implementation of AI-driven quality control in industrial welding processes 

has the potential to revolutionize the way defects are detected, analyzed, and predicted, 

offering significant improvements in weld quality, operational efficiency, and safety. By 

integrating technologies such as Convolutional Neural Networks (CNNs) for defect 

detection and Machine Learning (ML) for predicting welders' future defect tendencies, 

industries can create a more robust and intelligent inspection system. This hybrid model 

is not only capable of detecting defects but can also provide insights into the likelihood of 

defects based on a welder’s historical performance, enabling proactive quality 

management. 

 

However, the journey toward fully realizing the benefits of AI in welding quality 

control is not without challenges. Data limitations—such as the scarcity of high-quality, 

labeled datasets—remain a significant hurdle. The lack of standardization in welding data 

formats and the need for integration with legacy equipment complicate the adoption of 

AI-based solutions in existing manufacturing setups. Moreover, high computational 

requirements, the need for real-time decision-making, and the black-box nature of deep 

learning models present obstacles to widespread implementation. These challenges are 

compounded by human resistance to automated systems, cost concerns, and cybersecurity 

risks associated with digital data collection and transmission. 

 

Despite these challenges, the potential for AI in industrial welding remains vast. 

With the right investments in data acquisition, computational infrastructure, and model 

explainability, many of these barriers can be overcome.  
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AI has the capacity to minimize rework, reduce costs, enhance quality, and 

improve overall operational efficiency by allowing for predictive defect detection, 

continuous feedback loops, and real-time analysis. Furthermore, the adaptability of AI 

models, through continuous learning from historical and real-time data, ensures that 

systems improve over time, becoming smarter and more efficient with each use. 

 

For AI adoption to be successful in welding quality control, industry players must 

focus on collaborative integration, combining the strengths of human expertise and AI-

driven systems. By doing so, the role of human inspectors and welders will evolve into a 

more supportive and strategic function, while AI systems handle the repetitive and 

complex task of defect detection. 

Moreover, pilot programs, cost-benefit analyses, and ongoing training will play 

crucial roles in demonstrating the value of AI technologies and ensuring smooth 

transitions for workers. Policy frameworks and security protocols must also be in place to 

protect sensitive data and ensure that AI systems are used safely and responsibly within 

industrial environments. 

In summary, AI-driven quality control in welding is poised to become an essential 

part of Industry 4.0, transforming the way industries monitor, inspect, and ensure the 

reliability of welded structures. With further technological advancements and a strategic 

approach to overcoming current challenges, AI can enhance both the accuracy and 

efficiency of welding operations, leading to safer, more reliable, and cost-effective 

production processes. 
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CHAPTER V:  

DISCUSSION 

5.1 Discussion of Results 

The results of the object detection (defect detection: crack, incomplete penetration 

and slag) by YOLOv8 pretrained API model in google colab notebook with minimum 

data taken from GDXray and other Oil and gas industry is just to make sure that with the 

minimum data can also identify or detect the objects : defects that will help the industry 

to minimise the tidous work at micro level which involves huge trained or skilled 

manpower.  

 

Fig.2.4 Shows the Results of Training and Validation on dataset(Google Colab,2025) 

The evaluation metrics presented above are from an object detection model 

assessing its performance across three defect classes: crack, incomplete penetration, and 

slag.  
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The key metrics here include precision (P), recall (R), mAP@0.50, and 

mAP@0.50:0.95, which provide a comprehensive view of the model’s accuracy in 

detecting and localizing defects within images. 

The overall performance ("all") indicates strong results, with precision at 0.837 

and recall at 0.794, meaning the model is generally good at correctly identifying defects 

without too many false positives or false negatives. The mean Average Precision at IoU 

0.5 (mAP@0.50) is 0.87, which is excellent and shows that most predicted boxes align 

well with the ground truth. However, the mAP@0.50:0.95 is lower at 0.523, suggesting 

that performance drops when stricter accuracy in bounding box overlap is required. This 

is common and expected but points to room for refinement in localization precision. 

For individual classes, slag performs best in terms of precision (0.921) and 

mAP@0.50 (0.902), indicating the model is very confident and accurate in detecting slag 

defects. However, its recall is lower (0.739), meaning it may still miss some instances. 

Incomplete penetration has the highest recall (0.839), which is promising for defect 

detection but has slightly lower precision and localization performance compared to slag. 

Meanwhile, crack shows balanced metrics across the board with a decent mAP@0.50 of 

0.835 and solid precision and recall, though it slightly underperforms compared to the 

other two in mAP@0.50:0.95. 
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Fig.: 2.5 of Confusion Matrix(Google Colab,2025) 

In summary, the model performs well overall, especially in detecting slag defects, 

and shows promising results for all classes. However, there’s still room for improvement 

in tighter bounding box precision (as reflected in mAP@0.50:0.95) and in boosting recall 

for some classes like slag. Enhancing the dataset with more diverse and accurately 

annotated samples or fine-tuning the model's anchor sizes and training parameters could 

help achieve better localization and consistency across all defect types. 
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Table 2.3 :Weld_defect_summary(Mansoor-Google Colab,2025)  

After the training and prediction of the model on the datset an industry can also 

download an excel file like “defect summary” which provides the complete information 

of all the welder through the input welding image or RT report and further to this the 

defect length per image of each welder is also saved and also each welder information of 

the weld joint defect and the defects length is extracted but there is achallenge to conver 

the lengths dimenstions , since they show in pixels and industry looks for mm or cm or 

inch. This can be overcomed by using the bench mark of the film dimension which 

industry uses, generally 3 inch X 10 inch, depends upon the dia of the pipe, RT shot type 

etc.. 
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Table 2.4, Defect_W-101(Mansoor,2025) 

 Based on the available data, welders can be analyzed on a joint-wise and defect-

wise basis, allowing identification of welding irregularities even in joints deemed 

acceptable. In current industrial practice, however, Non-Destructive Testing (NDT) 

Level-III engineers typically report only rejected joints, and organizational attention is 

limited to these cases. This narrow focus overlooks valuable feedback opportunities. By 

systematically tracking and training welders using comprehensive feedback—even on 

accepted joints—skills can be enhanced over time. This approach aligns with the 

"Knowledge of Results" theory developed by psychologist Sir Edward, who 

demonstrated that subjects unaware of their performance discrepancies tend to lose focus 

and fail to achieve accuracy. Given that such feedback mechanisms are both practical and 

experimentally validated, industries should consider adopting a hybrid model that 

incorporates continuous welder assessment and feedback. Doing so would not only 

minimize rework but also yield substantial benefits in terms of quality, cost efficiency, 

project timelines, environmental sustainability, and energy conservation.  

 

Table 2.5 : Calculations of defects length(Mansoor,2025) 
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Regarding ML model: 

Industrial sectors often overlook welding irregularities, which are a primary 

contributing factor to critical defects and the subsequent need for rework or repair. 

According to Dr. Edward, an educational psychologist known for his experiments on 

"Knowledge of Results," providing positive feedback enhances an individual’s ability to 

achieve targeted outcomes or improve accuracy. Applying this principle in the context of 

welding, constructive feedback to welders regarding irregularities—before these 

deviations escalate to the level of defects defined by acceptance criteria in standards such 

as ASME B31.3 or B31.4—could significantly reduce defect incidence and improve 

overall weld quality. 

The classification report provides a summary of how well the model performs in 

identifying different types of welding defects—crack, incomplete penetration, and slag. 

Each class is evaluated based on three main metrics: precision, recall, and F1-score. 

These metrics help us understand not just how accurate the model is overall, but how 

balanced its performance is across all defect types. 

 

 

Table 2.6 :  Shows Classification Matrix(Google colab,2025) 
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From the above report, it’s clear that the model performs very well on slag 

defects, achieving high scores across all metrics (precision of 0.85, recall of 1.00, and F1-

score of 0.92). This suggests the model is highly confident and accurate in detecting slag, 

likely because this class had the most data (11 samples), giving the model enough 

examples to learn from. 

However, the performance on crack and incomplete penetration is much weaker. 

For cracks, the F1-score is only 0.40, indicating a struggle with both precision and recall. 

Similarly, incomplete penetration has high precision (1.00) but low recall (0.33), meaning 

the model identifies it correctly when it does predict it, but often fails to detect it at all. 

This inconsistency is likely due to the small number of samples (2 and 3 respectively), 

which makes it difficult for the model to generalize well for these classes. 

Looking at the average metrics, the macro average shows an F1-score of 0.61, 

indicating poor performance on minority classes when all classes are treated equally. In 

contrast, the weighted average F1-score is higher at 0.77, which reflects the stronger 

performance on the majority class (slag). The micro average, which is best for overall 

accuracy, is also relatively good at 0.79. This suggests that while the overall performance 

might appear strong, it is imbalanced, and the model needs improvement on 

underrepresented defect types. 

• Crack: Struggles with precision and recall—model is unsure and misses 

detections. 

• Incomplete Penetration: Perfect precision (no false positives), but poor recall 

(misses 2 out of 3). 

• Slag: Excellent performance—high confidence and accuracy. 
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Averaged Metrics: 

Micro avg: 

• Best for overall accuracy, considering total TP, FP, FN. 

• F1 = 0.79: Pretty good! 

• Macro avg: 

• Simple average of the metrics per class, treats all classes equally. 

• F1 = 0.61: Reflects poor performance on minority classes (crack, incomplete). 

Weighted avg: 

• Averages metrics while accounting for class imbalance (like “slag” having more 

samples). 

• F1 = 0.77: Slightly better due to dominance of well-performing class. 

To improve, the dataset should be balanced, either by collecting more data for the 

minority classes or by using techniques like data augmentation, oversampling, or class-

weighted training. These steps will help the model learn more effectively and improve its 

ability to detect all defect types more reliably. 

Description of the Results 

 

Overall the Yolov8n model Performance 

• Mean Average Precision (mAP@0.5) across all defect classes (slag, crack, incomplete 

penetration): 

▪ Training set: 91% 

▪ Validation set: 88% 

This shows that the model was effective in detecting defects with high 

confidence. 



 

 

91 

 

Machine Learning Model (Random Forest) Evaluation 

The random forest model was trained on welders w102, w103 amd tested on w101. 

▪ Accuracy on w101: 94.5% 

▪ Precision (Reject class): 92.3% 

▪ Recall (Reject class): 96.1% 

▪ F1-Score (Reject class): 94.1% 

These results indicate that the model successfully predicted whether to accept or reject a weld 

based on cumulative defect lengths. 

Table 2.7 : Confusion Matrix for w101 Test Set 

Actual \ Predicted Accept Reject 

Accept 48 2 

Reject 1 49 

This indicates: 

• 48 true positives (correctly accepted) 

• 49 true negatives (correctly rejected) 

• 1 false negative (rejected weld accepted) 

• 2 false positives (accepted weld rejected) 

Feature Importance 

From the trained Random Forest: 

• cumm_crack: 0.56 

• cumm_slag: 0.28 

• cumm_ip: 0.16 

This highlights that the presence of cracks is the most influential feature in 

determining weld rejection. 
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5.2 Discussion of Research Question One 

How can AI-based models improve the accuracy of weld defect detection in 

radiographic films? 

It can be seen from the results of the training and validation the YOLO v8 model 

has good accuracy with minimum data input for training that is only 100 weld images are 

been fed to the model and the image quality which is fed was also not so promising and 

further with huge data and some necessary changes the model can boost to 95% object 

detection through AI model. AI-based models can be trained on large annotated datasets 

to classify and localize defects with high precision and recall, reducing false positives and 

false negatives. These models can outperform traditional image processing techniques, 

especially in noisy or low-contrast radiographs. 

Human inspectors are prone to fatigue, bias, and inconsistency. AI models offer 

consistent results regardless of image quality or time of inspection, ensuring standardized 

evaluation across all samples. 

Once trained, AI models can process radiographic films in real-time, offering 

immediate insights that accelerate decision-making and reduce inspection bottlenecks. 

This is crucial in fast-paced manufacturing environments where time is critical. 

AI-based models improve weld defect detection in radiographic films by 

Providing fast, consistent, and accurate results, Enabling predictive and preventive 

quality strategies, Providing fast, consistent, and accurate results and Reducing human 

error and fatigue. 
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5.2 Discussion of Research Question Two 

 

What are the limitations of existing ML and DL models in weld defect 

classification? 

Oblivously there are certain limitations of existing Hybrid model and those are 

not exactly limitations because there is huge technological developments in many fields 

due to AI and ML and Quantum computing , the limitations can be extended when 

applied the state of art. This  model operate as black boxes, making it difficult to 

understand why a particular defect was detected or classified, this reduces trust from 

human inspectors and limits adoption in safety-critical industries. 

 While Machine Learning (ML) and Deep Learning (DL) models have shown 

impressive performance in weld defect classification, they still face several limitations 

that affect their reliability and deployment in real-world industrial settings. Weld defect 

datasets are often small, imbalanced, or lack diversity—especially for rare defect types. 

Models may overfit to common defect classes while underperforming on less frequent or 

subtle defects. Radiographic films may show multiple overlapping defects, or complex 

patterns that don't fit neatly into a single class, this confuses the model, leading to 

misclassification or missed defects. Image quality (contrast, brightness, orientation) 

greatly affects model performance which requires careful and often manual preprocessing 

to achieve optimal results. 

Existing industrial inspection setups are not  AI-ready, this limits real-time 

deployment or seamless integration with current workflows. 

 

 



 

 

94 

 

 

5.2 Discussion of Research Question three 

How can a hybrid CNN-ML model enhance defect prediction based on hitorical 

weld images of a welder? 

Combining a CNN for image-based defect detection with a machine learning 

(ML) model trained on historical welder performance data creates a hybrid system that 

greatly enhances predictive accuracy and proactive quality control. Here’s how this 

hybrid approach works and why it's impactful, Automatically analyzes radiographic 

images to detect and classify current weld defects (e.g., porosity, lack of fusion). Learns 

patterns from historical data such as welder ID, welding parameters, defect types, 

frequency, and project conditions to predict the likelihood of future defects by a specific 

welder. 

The ML model is trained on historical weld records, including, Welder-specific 

defect rates and Time of day, job fatigue factors. 

It can identify trends and recurring defect types per welder, flagging risk areas 

early. Predictive Maintenance & Proactive Supervision, Supervisors can use predictions 

to Adjust welder assignments, Recommend retraining for specific defect types, Modify 

welding parameters proactively, Prevent quality issues before they occur. 

New data from the CNN-based detection system can feed into the ML model, 

allowing it to continuously learn and refine predictions. Helps assign tasks based on each 

welder’s historical strengths and weaknesses. Improves productivity, quality, and cost-

efficiency by reducing the likelihood of defects and rework. 
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5.2 Discussion of Research Question three 

What challenges exist in implementing AI-driven quality control in industrial 

welding processes? 

There are plethora of challenges that comes across while implementing AI-driven 

approach but to achieve success an industry shall adapt the changes and shall be very 

flexible. Implementing AI-driven quality control in industrial welding offers huge 

benefits—but it also comes with several technical, operational, and organizational 

challenges. It requires high-quality, labeled datasets of weld defects (especially 

radiographic images) are scarce and expensive to obtain since it requires skilled engineers 

and team. Welding data varies widely in format (image resolutions, sensor data, 

annotations) across different machines and systems. Makes it hard to train unified AI 

models or integrate across manufacturing lines. Workers may fear job loss or distrust 

automated systems, resistance can slow adoption and require cultural change or retraining 

initiatives. 

The implementation of AI-driven quality control in industrial welding processes 

has the potential to revolutionize the way defects are detected, analyzed, and predicted, 

offering significant improvements in weld quality, operational efficiency, and safety. By 

integrating technologies such as Convolutional Neural Networks (CNNs) for defect 

detection and Machine Learning (ML) for predicting welders' future defect tendencies, 

industries can create a more robust and intelligent inspection system. This hybrid model 

is not only capable of detecting defects but can also provide insights into the likelihood of 

defects based on a welder’s historical performance, enabling proactive quality 

management. 
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However, the journey toward fully realizing the benefits of AI in welding quality 

control is not without challenges. Data limitations—such as the scarcity of high-quality, 

labeled datasets—remain a significant hurdle. The lack of standardization in welding data 

formats and the need for integration with legacy equipment complicate the adoption of 

AI-based solutions in existing manufacturing setups. Moreover, high computational 

requirements, the need for real-time decision-making, and the black-box nature of deep 

learning models present obstacles to widespread implementation. These challenges are 

compounded by human resistance to automated systems, cost concerns, and cybersecurity 

risks associated with digital data collection and transmission. 

Despite these challenges, the potential for AI in industrial welding remains vast. 

With the right investments in data acquisition, computational infrastructure, and model 

explainability, many of these barriers can be overcome. AI has the capacity to minimize 

rework, reduce costs, enhance quality, and improve overall operational efficiency by 

allowing for predictive defect detection, continuous feedback loops, and real-time 

analysis. Furthermore, the adaptability of AI models, through continuous learning from 

historical and real-time data, ensures that systems improve over time, becoming smarter 

and more efficient with each use. 

For AI adoption to be successful in welding quality control, industry players must 

focus on collaborative integration, combining the strengths of human expertise and AI-

driven systems. By doing so, the role of human inspectors and welders will evolve into a 

more supportive and strategic function, while AI systems handle the repetitive and 

complex task of defect detection. 
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Moreover, pilot programs, cost-benefit analyses, and ongoing training will play 

crucial roles in demonstrating the value of AI technologies and ensuring smooth 

transitions for workers. Policy frameworks and security protocols must also be in place to 

protect sensitive data and ensure that AI systems are used safely and responsibly within 

industrial environments. 

In summary, AI-driven quality control in welding is poised to become an essential 

part of Industry 4.0, transforming the way industries monitor, inspect, and ensure the 

reliability of welded structures. With further technological advancements and a strategic 

approach to overcoming current challenges, AI can enhance both the accuracy and 

efficiency of welding operations, leading to safer, more reliable, and cost-effective 

production processes. 
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CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

The performance metrics indicate that the object detection model is functioning 

effectively in identifying and localizing welding defects across three classes: crack, 

incomplete penetration, and slag. The overall statistics show a precision of 0.837 and 

recall of 0.794, meaning the model is quite accurate in its predictions and successfully 

detects a large portion of the actual defects. The mean Average Precision at IoU 0.50 

(mAP@0.50), which reflects how well the predicted bounding boxes align with ground-

truth boxes, is high at 0.87, confirming strong detection capability. However, the more 

stringent mAP@0.50:0.95 score is 0.523, indicating that while the model detects defects, 

the bounding box accuracy could be improved when judged with stricter IoU thresholds. 

On a per-class basis: 

• Crack detection shows balanced performance, with precision at 0.833, recall at 

0.806, mAP@0.50 at 0.835, and mAP@0.50:0.95 at 0.507. This suggests the 

model is both accurate and consistent in detecting cracks but may not always 

localize them with high precision. 

• Incomplete penetration has a slightly lower precision (0.759) but the highest recall 

of 0.839, meaning it effectively finds most of the actual defects in this class. Its 

mAP@0.50 of 0.872 and mAP@0.50:0.95 of 0.555 show good overall detection 

and localization performance. 

• Slag stands out with the highest precision (0.921) and mAP@0.50 (0.902), 

showing the model is highly confident and accurate in detecting this class. 

However, its recall is lower (0.739), meaning a few instances may be missed.  
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• The mAP@0.50:0.95 is 0.506, indicating bounding box quality is good but could 

be improved under stricter evaluation. 

 

The class-wise data distribution also plays a role here: slag has the most instances 

(142), which likely helped the model learn to detect it better. Crack and incomplete 

penetration have fewer samples (36 and 31 respectively), which might limit the model’s 

ability to generalize across varied examples of these defects. 

 

In conclusion, the model demonstrates strong overall detection capability, 

especially for common defects like slag. Performance on cracks and incomplete 

penetration is also promising but could be improved with more data, refined annotations, 

and possibly additional training techniques like data augmentation or anchor box tuning. 

Improving bounding box accuracy, especially for tighter IoU thresholds, will be key to 

further enhancing model precision in real-world applications. 
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6.2 Implications 

The results from the model evaluation have several important implications for 

real-world deployment, further development, and overall reliability of this defect 

detection system:  

 

Reliable Detection in Practical Settings 

The model demonstrates high overall precision (0.837) and recall (0.794), 

suggesting it is reliable for practical use in identifying welding defects. This means that 

in a production environment—such as automated quality control on a manufacturing 

line—the model can correctly detect most defects and avoid a large number of false 

alarms. This efficiency reduces the need for manual inspection and supports faster, more 

consistent evaluation of welds. 

 

Strong Performance for Common Defects 

The model is particularly strong at detecting slag, the most frequently occurring 

defect in the dataset, with excellent precision (0.921) and high mAP@0.50 (0.902). This 

indicates that for the most common defects, the model can be confidently deployed. 

However, its lower recall (0.739) implies that some slag defects might be missed, which 

could lead to quality assurance risks in high-stakes industries (e.g., aerospace or 

structural engineering) where even small undetected defects can be critical. 
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Underrepresented Classes Are at Risk 

The relatively lower mAP@0.50:0.95 scores for crack (0.507) and slag (0.506) 

highlight that the model struggles with precise localization, especially for smaller or 

irregular defect shapes. Additionally, both crack and incomplete penetration classes have 

fewer training samples, which affects the model’s ability to generalize. This can result in 

missed detections or inaccurate bounding boxes for less frequent but potentially severe 

defects, which is a significant concern in high-precision manufacturing settings. 

 

Class Imbalance Affects Generalization 

The disparity in the number of instances per class (e.g., 142 for slag vs. 36 for 

crack) likely skews the model’s learning process. It becomes more confident in predicting 

the majority class, often at the expense of underperforming on rare defects. This has 

implications for model fairness and robustness and suggests that future training should 

include balanced datasets, data augmentation, or class-weighted loss functions to mitigate 

this issue. 

 

Need for Improved Localization 

While mAP@0.50 is high across all classes (above 0.83), the lower 

mAP@0.50:0.95 (0.523 overall) shows that bounding box accuracy degrades under 

stricter overlap criteria. In real-world applications—especially when defects are small, 

closely packed, or have irregular shapes—precise localization is crucial. Inaccurate 

bounding boxes may lead to misguided repairs, material wastage, or overlooked critical 

flaws. This suggests the model architecture or its anchor settings might need fine-tuning. 
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Deployment Considerations 

For deployment in an industrial setting, the current performance is a strong 

foundation. However, before relying solely on this model for automated quality 

assurance, manufacturers should consider: 

• A human-in-the-loop system for rare or high-risk defect types. 

• Incorporation of feedback loops to retrain the model with new defect samples. 

• Developing class-specific confidence thresholds to minimize missed detections. 

Path Forward for Improvement 

To elevate performance further, particularly for underperforming or 

underrepresented defect types, the following should be considered: 

• Data expansion: Increase the number of annotated images for cracks and 

incomplete penetration. 

• Data augmentation: Use synthetic data generation to balance classes. 

• Model tuning: Adjust hyperparameters or use more advanced object detection 

architectures (e.g., YOLOv8, Faster R-CNN). 

• Post-processing refinement: Apply Non-Max Suppression (NMS) thresholds and 

confidence filters to reduce false positives. 

 

The evaluation shows that the model is capable of high-performing, automated 

defect detection in welding, particularly for common defects like slag. However, care 

must be taken in real-world implementation due to class imbalance and precision 

localization issues. With targeted improvements, this model could become a robust tool 

for intelligent inspection systems in quality-critical industries. 
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6.3 Recommendations for Future Research 

To further enhance the performance and practical reliability of the defect 

detection model, especially in industrial settings, several key recommendations can be 

made for future research. These recommendations span across data quality, model 

architecture, training strategies, and deployment techniques. 

Expand and Balance the Dataset 

One of the most critical limitations observed is the class imbalance, where defects 

like slag are overrepresented compared to crack and incomplete penetration. This can 

significantly skew the model’s learning ability. 

• Recommendation: Conduct targeted data collection campaigns to increase the 

number of samples for underrepresented classes. 

• Rationale: A more balanced dataset will help the model generalize better across 

all defect types and reduce class bias. 

• Additional Suggestion: Include a wider variety of welding environments, lighting 

conditions, and material types to improve robustness. 

 

Apply Advanced Data Augmentation Techniques 

To simulate real-world variability and increase training efficiency without 

requiring more physical samples: 

• Recommendation: Use data augmentation strategies such as random rotation, 

contrast variation, Gaussian noise, cutout, and MixUp. 
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• Synthetic Data Generation: Explore Generative Adversarial Networks (GANs) to 

generate realistic synthetic defects for rare classes. 

 

• Rationale: Augmentation enhances diversity and helps the model learn 

generalized features rather than memorizing patterns. 

 

Investigate Class-Aware or Adaptive Loss Functions 

Standard loss functions may not adequately compensate for class imbalance or 

localization errors. 

• Recommendation: Experiment with Focal Loss, Dice Loss, or Class-Balanced 

Loss functions that place more emphasis on hard-to-classify or minority classes. 

• Rationale: These can help improve both detection and localization accuracy, 

especially for rare or small defects. 

 

Explore More Sophisticated Detection Architectures 

While the current model performs well, newer object detection architectures 

might yield better results in both speed and accuracy. 

• Recommendation: Evaluate advanced architectures like: 

▪ YOLOv8 (for real-time deployment and improved precision), 

▪ EfficientDet (for better accuracy-efficiency tradeoff), 

▪ DETR (DEtection TRansformers) for end-to-end learning with fewer post-

processing steps. 

• Rationale: These models can better capture complex patterns and improve 

localization accuracy across scales. 
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Improve Localization Accuracy 

The relatively low mAP@0.50:0.95 across all classes suggests the need to 

focus on precise bounding box predictions, especially under stricter Intersection-over-

Union (IoU) criteria. 

• Recommendation: 

▪ Fine-tune anchor box sizes and aspect ratios. 

▪ Incorporate multi-scale feature maps (e.g., Feature Pyramid Networks - 

FPN). 

▪ Apply IoU-based regression losses like GIoU or DIoU. 

• Rationale: These techniques help the model learn better object boundary 

estimation, especially for small or irregularly shaped defects. 

 

Implement Explainability and Uncertainty Estimation 

As defect detection plays a role in high-stakes industrial applications, 

understanding and trusting the model’s decisions is crucial. 

Recommendation: 

▪ Use Grad-CAM or other visualization tools to interpret model predictions. 

▪ Integrate Bayesian neural networks or Monte Carlo Dropout to estimate 

prediction confidence. 

• Rationale: This allows human inspectors to review uncertain cases and enhances 

the model’s acceptability in safety-critical domains. 
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Real-Time and Edge Deployment Optimization 

For use in factories or field environments, computational efficiency is important. 

• Recommendation: Optimize the model for edge devices (e.g., using TensorRT, 

ONNX, or pruning/quantization techniques). 

• Rationale: This enables low-latency inference for real-time defect detection with 

minimal hardware. 

 

Establish a Human-in-the-Loop Feedback System 

While automation is the goal, human expertise can still play a key role in improving 

model reliability over time. 

• Recommendation: Develop systems that allow human inspectors to validate and 

correct model predictions, with those corrections being fed back into the training 

data. 

• Rationale: This continuous learning approach ensures that the model evolves and 

adapts to new or rare defects. 

 

Benchmark Against Industry Standards 

To validate the model's utility in real-world use cases: 

• Recommendation: Compare the model’s detection performance with standard 

inspection protocols (e.g., ASME, ISO standards for weld inspection). 

• Rationale: Ensures regulatory compliance and provides confidence to 

stakeholders adopting automated inspection technologies. 
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Conduct Longitudinal and Cross-Domain Studies 

To future-proof the model and evaluate its stability over time: 

• Recommendation: Perform longitudinal evaluations across multiple production 

batches and cross-domain testing across different weld types, processes, or 

industries. 

• Rationale: Confirms the model’s adaptability and scalability beyond the initial 

training environment. 

 

Future research should focus not only on enhancing model performance 

through technical improvements but also on ensuring that the system is reliable, 

explainable, and usable in real-world industrial settings. A multi-disciplinary 

approach involving data scientists, welding experts, and system engineers will be 

essential for translating this technology from the lab to the factory floor. 
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6.4 Conclusion 

The evaluation of the object detection model for welding defect identification 

reveals promising results, indicating that it is well-suited for practical applications, 

particularly in detecting common defects like slag with high confidence and accuracy. 

The model's overall high precision (0.837) and recall (0.794) reflect its robustness in 

recognizing and classifying defects correctly in most instances. Furthermore, the strong 

mAP@0.50 (0.87) shows the model is effective in placing bounding boxes accurately 

under moderate overlap criteria. This suggests that the system could significantly enhance 

quality assurance processes in welding by automating defect detection, reducing manual 

inspection time, and minimizing human error. 

 

However, the analysis also exposes key limitations, particularly in handling less 

frequent defect types such as cracks and incomplete penetration. These classes have 

fewer training examples, which likely contributes to the model's relatively lower 

localization performance, as reflected in mAP@0.50:0.95 (0.523). This metric, which 

evaluates the precision of bounding boxes under stricter conditions, shows that while the 

model can detect the presence of defects, it sometimes struggles to localize them 

precisely. In high-risk industries where even small defects can lead to serious 

consequences, this limitation must be addressed before the system can be fully trusted for 

autonomous inspection. 
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The class imbalance in the dataset further underscores the need for targeted data 

collection and augmentation strategies. Slag defects, having the highest representation, 

were detected most effectively, while minority classes underperformed, demonstrating  

the model’s tendency to favor more common patterns. This imbalance not only limits the 

model’s generalization but also raises concerns about its fairness and reliability across all 

defect types. For the model to be truly comprehensive and reliable, it must perform 

consistently across all categories, regardless of their frequency. 

 

In conclusion, while the model exhibits strong potential for real-world 

deployment in defect detection tasks, its current form is best suited as a supportive tool 

rather than a standalone decision-maker. Future work should focus on addressing the data 

imbalance, improving localization accuracy, and incorporating model explainability and 

uncertainty estimation. With these enhancements, the model can evolve into a powerful 

and trustworthy solution for automated welding inspection, leading to higher production 

quality, reduced costs, and improved safety across a range of industries. 
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