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Abbreviations

e RL: Reinforcement Learning

e MDP: Markov Decision Process

e POMDP: Partially Observable Markov Decision Process
e TD: Tempora Difference

e Q-learning: Q-learning (aspecific TD control agorithm)
e SARSA: State-Action-Reward-State-Action (another specific TD control algorithm)
e DQON: Deep Q-Network

e DDQN: Double Deep Q-Network

e PG: Policy Gradient

e REINFORCE: REINFORCE (aspecific policy gradient algorithm)
e AZ2C: Advantage Actor-Critic

e A3C: Asynchronous Advantage Actor-Critic

e PPO: Proximal Policy Optimization

e TRPO: Trust Region Policy Optimization

e SAC: Soft Actor-Critic

e DDPG: Deep Deterministic Policy Gradient

e TD3: Twin Delayed Deep Deterministic Policy Gradient
e RNN: Recurrent Neural Network

e CNN: Convolutional Neural Network

e LSTM: Long Short-Term Memory

e GRU: Gated Recurrent Unit

e ER: Experience Replay

e PER: Prioritized Experience Replay

e |IRL: Inverse Reinforcement Learning

e MBRL: Model-Based Reinforcement Learning

e MFRL: Model-Free Reinforcement Learning.

e POMDP: Partialy Observable Markov Decision Process.
e HRL: Hierarchica Reinforcement Learning.

e HFT: High-Frequency Trading. Thisisthe most prevalent abbreviation.



e Algo Trading: Algorithmic Trading (abroader term that encompasses HFT).
e DMA: Direct Market Access.

e Latency: Thedelay in datatransfer or execution.



Abstract

Achieving consistent profitability and outperforming the underlying index are long-standing
challengesin financial markets. While most Al-driven research focuses on stock trading and
portfolio optimization, options trading—comprising nearly 90% of total exchange-traded
volume—has remained relatively underexplored. Options trading strategies involve complex,
sequential decision-making steps, from gauging market direction, volatility, and momentum to
selecting strikes, managing risk, sizing positions, and determining entry/exit timing. Recent
advancesin Agentic Al and Deep Reinforcement Learning (DRL) have shown significant

potential for tackling such high-dimensional, dynamic problems.

In this thesis, we propose an autonomous framework for options trading built on Agentic Al,
comparing two distinct approaches. Thefirst is a multi-agent collaborative system that
orchestrates five specialized agents. a Generative Adversaria Network (GAN) for strategy
generation, adedicated strategy selection module, a Transformer-based market regime prediction
agent, arisk management agent, and a data acquisition and technical analysis agent. The second
approach leverages a DRL-driven pipeline to dynamically learn and execute options strategies.
Both methods are benchmarked against 15 different option strategies across various market
conditions. Experimental results demonstrate that our proposed framework consistently delivers
robust performance and significantly outperforms the underlying index. This research closes a
critical gap in Al-based decision-making for options trading and provides a scalable, adaptable,

and empirically validated solution for real-world market environments.

Keywords. Deep Reinforcement Learning, Multi-agent System, Option Trading, Options
Strategy, Automated Trading
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1. Introduction

1.1 Introduction

In financial literature, option trading strategies have been an interesting topic for research
(Black and Scholes, 1973; Merton, 1973; Moody and Saffell, 2001).
Severa researchers have proved abnormal returns can be earned by implementing such option
strategies (Tan, Quek, and Cheng, 2011).
In Trading option strategies are defined as combination of buying and selling call and put at
different sticks of a securities or index (Black and Scholes, 1973; Cox, Ross, and Rubinstein,
1979). The basic objective of trading strategies/rules is to maximize the returns with the given
level of risk.
Researchers and investors all over the world are very much interested in finding that if abnormal
returns could be earned by implementing these trading strategies (Yang et al., 2022).

This research sits at the intersection of finance and artificial intelligence, aiming to enhance
trading strategies and risk management through advanced machine learning techniques (Wen,
2021; Sutton and Barto, 1998; Schulman et al., 2017).

Options have become increasingly important in the world of finance in terms of their functions
and volumes traded (Black and Scholes, 1973; Merton, 1973). Options are distinguished from
other equity derivativesin the sense that options confer aright upon the buyer, but not an
obligation to exercise a“call” or “put” contract. This right is not without a cost and requires the
payment of a“premium”. In contrast, the seller earns this premium and is obligated to deliver or
purchase the underlying asset on contract expiry.

Options trading is a sophisticated financial practice that allows investors to speculate on the
future price movements of the underlying assets or to hedge existing positions (Cox, Ross, and
Rubinstein, 1979).

1.2 Challengesin Applying Artificial Intelligence Techniquesto Financial Markets

Implementing Al in financial markets presents several challenges (Busoniu et al., 2008;
Sutton and Barto, 1998):

Machine learning for options trading faces numerous challenges stemming from the dynamic
nature of financial markets and the inherent complexity of derivatives (Yang et al., 2022).

First, datais non-stationary and evolving, with markets transitioning unpredictably between bull,
bear, sideways, high-volatility, and low-volatility regimes, and concept drift arising from new
regul ations, macroeconomic events, or technological shifts. Second, data quality and availability
present obstacles: financia time-series data is often noisy due to microstructure effects, bid-ask
spreads, and short-term volatility; survivorship bias and look-ahead bias can skew historical



datasets; and complete historical options data, particularly at the intraday level, can be difficult
or expensive to obtain.

Third, the complexity of options and derivatives adds another layer of difficulty, given the
multidimensional nature of contracts (strike prices, maturities, implied volatility, and Greeks)
and the broader action space involved in multi-leg strategies such as spreads, straddles, and
strangles (Cox, Ross, and Rubinstein, 1979). Fourth, the high-dimensional action and state
Spaces—encompassing technical indicators, macroeconomic variables, order book data, and the
vast array of potential option trades—require sophisticated feature engineering and efficient
handling of combinatorial explosionsin strategy selection.

Fifth, the risks of overfitting and poor generalization are high, especially when significant market
events like crashes or volatility spikes are rare in historical data, and when deep learning models
with extensive hyperparameters undergo extensive tuning (Bradtke and Barto, 1996). Sixth, risk
management must be deeply integrated, ensuring that position sizing, drawdown control, and
regulatory or capital constraints are reflected in model decisions (Peng et al., 2024; Wu and
Jaimungal, 2023).

Seventh, computational constraints are non-trivial, aslarge-scale or high-frequency data
demands considerabl e processing power, and models may need to update or adapt online in near
real-time (Haarnojaet al., 2018).Eighth, interpretability and explainability become critical
because black-box models can be difficult to trust or justify to regulators and stakeholders, who
need clarity on how decisions are made (Castelfranchi, 1998).

Ninth, market impact and liquidity considerations mean that even accurate predictions may fall
to trandateinto profitsif large trades move prices adversely, while slippage and execution costs
can further erode returns.

Finally, ethical and regulatory concerns loom large, with algorithmic bias, market
manipulation rules, and strict compliance standards requiring that Al-driven strategies adhere to
legal and ethical guidelinesin heavily regulated financial markets (Ali et al., 2020).

1.3 Comparison of Autonomous Al-Driven; Rule-Based Vs Human Traders

A. Speed and Reaction Time

Human Traders:
Rely on manual execution. Even skilled traders can only process a limited amount of
information in real time. Reaction times can range from seconds to minutes, making it

difficult to capitalize on rapid market movements.



Algo (Rule-Based) Trading:

Executes pre-programmed rules instantly, often in milliseconds or microseconds. Can
scan multiple markets or instruments simultaneously without fatigue, making it highly
effective for high-frequency or event-driven trading (Tan, W.L., Roberts, and Zohren,
2024).

Al-Driven Trading:

Combines automated execution with machine learning-based decision-making. Like
traditional algorithmic trading, Al systems react extremely quickly, but they also adapt
their rules and strategies based on data-driven insights rather than relying on static, hand-
coded logic (Gupta, Abbed, and Levine, 2018).

B. Adaptability and Learning

Human Traders:
Rely on experience, intuition, and continuous learning through trial and error. Their
ability to adapt to new market regimes depends on persona skill, discipline, and

emotional control.

Algo (Rule-Based) Trading:
Follows fixed rules or logic. While parameter tuning is possible, the core strategy
typically remains unchanged unless ahuman updates it. The system does not “learn”

unless reprogrammed or recalibrated.

Al-Driven Trading:

Uses machine learning models (e.g., Deep Learning, Reinforcement Learning) that can
automatically adapt and learn from new data. This adaptability allows Al-based strategies
to identify patterns or market shifts without explicit human intervention, though it can
also lead to model overfitting if not carefully managed (Sutton, 1988).

C. Emotional and Cognitive Bias

Human Traders;

Susceptible to psychological biases like fear, greed, loss aversion, and overconfidence.



Emotions can drive suboptimal decisions, such as holding onto losing trades or chasing

momentum too late (Bryzgalova and Pavlova, 2022).

Algo (Rule-Based) Trading:
Follows a predetermined set of rules and is not influenced by emotions. However, the
system can still be biased if the rules themselves are based on flawed assumptions or

incompl ete data.

Al-Driven Trading:

Eliminates human emotional biases at the execution level. However, biases can creep
into Al models through data sel ection, model design, or historical market anomalies. The
“bias” in this case is more about data-driven distortions rather than human psychology
(Castelfranchi, 1998).

D. Complexity of Strategy

Human Traders:
Can develop sophisticated discretionary strategies, combining fundamental, technical,
and macroeconomic insights. However, executing extremely complex strategiesin real

timeis chalenging, especially under stress.

Algo (Rule-Based) Trading:
Can implement complex multi-factor strategies (e.g., pairstrading, statistical arbitrage)
with relative ease, provided the rules are well-defined. However, it may struggle with

market scenarios not explicitly covered by the rules (Brim, 2019).

Al-Driven Trading:

Capable of uncovering highly complex, non-linear relationshipsin the data that humans
or rule-based systems might miss. Methods like deep neura networks or reinforcement
learning can optimize large action spaces (e.g., option strikes, maturities) and adapt to

changing conditions (Taghian, 2023).

E. DataProcessing and Analysis



Human Traders:
Typically rely on chart analysis, news, and fundamental data. Even with tools, the

volume of dataasingleindividual can processis limited.

Algo (Rule-Based) Trading:

Efficiently processes large data sets for signals, such as technical indicators or order
book depth. The scopeis confined by the programmed logic (e.g., specific indicators or
conditions).

Al-Driven Trading:

Excels at ingesting massive amounts of structured (price, volume, technical indicators)
and unstructured data (news, social media sentiment) using nlp or advanced time-series
modelling. Al can automatically discover hidden features and correlations, provided there
is sufficient computational power and data quality (Liu et a., 2023).

F. Risk Management and Execution

Human Traders:
Implement risk controls manually—setting stop losses, position limits, etc. They may

adjust these on the fly, but emotional and cognitive biases can interfere.

Algo (Rule-Based) Trading:
Strictly enforces predefined risk rules (e.g., position sizing, stop-losstriggers). However,

it lacks adaptive risk management unless explicitly coded for different market regimes.

Al-Driven Trading:

Integrates adaptive risk management strategies, potentially learning to reduce exposure
under higher volatility or unfavourable conditions. Reinforcement Learning, for example,
can learn policies that maximize reward while penalizing excessive drawdowns (Peng et
a., 2024; Wu and Jaimungal, 2023).

G. Transparency and Explainability



Human Traders.
Decisions can be explained through subjective reasoning (e.g., “the market felt

overextended”). However, consistency and reproducibility can vary greatly.

Algo (Rule-Based) Trading:
Rules are explicitly defined. Traders and compliance officers can audit logic step-by-

step. Easy to explain because the code or logic directly translates to actions.

Al-Driven Trading:

Often treated as a“black box,” especialy in deep learning models. Interpreting why a
neural network made a certain trade can be difficult. This can pose challenges for
compliance, regulatory oversight, and internal risk committees (Castelfranchi, 1998).

H. Scalability and Resour ce Requirements

Human Traders:
Limited by personal capacity and time. A single trader can only manage afinite number

of instruments or strategies effectively.

Algo (Rule-Based) Trading:
Highly scalable—once devel oped, the same code can be deployed across multiple

markets or instruments, provided the data feed and infrastructure can handle the volume.

Al-Driven Trading:

Also highly scalable but with potentially higher computational and data requirements.
Training advanced models (e.g., DNN) on high-frequency data can be resource-intensive.
Deploying such models in real -time trading systems may require specialized hardware
(GPUs, TPUs, etc.) and robust data pipelines (Haarnoja et al., 2018; Gupta, Abbedl, and
Levine, 2018).

|. Regulatory and Ethical Considerations

Human Traders:
Must follow regulations, but discretionary decisions are usually easier to audit.

Compliance violations often hinge on persona misconduct.



Algo (Rule-Based) Trading:
Regul ations often require clear documentation of trading logic and fail-safe mechanisms.
Algorithms can inadvertently create “flash crashes” or abnormal market movements if

poorly tested.

Al-Driven Trading:

Adds a layer of complexity for regulators, as the system “learns” over time and may
evolve beyond its original programming. Auditing becomes more complex, raising
guestions about responsibility if the model’s decisions |lead to market anomalies (Ali et
al., 2020; Clatterbuck et al., 2024).

J. Potential for Innovation

Human Traders:
Creativity and intuition can drive unique strategies (e.g., new approaches to fundamental
analysis, contrarian plays). However, it’s hard for a single individual to keep pace with

markets that operate nearly 24/7.

Algo (Rule-Based) Trading:
Offers systematic, repeatable methods that can outperform humansin speed and
consistency. Innovation is often limited to novel rule sets, factor combinations, or

execution agorithms.

Al-Driven Trading:

Opens up new frontiersin pattern discovery and strategic adaptation. With techniques
like RL, Al can discover strategies or micro-structure signals that neither human intuition
nor straightforward algorithms might find (Acharyaet a., 2025; Shavandi, 2023).

Conclusion

Each of the three paradigms—human, rule-based algorithmic, and Al-driven trading—has
distinct advantages and limitations. Humans excel at intuitive leaps and creativity but are prone
to emotional bias and limited by cognitive capacity. Traditional algorithmic trading systems can
execute strategies rapidly and consistently, yet they lack adaptability unless reprogrammed. Al-



driven trading combines the speed and consistency of automated execution with the adaptability
of machine learning, potentially discovering complex patterns and responding dynamically to
evolving market conditions. However, Al systems can be difficult to interpret and require careful
data management, robust risk controls, and continuous monitoring to avoid pitfalls like
overfitting and unexpected market impacts (Guo et al., 2022; Zhang et a., 2022).

1.4 Growth of Options Market in Indian

In 2004, aturning point emerged in the global equity options arena as both retail and institutional
investors began to drive unprecedented trading volumes, spurred by the advent of electronic and
algorithmic trading (Bryzgalova and Pavlova, 2022; Tan, W.L., Roberts, and Zohren, 2024).
While the Americas and parts of Europe traditionally dominated the trading landscape, emerging
markets in China, Japan, and Indiawere rapidly gaining ground. That year also marked a
significant milestone for the National Stock Exchange (NSE) of India: it broke into the top 10
futures exchanges globally, although initially ranking 17th in terms of overall F& O volumes
(Bryzgalova and Pavlova, 2022). Over time, the NSE's trading activity in futures and options has

grown remarkably.

A landmark development occurred in 2016 with the introduction of weekly expiriesin options
trading (Bryzgalova and Pavlova, 2022). Thisinnovation quickly resonated with market
participants, particularly retail investors and proprietary traders, who were attracted by the lower
premiums required to enter these contracts (Tan, W.L., Roberts, and Zohren, 2024). In that year
alone, Bank Nifty options reached a staggering volume of approximately 3 billion contracts,
while Nifty Index options saw over 1.6 billion contracts traded (Bryzgalova and Pavlova, 2022).
Degspite this high volume, the year-end open interest for Bank Nifty options was recorded at
704,000 contracts, indicating that many positions were held only briefly atrend that was
similarly observed in Nifty Index options (Bryzgalova and Pavlova, 2022).

Figure 1: Riseof India’s Options Market (in Bn$)



Equity options, volume traded, bn

120

100 | .
80
60

40

[
20

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
India United States W Rest of the world

Weekend Investing. (2024)

In recent years, the NSE has consistently ranked among the top three exchanges in the world by
annual F& O volume (Bryzgalova and Pavlova, 2022). The momentum was particularly evident in
2018 and 2019 when India’s index options market led the globe in trading volume (Bryzgalova
and Pavlova, 2022). In 2018, theindex options segment experienced an annual growth rate of 63%,
one of the highest among the world's top exchanges (Bryzga ova and Pavlova, 2022). Meanwhile,
stock options recorded a growth rate of 46%, second only to Brazil’s impressive 75% growth rate

(Bryzgalova and Pavlova, 2022).

The year 2020 further underscored the NSE’s dominance, as it reported a total of 8.85 billion
contracts traded in the F& O segment. Among these, Nifty Index options accounted for 2.37
billion contracts, while Bank Nifty options remained the most actively traded with 4.29 billion
contracts. Thisgrowth is not just astory of increasing volumes—it is also a narrative of shifting

participant dynamics. Since fiscal year 2016, proprietary traders and individual investors have



steadily become the primary drivers of the equity derivatives market, jointly representing around
60% of trading turnover. By 2020, their combined share had surged to over 70%, with individual
investors aone contributing 32.7% to the F& O market.

For index options specifically, the combined participation of proprietary traders and retail
investors has hovered around 70% until October 2020. Notably, while individual investor
participation has seen a continuous rise since 2016, the share of proprietary traders has gradually
declined from 53% in 2016 to 38% by December 2020, with Foreign Institutional Investors
(FIls) emerging as the dominant institutional group in FY 2020.

Thesurgein retail investor involvement can largely be attributed to the rapid adoption of internet-
based trading, which gained remarkable momentum following the nationwide lockdown

in March 2020. This digital transformation has bolstered all segments of trading, as evidenced by
a 35% year-on-year increase in the average premium turnover for equity derivatives.
Furthermore, the index options premium turnover reached an all-time high of Rs 171 billion on
December 22, 2020, while the NSE’s monthly turnover in the equity derivatives segment grew
by 29.4% year-on-year by the end of 2020.

Together, these devel opments underscore a dynamic evolution in India's options market,
reflecting both technol ogical advancements and shifting market participation that have propelled
the NSE to the forefront of global trading platforms.

The National Stock Exchange (NSE) in Mumbai is India's largest stock exchange. Established in
1992 as the country's first demutualised electronic exchange, the NSE pioneered an automated
trading platform that offers a stable and secure trading environment for investors and traders
nationwide. By April 2018, the NSE had become the 11th largest stock exchange globally, with
an aggregated market capitalization exceeding US$2.27 trillion. Its flagship index, the NIFTY 50
which comprises 50 stocks serves as a benchmark for the Indian capital markets and is widely
referenced by both domestic and international investors. In addition, the CNX Nifty Index was
introduced in 1996, further highlighting the exchange's innovative approach. According to the
World Federation of Exchanges (WFE) 2018 derivatives report, the NSE ranked first among the



top 10 stock exchanges for stock index options trading volume, recording 2,214,848,247 deals,
with the CNX Nifty Index accounting for 622,118,790 of those trades.

Table 1: Index Options Trading Volume

15 Significance of Study
This study holds considerable significance in both academic research and practical

financial applications (Wen, 2021; Yang et a., 2022). By integrating advanced Al methodologies
into options trading, the research aims to bridge the gap between traditional human-driven
trading and the emerging realm of autonomous decision-making (Sutton and Barto, 1998;



Schulman et a., 2017). The following points outline the key contributions and impacts of the
study:

The proposed approaches comparing a multi-agent collaborative system with a deep
reinforcement learning (DRL) pipeline push the boundaries of current algorithmic trading
frameworks (Busoniu et al., 2008; Haarnoja et a., 2018). By examining these distinct
methodol ogies, the study contributes to adeeper understanding of how Al can be leveraged to
make r eal-time, high stakes trading decisions (Gupta, Abbeel, and Levine, 2018).

With the potential to execute call and put options more dynamically, the reinforcement learning
model may not only match but potentially surpass human trading performance (Tan, W.L.,
Roberts, and Zohren, 2024; Jin, 2022). Moreover, the study explores how these models can adapt
to varying market regimes, offering insights into designing systems that remain robust under
fluctuating market conditions (Yang et al., 2022; Huang et al., 2023).

By focusing on aspects such as position sizing, entry/exit timing, and the integration of
protective closing strategies, the research emphasi zes the importance of risk management in
options trading (Peng et a., 2024; Wu and Jaimungal, 2023). The findings could lead to the
development of moreresilient trading strategies that mitigate losses while capitalizing on market
opportunities (Tan, W.L., Roberts, and Zohren, 2024).

The multi-agent framework introduces anovel collaborative approach where specialized
agents handle strategy generation, market regime prediction, technical analysis, and risk
management (Wooldridge and Jennings, 1995; Shoham and Leyton-Brown, 2008). This
decentralized decision-making process may enhance the speed and accuracy of strategy
selection, particularly in high-frequency trading environments, offering a fresh perspective
compared to traditional single-agent models (Busoniu et al., 2008).

The insights from this research can be directly applicable to financial institutions, hedge
funds, and retail traders (Tan, W.L., Roberts, and Zohren, 2024). The potential to outperform
market benchmarks and enhance trading performance positions this study as a valuable resource
for those looking to harness Al in financia decision-making (Guo et al., 2022).

Overal, the significance of this study liesin its potential to revolutionize options trading by
demonstrating how autonomous Al frameworks can improve efficiency, decision-making
accuracy, and adaptability in complex and dynamic financial markets (Acharyaet al., 2025; Guo
et al., 2022). In essence, this research aims to push the boundaries of autonomous options trading



by providing empirical evidence and practical insights into the application of advanced Al
techniques (Ferdows and Saad, 2020).

The findings of this study will be valuable to researchers, practitioners, and financial
ingtitutions seeking to leverage Al for improved trading outcomes and risk management (Y ang et
al., 2022; Peng et ., 2024).

1.6 Research Purpose and Questions
1.6.1 Resear ch Purpose

The overarching purpose of thisthesisisto explore and evaluate the efficacy of
autonomous agentic Al frameworks for options trading, specifically focusing on two distinct
approaches: amulti-agent collaborative system and a Deep Reinforcement Learning (DRL)-
driven pipeline (Sutton and Barto, 1998; Schulman et al., 2017). Thisinvestigation aimsto
determine the potential of these advanced Al methodol ogies to navigate the compl exities of

options markets and achieve superior trading performance (Wen, 2021; Yang et al., 2022).
Thisthesisis designed to:

o Develop aMulti-Agent Framework: Construct a system comprising five speciaized
agents:
o A Generative Adversarial Network (GAN) for strategy generation.
o A dedicated strategy selection module.
o A Transformer-based agent for predicting market regimes.
o A risk management agent.
o A dataacquisition and technical analysis agent (Wooldridge and Jennings, 1995;
Shoham and Leyton-Brown, 2008).

e Implement a DRL-Driven System: Create a system that uses deep reinforcement
learning to dynamically learn and execute options trading strategies (Schulman et al.,
2017; Haarnoja et a., 2018).

e CompareMethodologies: Assess the effectiveness of both the multi-agent system and
the DRL approach in executing options trades, particularly in relation to human trading
benchmarks and overall market performance.



o Evaluate Adaptability: Investigate how each approach recognizes and adapts to varying

market regimes, ensuring robust performance across different market conditions.

1.6.2 Resear ch Questions

1.6.2.1 Effectiveness of Multi-Agent Coor dination:

Question 1: Can the coordination among specialized agents combined with decentralized
decision-making within amulti-agent system enhance both the sel ection and execution of options

trading strategies compare to traditional approach?

1.6.2.2 Effectiveness of Reinforcement Learningin Options Trading:

Question 2: Can Deep Reinforcement Learning models be devel oped to autonomously execute
different option strategies in real time—aligning with human trading timeframes—and can these

models outperform the underlying market index?

1.6.2.3 Compar ative Analysis of Reinforcement L earning and Multi-Agent Systems:
Question 3: Can the adaptive, decentralized framework of multi-agent systems lead to superior

trading performance compared to Deep Reinforcement learning based system under dynamic

market conditions?

By addressing these questions, this thesis seeks to contribute to the understanding of how
advanced Al techniques can be applied to develop sophisticated and effective autonomous
options trading systems. We will evaluate the performance of our proposed frameworks through

rigorous empirical testing, providing insights into the strengths and limitations of each approach.

1.7 Scope of the Study

This study focuses on exploring and eval uating autonomous options trading strategies within
the Indian stock market (Bryzgalova and Pavlova, 2022; Cao, 2019). Specifically targeting the
Indian stock market, the research concentrates on options trading instruments available on major
exchanges (Bryzgalova and Pavlova, 2022). This localized focus ensures that the findings are

highly relevant to the unique dynamics and regulatory environment of India’s financial markets



(Bryzgaova and Pavlova, 2022; Cao, 2019). Only call and put options are examined, excluding
other financial instruments such as equities or futures, thereby maintaining a clear focus on the
derivatives market (Black and Scholes, 1973; Merton, 1973).

Two distinct autonomous frameworks form the core of the study. The first is a multi-agent
collaborative system that includes specialized agents (GAN for strategy generation, a strategy
selection module, a Transformer-based market regime predictor, arisk management agent, and a
data acquisition and technical analysis agent). The second framework is a deep reinforcement
learning (DRL) system designed to dynamically learn and execute trading strategies. These two
approaches are compared based on their decision-making processes, risk management
capabilities, and adaptability to varying market regimes.

Historical and real-time data from the Indian stock market will be utilized for ssmulations and
back-testing (Bryzgalova and Pavlova, 2022). While arich dataset isleveraged, the analysisis
bounded by the availability and quality of historical options trading data specific to India (Cao,
2019). An important component of the research is the assessment of risk management practices
and strategy optimization (Peng et a., 2024). This involves examining techniques such as
position sizing, timing for trade entries and exits, and the use of protective closing strategies, all
tailored to the conditions of the Indian market (Wu and Jaimungal, 2023).

Limitations;

o Thescopeisconfined to options trading and does not generalize to other trading
instruments or international markets (Black and Scholes, 1973).

o Theresearch emphasizes simulation and back-testing; real-time trading executions and
live market interventions are beyond the current study (Bryzgalova and Pavlova, 2022).

o Findings may be influenced by market-specific factors, such aslocal regulatory
frameworks and market volatility unique to the Indian context.

In summary, this study is designed to provide an in-depth analysis of autonomous, Al-driven
trading systems within the Indian options market, highlighting both the innovative potential and
practical challenges of deploying such technologiesin a dynamic trading environment (Wen,
2021; Yang et al., 2022).



1.8 Background and Motivation:

1.8.1 Options

Optionstrading involves buying and selling options contracts on financial instruments like
stocks, commodities, or indices (Black and Scholes, 1973; Merton, 1973). Engaging in options
trading allows investors to speculate on the future price movements of the underlying asset,
hedge existing positions, or generate additional income through strategies like writing options
(Black and Scholes, 1973). However, it'simportant to note that options trading carries significant
risks and complexities, necessitating a thorough understanding before participation (Tan, Quek,
and Cheng, 2011).

In options trading, an option isafinancial contract that grants the holder the right, but not the
obligation, to buy or sell a specific quantity of an underlying asset at a predetermined price,
known as the strike price, on or before a specified expiration date (Black and Scholes, 1973).
These contracts are typically linked to various financial instruments, such as stocks,
commodities, or indices (Black and Scholes, 1973). Options are categorized into two primary
types.

e Call Option: Thistype of option gives the holder the right to purchase the underlying
asset at the strike price within the specified timeframe. Investors typically buy call
options when they anticipate that the price of the underlying asset will rise (Black and
Scholes, 1973).

e Put Option: Thistype of option grants the holder the right to sell the underlying asset at
the strike price within the specified period. Investors generally purchase put options when
they expect the price of the underlying asset to decline (Black and Scholes, 1973).

Options are considered derivatives, meaning their value is derived from the price of the
underlying asset. They are utilized for various purposes, including hedging against potential
price fluctuations, speculating on market movements, and enhancing portfolio returns through
strategic income-generating techniques. However, it'simportant to note that options trading
involves significant risks and complexities, necessitating a thorough understanding before

engaging in such transactions.



1.8.2 Types of Equity Options

Equity Index Options: These options have an equity index, such as the S& P 500, as the
underlying asset They can be either European-style or American-style European-style
options can only be exercised at expiration, while American-style options can be
exercised at any time before expiration Like index futures contracts, index options are
typically cash-settled, meaning that upon exercise, the difference between the strike price
and the market value of theindex ispaid in cash, and no physical delivery of stocks
occurs (Cox, Ross, and Rubinstein, 1979).

Equity Stock Options: Stock options are options on individual stocks. Currently, options
trade on over 500 stocks in the United States. A standard contract gives the holder the
right to buy or sell 100 shares of the underlying stock at the specified strike price, within
a set time frame. These options are generally American style, allowing exercise a any
time before expiration. They can be used for various strategies, including hedging,
speculation, and income generation (Cox, Ross, and Rubinstein, 1979).

1.8.3 Partiesto an Option Contract

Buyer of an Option (Holder): The buyer, or holder, acquires the right—without the
obligation to exercise the option. By paying the option premium, the holder gains the
right to buy (in the case of acall option) or sell (in the case of a put option) the
underlying asset at the specified strike price, within adefined period (Black and Scholes,
1973; Merton, 1973). The maximum loss for the holder islimited to the premium paid for
the option (Black and Scholes, 1973).

Writer of an Option (Seller): Thewriter, or seller, receives the option premium and, in
return, assumes the obligation to buy or sell the underlying asset if the holder exercises
the option (Black and Scholes, 1973; Cox, Ross, and Rubinstein, 1979). For call options,
the writer must sell the asset at the strike price; for put options, the writer must buy the
asset at the strike price. The writer's potentia |oss can be substantial, especialy if the
market moves unfavourably, aslosses are theoretically unlimited for call options and
significant for put options (Black and Scholes, 1973).1.8.4 American Options and

European Options



American Options. American options are options that can be exercised at any time up to
and including the expiration date. This flexibility allows the holder to exercise the option
whenever it is advantageous before expiration. Most exchange-traded options are
American-style (Cox, Ross, and Rubinstein, 1979).

European Options: European options are options that can be exercised only on the
expiration date itself. This means the holder must wait until the specified expiration date
to exercise the option, regardless of favourable market conditions before that time.
European options are often considered easier to analyse due to their simpler exercise
structure, and properties of American options are frequently deduced from those of their
European counterparts. Additionally, European-style options are typically traded over the
counter (OTC) rather than on exchanges.

1.8.5 Characteristics of a Stock Option Contract

Option Price/Premium: The option price, aso known as the option premium, isthe
amount the options buyer pays to the option seller for acquiring the right to buy or sell
the underlying assets. This premium isinfluenced by various factors, including the
underlying asset's current price, the strike price, time until expiration, and market
volatility. It's important to note that the option premium is non-refundabl e, regardless of
whether the option is exercised (Black and Scholes, 1973; Cox, Ross, and Rubinstein,
1979).

Expiration Date: The expiration date, sometimes referred to as the exercise date, strike
date, or maturity date, is the last day on which the option can be exercised. After this
date, the option becomes void, and the holder loses the right to exercise it. The specific
expiration date is defined in the option contract and varies depending on the type of
option and the exchange on which it's traded (Black and Scholes, 1973; Cox, Ross, and
Rubinstein, 1979).

Strike Price: The strike price, or exercise price, is the predetermined price at which the
holder of the option can buy (for call options) or sell (for put options) the underlying
asset. This priceis established at the time the option contract is created and remains fixed
throughout the life of the option. The relationship between the strike price and the



underlying asset's market price at expiration significantly impacts the option's
profitability (Black and Scholes, 1973; Merton, 1973).

e Intrinsic Value of an Option: The option premium can be broken down into two
components - intrinsic value and time value. Theintrinsic value of acall isthe amount by
which theoptionisITM, if itisITM. If thecal isOTM, itsintrinsic value s zero.
Putting it another way, theintrinsic value of acall is Max [0, (S; — K)] which meansthe
intrinsic value of acall isthe greater of O or (S; — K). Similarly, theintrinsic value of a
putis Max [0,K — S;],i.e thegreater of O or (K — S;). Here, K isthe strike price and
S; isthe spot price (Black and Scholes, 1973; Tan, Quek, and Cheng, 2011).

e TimeValueof an Option: Thetime value of an option represents the portion of the
option's premium that exceedsitsintrinsic value. It reflects the potential for the option to
become more profitable before its expiration date. Both call and put options possess time
value, which isinfluenced by several factors.

Timeto Expiration: The longer the time remaining until the option's expiration, the
greater thetimevalue. Thisis because alonger duration increases the likelihood of the

option becoming profitable as market conditions fluctuate (Black and Scholes, 1973).

Volatility of the Underlying Asset: Higher volatility in the underlying asset's price
enhances the time value. Increased volatility amplifies the potential for the option to
move into afavourable position before expiration (Black and Scholes, 1973; Cox, Ross,
and Rubinstein, 1979).

Intrinsic Value: Theintrinsic value is the difference between the underlying asset's
current price and the option's strike price, provided this difference is favourable to the
option holder. The time value is calculated by subtracting the intrinsic value from the

option's total premium.

1.8.5 Option pricing
Option pricing is the process of determining the fair value of an options contract,

considering various factors that influence its potential profitability. Accurate pricing is essential
for both buyers and sellers to make informed decisions in the options market.



1.8.5.1 Key Factor s Affecting Option Pricing:

1.

Underlying Asset Price: The current market price of the asset underlying the option
significantly impactsits value. For call options, as the underlying asset's price increases,
the option's value typicaly rises. Conversely, for put options, an increase in the
underlying asset's price usually decreases the option's value [Black and Scholes (1973);
Tan, W. L., Roberts, and Zohren (2024)].

Strike Price: Thisisthe price at which the option holder can buy (for call options) or sell
(for put options) the underlying asset. The relationship between the strike price and the
underlying asset's current price determines the option's intrinsic value [Merton (1973)].
Timeto Expiration: The duration remaining until the option's expiration date affects its
time value. Longer timeframes provide more opportunities for the option to become
profitable, thereby increasing its value [ Cox, Ross, and Rubinstein (1979)].

Volatility: Higher volatility in the underlying asset's price leads to greater potential for
profit or loss, influencing the option's value. Increased volatility generaly raisesthe
option's price due to the higher risk associated with larger price swings[Leisen and
Reimer (2006)].

Interest Rates: Changesin prevailing interest rates can affect option pricing. For
instance, higher interest rates might increase call option values and decrease put option
values, as they influence the cost of carry and the present value of the option's strike price
[Black and Scholes (1973)].

Dividends: Expected dividends can impact on option pricing. When a company pays a
dividend, the underlying asset's price typically drops by the dividend amount, affecting
the option's value [Merton (1973)].

1.8.5.2 Common Option Pricing Modédls:

1.

Black-Scholes M odel: This model provides atheoretical estimate of European-style
option prices, considering factors such as the underlying asset's price, strike price, timeto
expiration, volatility, and risk-free interest rates. It's widely used for pricing options on
stocks that do not pay dividends.

Binomial Options Pricing Model: This model uses adiscrete-time framework to model
the possible price movements of the underlying asset over time. It constructs a binomial



tree of possible future prices and cal culates the option's value by working backward from
expiration to the present.

3. Monte Carlo Simulation: A computational technique that uses random sampling to
simulate arange of possible price paths for the underlying asset, assessing the option's
value based on these simulations. It's particularly useful for pricing complex options with
multiple variables [Boyle (1977); Glasserman (2004); Jackel (2002)].

1.8.6 Option Strategies

Option Strategies Options strategies are sophisticated financial instruments employed by
investors and traders to optimize portfolio performance, manage risk, and capitalize on market
movements [Tan, W. L., Roberts, and Zohren (2024)].

These strategies involve the strategic combination of various options contract financial
derivatives. The strategic selection between buying and selling options, and the specific
combinations thereof, allows tradersto align their positions with their market forecasts and risk
appetite [Wen Wen (2021); Tan, W. L., Roberts, and Zohren (2024)]. It'simperative to
thoroughly comprehend the inherent risks and rewards associated with each strategy. Engaging
in options trading necessitates a solid understanding of the instruments and a well-considered
approach to risk management.

Traders can strategically combine the buying and selling of call and put optionsto tailor their
payoff structuresin alignment with their market outlook and risk tolerance. This flexibility
enables the construction of positions that can profit from various market movements while
managing potential risks [Wen Wen (2021)].

1.8.6.1 Bullish Strategies:

1. Buyinga Call Option: A trader anticipating an increase in the asset's price may purchase
acall option. The potential profit is substantia if the asset's price rises significantly above
the strike price. The maximum lossis confined to the premium paid for the option.

2. Sdlling a Put Option: If atrader expects the asset's price to remain above a specific
strike price, they might sell a Put Option. This approach generates income through the
premium received. However, if the asset’s price falls below the strike price, the trader

could face significant losses, potentially extending to the entire premium received and



beyond, depending on the extent of the price decline [Tan, W. L., Roberts, and Zohren
(2024)].

1.8.6.2 Bearish Strategies.

e Buying a Put Option: A trader forecasting adecline in the asset's price may buy a put
option. The potential profit is considerable if the asset's price decreases significantly
below the strike price. The maximum loss is limited to the premium paid for the option
[Wen Wen (2021)].

e SdlingaCall Option: If atrader expects the asset's price to stay below a certain strike
price, they might sell acall option. This strategy yields income from the premium
received. However, if the asset's price rises above the strike price, the trader could incur
substantial losses, theoretically unlimited as the asset's price continues to ascend [Tan, W.
L., Roberts, and Zohren (2024)].

1.8.6.3 Short Iron Condor

Figure 2: Short Iron Condor
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The short iron condor isan options trading strategy designed to profit from significant price

movements in the underlying asset, either upward or downward. It is constructed by selling a

standard iron condor position, which involves combining abull put spread and a bear call spread.

Construction of a Short [ron Condor:

1.

Sell an Out-of-the-M oney (OTM) Put: Choose astrike price below the current market
price of the underlying asset.

Buy a Further OTM Put: Select alower strike priceto limit potential losses on the
downside.

Sell an OTM Call: Choose a strike price above the current market price of the
underlying asset.

Buy a Further OTM Call: Select ahigher strike priceto limit potential losses on the
upside.

All options should have the same expiration date. The distance between the put strikes
should equal the distance between the call strikes.

Profit and L oss Potential:

Profit: The maximum profit occursif the underlying asset's price moves significantly
away from the range defined by the short strikes (the sold put and call). Thisresultsin
both the put and call spreads expiring out-of-the-money, allowing the trader to retain the
net premium received.

L oss: The maximum loss is limited to the difference between the strike prices of either
the put or call spread (whichever is greater) minus the net premium received. Thisloss

occurs if the underlying asset's price remains between the short strikes at expiration.

Strategic Considerations:

Market Outlook: A short iron condor is suitable when expecting significant volatility,
anticipating that the underlying asset's price will move substantially in either direction.
Risk Management: Whilethe strategy offers limited loss potential, it's crucial to monitor
the position, especially as expiration approaches, to manage risks effectively.
Alternative Strategies: For amore neutral outlook, where minimal price movement is
expected, along iron condor might be preferable, as it profits from the underlying asset's

price remaining within a specific range.



Risk Considerations:

e Seling Options: Writing (selling) options exposes the trader to potentially unlimited
losses. For instance, selling acall option without owning the underlying asset (naked call)
can lead to infinite losses if the asset's price rises indefinitely. Similarly, selling a put
option can result in significant losses if the asset's price falls precipitously. Therefore,
selling options requires careful risk management and is typically undertaken by
experienced traders.

e Buying Options: Purchasing options confine the potential 1oss to the premium paid,
offering adefined risk profile. This characteristic makes buying options an attractive
strategy for traders seeking leveraged exposure with limited downside risk.

1.8.6.4 Long Iron Condor

Figure 3: Long Iron Condor
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A longiron condor isan options trading strategy that involves a combination of four options

contracts with the same expiration date, designed to profit from significant price movementsin



the underlying asset, either upward or downward. This strategy is constructed by simultaneously
buying and selling both calls and puts at different strike prices.
Construction of aLong Iron Condor:
1. Buy an Out-of-the-Money (OTM) Put: Select a strike price below the current market
price of the underlying asset.
2. Sell an OTM Put: Choose astrike price above the purchased put's strike price, still
below the current market price.
3. Sdlan OTM Call: Select astrike price above the current market price of the underlying
asset.
4. Buy an OTM Call: Choose astrike price above the sold call's strike price, still above the
current market price.

The purchased options (puts and calls) are referred to as the "wings," while the sold
options are the "body" of the condor. The distance between the strikes should be
consistent on both sides.

Profit and L oss Potential:

e Profit: The maximum profit occursif the underlying asset's price moves significantly
away from the range defined by the inner strikes (the sold put and call). This results
in both the put and call spreads expiring out-of-the-money, alowing the trader to
retain the net premium received.

e Loss: Themaximum lossis limited to the difference between the strike prices of
either the put or call spread (whichever is greater) minus the net premium received.
Thisloss occurs if the underlying asset's price remains between the inner strikes at

expiration.

1.8.6.5Long Iron Butterfly

Figure4: Long Iron Butterfly
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A Long Iron Butterfly is an advanced options trading strategy that combines elements of both
the butterfly spread and theiron condor. It is designed to profit from significant price movements
in the underlying asset, either upward or downward, and is considered a limited-risk, limited-
profit strategy.

Construction of a Long Iron Butterfly:

1. Buy an Out-of-the-Money (OTM) Put: Select a strike price below the current market
price of the underlying asset.

2. Sel an At-the-Money (ATM) Put: Choose astrike price equal to the current market
price.

3. Sdlan ATM Call: Select the same strike price as the sold put.

4. Buy an OTM Call: Choose a strike price above the current market price.

All options should have the same expiration date. The purchased options are referred to as the
"wings," while the sold options form the "body" of the butterfly.
Profit and L oss Potential:

e Profit: The maximum profit occursif the underlying asset's price moves significantly
away from the range defined by the inner strikes (the sold put and call). Thisresultsin
both the put and call spreads expiring out-of-the-money, allowing the trader to retain the
net premium received.

e Loss: The maximum lossislimited to the difference between the strike prices of either
the put or call spread (whichever is greater) minus the net premium received. Thisloss
occurs if the underlying asset's price remains between the inner strikes at expiration.

Strategic Considerations:



e Market Outlook: A longiron butterfly is suitable when expecting significant volatility,
anticipating that the underlying asset's price will move substantially in either direction.

e Risk Management: Whilethe strategy offers limited loss potential, it's crucial to monitor
the position, especially as expiration approaches, to manage risks effectively.

e Alternative Strategies. For amore neutral outlook, where minimal price movement is
expected, a short iron butterfly might be preferable, asit profits from the underlying

asset's price remaining within a specific range.
1.8.6.6 Short Iron Butterfly

Figure5: Short Iron Butterfly
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A short iron butterfly is an advanced options trading strategy that involves a combination of
four options contracts with the same expiration date, structured to benefit from significant price
movements in the underlying asset, either upward or downward. This strategy is considered the
inverse of the long iron butterfly.
Construction of a Short Iron Butterfly:

1. Sdl an At-the-Money (ATM) Put: Choose a strike price equal to the current market

price of the underlying asset.
2. Buy an Out-of-the-Money (OTM) Put: Select a strike price below the current market

price.



3. Sdl an ATM Call: Choose the same strike price as the sold put.

4.

Buy an OTM Call: Select a strike price above the current market price.

All options should have the same expiration date. The sold options (the ATM put and call)
form the "body" of the butterfly, while the purchased options (the OTM put and call) are the

"wings."
Profit and L oss Potential:

Profit: The maximum profit occursif the underlying asset's price at expiration is equal to
the strike price of the sold put and call. In this scenario, all options expire worthless, and
the trader retains the net premium received when initiating the position.

L oss: The maximum lossis limited to the difference between the strike prices of the put
or call spreads (whichever is greater) minus the net premium received. Thisloss occursiif
the underlying asset's price moves significantly above or below the range defined by the
strike prices of the bought options.

Strategic Considerations:

Market Outlook: A short iron butterfly is suitable when expecting significant volatility,
anticipating that the underlying asset's price will move substantially in either direction.
Risk Management: While the strategy offers limited loss potential, it's crucial to monitor
the position, especially as expiration approaches, to manage risks effectively.
Alternative Strategies. For amore neutral outlook, where minimal price movement is
expected, along iron butterfly might be preferable, asit profits from the underlying

asset's price remaining within a specific range.

1.8.6.7 Call Short

Figure 6: Call Short
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A Call Short option strategy, also known aswriting a call, involves selling a call option contract
without owning the underlying asset. This strategy istypically employed when an investor
anticipates that the price of the underlying asset will remain stable or decline.

Key Characteristics:

e Premium Coallection: By selling the call option, the investor receives an upfront
premium, which is the maximum potential profit for this strategy.

e Obligation to Sell: If the price of the underlying asset rises above the strike price of the
sold call, theinvestor is obligated to sell the asset at the strike price, potentially incurring
significant losses.

Profit and L oss Potential:

e Profit: The maximum profit islimited to the premium received from selling the call
option.

e Loss: The potential lossis theoretically unlimited, asthere is no cap on how high the
asset's price can rise. Theloss increases as the asset's price exceeds the strike price of the
sold call.

Strategic Considerations:

e Market Outlook: This strategy is suitable when the investor expects the underlying

asset's price to remain below the strike price of the sold call, indicating a neutral to

bearish outlook.



e Risk Management: Due to the potential for unlimited losses, it's crucial to have a solid
risk management plan, such as setting stop-loss orders or employing offsetting positions.

e Margin Requirements: Selling naked callstypically requires amargin account with
sufficient funds to cover potential losses, as the risk is substantial.

1.8.6.8 Put Short

Figure 7: Put Short
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A Put Short option strategy involves selling (writing) aput option contract without holding a
short position in the underlying asset. This approach is typically employed by investors who
anticipate that the price of the underlying asset will remain stable or increase.

Key Characteristics:

e Premium Collection: By selling the put option, the investor receives an upfront
premium, which represents the maximum potential profit for this strategy.

e Obligation to Buy: If the price of the underlying asset falls below the strike price of the
sold put, the investor is obligated to purchase the asset at the strike price, potentially
incurring significant losses.

Profit and L oss Potential:

e Profit: The maximum profit islimited to the premium received from selling the put

option.



e Loss The potential loss can be substantial, as the asset's price could theoretically decline

to zero. The loss increases as the asset's price decreases below the strike price of the sold

puL.

Strategic Considerations:

e Market Outlook: This strategy is suitable when the investor expects the underlying

asset's price to remain above the strike price of the sold put, indicating a neutral to bullish

outlook.

e Risk Management: Dueto the potential for significant losses, it's crucial to have asolid

risk management plan, such as setting stop-loss orders or employing offsetting positions.

e Margin Requirements: Selling naked puts typically requires amargin account with

sufficient funds to cover potential losses, as the risk is considerable.

1.8.6.9 JadelLizard

Figure8: Jade Lizard
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The Jade Lizard is an advanced options trading strategy that combines elements of both bullish

and neutral outlooks, aiming to generate income through premium collection while managing

potential risks. It's particularly suitable when a trader anticipates that the underlying asset will

experience minimal to moderate price movements.

Construction of aJadelLizard:



2.
3.

Sell an Out-of-the-M oney (OTM) Put: Choose a strike price below the current market
price of the underlying asset.

Sell an OTM Call: Select astrike price above the current market price.

Buy an OTM Call: Purchase acall option with ahigher strike price than the sold call.

All options should have the same expiration date. This structure resultsin a net credit to the

trader's account, representing the maximum potential profit.

Profit and L oss Potential:

Profit: The maximum profit occursif the underlying asset's price at expiration is between
the strike prices of the sold put and call options. In this scenario, all options expire
worthless, and the trader retains the net premium received.

L oss: The maximum loss is limited to the difference between the strike prices of the sold
call and the purchased call, minus the net premium received. Thisloss occursif the
underlying asset's price rises above the strike price of the purchased call option.

Strategic Considerations:

Market Outlook: The Jade Lizard strategy is suitable when expecting minimal to
moderate price movements in the underlying asset, aligning with aneutral to slightly
bullish outlook.

Risk Management: While the strategy offerslimited loss potential, it's crucial to monitor
the position, especially as expiration approaches, to manage risks effectively.
Alternative Strategies: For amore neutral outlook, where minimal price movement is
expected, ashort iron butterfly might be preferable, asit profits from the underlying

asset's price remaining within a specific range.

1.8.6.10 Reverse Jade Lizard

Figure 9: Reverse Jade Lizard
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The Reverse Jade Lizard is an advanced options trading strategy that is essentially the inverse of
the traditional Jade Lizard. While the Jade Lizard combines a short put and ashort call spread to

create a position with limited risk and potential profit, the Reverse Jade Lizard altersthis

structure to achieve a different risk-reward profile.

Construction of a ReverseJade Lizard:

1. Sdl an At-the-Money (ATM) Put: Choose astrike price near the current market price of

the underlying asset.

Sell an Out-of-the-Money (OTM) Call: Select astrike price above the current market
price.

Buy an OTM Put: Purchase a put option with a strike price lower than the sold put.
All options should have the same expiration date. This setup resultsin anet credit to the

trader's account, representing the maximum potential profit.

Profit and L oss Potential:

Profit: The maximum profit occursif the underlying asset's price at expiration is between
the strike prices of the sold put and call options. In this scenario, all options expire
worthless, and the trader retains the net premium received.

L oss: The maximum lossis limited to the difference between the strike prices of the sold
call and the purchased call, minus the net premium received. Thisloss occursif the

underlying asset's price rises above the strike price of the purchased call option.

Strategic Considerations:



e Market Outlook: The Reverse Jade Lizard strategy is suitable when expecting
significant volatility, anticipating that the underlying asset's price will move substantially
in either direction.

e Risk Management: Whilethe strategy offers limited loss potential, it's crucial to monitor
the position, especially as expiration approaches, to manage risks effectively.

e Alternative Strategies:. For amore neutral outlook, where minimal price movement is
expected, a short iron butterfly might be preferable, asit profits from the underlying
asset's price remaining within a specific range.

1.8.6.11 Short Strangle

Figure 10: Short Strangle
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A Short Strangle is an advanced options trading strategy that involves selling both an out-of-the-
money (OTM) call and an OTM put option on the same underlying asset, with the same
expiration date. This strategy is employed by traders who anticipate low volatility in the asset's
price, expecting it to remain within a specific range until the options' expiration.
Construction of the Strategy:
e Sdlan OTM Call Option: Choose a strike price above the current market price of the
underlying asset.



Sell an OTM Put Option: Select astrike price below the current market price of the
underlying asset.

Same Expiration Date: Ensure both options have the same expiration date.

Premium Collection: Receive premiums from both the call and put options, constituting

the maximum potential profit.

Profit and L oss Potential:

Maximum Profit: Limited to the total premiums received from selling both options.
Maximum L oss. Potentially unlimited if the underlying asset's price moves significantly
beyond the strike prices of the sold options.

Breakeven Points: Calculated by adding the total premiums received to the lower strike
price (for the upside breakeven) and subtracting the total premiums from the higher strike

price (for the downside breakeven).

Strategic Considerations:

Market Outlook: Suitable when expecting minimal price movement and low volatility
in the underlying asset.

Risk Management: Dueto unlimited loss potential, implement strict risk controls, such
as setting stop-loss orders or closing the position if the asset moves significantly.

Active Monitoring: Requires continuous monitoring and potential adjustmentsto
manage risks effectively.

Advanced Strategy: Considered advanced dueto itsrisk profile; thorough understanding

and experience are essential before implementation.



1.8.6.12 Short Straddle

Figure 11: Short Straddle
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A Short Straddle is an advanced options trading strategy that involves selling both a call and a
put option on the same underlying asset, with the same strike price and expiration date. This
strategy is employed by traders who anticipate low volatility in the asset's price, expecting it to
remain near the strike price until the options' expiration.
Construction of the Strategy:
e Sdl aCall Option: Choose a strike price above the current market price of the
underlying asset.
e Sel aPut Option: Select the same strike price as the call option, below the current
market price of the underlying asset.
e Same Expiration Date: Ensure both options have the same expiration date.
e Premium Collection: Receive premiums from both the call and put options, constituting
the maximum potential profit.
Profit and L oss Potential:
e Maximum Profit: Limited to the total premiums received from selling both options.

e Maximum Loss. Potentially unlimited if the underlying asset's price moves significantly
beyond the strike prices of the sold options.



e Breakeven Points. Calculated by adding the total premiums received to the strike price
(for the upside breakeven) and subtracting the total premiums from the strike price (for
the downside breakeven).

Strategic Considerations:

e Market Outlook: Suitable when expecting minimal price movement and low volatility
in the underlying asset.

e Risk Management: Due to unlimited loss potential, implement strict risk controls, such
as setting stop-loss orders or closing the position if the asset moves significantly.

e Active Monitoring: Requires continuous monitoring and potential adjustmentsto
manage risks effectively.

e Advanced Strategy: Considered advanced dueto itsrisk profile; thorough understanding

and experience are essential before implementation.

1.8.6.13 Bull Call Spread

Figure 12: Bull Call Spread
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A Bull Cal Spread involves buying acall at alower strike and selling acall at a higher strike
(same expiration). The choice of strikesis crucial and should aign with the trader’s bullish price

target and risk appetite. Typically, thelong cal is chosen at-the-money (ATM) or dlightly in-



the-money for a balance of cost and payoff, while the short call is placed out-of-the-money
(OTM) near the expected pricerise.
Construction of the Strategy:

e Long Position: Purchase a call option with alower strike price (K1).

e Short Position: Sell acall option with ahigher strike price (K2).

Both options should have the same expiration date. This strategy resultsin a net debit, asthe

premium paid for the long call exceeds the premium received from the short call.

Profit and L oss Potential:

e Maximum Profit: Achieved if the underlying asset's price rises above the higher strike
price (K2) at expiration. The profit is limited to the difference between the strike prices
minus the net premium paid.

e Maximum Loss: Occursif the underlying asset's price falls below the lower strike price
(K1) at expiration. Thelossis confined to the net premium paid to establish the position.

e Breakeven Point: Calculated by adding the net premium paid to the lower strike price
(K1). At this price, the trader neither profits nor incurs aloss.

Strategic Considerations:

e Market Outlook: Ideal for scenarios where amoderate increase in the underlying asset's
price is expected.

e Risk Management: Provides adefined risk, as the maximum loss is limited to the net
premium paid.

e Profit Limitation: Caps potential gains due to the short call position, which obligates the
trader to sell the asset at the higher strike price if exercised.

e Cost Efficiency: Reducestheinitia investment compared to outright purchasing acall
option, as the premium received from the short call offsets part of the cost.

e Transaction Costs: Commissions and fees can impact profitability, especially when
dealing with multiple option contracts.

e Time Decay: As expiration approaches, the time value of options diminishes. A bull call
spread benefits from this decay in the sold call but is adversely affected in the bought
cal.

e Volatility: Significant changesin implied volatility can affect option premiums. An

increase in volatility generally raises premiums, benefiting the long call but potentially



increasing the cost of the short call.

1.8.6.14 Range Forward

Figure 13: Range Forward
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A Range Forward option strategy is astructured financial instrument commonly used in currency
markets to hedge against exchange rate fluctuations while allowing for some participation in
favorable movements. It involves the simultaneous use of two derivative positionsto create a
range of exercise prices, providing protection against adverse exchange rate movements while
retaining some upside potential to capitalize on favorable currency fluctuations.
Construction of the Strategy:
e To construct a Range Forward strategy, an investor or corporation simultaneously enters
into two option positions:
e Sdl an Out-of-the-Money (OTM) Call Option: This obligates the seller to sell the
underlying asset at a specified higher strike price if exercised by the buyer.
e Buy an Out-of-the-Money (OTM) Put Option: This givesthe buyer theright to sell the
underlying asset at a specified lower strike price.
e Thestrike prices are chosen such that the premiums received from selling the call option
offset the premiums paid for buying the put option, resulting in a net zero-cost structure.
This setup establishes a range within which the investor is protected against adverse
movements but also limits potential gains beyond the upper strike price.

Profit and L oss Potential:



The Range Forward strategy's outcomes depend on the spot price of the underlying asset
at expiration:

If the spot priceisbetween thelower and upper strike prices. Theinvestor benefits
from favorable movements within this range, as the options may not be exercised,
allowing participation in spot market rates.

If the spot price exceedsthe upper strikeprice: The sold call option is exercised,
obligating the investor to sell the underlying asset at the upper strike price, thereby
capping potential gains beyond thislevel.

If the spot pricefallsbelow the lower strike price: The purchased put option is
exercised, alowing theinvestor to sell the underlying asset at the lower strike price, thus
providing protection against further declines.

This strategy is particularly useful for entities like exporters concerned about potential
currency depreciation but still wishing to benefit from favorable exchange rate

movements within a specified range.

Strategic Consider ations:

When implementing a Range Forward strategy, several factors should be considered:

Market Conditions: Ideal for markets with moderate volatility where the underlying
asset's price is expected to remain within a certain range.

Timing: Aligning the strategy's expiration with the timing of the underlying exposure
ensures effective hedging.

Volatility: Understanding the volatility of the underlying asset is crucial, as higher
volatility may increase the likelihood of the asset price moving beyond the established
range, affecting the strategy's effectiveness.

1.8.6.15 Risk Reversd

Figure 14: Risk Reversa
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A Risk Reversal is an options trading strategy that combines the purchase of an out-of-the-
money (OTM) call option and the sale of an OTM put option on the same underlying asset, with
identical expiration dates. This strategy is typically employed by traders who anticipate a
significant directional movement in the asset's price and seek to capitalize on that expectation.
Construction of the Strategy:

e Bullish Risk Reversal: In abullish scenario, atrader buys an OTM call option and
simultaneously sellsan OTM put option. This setup profits from upward price
movements beyond the call's strike price, while the sold put hel ps offset the cost of the
cal.

e Bearish Risk Reversal: Conversaly, abearish risk reversal involves purchasing an OTM
put option and selling an OTM call option, aiming to benefit from downward price
movements below the put's strike price.

Rationale Behind the Strategy:

e Hedging: Risk reversals can serve as hedging tools. For instance, an investor holding a
long position in a stock might implement a bearish risk reversal to protect against
potential declines, effectively setting a price floor.

e Speculative Trading: Traders with strong directional views can userisk reversalsto gain
leveraged exposure with limited upfront costs. By selecting appropriate strike prices, they
can tailor the strategy to their market outlook.

Selection of Strike Prices and Expiration Dates:



Strike Prices: Typically, both the call and put options are chosen to be out-of-the-
money, equidistant from the current price, to create a zero-cost structure. However,
traders may adjust strikes based on their risk tolerance and market expectations.
Expiration Dates. The options share the same expiration date, which is selected based

on the anticipated time frame for the expected price movement.

Profit and L oss Potential:

Maximum Profit: The profit potential is theoretically unlimited in abullish risk reversal
if the underlying asset's price rises significantly. In a bearish risk reversal, the maximum
profit is substantial if the price declines sharply.

Maximum Loss. The maximum potential loss occurs if the underlying asset's price

moves adversely beyond the strike price of the sold option, leading to significant losses.

Strategic Consider ations:

Market Conditions: Risk reversals are most effectivein trending markets where atrader
expects significant price movements.

Volatility: Implied volatility affects option premiums. Traders should assess volatility
levels, as they impact the cost and potential profitability of the strategy.

Outlook on the Underlying Asset: A clear directional biasis crucial. Without a strong
conviction, the strategy may expose the trader to unnecessary risks.

Advantages and Limitations. Risk reversals offer leveraged exposure with limited
upfront costs but carry substantial risksif the market moves unfavourably.

1.8.6.16 Batman

Figure 15: Batman
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The "Batman" options trading strategy is a neutral, multi-leg approach designed to capitalize on
range-bound movements in the underlying asset, particularly when low to moderate volatility is
anticipated. Its name derives from the distinctive shape of its profit and loss (P& L) graph, which
resembles the iconic Batman logo, featuring two prominent peaks and a central dip.
Construction of the Strategy:
The Batman strategy is constructed by combining two ratio spreads. acall ratio spread and a put
ratio spread. The specific components include:

1. Call Ratio Spread:

e Buy one out-of-the-money (OTM) call option.

e Sdl two further OTM call options.

2. Put Ratio Spread:

a Buyone OTM put option.
b. Sell two further OTM put options.

All options involved share the same underlying asset and expiration date but differ in strike
prices. The logic behind this combination is to establish a strategy that profits when the
underlying asset's price remains within a specific range, benefiting from time decay and stable
market conditions. The dual peaksin the P&L graph correspond to the strike prices of the short
options, indicating optimal profit zones.
Key Parameters:

e StrikePrices: The selection of strike pricesis crucial. Typicaly, the strike prices for the

short options (both calls and puts) are set equidistant from the current market price of the



underlying asset. The long options are placed further out-of-the-money, creating a buffer
zone that defines the expected trading range.

Expiration Dates. All options should have the same expiration date to ensure the
strategy functions cohesively. The chosen expiration should align with the trader's
outlook on the duration of the anticipated range-bound movement.

Market Conditions: The Batman strategy isideally deployed in markets expected to
exhibit low to moderate volatility, where the underlying asset is anticipated to trade
within a defined range. High volatility or strongly trending markets may render this

strategy less effective or increase the risk of loss.

Profit and L oss Potential:

Maximum Profit: The strategy achieves maximum profit when the underlying asset's
price at expiration matches either of the short strike prices (the strikes of the sold
options). At these points, the premiums collected from the sold options exceed the cost of
the purchased options, resulting in optimal profitability.

Maximum L oss. The potential for lossistheoretically unlimited if the underlying asset's
price moves significantly beyond the established range, surpassing the breakeven points.
This occurs because the uncovered (naked) short options can incur substantial losses as
the asset price continues to move unfavourably.

Breakeven Points. There are two breakeven points for the Batman strategy:

Upper Breakeven Point: Calculated as the short call strike price plus the width of the
call spread plus the net premium received.

L ower Breakeven Point: Calculated as the short put strike price minus the width of the
put spread minus the net premium received.

If the underlying asset's price at expiration falls between these breakeven points, the
strategy yields a profit. Movement beyond these points results in losses.

Strategic Considerations:

Strike Price Selection: Choosing appropriate strike pricesis vital. The short strikes
should be set at levels where the trader expects the underlying asset to remain near
expiration. The long strikes provide a cushion against adverse movements but should be
placed far enough away to make the premiums collected from the short options
substantial.



e Risk Management: Given the potential for unlimited losses, implementing strict risk
management protocolsis essential. This may include setting stop-loss orders, monitoring
market conditions closely, and being prepared to adjust or exit the position if the market
moves unexpectedly.

e Market Conditions: The Batman strategy is best suited for markets with low to
moderate volatility, where the underlying asset is expected to trade within a specific
range. In highly volatile or trending markets, therisk of breaching the breakeven points
increases, making the strategy less favourable.

1.8.6.17 Bear Call Spread

Figure 16: Bear Call Spread
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A Bear Call Spread, aso known as ashort call spread or call credit spread, isan options trading
strategy employed by traders anticipating a neutral to moderately bearish movement in the
underlying asset. This strategy involves two simultaneous transactions: selling acall option at a
lower strike price and buying another call option at a higher strike price, both with the same
expiration date. The primary objective is to generate income through the net premium received
while limiting potential |osses.

1.7.1.1 Construction of the Strategy:
1. SdlingaCall Option at aLower Strike Price: The trader sells (writes) acall option

with astrike price closer to the current market price of the underlying asset. This option

typically carries ahigher premium dueto its greater likelihood of being exercised.



2. BuyingaCall Option at aHigher Strike Price: Simultaneously, the trader purchases a

call option with a higher strike price. This option acts as a protective measure, capping
potential lossesif the underlying asset's price rises significantly.

Rationale Behind the Strategy:

The bear call spread is designed for market conditions where the trader expects the underlying

asset's price to remain stable or decline moderately. By implementing this strategy, traders aim to

capitalize on time decay and stable or falling prices, collecting the net premium as profit if the

asset's price stays below the lower strike price at expiration.

Key Components I nvolved:

Strike Prices: The chosen strike prices determine the range within which the strategy
operates. The lower strike price (sold call) is closer to the current market price, while the
higher strike price (purchased call) is further away.

Expiration Dates. Both options must share the same expiration date to ensure the
strategy's integrity and to accurately define the profit and loss parameters.

Premiums Received or Paid: The net premium is the difference between the premium
received from selling the lower strike call and the premium paid for buying the higher

strike call. This net credit represents the maximum potential profit.

Profit and L oss Potential:

Maximum Profit: The maximum profit is the net premium received at the initiation of
the trade. This occursiif the underlying asset's price remains below the strike price of the
sold call option at expiration, rendering both options worthless and alowing the trader to
retain the entire premium.

Maximum L oss. The maximum lossis limited and occurs if the underlying asset's price
exceeds the strike price of the purchased call option at expiration. Thelossis calculated
as the difference between the two strike prices minus the net premium received. Thisloss
is capped due to the protective long call option, distinguishing it from the potentially
unlimited losses of anaked call position.

Profit/L oss Dynamics and Time Decay: The strategy benefits from time decay (theta),
as the value of the options erodes over time, favoring the seller. In stable or declining

markets, the likelihood of both options expiring worthless increases, enhancing



profitability. However, if the underlying asset's price rises and approaches or surpasses

the strike price of the sold call, the position may incur |osses.

Strategic Considerations:

Market Outlook: The bear call spread is most effective in markets where the trader
anticipates limited or slight price decreases or expects the underlying asset to trade within
anarrow range. It is not suitable for strongly bearish or bullish expectations.
Advantages:

o Limited Risk: The purchased call option caps potential |osses, providing a defined
risk profile.

0 Income Generation: The net premium received offersimmediate income, which can
enhance returns in stagnant or mildly bearish markets.

Limitations:

o Capped Profit Potential: The maximum profit islimited to the net premium
received, regardless of how much the underlying asset's price declines,

0 Risk of Loss: If the underlying asset's price rises above the strike price of the sold
call option, the strategy can result in aloss, though thislossis limited by the
purchased call option.

Factor s Affecting Success:

o0 Market Volatility: High volatility can increase the likelihood of the underlying
asset's price moving beyond the strike prices, impacting the strategy's profitability.

o Timeto Expiration: Asexpiration approaches, time decay accelerates, which can
benefit the strategy if the options remain out-of-the-money.

o Price Movement of the Underlying Asset: Significant upward movementsin the
underlying asset's price can lead to losses, while stable or declining prices favor the

strategy.

1.8.7 Agents

Agent is something that can be viewed as perceiving its environment through sensors and acting

upon that environment through effectors [Wooldridge and Jennings (1995); Shoham and Leyton-
Brown (2008)].



The agents classify the available information; notice patterns in the information and
generaize internal models from the noticed patterns and act based on these models. However,
the agents must evaluate and adapt after seeing how well they work. In actuality, the agents have
several different ways of predicting the future and they continually compare and evaluate them.
The ones which work well gain more weight and are used more often. The market and agent are
coevolving in the environment, each action affecting the behaviour of each other [ Sutton and
Barto (1998); Busoniu et al. (2008)].

A flexible agent has the following properties:

1. Responsive: Agents should perceive their environment and should be able to respond in a
timely fashion to changes that occur in their environment.

2. Proactive: They should be able to exhibit opportunistic, goal-directed behavior and take the
initiative where appropriate.

3. Social: They should be able to interact with other agentsin order to achievetheir goals.

Figure 17: Agentic Al Framework
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1.8.8 Multi-Agent System

A multi-agent system (MAS) is a system composed of multiple interacting agents that work
together (or sometimes independently) to solve a complex problem or achieve specific goals
[Ferber (1999); Wooldridge and Jennings (1995)]. Each agent in the system has its own set of
behaviours, objectives, and decision-making abilities. These agents can communicate, cooperate,
compete, or even be adversarial, depending on the design of the system [ Shoham and Leyton-
Brown (2008)].
Here’s amore detailed breakdown of what a multi-agent system entails:
Key Characteristics of a Multi-Agent System:

1. Agents:

o Autonomous. Each agent can make decisions and taking actions
independently of others based on its own perception of the environment or its
internal state.

o Interactive: Agents communicate and interact with each other, exchanging
information, negotiating, or coordinating actionsto achieve their individual or
collective goals.

o Goal-oriented: Each agent typically hasits own goals or objectives to pursue,
which might align or conflict with the goals of other agentsin the system.

2. Environment:
o Theenvironment isthe external context in which the agents operate. It could

be asimulation, areal-world environment (like afinancial market, the



internet, etc.), or a problem space that agents are trying to navigate or
optimize.

o Theenvironment can be static (unchanging) or dynamic (changing over
time).

3. Interaction:

o Agentsin amulti-agent system can cooper ate, compete, or coordinate.
Cooperation involves agents working together towards a common goal, while
competition can occur when agents have conflicting objectives. Coordination
refers to agents adjusting their actions based on the behaviors or goals of other
agents.

o Communication between agentsis akey feature. Agents shareinformation,
update each other on their states, or even negotiate and form alliances.

4. Decentralized Control:

o Inamulti-agent system, there istypically no central control or decision-
maker. Each agent hasits own local information and acts based on that.
However, through interactions, the agents can collectively exhibit intelligent

behavior without central coordination.

1.8.8.1 Types of Multi-Agent Systems:

Multi-Agent Systems (MAS) are computational systems composed of multiple interacting
agents, each with distinct capabilities and objectives. In the context of trading options, strategy
selection, and risk management, MAS can offer sophisticated frameworks to simulate market
dynamics, optimize trading strategies, and enhance decision-making processes. Below isa
comprehensive introduction to four primary types of MAS:
A. Cooperative Agent Systems
In Cooperative MAS, agents work together towards a shared objective, pooling resources and
information to achieve common goals. This approach is particularly beneficial in trading and
risk management, where coordinated efforts can lead to more informed decision-making and
improved performance.
Application in Trading and Risk Management:



e Collective Strategy Development: Agents can collaboratively analyse market trends and
historical datato develop robust trading strategies, combining their insights to enhance
predictive accuracy.

e Risk Pooling: By sharing information about potential risks and exposures, agents can
collectively identify and mitigate systemic risks, leading to more resilient trading
operations.

e Collaborative Decision-Making: Agents can engage in joint decision-making processes,
such as auctions or negotiations, to optimize trade execution and achieve favourable

terms.

B. Competitive Agent Systems

In competitive MAS, agents operate in opposition to each other, each striving to maximize

individual gains. This competitive environment mirrors real-world financial markets, where

traders vie for profits based on market movements and information asymmetry.

Application in Trading Strategies:

e Market Simulation: Competitive MAS can simulate market scenarios where agents
adopt various trading strategies, allowing researchers and practitionersto study market
dynamics and the impact of different tactics.

e Strategy Evaluation: By observing the performance of agents employing diverse
strategiesin acompetitive setting, one can assess the effectiveness of trading algorithms
under varying market conditions.

Understanding competitive interactions among agentsis crucial for developing strategies that can
withstand market volatility and competition.

C. Hierarchical Agent Systems
Hierarchical MAS are structured with agents organized in levels, each with specific roles
and responsibilities. This hierarchy facilitates complex task decomposition and
delegation, ensuring efficient management of intricate trading operations and risk
management processes.

Application in Trading and Risk Management:



e Task Decomposition: High-level agents can break down complex trading strategies into
manageabl e tasks, assigning them to subordinate agents for execution, thereby
streamlining operations.

e Specialization: Agents at different levels can specialize in specific aspects of trading,
such as market analysis, execution, or compliance, enhancing overall system efficiency.

e Coordinated Execution: The hierarchical structure allowsfor coordinated execution of
trading strategies, with oversight mechanisms to ensure alignment with overarching

objectives.

D. Hybrid Agent Systems

Hybrid MAS integrate elements of collaboration and competition, enabling agents to

adapt to dynamic environments where both cooperative and competitive interactions are

prevalent. This adaptability is essential in trading scenarios characterized by fluctuating
market conditions and evolving strategies.
Application in Trading, Strategy Selection, and Risk M anagement:

e Adaptive Strategies: Agents can switch between cooperative and competitive modes
based on market conditions, optimizing their strategies for current environments.

e Negotiation and Collaboration: Agents can collaborate to negotiate better trading
terms or share insights, while also competing to secure the most profitable deals.

e Risk Diversification: By balancing collaborative risk-sharing with competitive risk-
taking, agents can achieve diversified portfolios that align with their risk tolerance
and objectives.

Understanding the dynamics of hybrid interactions among agentsis vital for developing
systems that can navigate the complexities of modern financial markets. Incorporating these
MAS typesinto the design of trading strategies and risk management frameworks can lead to
more robust, adaptive, and efficient financial systems, capable of responding to the

multifaceted challenges of contemporary markets.

1.8.9 Reinforcement L earning:

RL isabranch of machine learning where an agent learns to make decisions by

interacting with an environment to maximize cumulative rewards. Unlike supervised learning,



which relies on labelled datasets, RL emphasizes |earning from the consequences of actions,
making it particularly suited for tasks involving sequential decision-making and dynamic
environments.
1.8.9.1 Key Components of Reinforcement L earning:
1. Agent: Thedecision-making entity that interacts with the environment. It aims to
learn an optimal policy.
2. Environment: The external system with which the agent interacts. It provides states
and rewards.
3. State(s): A representation of the environment's current situation. It encapsulates the
relevant information required for decision-making. Formally, it belongs to the state
space (S).
4. Action (a): A choice made by the agent that influences the environment's state.
Actions belong to the action space (A).
5. Reward (r): A scalar signal that quantifies the desirability of an agent'sactionina
given state. It serves as the primary feedback mechanism for learning.
6. Poalicy (r): A mapping from states to actions, defining the agent's behaviour. It can be
deterministic (7(s) = a) or stochastic (n(als) = P(A=alS=s)).
7. Trajectory (t): A sequence of states, actions, and rewards resulting from the agent's

interaction with the environment: T = (So, ao, 1, S1, a1, I2, ..., S).

1.8.9.2 Challengesin Applying RL to Financial Markets

Implementing RL in financial markets presents several challenges. One significant
challenge is timeframes, as financial markets operate on multiple timescales ranging from
milliseconds to years. Aligning RL agents to these varying timeframes requires careful
consideration of both data granularity and decision-making speed, ensuring that the models can
process and react to information in atimely manner without being overwhelmed by noise [Sutton
and Barto (1998); Yang et a. (2022)].

A second challenge is market volatility and noise. Financial markets are inherently
unpredictable, with price movements influenced by numerous factors that can produce rapid,

seemingly random fluctuations. These fluctuations can make it difficult for RL agentsto



distinguish between genuine patterns and random noise, potentially leading to suboptimal
strategiesif the models misinterpret transient changes as meaningful trends [Peng et al. (2024);
Wu and Jaimungal (2023)].

A further issue arises from the explor ation-exploitation dilemma. RL agents must balance
exploration (trying new actions to discover profitable opportunities) and exploitation (using
known actions to capitalize on existing knowledge). In financial markets, excessive exploration
can result in substantial losses, while too much exploitation may cause the model to miss

emerging opportunities or fail to adapt to new market conditions.

Another critical consideration is data quality and availability. Training RL models requires
large volumes of high-quality, granular data that accurately represent market conditions.
However, obtaining comprehensive datasets—particularly for options trading—can be
challenging due to data limitations, inconsistencies, and the costs associated with high-frequency

data acquisition.

Finally, there is the concern of systemic risk and market stability. Deploying RL-based trading
systems at scale raises questions about how correlated behaviours among many participants
might amplify market volatility. Regulatory bodies have expressed concerns that widespread use
of Al in trading could introduce novel forms of market manipulation and destabilizing feedback
loops, underscoring the need for vigilant oversight and monitoring.

1.8.9.3 Enhancing RL Agentswith Deep Neural Networks

Deep neura networks (DNNSs) play a pivotal role in enhancing reinforcement learning
(RL) agents by enabling them to approximate complex functions, thereby allowing these agents
to generalize from limited data and make predictions about unseen market conditions
[Goodfellow et a. (2014); Lim et al. (2019)]. Because financial markets generate vast amounts
of data, DNNs are instrumental in processing and learning from high-dimensional inputs,
revealing intricate patterns that traditional methods might overlook [Goodfellow et a. (2014)].



Additionally, techniques like Deep Q-Learning harness DNNSs to stabilize the learning process
and address issues such as divergence and instability, challenges commonly encountered in RL

applications.

1.8.9.4 The Markov Decision Process (MDP):

e RL problems are often formalized as MDPs, which provide a mathematical framework
for sequential decision-making in stochastic environments [ Sutton and Barto (1998);
Puterman (1994); Howard (1960)].

e Markov Property: The future state depends only on the current state and action, not on the
history of previous states and actions. Formally, P(s:h1|s, a)) = P(sih1|s1,aq,..., S, ay).

e State Transition Probability (P): P(s'|s, @) represents the probability of transitioning to
state s from state s after taking action a.

e Reward Function (R): R(s, a, s") defines the expected reward received after transitioning
from state sto s by taking action a.

e Bellman Equation for Value Function:

V(s) = max a(Es'P(s' Il s,a)[R(s,a,s") + yV(s")])Vs = max a Ys'Ps's,aRs,a,s’ + yVs'
Where:
V(s) isthevalue of state s.
a isan action taken in state s.
P(s' | s,a) isthetransition probability, i.e., the probability of transitioning to
state s's's’ from state sss by taking action a.
R(s,a,s") isthereward received after transitioning from state sssto state S's's' by
taking action aaa.
y isthediscount factor, avaue between 0 and 1 that represents the preference

for immediate rewards over future rewards.

e Bellman Equation for Q-Function (Action-V alue Function):
Q(s,a) = Ys'P(s" Il s,a)[R(s,a,s") + ymaxa'Q(s’,a")]Qs,a
= Y's'Ps’s,aRs,a, s’ + ymaxa' Qs',a’

Where:



Q(s, a) isthevaue of taking action a in state s.

1.8.9.5 Learning Algorithms:

Model-Based RL: The agent learns amodel of the environment (transition probabilities
and reward function) and uses it for planning.
Model-Free RL: The agent learns directly from experience without explicitly learning a
model.
o Value-Based Methods: Learn value functions (e.g., Q-learning, SARSA) [Sutton
and Barto (1998); Bradtke and Barto (1996)].
o Policy Gradient Methods: Directly optimize the policy (e.g., REINFORCE,
PPO, Actor-Ciritic) [Schulman et al. (2017)].
o Temporal Difference (TD) L earning: Updates value function estimates based
on observed rewards and subsequent states [ Bradtke and Barto (1996); Sutton and
Barto (1998)].
o MonteCarlo (MC) Methods. Updates value function estimates based on
compl ete episodes [ Sutton and Barto (1998); Glasserman (2004)].
o Deep Reinforcement Learning (DRL): Combines RL with deep neura networks
to handle high-dimensional state spaces [Goodfellow et a. (2014); Sutton and
Barto (1998)].

1.8.9.6 Generalization and Function Approximation:

When dealing with large or continuous state and action spaces, function approximation
techniques (e.g., neura networks) are used to approximate value functions or policies. (In
loT, thisis useful for optimizing large-scale sensor networks and making decisions based
on real-time data streams.) [Goodfellow et al. (2014); Lim et al. (2019)].

1.8.9.7 Fundamental Conceptsof DRL:

Exploration vs. Exploitation: Balancing the choice between exploring new actionsto
discover their effects and exploiting known actions that yield high rewards.

Temporal Difference L earning: A method where learning is driven by the difference
between predicted rewards and the actual rewards received, allowing for continuous
updating of value estimates. [Bradtke and Barto (1996)]



e Q-Learning: An off-policy agorithm that seeks to find the optimal action-selection

policy by learning the value of state-action pairs.

1.8.9.8 The Foundational Concepts of Reinforcement L earning

In the realm of financial markets, particularly in options trading and strategy selection,
understanding the foundational concepts of reinforcement learning (RL) is crucia for
developing sophisticated trading agents. This section provides acomprehensive overview of key

RL concepts and their applications in trading environments.

Value Function in Evaluating Trading Strategies

The value function estimates the expected return of a particular state or state-action pair
under a specific policy. In trading, it assesses the potential profitability of different strategies or
actionsin given market conditions. By evaluating these value functions, traders can identify
optimal strategies that maximize expected returns while considering risk factors. This evaluation
isintegral to risk management, as it helpsin understanding the potential outcomes and variances
associated with different trading decisions.

Dynamic Programming (DP) in Financial Decision-M aking

DP isamethod for solving complex problems by breaking them down into simpler
subproblems. In financial settings, DP can be used to determine optimal trading strategies by
evaluating the value of different decisions over time. However, its application is limited in large-
scale, rea-world trading due to the "curse of dimensionality,” where the state and action spaces
become too vast to handle computationally. This limitation necessitates the use of approximation

methods or aternative algorithms in practical scenarios.

Function Approximatorsin High-Dimensional Financial Data

Function approximators, such as neural networks, are employed in RL to estimate value
functions or policies when dealing with high-dimensional data, like financial markets. They
enable the modelling of complex relationships between market variables and trading actions,
facilitating the development of robust trading strategies. For example, deep Q-learning utilizes
neura networks to approximate the Q-value function, allowing agents to make informed

decisionsin intricate trading environments.



Monte Carlo Methods and Temporal Difference (TD) Algorithms

Monte Carlo methods involve learning value functions based on the average returns of
sampled episodes, making them suitable for episodic tasks like evaluating the performance of a
trading strategy over a specific period. TD algorithms, on the other hand, learn directly from raw
experience by bootstrapping from the current estimate, enabling online learning and real-time
strategy adjustment. Both methods are applied in financial trading for tasks such as risk
assessment and options pricing, where understanding the expected returns and adjusting

strategies promptly are crucial.
M odel-Free Reinfor cement L earning

Model-free RL algorithms enable agents to learn optimal behaviours through direct
interaction with the environment, without requiring explicit models of the environment's
dynamics. This approach is particularly advantageous in trading, where modelling the entire
market with all its complexitiesis often infeasible. Instead, agents |earn to make decisions based
on observed state-action-reward sequences, adjusting their strategies to maximize cumulative
returns. Common model-free methods include Monte Carlo methods, Temporal Difference (TD)
learning, and Q-learning.

Policy Optimization M ethods

Policy optimization methods focus on directly adjusting the policy—a mapping from

states to actions—to maximize expected returns. These methods are particularly effectivein

continuous action spaces, which are prevalent in trading scenarios where decisions such as the

guantity of assets to buy or sell are continuous variables.

a. Proximal Policy Optimization (PPO)
PPO is an on-policy agorithm that strikes a balance between exploration and exploitation
by limiting the magnitude of policy updates, thereby ensuring stable and reliable learning.
It achieves this by optimizing a clipped surrogate objective function, which prevents
large deviations from the current policy during training. In trading, PPO's ability to
handle continuous action spaces and maintain stability makes it suitable for developing

strategies that require precise adjustments to trading positions in response to market



fluctuations. [fluctuations Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and
Klimov, O. (2017)]

b. Soft Actor-Critic (SAC)

SAC isan off-policy actor-critic agorithm that incorporates entropy
regularization into the objective function, encouraging exploration by promoting
stochasticity in the policy. This approach balances the trade-off between exploration
(trying new actions) and exploitation (leveraging known rewarding actions), which is
crucial in dynamic and uncertain trading environments. SAC's capacity to handle
continuous action spaces and its inherent risk-sensitive nature make it particularly useful
for trading strategies that must adapt to varying market conditions while managing risk
effectively[Haarnoja et a., 2018].

c. Twin Delayed Deep Deter ministic Policy Gradient (TD3)
TD3 isan enhancement of the Deep Deterministic Policy Gradient (DDPG) agorithm,
addressing issues such as overestimation bias in value function estimation. It employs
two critical strategies:
1. DoubleCritics: Utilizes two separate critic networks to provide unbiased value

estimates by taking the minimum value predicted by the two critics.
2. Delayed Policy Updates: Updates the policy (actor network) less frequently than the

critics to ensure more accurate value estimates before policy optimization.
In trading, TD3's ability to provide more reliable value estimates and its effectivenessin
continuous action spaces make it suitable for strategies that require precise control over
trading actions, such as algorithmic execution and portfolio optimization[Kabbani and
Duman, 2022].

d. Q-LearningAlgorithms

Q-learning algorithms aim to learn the value of state-action pairs, known as Q-values,
which represent the expected cumulative reward of taking a specific action in agiven
state and following the optimal policy thereafter. These methods are foundational in
model-free RL and have been adapted to various contexts, including trading.

e. Deep Q-Network (DQN)



DON integrates Q-learning with deep neural networks to approximate Q-values for
large or continuous state spaces. By using experience replay buffers and fixed target
networks, DQN stabilizes training and enables agentsto learn effective policiesin
complex environments. In trading, DQN can be applied to tasks such as asset allocation
and market making, where the state space is vast, and the agent must learn to make

discrete decisions based on historical price movements and other market indicators.

M odel-Based Reinforcement Learning

Model-based RL involves learning a model of the environment's dynamics and using
this model to plan and make decisions. In trading, this could involve constructing models
that predict market movements or simulate the impact of trades on market conditions.
While model-based approaches can lead to more sample-efficient learning by leveraging
the learned model for planning, their effectiveness heavily depends on the accuracy of the
model. Given the complexity and stochastic nature of financial markets, developing
accurate models is challenging, which often limits the applicability of model-based RL in
trading[ Puterman, 1994].



1.8.9.9 Recent Developments and Applications:

Recent developments and applications in the field showcase significant progressin

various areas.

Firstly, Turing Award Recognition was given to Andrew Barto and Richard
Sutton in March 2025 for their groundbreaking work in reinforcement learning. Their
research, which was once considered unconventional, has now become a cornerstone of
modern Artificial Intelligence applications, including sophisticated game-playing Al and

advanced robotics.

Secondly, Advancementsin Robotics are being driven by reinforcement
learning, with companies like Boston Dynamics leveraging this technology to enhance
the intelligence and capabilities of their robots. By allowing robots to learn through trial
and error, these machines can adapt to complex and dynamic environments, enabling
them to perform intricate actions like navigating challenging terrains and manipulating
objects with greater dexterity[ Shavandi, 2023]. Lastly, the critical areaof Al Alignment
and Ethics has seen recent studies that underscore the difficulties in ensuring that Al

systems are aligned with human values.

Research indicates that advanced Al models can sometimes exhibit deceptive
behavioursin pursuit of their objectives, highlighting the urgent need for the
development of robust training processes and the careful consideration of ethical
implicationsin the advancement of Al technologied Clatterbuck et al., 2024].

1.8.9.10 Challenges and Future Directions:
Thefield faces several challenges and directions for future research.

Firstly, scalability remains a significant hurdle, as the application of
Reinforcement Learning (RL) to environments characterized by vast or continuous state
and action spaces demands the development of efficient algorithms and function
approximation techniques to ensure that |earning can occur within practical timeframes.

Secondly, safety and ethics are critical considerations, representing an active area
of research dedicated to ensuring that RL agents operate in a manner that is both safe and
consistent with human values, particularly as Al systems gain greater autonomy and

become more integrated into everyday life.



Lastly, sample efficiency is of paramount importance, especially in rea-world
applications where the collection of data can be costly or time-intensive, making it crucial
to enhance the efficiency with which RL agents can learn from their interactions.

Reinfor cement lear ning continues to be adynamic and rapidly evolving field, with its

principles being applied across various domains, from autonomous vehicles to personalized

recommendations, reflecting its versatility and potential to drive future technological

advancements.

Reinforcement Learning (RL) has emerged as a powerful tool in financial markets,

particularly in the domain of options trading. By enabling models to learn optimal trading

strategies through interactions with simulated market environments, RL offers the potential to

enhance decision-making processes and improve profitability[ Clatterbuck et al., 2024].

1.8.9.11 Applications of Reinforcement L earning in Options Trading:

1.

2.

Option Replication and Hedging: RL agorithms can be employed to develop dynamic
hedging strategies that adjust positions in response to market movements, aiming to
mitigate risk and transaction costs. For instance, deep reinforcement |earning techniques
like Deep Q-Learning and Proximal Policy Optimization have been utilized to replicate
options and hedge portfolios effectively[Peng et al., 2024].

Trading Strategy Development: Traders can leverage RL to devise strategies that
capitalize on market inefficiencies. By training RL agents on historical data, these models
can learn to make buy, hold, or sell decisions based on the current state of the market,
potentially outperforming traditional strategies{Moody and Saffell, 2001].

Market Making: RL has been applied to optimize market-making strategies in options
markets, where agents learn to provide liquidity by posting bid and ask prices that
balance profit maximization with inventory risk. This approach allows for adaptive
pricing strategies that respond to real-time market conditions] Tan, Quek and Cheng,
2011].

1.8.9.12 Challenges and Considerations:

Several challenges and considerations are important to addressin thisfield. Firstly, Data

Limitations present a significant hurdle. Options markets are characterized by awide



array of contracts with different strike prices and expiration dates, resulting in sparse data
for any single option. This lack of abundant data can make it difficult to effectively train
Reinforcement Learning (RL) models, requiring the implementation of strategies such as
data augmentation or the utilization of data from the underlying assets to enhance the
training process. Secondly, Risk Management is of paramount importance. The inherent
leverage and volatility in options trading necessitate that RL models incorporate strong
risk management frameworks. Implementing protective measures, such as stop-loss
orders, iscrucial to prevent significant financial losses. Lastly, Computational
Complexity isamajor consideration. Developing and training RL models for options
trading can be computationally demanding, especially when attempting to simulate
realistic market conditions and accounting for factors like transaction costs and the
limitations of market liquidity[Tan et al., 2011; Wu and Jaimungal, 2023; Jackel, 2002].

1.8.10 Agentic Al Frameworks

Agentic frameworks empower the development of autonomous Al agents capable of

operating independently, learning from their environments, and collaborating with other agents

or humans. These systems offer essential tools for creating adaptable and dynamic applications,

as seen in Microsoft AutoGen, which orchestrates multi-agent conversational workflows;

L angChain, which supports prompt chaining, memory management, and tool integration for

LLM-based applications; and Hugging Face Transfor mers Agents 2.0, which enables dynamic

tool-calling, task-specific adaptability, and secure code execution across various domaing] Ferber,
1999; Wooldridge and Jennings, 1995; Shoham and Leyton-Brown, 2008].

1.8.11 Generative Adversarial Networks

Figure19: Generative Adversaria Networks
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Generative Adversarial Networ ks (GANS) operate through the interplay of two neural
networks—the generator and the discriminator—engaged in a continuous adversaria process.
Here's a breakdown of their functioning:

1. Generator Network:

Objective: To produce synthetic data that closely resembles real data.

Process:

e Beginswith arandom noise vector sampled from a predefined latent space (e.g., a
multivariate normal distribution). Transformsthis noiseinto adatasample (e.g., an
image) through a series of neural network layers. Aims to generate outputs that are
indistinguishable from real data, effectively "fooling” the discriminator.

2. Discriminator Network:

Objective: To distinguish between real data samples and those generated by the generator.

Process:

e Receivesboth real data (from the actual dataset) and fake data (from the generator).
Evaluates each input and assigns a probability indicating its authenticity—higher
probabilities suggest real data, while lower probabilities indicate generated data.
Continuously updates its parameters to improve its accuracy in differentiating real
from fake data.

3. Adversarial Training Process:

e Initialization: Both networks start with random parameters
e |IterativeTraining:

e Discriminator Training:



Presented with abatch of real data and a batch of generated data. Calculates the loss
based on its ability to correctly classify each sample. Updates its parameters to
minimize this loss, enhancing its discriminative capability.
e Generator Training:
Generates a batch of synthetic data from random noise. This synthetic datais
evaluated by the discriminator. The generator calculates its |oss based on the
discriminator's feedback specifically, it seeks to maximize the discriminator's error
rate. Updates its parameters to produce more realistic data in subsequent iterations.
e Convergence:
This adversarial process continues iteratively. Ideally, the generator becomes
proficient at producing data indistinguishable from real samples, while the
discriminator becomes adept at detecting subtle differences. Training reaches
equilibrium when the discriminator can no longer reliably distinguish between red
and generated data, indicating that the generator's outputs are highly realistic.
L oss Functions:
In Generative Adversarial Networks (GANS), two neural networks the generator and
the discriminator engage in a minimax game, each optimizing its own objective
function.
e Discriminator Loss Function (D):
The discriminator aimsto correctly classify real and generated data. Itsloss function
is.
LD = Ex ~ pdt(x)[log(D(x))] + Ez ~ pz(2)[log(1 — D(G(2)))]LD = Ex ~ pdtxlog Dx + Ez
~pzzlog 1 — DGz

Where:
e D(x) isthediscriminator's probability that real dataxxx isred. G(z) isthe

generator's output given input noise z. pdtxlog, pz arethe data and noise

distributions, respectively.

e Generator Loss Function (G):



The generator strives to produce data that the discriminator classifiesasreal. Itsloss

functionis:

LG =—Ez ~pz(z)[log(D(G(2)))]|LG = —Ez ~ pzzlog DGz

This dynamic and competitive training mechanism enables GANs to learn
complex datadistributions, facilitating the generation of highly realistic synthetic
data across various domains, including image synthesis, video generation, and

data augmentation.

4. Evaluation Metrics For GAN:

e Inception Score(1S): Assesses the quality and diversity of generated images based
on apre-trained classifier's confidence.

e Fréchet Inception Distance (FID): Measures the similarity between the distributions
of real and generated images, providing a quantitative evaluation of GAN
performance [Creswell et a., 2017; Wang et a., 2017].

5. Strategy Generation in Multi-Agent Systems With GAN:

e Adversarial Training for Strategy Development: In multi-agent systems, agents
often need to develop strategies that are robust against adversarial behaviours. By
modelling the interaction between agents as a GAN framework, where the generator
proposes strategies and the discriminator evaluates their effectiveness against
potential adversarial responses, agents can iteratively improve their strategies. This
approach alows for the development of strategies that are resilient to various
adversarial tacticg Koshiyamaet al., 2019; Busoniu et al., 2008].

1.8.12 Temporal Fusion Transfor mer

Figure 20: Transformer Architecture
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The Temporal Fusion Transformer (TFT) isaneural network architecture devel oped to enhance
multi-horizon time series forecasting by integrating high predictive performance with
interpretability. It adeptly manages diverse input types, including static covariates, known future
inputs, and historical time series data, making it versatile for complex forecasting scenarios [Lim
et al., 2019].
Key Componentsof TFT:
1. Variable Selection Networks: These networks dynamically select relevant features at
each time step, ensuring that the model focuses on the most pertinent information for
accurate forecasting.



2. Gated Residual Networks (GRNs): GRNs capture intricate rel ationships between
variables by employing gating mechanisms and residual connections, which helpin
modelling non-linear dependencies effectively.

3. LSTM-Based L ocal Processing: Long Short-Term Memory (LSTM) layers are utilized
to capture short-term temporal dependencies, effectively managing local sequential
patterns in the data.

4. Interpretable Self-Attention Layers: These layers are designed to learn long-term
dependencies by assigning varying levels of importance to different time steps, enhancing
the model's ability to focus on critical periods within the time series.

5. Temporal Fusion Decoder: This component integrates information from both past and
future inputs to generate coherent and accurate forecasts, effectively combining insights
from various temporal contexts.

Handling L ong-Term Dependencies:

TFT addresses long-term dependencies through its interpretable self-attention layers,
which allow the model to weigh the significance of different time steps dynamically. This
mechanism enables TFT to capture and utilize patterns over extended periods, improving its
forecasting accuracy for long-term trends.

Architectureand Strengths:

The architecture of TFT isasynergistic blend of recurrent and attention mechanisms. The
LSTM layers handlelocal temporal processing, capturing short-term dependencies, while the
self-attention layers focus on |earning long-term relationships within the data. This
combination allows TFT to model complex temporal dynamics effectively. Additionaly, the
inclusion of variable selection networks and GRNs enhances the model's ability to identify
and focus on relevant features, contributing to its robustness and interpretability.
Improvementsover Traditional Models (L STMs and GRUS):

Traditional modelslike LSTMs and Gated Recurrent Units (GRUS) are proficient in
capturing sequential dependencies but often struggle with long-term relationships and lack
inherent mechanisms for feature selection and interpretability. TFT surpasses these
limitations by incorporating self-attention mechanisms that effectively manage long-term

dependencies and by providing insightsinto feature importance through its variable selection



networks. Thisresultsin amore transparent and accurate forecasting model compared to
traditional approaches[Lim et al., 2019].

2. Literature Review:

2.1 Introduction

Researchers, scholars, academicians, and practitioners continuously seek new insights into
financial markets, often by exploring existing studies and frameworks. In the context of options
trading, a substantial body of literature has examined various facets of derivative strategies—
ranging from traditional option spreads to advanced, technology-driven techniques. However,
while options constitute a significant portion of trading volume in many markets, including
India, much of the extant research has focused more on equities or broader portfolio optimization
than on the complexities inherent in options trading.

Against this backdrop, the present study addresses a critical gap by exploring how advanced Al
methodol ogies—specifically, Agentic Al and Deep Reinforcement Learning (DRL)—can
enhance the performance and consistency of options trading strategies. To achievethis, we build

on prior works that have investigated:

1. Studiesdetailing the design, construction, and performance of various option spreads,
including traditional and more innovative approaches.

2. Research focusing on risk-adjusted returns, position sizing, and the comparative
effectiveness of spread strategies versus naked options.

3. Early and contemporary works employing machinelearning and reinforcement learning
for predictive modelling, algorithmic execution, and market regime analysis.

4. Foundational and applied research on collaborative agent systems in finance,
emphasizing how specialized agents can coordinate to handle tasks such as strategy

generation, market forecasting, and real -time decision-making.

By examining these diverse strands of literature, the current study aims to integrate and extend
existing knowledge. Our goal is not to reinvent traditional spread strategies; rather, we adopt
popular trading approaches and enrich them with Al-driven tools that address key decision-



making factors—such as market direction, volatility, and timing—while systematically
managing risk.

This literature review thus serves two primary purposes.

o ldentifying Knowledge Gaps:. Pinpointing where conventional methods have fallen
short, especially regarding adaptability, autonomy, and the scal ability of options trading
frameworks.

e Providing Empirical Support: Gathering evidence to validate the proposed multi-agent
and DRL-driven systems, showing how they might outperform conventional benchmarks
and index-based strategies.

In the sections that follow, we synthesize relevant studies from academic journals, working
papers, and industry analyses. These works collectively provide the foundation for understanding
how advanced Al can be harnessed to address longstanding challenges in options trading,

particularly in the Indian market.

2.1.1 Reinforcement Learningin Financial Trading

Wen Wen (2021) introduced the Options Trading Reinforcement Learning (OTRL) framework,
leveraging the underlying asset's trading data to train RL models for options trading. They
employ candlestick data across various time intervals and incorporate a protective closing
strategy to mitigate substantial losses. Their findings indicate that the Proximal Policy
Optimization (PPO) agorithm, when combined with the protective closing strategy, yields the
most stable returns. Additionally, Deep Q-Networks (DQN) and Soft Actor-Critic (SAC) models
demonstrate performance surpassing the traditional buy-and-hold strategy.

Yang, B., Liang, T., Xiong, J. and Zhong, C. (2022) introduces DRL-UTrans, an end-to-end
model that combines deep reinforcement learning with Transformer and U-Net architectures to
enhance stock trading strategies. This integration enables the model to effectively capture
complex market patterns and adapt to dynamic conditions, leading to improved trading
performance. The study demonstrates that DRL-UTrans outperforms existing methods, achieving
acumulative return of 1124.23% on the | X1C dataset.



Khobragade, S.D. and Kumbhar, S.S. (2025) presents ProfitPulse, an investment strategy
utilizing RL to maximize total wealth. The study underscores the potential of RL in developing
robust trading strategies that adapt to dynamic market conditions, though specific methodologies
and results are not detailed in the provided information.

Moody, J. and Saffell, M. (2001) pioneer the application of direct reinforcement learning in
trading, introducing a framework where trading decisions are directly optimized through RL
without relying on explicit predictive models. Their approach emphasi zes the adaptability of RL
in real-time trading environments.

Tan, Z., Quek, C. and Cheng, P.Y .K. (2011) combine Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) with RL to model cyclical patternsin stock trading. Their methodology captures market
cycles, enhancing trading decisions. However, the complexity of integrating ANFIS with RL and
the potential for overfitting in volatile markets present areas for further research.

Avramelou et al. (2024) propose a novel approach that integrates deep reinforcement learning
(DRL) with multi-modal data sources, including news articles and social media, to enhance
financial trading strategies. They address the challenge of effectively combining diverse online
data to improve trading performance, providing valuable insights for developing multi-agent
frameworks that leverage reinforcement learning for strategy selection and risk management.
Huang et al. (2023) introduce a multi-agent reinforcement learning (MARL) framework that
combines traditional financial trading strategies with the TimesNet model to optimize trading
decisions. They present two novel MARL methods, CPPI-MADDPG and TIPP-MADDPG,
tailored for strategic trading in quantitative markets, offering insights into integrating MARL
with existing trading strategies within multi-agent systems.

Shavandi (2023) presents aframework that integrates multi-agent deep reinforcement learning
(MADRL) with algorithmic trading, focusing on enhancing trading performance through
collaborative agent interactions. The study emphasizes the importance of cooperation among
agentsin dynamic financial environments, providing afoundation for devel oping sophisticated
trading strategies within multi-agent systems.

Liu et al. (2023) explore the use of synthetic data augmentation techniques to enhance deep
reinforcement learning modelsin financial trading. They demonstrate that augmenting training
datawith synthetic samples can improve model robustness and performance, offering valuable

insights for developing resilient trading strategies within multi-agent frameworks.



An et a. (2023) review the challenges and opportunities of applying deep reinforcement learning
to quantitative trading. They discuss issues such as data quality, model interpretability, and
computationa complexity, providing acomprehensive overview that informs the development of
effective trading strategies within multi-agent systems.

Taghian (2023) investigates the application of deep reinforcement learning to learn asset-specific
trading rules, aiming to tailor trading strategies to individual financial instruments. The study
highlights the potential of DRL in capturing unique asset characteristics, contributing to
personalized trading strategies within multi-agent frameworks.

Sun et al. (2023) introduce TradeMaster, a comprehensive quantitative trading platform that
utilizes reinforcement learning to optimize trading strategies. They demonstrate how integrating
RL into trading systems can enhance decision-making processes, offering insights into the
practical application of reinforcement learning in multi-agent trading environments.

Kabbani, T. and Duman, E. (2022) formulated the trading problem as a Partially Observed
Markov Decision Process and applied the Twin Delayed Deep Deterministic Policy Gradient
algorithm. The model achieved a Sharpe Ratio of 2.68 on unseen test data, indicating afavorable
risk-adjusted return.

2.1.2 Reinforcement L ear ning Agentswith Deep Neural Networksin Options Trading

Wen Wen (2021) introduces the Options Trading Reinforcement Learning (OTRL)
framework, which utilizes the underlying asset data of optionsto train RL models. The research
emphasizes the unique characteristics of options, such as the multitude of contracts per
underlying asset and their distinct price behaviors. The authors employ candlestick data across
various time intervals and incorporate a protective closing strategy to mitigate significant losses.
Experimental results indicate that the Proximal Policy Optimization (PPO) a gorithm, when
combined with the protective closing strategy, yields the most stable returns. Additionally, Deep
Q-Networks (DQN) and Soft Actor-Critic (SAC) models demonstrate superior performance
compared to traditional buy-and-hold strategiesin options trading.

Yang, B., Liang, T., Xiong, J. and Zhong, C. (2022) explores the application of deep learning in
enhancing trading strategies through improved decision-making and risk management. The
authors highlight the potential of DNNs to analyze financial data, forecast market trends, and
identify trading opportunities. They address challenges such as data scarcity, model



interpretability, and overfitting, proposing methodol ogies to overcome these issues. The study
demonstrates that integrating DNNs with RL can lead to optimized trading strategies with
effective risk control mechanisms.

Peng, X., Zhou, X., Xiao, B. and Wu, Y. (2024) Focused on dynamic hedging of options, this
research presents a risk-sensitive RL approach aimed at minimizing tail risks in the profit and
loss (P&L) of option sellers. The proposed method learns optimal hedging strategies directly
from historical market data without necessitating a parametric model of the underlying asset.
Notably, the learned strategies are contract-unified, applicable across various options contracts
with differing parameters. Empirical studies reveal that this RL-based hedging strategy achieves
significantly lower tail risks and higher mean P& L compared to traditional delta hedging
methods.

Xu, M., Lan, Z., Tao, Z., Du, J. and Ye, Z. (2023) introduced QTNet, an adaptive trading model
that integrates DRL with imitative learning methodol ogies. The model was trained using minute-
frequency data from live financial markets, demonstrating proficiency in extracting robust

market features and adaptability to diverse market conditions.

2.1.3 Options Trading with Reinforcement L earning

Wen Wen (2021) introduced the Options Trading Reinforcement Learning (OTRL)
framework, utilizing underlying asset datato train RL models. They employ candlestick data
across various timeintervals and incorporate a protective closing strategy to mitigate significant
losses. Their experiments reveal that Proximal Policy Optimization (PPO) with this strategy
yields the most stable returns, while Deep Q-Networks (DQN) and Soft Actor-Critic (SAC) aso
outperform traditional buy-and-hold approaches.

Wu and Jaimungal (2023) explore robust risk-aware RL to address risks in path-dependent
financial derivatives. They apply apolicy gradient method optimizing robust risk-aware criteria
to hedge barrier options, demonstrating that hedging strategies evolve from risk-averse to risk-
seeking as agents adjust their risk preferences. Their robust strategies maintain superior
performance even under model misspecification and changing market conditions.

Peng, X., Zhou, X., Xiao, B. and Wu, Y. (2024) presents a risk-sensitive contract-unified RL
approach, integrating various risk measures into asingle framework for option hedging. They

propose a contract-unified objective function that balances risk and return, enhancing the



adaptability of RL agents to diverserisk preferences. Their approach effectively addresses the

trade-off between risk and return, providing a more nuanced tool for option hedging.

2.1.4 Options Trading

Black, F. and Scholes, M. (1973) introduced a groundbreaking model for pricing
European-style options. Their approach is grounded in the assumption that the underlying asset
follows a geometric Brownian motion, incorporating constant volatility and arisk-free interest
rate. By constructing a risk-neutral portfolio and applying the principle of no-arbitrage, they
derived adifferential equation—the Black-Scholes equation—that, under specific boundary
conditions, yields a closed-form solution for option prices. This model has become a cornerstone
in financial markets, providing atheoretical foundation for option valuation.

Merton, R.C. (1973) Merton expanded upon the Black-Scholes framework by offering a more
rigorous mathematical derivation of the option pricing model. He introduced the concept of
dynamic replication, emphasizing the construction of ariskless portfolio through continuous
hedging. Merton's work laid the groundwork for the risk-neutral valuation approach, which has
become a standard in derivative pricing. His contributions also highlighted the importance of
stochastic calculus in modeling the random behavior of asset prices.

Cox, Ross, and Rubinstein presented a discrete-time alternative to the continuous-time model s of
Black-Scholes and Merton. They developed the binomial options pricing model, which
approximates the price of options through arecombining binomial tree. This model simplifiesthe
computational complexities associated with continuous models and is particularly useful for
pricing American-style options, which can be exercised before expiration. The binomia model
converges to the Black-Scholes model as the number of time steps increases, providing a bridge
between discrete and continuous approaches.

Cao (2019) explores the interplay between options trading and corporate debt structures. The
study suggests that options trading can influence corporate debt decisions by enhancing the
informational environment, potentially lowering the cost of debt. Understanding this relationship
is essential for developing strategies within multi-agent frameworks that aim to optimize risk
management and strategy selection in financial markets.

Zhan and Han (2021) delve into the predictability of option returns by examining various
predictive variables. Their findings contribute to understanding the factors influencing option

pricing and return patterns. Thisresearch is pertinent for developing reinforcement learning



models within multi-agent frameworks, aiming to enhance strategy selection and risk
management in options trading.

Ali, Balachandran, and Duong (2020) investigate the impact of options trading on audit pricing.
They find that increased options trading activity correlates with higher audit fees, indicating that
auditors perceive greater risk and complexity in firms engaged in active options trading. This
insight is valuable for designing multi-agent systems that account for audit pricing strategies
within the broader context of financial risk management.

Tomé (2018) presents models for pricing spread optionsin energy markets, focusing on the
unique characteristics and challenges of energy commodities. The research provides
methodologies for accurately valuing options that depend on the price difference between two
energy assets. Understanding these modelsis essential for devel oping multi-agent systems that
effectively manage risks and optimize strategies in energy trading markets.

2.1.5 Binomial Options Pricing Mode

Dietmar (2006) introduced the binomial model, providing a discrete-time framework for
option valuation. They demonstrated that by constructing a riskless portfolio comprising the
option and the underlying asset, one could derive a ssmple formulato determine the option's
price at each node within the binomial tree. This methodology not only simplified the option
pricing process but also enhanced its computational efficiency.

Glasserman, P. (2004) extended the traditional binomial model by incorporating stochastic
volatility. They proposed amodified binomial tree that adjusted volatility dynamically at each
node, capturing the asset's price evolution more accurately. This advancement allowed for a

more precise valuation of options, especialy those sensitive to volatility fluctuations.

2.1.6 Monte Carlo Simulation in Financial Engineering

Boyle, P.P. (1977) Glasserman's work provides a comprehensive exploration of Monte
Carlo methods tailored for financial applications. He emphasi zes the efficiency of these methods
in evaluating complex integrals encountered in derivative pricing. The book delvesinto various
variance reduction techniques, such as antithetic variates, control variates, and importance
sampling, to enhance simulation accuracy and efficiency. Glasserman also addresses the
estimation of sensitivities, or "Greeks," highlighting the challenges of numerical differentiation



and the potential for increased simulation errors. He proposes alternative approaches to mitigate
these issues, underscoring the importance of accurate sensitivity analysisin risk management.
Boyl€e's pioneering paper by Jackel, P. (2002) introduces the application of Monte Carlo
simulation to option pricing, marking a significant departure from traditional analytical methods.
He demonstrates how Monte Carlo methods can effectively price European options by
simulating numerous price paths of the underlying asset and averaging the discounted payoffs.
This approach is particularly advantageous for options with complex features or path-dependent
characteristics, where closed-form solutions are not feasible. Boyle's work laid the foundation for
subsequent developments in simulation-based option pricing, influencing later research in quasi-
Monte Carlo methods and high-dimensional integration techniques.

Ferber, J. (1999), Jackel's book offers an in-depth analysis of Monte Carlo simulation techniques
within the financial sector. He explores the theoretical underpinnings of these methods and their
practical applicationsin pricing complex derivatives. The book discusses various aspects of
simulation, including random number generation, path simulation, and the implementation of
variance reduction techniques. Jackel also addresses the computational challenges associated
with Monte Carlo methods, such as the high variance in estimates and the substantial
computational resources required. He provides insights into mitigating these challenges and
discusses the trade-offs between simulation accuracy and computational feasibility.

Kozlova (2020) introduces Simulation Decomposition (SimDec), amethod that enhances Monte
Carlo simulations by visually analyzing the relationships between input variables and model
outputs. SimDec facilitates uncertainty and sensitivity analysis, enabling a deeper understanding
of model behavior across various disciplines, including finance. By decomposing simulations,
researchers can identify influential factors affecting trading strategies, thereby informing the
development of multi-agent frameworks and reinforcement learning models for improved
strategy selection and risk management.

Becker et al. (2023) explore the integration of stochastic gradient descent with Monte Carlo
simulations to efficiently learn random variables in the context of financial derivative pricing.
Thelr approach combines Monte Carlo al gorithms with machine learning techniques, enhancing
the accuracy and efficiency of pricing complex financial instruments. This methodology is

particularly relevant for devel oping multi-agent systems that require precise modeling of



financial variables, thereby improving strategy selection and risk management in trading
applications.

2.1.7 Multi-Agent Systems

Ferber, J. (1999) offers acomprehensive introduction to MAS, delineating the concept of
agents as active entities capable of perceiving and acting upon their environment. He introduces
classifications of MAS into reactive and cognitive systems, emphasizing the distinction between
agents that operate based on stimulus-response mechanisms without internal representations and
those that possess internal models enabling complex behaviors such as planning and learning.
This classification aids in understanding the varying complexities and functionalities within
MAS.

Wooldridge, M. and Jennings, N.R. (1995) provide acritical analysis of intelligent agents,
distinguishing them from traditional software entities by highlighting attributes such as
autonomy, social ability, reactivity, and proactivity. They discuss the theoretical foundations of
agent-based systems and explore practical considerations in their implementation, offering a
balanced perspective that bridges conceptual models with real-world applications.

Shoham, Y. and Leyton-Brown, K. (2008) delve into the algorithmic and game-theoretic aspects
of MAS, providing arigorous analysis of strategic interactions among rational agents. They
explore logica frameworks that underpin agent behaviors, offering insights into the
computational complexities and decision-making processes within multi-agent environments.
Thiswork is pivotal for understanding the mathematical and strategic dimensions of MAS.
Busoniu, L., Babuska, R. and De Schutter, B. (2008) presented an extensive survey on multi-
agent reinforcement learning (MARL), highlighting the challenges and methodol ogies associated
with learning in environments where multiple agents interact. They address issues such as non-
stationarity and credit assignment, providing a synthesis of existing approaches and identifying
avenues for future research in MARL.

Vasilenko, V. and Kasyanov, |. (2019) focuses on the modeling, control, and programming
aspects of MAS, offering practical insights into the development and management of multi-agent
systems. They discuss various modeling techniques, control strategies, and programming
paradigms, providing aresource for practitioners and researchers involved in the design and

implementation of MAS.



Bryzgalova and Pavlova (2022) analyze the surge in retail options trading and the dominance of
three major wholesalers in this domain. They observe that these wholesalers significantly
influence market dynamics, affecting liquidity and pricing structures. This study provides
insights into how wholesaler activitiesimpact retail investors, which is crucial for understanding
market behavior in the context of multi-agent systems and reinforcement learning.

Guo et a. (2022) survey advancements and challenges in integrating large language models with
multi-agent systems. They discuss how language models can enhance agent communication and
collaboration, identifying open research questionsin this emerging field. Incorporating such
models can significantly improve the adaptability and effectiveness of multi-agent systemsin
dynamic trading environments

Sun et a. (2023) introduce TradeMaster, a comprehensive quantitative trading platform that
utilizes reinforcement learning to optimize trading strategies. They demonstrate how integrating
RL into trading systems can enhance decision-making processes, offering insights into the
practical application of reinforcement learning in multi-agent trading environments.

Guo et al. (2022) explore the integration of large language models (LLMs) with multi-agent
systems, highlighting advancements and challengesin this area. They discuss how LLMs can
enhance agent communication and collaboration, |eading to more sophisticated and human-like
interactions. Thisintegration is particularly relevant for trading applications, where agents can
process and interpret complex textual information, such as financial news and reports, to inform
trading decisions. Understanding these devel opments aids in designing multi-agent systems
capable of advanced strategy selection and risk management in dynamic trading environments.
Fatemi, S., Hu, Y., Li, X., Wang, Z., & Li, J. (2024) introduced FinVision, amulti-modal, multi-
agent system tailored for financial trading tasks. The framework comprises specialized agents
adept at processing diverse financial datatypes, including textual news reports, candlestick
charts, and trading signal charts. A notable feature is its reflection module, which analyzes
historical trading signals and outcomes to enhance future decision-making. The study concludes
that integrating these components significantly bolsters the system's predictive capabilities, with
ablation studies highlighting the critical role of the visual reflection module in improving

decision-making.



2.1.8 Markov Decision Processes
Howard, R.A. (1960) laid afoundational in the study of MDPs, introducing dynamic

programming methods to solve decision processes under uncertainty. He formulated the policy
iteration algorithm, which iteratively evaluates and improves policies to find optimal solutions.
This approach is particularly relevant in areas like trading strategy selection, where sequential
decisions must be optimized to maximize returns.

Puterman, M.L. (1994) focused on comprehensive text expanding upon the theoretical
underpinnings of MDPs and their applications. He provides in-depth coverage of solution
methods, including value iteration and policy iteration, and discusses their computational
complexities. Understanding these algorithmsis crucial for developing reinforcement learning
models that can effectively learn optimal trading strategies through simulation and real-time data
analysis.

Sutton, R.S. and Barto, A.G. (1998) , in there book focused on bridgeing the gap between MDPs
and reinforcement learning, presenting agorithms that allow agents to learn optimal behaviors
through trial and error. Techniques such as Q-learning and temporal -difference learning are
explored, offering insights into how agents can learn effective trading strategies without explicit
programming. These methods are instrumental in devel oping adaptive trading systems that
respond to market dynamics.

Policy Gradient Methods

Sutton, R.S. and Barto, A.G. (2000), in their book mainly focused on:

e Introduction of Palicy Gradient Methods: The authors present PGMs as a means to
directly adjust the parameters of a policy function to maximize expected returnsin RL
tasks.

e Function Approximation: They explore the integration of function approximation
techniques, such as neural networks, to represent complex policy functions, addressing
the scalability issues of tabular methods.

e TheREINFORCE Algorithm: A Monte Carlo-based estimator is introduced for policy
gradients, providing a method to update policy parameters based on sampled trgjectories.
Klimov, O. (2017) discussesin their paper about:



e Proximal Policy Optimization (PPO): Thiswork proposes PPO, an agorithm that
bal ances the benefits of Trust Region Policy Optimization (TRPO) with improved
simplicity and computational efficiency.

e Clipped Surrogate Objective: PPO utilizes a clipped objective function to prevent large
policy updates, enhancing training stability and performance.

e Generalized Advantage Estimation (GAE): The paper introduces GAE, a method for

reducing variance in policy gradient estimates, leading to more reliable learning.

2.1.9 Temporal Difference (TD) Learning
Sutton, R.S. (1988) introduces TD Learning as a class of incremental |earning procedures

tailored for prediction tasks. Unlike traditional methods that adjust predictions based on the final
outcome, TD Learning updates predictions based on successive, temporally ordered predictions.
This approach allows for continuous learning and refinement of predictions as new data becomes
available, facilitating more dynamic and responsive modeling.

Bradtke, S.J. and Barto, A.G. (1996) building upon Sutton's foundational work, explored linear
|east-squares algorithms within the TD Learning framework. They demonstrate that these
algorithms enable systems to predict the cumulative reward expected over time. Their research
provides a mathematical foundation for implementing TD Learning in environments where
outcomes are uncertain and sequential, offering insights into the convergence properties and

efficiency of these algorithms.

2.1.10 Generative Adversarial Networks
Bengio, Y. (2014), Goodfellow et a. laid the foundational framework for GANS,

demonstrating their capability to generate data indistinguishable from real-world samples. They
formalized the GAN model as atwo-player game, providing atheoretical basisfor the
adversarial process between the generator and discriminator.

Ferdows, A. and Saad, W. (2020) addressed the challenges of training GANSs across distributed
datasets without sharing sensitive data. They proposed the Brainstorming GAN (BGAN)
architecture, enabling multiple agents to collaboratively generate high-quality data samples while
maintaining data privacy. This approach reduces communication overhead and enhances the
scalability of GANs in multi-agent environments.

Treleaven, P. (2019), explored the application of Conditional GANs (cGANS) in the financial
sector, focusing on the fine-tuning and combination of trading strategies. They demonstrated that



CcGANSs could generate diverse and redistic financial time-series data, aiding in the calibration
and aggregation of trading strategies, and potentially improving predictive performancein
financial modeling.

Creswell et al. (2018) provide a comprehensive review of Generative Adversarial Networks
(GANS), highlighting their capability to learn deep representations without extensive annotated
training data. The paper discusses various applications such as image synthesis, semantic image
editing, style transfer, image super-resolution, and classification. It also addresses different
training methods, architectures, and the theoretical challenges associated with GANSs.

Wang et al. (2017) explore the concept of GANS, emphasizing their foundation in game theory
with agenerator and discriminator engaged in atwo-player zero-sum game. The paper provides
insights into the historical development of generative algorithms, the mechanism of GANS, their
fundamental structures, and theoretical analyses. It also discusses potential applications and
future research directionsin the field.

Gui et al. (2020) present an in-depth review of GANSs, focusing on their algorithms, theoretical
foundations, and diverse applications. The paper categorizes various GAN architectures,
discusses training techniques, and examines their use in areas like image generation, video
prediction, and semi-supervised learning. It also highlights challenges and future research

avenues to enhance GAN performance and applicability.

2.1.11 Temporal Fusion Transformer

Pfister, T. (2019, in their paper represented a significant advancement in the domain of multi-
horizon time series forecasting. This architecture adeptly combines high-performance forecasting
with interpretable insights into tempora dynamics, addressing the complexities inherent in time
series data that encompass static covariates, known future inputs, and exogenous time series
observed only historically.

Key Contributions of the TFT Modd:

1. Hybrid Architecture: The TFT integrates recurrent layers for capturing local temporal
relationships and self-attention mechanisms to model long-term dependencies. This dual
approach enables the model to effectively learn temporal patterns at varying scales.

2. Feature Selection and Gating M echanisms. To enhance interpretability and
performance, the TFT employs specialized components for dynamic feature selection and



gating layers that suppressirrelevant inputs. This design alows the model to focus on the
most pertinent information, improving forecasting accuracy and providing clarity on the
decision-making process.

3. Demonstrated Superiority: Through empirical evaluations across diverse real-world
datasets, the TFT has shown significant performance improvements over existing
benchmarks. Notably, it has outperformed traditional methods in various applications,
including retail demand forecasting and healthcare predictive analytics.

Li, Tan, Zhang, Miao, and He (2023) present a probabilistic forecasting method for mid-term
hourly load time series by enhancing the Temporal Fusion Transformer (TFT) model. They
address the challenge of balancing long-term temporal dependence learning with model
complexity by reconstructing univariate time series into multiple day-to-day series at different
hour-points. This approach utilizes the hour-point as a static covariable to distinguish differences
effectively. Theimproved TFT model replaces the Long Short-Term Memory (LSTM) unit with
a Gated Recurrent Unit (GRU) to enhance long-term dependence learning efficiency.
Additionally, incorporating quantile constraints and prediction interval (Pl) penalty termsinto
the quantile loss function helps prevent quantile crossover and construct more compact PIs. This
methodology holds significant potential for enhancing strategy selection and risk management in
multi-agent trading systems by providing more accurate and reliable load forecasting.

Koya and Roy (2023) investigate the efficacy of combining attention mechanisms with
recurrence in streamflow prediction by implementing the Tempora Fusion Transformer (TFT)
architecture, which integrates both features. Their study compares the performance of LSTM,
Transformer, and TFT models across 2,610 globally distributed catchments using the Caravan
dataset. The results demonstrate that TFT surpasses both LSTM and Transformer modelsin
streamflow prediction accuracy. Moreover, as an explainable Al method, TFT offers valuable
insights into streamflow generation processes. This research highlights the potential of
combining attention with recurrence, providing a promising approach for improving predictive

performance in hydrological modeling.

2.1.12 Policy Optimization Methodsin Reinforcement L earning

Klimov, O. (2017) introduced PPO, an algorithm that alternates between sampling data through

interaction with the environment and optimizing a surrogate objective function using stochastic



gradient ascent. PPO simplifies the trust region policy optimization (TRPO) by using first-order
optimization and clipping the policy gradient, enhancing data efficiency and robustness.
Empirical results demonstrate PPO's superior performance across various tasks, including robotic
locomotion and Atari game playing.

Levine, S. (2018), focused on SAC as presenting as an off-policy actor-critic algorithm that
incorporates entropy regularization into the objective function, promoting both exploration and
exploitation. By maximizing a trade-off between expected return and entropy, SAC achieves
state-of-the-art performance in continuous control tasks. The agorithm's automatic entropy
tuning and sample efficiency make it particularly effective for complex environments.

Haarnoja et al. (2018) introduce the Soft Actor-Critic (SAC) agorithm, an off-policy actor-critic
method rooted in the maximum entropy reinforcement learning framework. SAC aims to
enhance both the expected return and policy entropy, promoting more stochastic and exploratory
actions. The authors address challenges such as high sample complexity and sensitivity to
hyperparameter settings, proposing solutions that improve training efficiency and stability. Their
extensive eval uations demonstrate that SAC surpasses previous methods in sample efficiency
and performance across various benchmark and real-world tasks, including robotic locomotion
and manipulation.

Christodoulou (2019) extends the Soft Actor-Critic (SAC) agorithm, originally designed for
continuous action spaces, to accommodate discrete action settings. By deriving an aternative
version tailored for discrete actions, the study demonstrates that this adaptation competes
effectively with tuned model-free methods on Atari games, even without extensive
hyperparameter optimization.

Ding et al. (2021) introduce the Averaged Soft Actor-Critic (Averaged-SAC) agorithm, which
utilizes the average of multiple previously learned state values to compute the soft Q-value. This
approach addresses overestimation issues inherent in soft Q-learning, leading to enhanced

stability and performance in deep reinforcement learning applications.

2.1.13 Regime Changesin Stock Trading

Ang, A. and Timmermann, A. (2012) focused on Regime changes in financial markets refer to
abrupt shiftsin market behavior, characterized by persistent changes in asset return means,
volatilities, and correlations. Understanding these shiftsis crucial for developing effective



trading strategies, particularly in options trading, where volatility plays asignificant role. This
literature review examines the seminal work by Ang and Timmermann (2012) on regime
changes and their implications for financial markets, with afocus on their relevance to trading
options, strategy selection, and risk management within a multi-agent framework utilizing

reinforcement learning.

2.1.14 Q-Learning Algorithmsin Reinfor cement L ear ning for Options Trading

Wen Wen (2021) introduced the Options Trading Reinforcement Learning (OTRL) framework,
utilizing underlying asset datato train RL models. The study employs candlestick data across
various time intervals and incorporates a protective closing strategy to mitigate substantial
losses. Empirical results indicate that the Proximal Policy Optimization (PPO) algorithm, when
combined with the protective closing strategy, achieves the most stable high returns.
Additionally, DQN and Soft Actor-Critic (SAC) agorithms outperform the buy-and-hold
benchmark in options trading scenarios.

Brim, A. (2019) applied DON to a stock market pairs trading strategy, aiming to exploit the
relative movements between two correlated assets. The study highlights the potential of DON in
developing profitable trading strategies, though specific performance metrics and comparisons
are not detailed in the provided information.

Ramos-Diaz, E. (2024) aong with co-authors explored the application of DDQN in agorithmic
trading, focusing on learning optimal trading policies to maximize returns while managing risk.
The study integrates sentiment analysis to enhance trading decisions, though detailed findings
and comparisons with other algorithms are not specified in the available summary.

2.1.15 Backtesting in Reinfor cement L earning-Based Options Trading

Tan, Roberts, and Zohren (2024) introduced a data-driven machine learning algorithm for
options trading that eliminates the need for predefined market dynamics or pricing models. Their
approach involves directly learning complex mappings from market data to optimal trading
signals. Backtesting over a decade of S& P 100 equity option contracts reveals that their deep
learning models significantly outperform traditional rules-based strategiesin terms of risk-
adjusted returns. Additionally, incorporating turnover regularization further enhances
performance, although gains are diminished under high transaction costs.



Wen, Yuan, and Y ang (2021) proposed the Options Trading Reinforcement Learning (OTRL)
framework, leveraging underlying asset data to train reinforcement learning models. They utilize
candlestick data across various time intervals and implement a protective closing strategy to
mitigate substantial losses. Their experiments indicate that the Proximal Policy Optimization
(PPO) agorithm, when combined with the protective closing strategy, achieves the most stable
high returns. Both Deep Q-Network (DQN) and Soft Actor-Critic (SAC) models a so surpass the
buy-and-hold benchmark in options trading scenarios.

Gort et al. (2023) addressed the prevalent issue of backtest overfitting in deep reinforcement
learning models applied to cryptocurrency trading. They emphasi ze the importance of robust
backtesting methodol ogies to ensure the reliability of trading strategies. Their work highlights
practical approaches to mitigate overfitting, thereby enhancing the generalizability of modelsto
unseen market conditions.

Jin, X. (2023) developed an agorithmic trading system that integrates risk-return considerations
within areinforcement learning framework. By balancing potential returns against associated
risks, the proposed system aims to optimize trading decisions. The study underscores the efficacy
of reinforcement learning in adapting to dynamic market environments while maintaining afocus

on risk-adjusted performance.

2.1.16 ARIMA Modelsin Time Series Analysis

Hillmer, S.C. and Tiao, G.C. (1982) introduced a methodology for seasonal adjustment using
ARIMA models, emphasizing the importance of distinguishing between seasonal and non-
seasonal components in time series data. They proposed decomposing atime seriesinto its
underlying components—trend, seasonal, and irregular—by identifying appropriate ARIMA
models for each. This approach facilitates more accurate forecasting by isolating and modeling
the distinct structures within the data.

Box, G.E.P. and Jenkins, G.M. (1976) laid the foundation for the systematic approach to time
series modeling known as the Box-Jenkins methodology. Their iterative three-stage process—
model identification, parameter estimation, and diagnostic checking—jprovides a structured
framework for developing ARIMA models. They emphasized the importance of model
simplicity and parsimony, advocating for the use of the fewest parameters necessary to

adequately describe the data-generating process.



Commandeur, J.J.F. and Koopman, S.J. (2007) explored state space models as an alternative to
traditional ARIMA models, particularly addressing challenges associated with non-stationary
economic and social time series. They argued that real-world series often exhibit non-stationarity
despite differencing, suggesting that state space models offer a more flexible framework for
modeling such data. Their work highlights the potential of state space approaches to capture
complex temporal dynamics without the strict stationarity assumptionsinherent in ARIMA

models.

2.1.17 Agentic Al

Mingchen Zhuge, Changsheng Zhao (2024) introduced a framework in which agentic
systems evaluate other agents’ performance. By deploying agents as judges, the research
enhances the evaluation of agent-based task solutions, especialy in complex environments such
as code generation. The authors propose using agentic feedback |oops, facilitated by Large
Language Models (LLMs), to offer intermediate feedback during task execution. This novel
approach leads to more accurate evaluations, outperforming traditional human evaluation
metrics.

Kamer Ali Yuksel, Hassan Sawaf (2024) proposed an agentic Al system that autonomously

optimizes solutions using iterative refinement and LLM-driven feedback loops. This system’s
iterative nature involves multiple agents working in concert, with each agent playing a specific
rolein improving model performance through constant feedback and hypothesis generation. The
research showcases how agents can collaborate in an adaptive manner to optimize decision-
making tasks, reducing the need for human intervention.

Shen Gao, Yuntao Wen (2024) explored the use of LLM-based agents for simulating the
behavior of financial market participants. By integrating agent-based models with LLMs, the

authors create a more realistic simulation of market dynamics that accounts for various factors
like macroeconomic variables and market sentiment. The research aimsto study the interaction
between agents representing different types of investors, each driven by unique strategies.
Treleaven, P. (2019) explored the application of Generative Adversaria Networks (GANS) inthe
fine-tuning and combination of financial trading strategies. By using GANs to generate synthetic
financial data, the authors enable better calibration of trading algorithms, particularly in dealing
with market scenarios that are underrepresented in historical data. Additionally, the paper
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examines the use of GANsto combine multiple strategies, thus creating a robust trading
framework that can adapt to diverse market conditions.

Okpala (2025) presented an approach where agentic Al systems are organized into "crews,” with
each crew responsible for a specific financial task. These crews include both modeling and
model risk management teams, which collaborate to ensure compliance, evaluate models, and
optimize financial decision-making processes. The research emphasizes how Al agents can
collaboratively improve task execution and mitigate model risk.

M., & Zhang, Y. (2024) introduced StockAgent, a system that uses LLM-based agents to
simulate stock trading within dynamic, real-world environments. The paper demonstrates how
StockAgent can simulate stock market dynamics by using agents to represent various trading
strategies, learning and adapting to real-world market conditions. The authors show that
StockAgent can evaluate different trading strategies and generate insights for improving trading
models.

Acharya, Kuppan, and Divya (2023) provide an extensive survey on Agentic Al, focusing on its
foundational concepts, unique characteristics, and core methodologies. They delve into the
capabilities of Agentic Als—autonomous systems capable of undertaking complex actions with
minimal supervision—and explore the challengesin aligning these systems with user preferences
and societal norms. This alignment is crucial for ensuring that Agentic Als operate safely and
ethically, particularly as they become more integrated into various aspects of daily life. The
paper serves as a comprehensive introduction for researchers, developers, and policymakers
interested in understanding and engaging with the transformative potential of Agentic Al.
Clatterbuck, Castro, and Mufioz Moran (2024) address the critical issue of risk aignment in
Agentic Al systems. They emphasize that an agent's risk attitudes significantly influence its
decision-making under uncertainty. For instance, arisk-averse agent would prefer actions with
lower variance in possible outcomes, even if it means foregoing potentially higher rewards. The
paper raises essential questions about designing Al systems that align with users' risk preferences
and the broader ethical considerations of allowing Alsto make risky decisions on behalf of
individuals. Ensuring appropriate risk alignment is vital for user satisfaction, trust, and the safe
integration of Agentic Alsinto society.

Chawlaet al. (2024) explore the foundationa elements of Agentic Al frameworks, identifying
four key pillars: tool use, reflection, planning, and multi-agent collaboration (MAC). Tool use



enables Al systems to access external resources, such as search engines, to enhance accuracy.
Reflection allows for self-correction and iterative feedback, improving decision-making
processes. Planning involves structuring tasks methodically to achieve complex goals efficiently.
MAC facilitates collaboration among multiple Al agents on specific subtasks, leveraging diverse
expertise for optimal outcomes. Understanding these components is essential for developing

sophisticated Al applications that are both effective and aligned with business objectives.

2.1.18 Generic Agentic Al

Wooldridge, M. (1995) provided a comprehensive exploration of intelligent agents, discussing
their theoretical foundations and practical applications. He outlines the characteristics that define
intelligent agents, such as autonomy, social ability, reactivity, and proactivity. The paper delves
into the architecture of these agents and their role in multi-agent systems, offering insights into
their design and implementation.

Castelfranchi, C. (1998) focused on the social dimensions of Al agents, proposing models to
simulate social actions and interactions. The paper emphasizes the importance of understanding
socia contexts and norms to enhance the effectiveness of Al agentsin human-centric
environments. It presents frameworks for modeling intentions, commitments, and trust among
agents, contributing to the development of socially aware Al systems.

M., & Zhang, Y. (2024) introduced StockAgent, a system that uses LLM-based agents to
simulate stock trading within dynamic, real-world environments. The paper demonstrates how
StockAgent can simulate stock market dynamics by using agents to represent various trading
strategies, learning and adapting to real-world market conditions. The authors show that
StockAgent can evaluate different trading strategies and generate insights for improving trading
models.

2.1.19 Stock Trading

Kabbani and Duman (2022) present a Deep Reinforcement Learning (DRL) model designed to
automate trading in the stock market. They formul ate the trading problem as a Partially Observed

Markov Decision Process (POMDP), incorporating market constraints such as liquidity and



transaction costs. Utilizing the Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm, their model achieves a Sharpe Ratio of 2.68 on unseen test data, demonstrating the
efficacy of DRL infinancia decision-making.

Banik et al. (2022) devel op a decision support system for swing trading using Long Short-Term
Memory (LSTM) networks. The system analyzes historical stock data to predict future stock
values, aiding traders in making informed decisions. The study addresses the challenges posed
by the volatile nature of the stock market, demonstrating the potential of LSTM networksin
financial forecasting.

Shah, Vaidya, and Shah (2022) provide a comprehensive review of hybrid deep learning
approaches for stock prediction. They analyze various models that combine multiple learning
techniques to enhance prediction accuracy, offering insights into their applications and
effectivenessin financial forecasting.

Cohen (2022) explores the application of advanced artificial intelligence methodologies,
including machine learning and deep learning, in algorithmic trading and financial forecasting.
The work discusses the integration of Al techniquesin developing trading strategies and
predicting market trends, highlighting their impact on the financial industry.

2.2 Conclusion of Literature Review

This chapter has provided an extensive overview of the literature on options trading, strategy
selection, and risk management through the lenses of Reinforcement Learning (RL) and Multi-
Agent Systems (MAS). While global research has largely concentrated on applying RL to trading
strategies, studies that integrate these techniques with options trading and MAS remain relatively

Scarce.

Notable contributions include Wen Wen’s (2021) introduction of the Options Trading
Reinforcement Learning (OTRL) framework, which employs underlying asset trading data to
train RL modelstailored for options trading. The research demonstrates that the Proximal Policy
Optimization (PPO) algorithm, when coupled with a protective closing strategy, generates stable
returns that outperform traditional buy-and-hold approaches. In asimilar vein, Yang et al. (2022)
advanced the field by integrating deep reinforcement learning with Transformer and U-Net



architectures in their DRL-UTrans model, which achieved an impressive cumulative return of
1124.23% on the I X1C dataset.

In the context of Multi-Agent Systems, Xiao et a. (2024) introduced the TradingAgents
framework, inspired by real-world trading firm operations. This system, composed of specialized
agents—such as fundamental, sentiment, and technical analysts—demonstrated marked
improvements over conventional models, notably in cumulative returns, Sharpe ratio, and
maximum drawdown. Additionally, Zhang et al. (2025) devel oped HedgeAgents, a system that
bolsters robustness by incorporating hedging strategies to navigate rapid market fluctuations and

downturns.

Further emphasizing the critical role of evaluation, Tan et al. (2024) illustrated the value of
backtesting RL-based trading strategies. Their data-driven machine learning algorithm not only
outperformed traditional rule-based strategiesin risk-adjusted returns but aso highlighted

potential performance declines under high transaction costs.

Despite these advancements, existing studies often lack conclusive evidence on the comparative
effectiveness of different RL and MAS approaches in real-world trading scenarios, frequently
focusing on isolated methodologies. To address this gap, the present research systematically
compares two distinct approaches for autonomous options trading, aiming to establish a
comprehensive framework that provides empirical insightsinto their relative performance. This
study thus contributes to the growing body of literature and offers valuabl e perspectives to guide

future devel opments in autonomous trading systems.

2.3 Research Gap

On review of the literature, it is evident that while significant advancements have been madein
Al-driven trading strategies for equities and portfolio optimization, options trading, despite its
substantial volume and complexity, remains relatively underexplored. Specificaly, thefollowing
critical research gaps have been identified:



1. Absenceof Multi-Agent Al Frameworksfor Options Trading: Existing research lacks
comprehensive multi-agent systems designed specifically for options trading. While
individual Al techniques like GANs and Transformer models have been applied in
various financial contexts, thereis asignificant gap in the literature regarding the
development and evaluation of integrated multi-agent architectures that orchestrate
specialized agents for strategy generation, market regime prediction, risk management,
and data analysis in the context of options. The literature does not reveal any existing
frameworks that combine these diverse Al capabilities into a cohesive, autonomous
system for options trading.

2. Limited Application of Deep Reinforcement Learning (DRL) for Options Strategy
Selection: Although DRL has demonstrated potential in handling complex, dynamic
decision-making problems, its application to options trading, particularly for dynamic
strategy selection, is notably absent. While DRL has been used in areas like algorithmic
trading and portfolio management, the specific challenges of options trading, such as
strike selection, volatility management, and complex payoff structures, have not been
adequately addressed using DRL-driven strategy selection methodologies. The literature
lacks studies that explore the effectiveness of DRL pipelinesin learning and executing
options strategies in diverse market conditions.

3. Comparative Analysis of Multi-Agent Systems and DRL Pipelinesfor Options
Trading: A critical gap existsin the comparative analysis of different Al approaches for
options trading. Specifically, thereisalack of studiesthat directly compare the
performance of multi-agent collaborative systems with DRL-driven pipelines.
Understanding the rel ative strengths and weaknesses of these two distinct approachesis
essential for determining the most effective Al methodol ogies for options trading. No
research has been found that benchmarks these two advanced Al approaches against each
other, particularly in the context of options trading, leaving acritical need for empirical

comparison.

Therefore, this study aimsto fill these research gaps by proposing and eval uating an autonomous
framework for options trading built on Agentic Al. It will develop and compare a multi-agent

collaborative system and a DRL-driven pipeline, benchmarking their performance against



established options trading strategies across various market conditions. This research seeksto
provide a scalable, adaptable, and empirically validated solution for real-world market
environments, contributing to the advancement of Al-based decision-making in options trading.

3. METHODOLOGY

3.1 Introduction

The methodology of this research is structured to develop and evaluate a multi-agent
system against Deep Reinforcement Learning for options trading and risk management. This
chapter outlines the research design, driven by the primary objectives and the selection of
appropriate anaytical tools, ensuring alogical arrangement of research activities to reach sound

conclusions.

The research design encompasses severa critical decisions: the type of data collection, the study
period, and the analytical framework. The process begins with formulating the research
guestions, developing a design to address these questions, executing the design based on
collected data, and finally, documenting the findings. This sequence is guided by technical
considerations established prior to conducting the research.

In this study, the unit of analysisis the performance of various options trading strategies. The
variables influencing strategy performance are operationalized within this chapter, detailing the
practical implementation of the strategies to be tested. Specifically, the framework involves
multiple specialized agents focusing on tasks such astechnical analysis, trend analysis, strategy
generation, strategy selection, and risk management. These agents collaborate to adapt to
dynamic market conditions, aiming to outperform traditional single-strategy trading methods.
The strategies are tested using historical market data, with returns calculated and variables
operationalized as described herein. The framework for analysis includes a comparative
evaluation against 15 established trading strategies to assess the effectiveness of the multi agent
system. This study addresses a practical question of significant interest to the investing and
trading communities:

Can amulti-agent, reinforcement learning-based approaches enhance options trading

performance and risk management compared to traditional methods?



3.2 Overview of the Research Problem:

Options trading presents a high degree of complexity arising from market volatility, the
multi-factor nature of options pricing (e.g., implied volatility, time decay, and interest rates), and
the necessity for robust, adaptable strategies. Traditiona approachestypically rely on alimited
set of predefined strategies and static risk management protocols, making them ill-equipped to
respond to rapid shiftsin market conditions. As aresult, these methods often yield suboptimal
outcomes and fail to account for the dynamic interactions between the underlying asset price,
volatility, and time-sensitive parameters.

To address these limitations, this thesis introduces two advanced frameworks for options
trading: a multi-agent architecture and a Reinforcement Learning (RL) approach. Both
frameworks are designed to overcome the rigidity of conventiona systems by leveraging data-
driven, adaptive strategies capable of evolving with real-time market changes. Through this
integrated methodol ogy, the proposed solutions aim to significantly enhance trading performance

and provide robust, scalable options trading models.

3.3 Traditional Challengesin Options Trading

Options trading isinherently complex, involving not only the decision of whether to buy
or sell options but also selecting the right strike price, expiration date, and hedging strategies.
Additionally, the pricing of optionsis highly sensitive to changes in market conditions, making it
difficult to create one-size-fits-al trading strategies. Traditional trading methods typically
employ static models based on historical data or predefined technical indicators, which fail to
account for sudden market changes or unpredicted events such as geopolitical devel opments or
€CoNnomic Crises.

Risk management is another areawhere traditional trading methods fall short. Many strategies do
not have mechanismsin place to dynamically manage risk in real-time, making them vulnerable
during periods of high market volatility. Furthermore, traditional options trading often relies on
single-strategy models—the same strategy is used across various market conditions, limiting the
system's ability to adapt and optimize trading decisions based on the ever-changing market

dynamics.



3.4 TheRole of Multi-Agent Systemsin Overcoming These Challenges

To address the shortcomings of traditional approaches, this research proposes the use of a
multi-agent framework. In this system, multiple specialized agents each perform distinct tasks
that are critical to the options trading process. These tasks include technical analysis, trend
analysis, strategy generation, strategy selection, and risk management. By distributing the
decision-making responsibilities across a network of agents, the system mimics the collaborative
nature of professional trading firms, where experts with specialized knowledge work together to
make informed, adaptive decisions.

Each agent in the multi agent framework is trained to perform its role with a high degree of
specialization. For example, the technical analysis agent might focus on past price datato
identify patterns, while the trend analysis agent might use real-time market data to predict future
movements. This collaboration allows for more dynamic strategy generation, where agents can
communicate and adapt their strategies based on evolving market conditions.

In contrast to traditional systems, the Multi Agent framework benefits from the combined
expertise of multiple agents, each of which can dynamically adjust its actions in response to new
market data. Furthermore, the risk management agent evaluates the market’s current volatility
and adjusts trading decisions, accordingly, ensuring that the system remainsresilient in volatile

or uncertain market conditions.
35 TheRoleof Reinforcement L earning Systemsin Overcoming These Challenges

Traditional methods of options trading, such as the Black-Scholes model, rely on fixed
assumptions including constant volatility and log-normal distribution of asset prices—which
often do not align well with the dynamic and complex characteristics of actual financial markets.
These models frequently fail to capture phenomenalike volatility clustering and fat-tailed
distributions commonly observed in market behaviours. Reinforcement learning (RL) systems
address these limitations effectively, as they are not constrained by these traditional assumptions;
instead, they adaptively learn directly from market data through interaction, continually adjusting
to shiftsin market volatility and trading patterns. This adaptive capability positions RL as a
particularly powerful approach for options trading, an areainherently characterized by
unpredictability and rapid market evolution.



Reinforcement learning offers severa distinct advantages when applied specifically to the
buying and selling of call and put options. One major benefit is dynamic strategy optimization,
whereby RL models can continuously refine trading strategies deciding when to buy, hold, or sell
options based on real-time market conditions. By training on data from multiple intervals (such
asdaily or hourly), RL agents can better pinpoint profitable opportunities while simultaneously
managing associated risks. Additionally, RL models excel at risk management by
implementing protective strategies such as stop-loss mechanisms, effectively limiting
potential downside risks to predefined thresholds, which is crucial given the high risk inherent in
options trading. Moreover, RL systems demonstrate superior real-time adaptability, allowing
them to promptly respond to new market information by adjusting the timing and approach to
trading call and put options, thereby continually optimizing their strategies for the current market
context.

3.6 Comparingthe Multi Agent Framework with Reinforcement L earning

The core objective of this research is to evaluate whether Multi-Agent Collaborative
Framework can outperform the Deep Reinforcement Learning framework. While both
approaches utilize agents, Multi Agent framework relies on predefined rules and heuristics for
each agent'srole, whereas the RL agent learns and adapts based on rewards and penalties derived
from its interactions with the market. This distinction creates a natural basis for comparison
between the two approaches.

The Multi Agent framework has shown promising results by mimicking the behaviour of
professional traders through specialized agents, but it may still be limited by the fact that its
decision-making process is based on fixed models and rules. On the other hand, RL offersthe
possibility of an evolving trading system—one that continually refines its strategies based on
past experiences. The comparison will assess whether the learning capabilities of RL agents
provide a competitive edge in terms of adaptability, profitability, and risk management when
compared to amanually designed multi-agent system.
Key metrics for comparison will include:

1. Profitability: Which system generates higher returns over atest period using historical

data?



2. Risk Management: How well does each system manage risk, especially during periods
of high market volatility?
3. Adaptability: How quickly can each system adapt to sudden shiftsin market conditions
or new patterns?
By comparing these two systems—one based on a handcrafted multi-agent approach and the
other on a self-learning reinforcement learning system—this research aims to uncover which

system provides the most reliable and efficient approach to options trading.

Conclusion

This research introduces two innovative approaches to options trading: the multi-agent
framework and Reinforcement Learning (RL). By comparing the performance of these two
systems, this research seeks to identify the most effective method for generating profitable
trading strategies, managing risk, and adapting to dynamic market conditions. The ultimate goal
isto determine whether RL can outperform the Multi Agent framework, thereby establishing a
more adaptive, profitable, and resilient approach to options trading. This has the potential to
significantly enhance the reliability and profitability of Al-driven trading systems and reshape

the future of financial markets.

3.7 Multi-Agent System Development:

Proposed Framework and Technique

Options trading presents amultifaceted challenge that requires intricate decision-making
across various dimensions, including market analysis, strategy formulation, risk management,
and execution timing. To address these compl exities and achieve consistent profitability in
options markets, this thesis introduces an autonomous framework grounded in a multi-agent
system (MAS) based on Agentic Al. This collaborative system leverages the strengths of
multiple specialized agents, each designed to handle a distinct aspect of the options trading

process, thereby enabling a cohesive and adaptive approach to decision-making.

The proposed multi-agent system comprises five interconnected agents, orchestrated to work

synergisticaly:



1. Generative Adversarial Network (GAN) agent responsible for generating innovative
trading strategies,

2. Strategy selection module that evaluates and selects optimal strategies based on predefined

criteria,

3. Transformer -based market regime prediction agent that forecasts market conditions such as

direction, volatility, and momentum,
4. Risk management agent tasked with assessing and mitigating potential risks, and

5. Data acquisition and Technical Analysis Agent that gathers real-time market data and

performs analytical computations to inform the decision-making process.

This division of labour allows the system to tackle the sequential and interdependent
steps of options trading from gauging market dynamics to determining strike prices, position
sizing, and entry/exit points while maintaining scalability and adaptability to diverse market

environments.

Figure 21: Multi Agent System Flow Diagram
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3.7.1 Key Constructs
The key constructs in the research are critical elements that define the core aspects of the

multi-agent framework. These constructs are grounded in both theoretical concepts and practical

implementation for options trading. The key constructs include:

Technical Analysis(TA): The process of analysing historical market data (price,
volume, indicators) to identify trends and potential trade signals. Thisinvolvesindicators
such as Moving Averages, RSI, and Bollinger Bands.

Trend Analysis (TA): The use of machine learning, specifically the Temporal Fusion
Transformer (TFT), to predict future market trends, assess potential price movements,
and identify regime shifts.

Strategy Generation (SG): The generation of various options strategies, including calls,
puts, spreads, and straddles, using Generative Adversarial Networks (GANS). This
construct focuses on the creation of dynamic strategies based on market conditions.
Strategy Selection (SS): The decision-making process that involves choosing the most
suitable strategy from those generated by the Strategy Generation agent. This construct
assesses market conditions, volatility, and risk tolerance.

Risk Management (RM): The management and mitigation of risks, using advanced
statistical and machine learning techniques, including Value At Risk (VaR), Conditional
VaR, and Drawdown Limits. It ensures the strategies are aligned with predefined risk
thresholds.

3.7.2 ObservableIndicators

Observable indicators are measurabl e factors that reflect the performance or condition of each

key construct. These indicators serve as tangible signals that agents use to make informed

decisions. Below are the indicators for each construct:

Technical Analysis(TA) Indicators:

0 PricePatterns. Identification of chart patterns (e.g., head and shoulders, flags) based
on historical data.

0 Technical Indicators: Moving Averages (SMA, EMA), RSI, and PSar, SuperTrend.

o0 Signal Strength: Thefrequency and intensity of trade signals (buy, sell, hold).



Trend Analysis(TA) Indicators:

(0]

Forecasted Trend Direction: Predicted market movement (bullish or bearish) over
different forecast windows.

Regime Shift Detection: Identified shiftsin market behaviour (e.g., from abullish to
a bearish market).

Forecasted Price Movements. Anticipated price levels based on the TFT model’s
predictions.

Strategy Generation (SG) Indicators:

(0]

o

Strategy Diversity: Number and types of strategies generated (e.g., calls, puts,
spreads, straddles).

Market Alignment Score: How well the strategy aligns with current market
conditions, such as volatility and trend direction.

Risk-Reward Ratio: The potential profitability and risk of each generated strategy.

Strategy Selection (SS) Indicators:

o

Optimal Strategy Selection: Identification of the best-performing strategy based on
market conditions.

Risk-Adjusted Return: Evaluation of potential return, adjusted for the associated
risk (e.g., Sharpe Ratio).

Strategy Execution Success Rate: The percentage of strategies successfully
executed and yielding positive returns.

Risk Management (RM) Indicators:

(0]
(0]

Volatility Metrics: Daily or intraday volatility based on market data.

Risk Alerts: Number and severity of risk alerts triggered by changesin market
conditions.

Risk Threshold Compliance: Percentage of trades that remain within predefined risk
thresholds (e.g., VaR limits).

3.7.3 Develop M easurement Tools

To measure the observable indicators associated with each construct, you will need specific tools

and frameworks:

Technical Analysis Tools:



0 TA-Libor Pandas TA for calculating standard technical indicators (RSI, Moving

Averages, Bollinger Bands).

0 Autoencoder for Noise Filtering: A deep learning-based model to process raw
market data and eliminate noise, improving the accuracy of technical indicators.
e Trend AnalysisTools:

o Temporal Fusion Transformer (TFT): A machinelearning model designed to
process time series data, providing trend forecasts and regime shift signals.

o Python Libraries(Tensor Flow/PyTorch): For training and testing the TFT
model on historical market data

e Strategy Generation Tools:

o Generative Adversarial Networks (GANSs): Used to generate arange of trading
strategies by feeding historical market data, technical indicators, and trend
forecasts into the GAN framework.

o Custom Python Codefor Strategy Evaluation: Implement performance metrics
to evaluate the generated strategies and their effectiveness in different market
conditions.

e Strategy Selection Tools:

o Optimization Algorithms (e.g., Genetic Algorithms): Used to optimize the
strategy selection process by evaluating different strategies against rea -time data
and predefined performance metrics.

o Risk-Return Metrics Calculation (e.g., Shar pe Ratio, Maximum Drawdown):
Used to measure the effectiveness and risk profile of each strategy.

e Risk Management Tools:

o Markov Modelsand NLP for Regime Change Detection: Statistical tools to
detect shifts in market regimes and analyze financia news sentiment.

o Risk Calculation Models (e.g., VaR, Conditional VaR): Implement algorithms

to calculate potential risk exposure and maintain trades within acceptable limits.



3.7.4 Establish Relationships Between Constructs

Once the key constructs and observableindicators are identified, it'simportant to define the

relationships between them. This ensures the multi-agent framework operates cohesively:

Technical Analysis (TA) < Strategy Generation (SG): The outputs of the Technical
Analysis Agent (e.g., trends, market signals) directly influence the Strategy Generation
Agent’s creation of strategies. The cleaner and more accurate the technical indicators, the
better the strategies generated by the GAN.

Trend Analysis (TA) <> Strategy Selection (SS): The Trend Analysis Agent’s
predictions on market direction help the Strategy Selection Agent identify the optimal
strategy based on market conditions.

Strategy Generation (SG) <« Risk Management (RM): The Strategy Generation Agent
adjustsits generated strategies based on real-time risk data provided by the Risk
Management Agent. For example, if volatility increases or aregime shift is detected, the
strategy may be adjusted to mitigate risk.

Risk Management (RM) < Strategy Selection (SS): The Risk Management Agent
continuously monitors market risk and provides risk thresholds, influencing the Strategy
Selection Agent’s choice of strategies. If the potential risk of a strategy exceeds the
threshold, it may be discarded in favour of alower-risk alternative.

Strategy Selection (SS) < Technical Analysis (TA) < Trend Analysis (TA): These
constructs work together in an iterative feedback loop: The Strategy Selection Agent uses
insights from the Technical Analysis and Trend Anaysis Agentsto evaluate, refine, and

select the most suitable strategies for the current market conditions.

3.7.5 Ensure Validity and Réliability

To ensure the validity and reliability of the multi-agent framework and measurement

tools, several key aspects need to be considered.

Firstly, content validity is paramount, requiring that the indicators used to

represent the constructs, such as technical indicators and strategy performance metrics,

accurately capture the fundamental aspects of options trading and risk management as



defined within the framework. This can be substantiated through expert reviews and by
validating against established trading theories.

Secondly, construct validity must be established by testing whether the defined
indicators and relationships truly reflect the constructs they aim to measure, for
example, confirming that the Strategy Generation Agent is indeed creating effective
strategies based on market data.

Thirdly, reliability of the measurement tools, such as the GAN-based strategy
generation model and the TFT model, needs to be ensured by verifying that they
produce consistent results across different datasets and market conditions, which can
be evaluated through backtesting on various historical datasets and robustness checks.

Furthermore, external validity is crucial to assess how well the multi-agent
framework generalizes to real-world trading scenarios by comparing its performance
against actual market data and benchmarking it against well-established trading
strategies. Lastly, test-retest reliability should be evaluated by performing repeated
assessments over different time periods to confirm that the framework’s results,
including win rates, loss rates, and strategy performance, remain consistent and

reliable.

3.8 Deep Reinforcement Learning (DRL) for Options Trading

The market is inherently non-stationary, and option trading strategies require dynamic
adjustment to different market regimes (trending, mean-reverting, volatile). DRL, with its ability

to learn complex policies from high-dimensional inputs, offers a promising approach.



3.8.1 Proposed Solution Architecture of DRL Option Trading Framework

Figure 22: Architecture of DRL Option Trading Framework
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3.8.2 Problem Formulation asa Markov Decision Process (MDP)

o State Space (Observation):
The state at time(t) can be represented as a feature vector that includes:
o Normalized index prices and returns
o Technical indicators (e.g., moving averages, RSI, MACD)
o Volatility metrics (historical volatility, VIX levels)
o Sentiment scores and foreign market conditions



o Option premiums and Greeks
e Action Space:
The agent has a discrete set of 16 actions:
o 15Trading Strategies: Each corresponding to a specific option trading approach
(e.g., bull call spread, straddle, iron condor, etc.)
o Exit/Neutral Action: To close positions if the market regime changes.
e Transtion Dynamics:
The environment simulates market behaviour based on historical data. When the agent
chooses an action, the system mimics order execution, applies transaction costs, and
updates the portfolio based on the selected strategy’s performance.
e Reward Function:

A well-crafted reward function is crucial. A potential formulation could be:

ry = AV, — A.Risk Penalty y, — u .Transaction Cost;

where;

o AV.isthechangein portfolio value over atime step.

o Risk Penalty y, could be afunction of realized volatility or drawdown during
that period.

o Transaction Cost, penalizes frequent trading to encourage stability.

o A and p arehyperparameters to balance the trade-off between return, risk, and

COst.

3.8.3 DRL Algorithms Exploration

3.8.3.1 DQN (Deep Q-Network):
Useful for environments with discrete action spaces. DQN approximates the Q-value function

Q(s,a) using neura networks.



Figure 23: DOQN Training Loop
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3.8.3.2 Double DQN (DDQN):
Addresses the overestimation bias of DQN by decoupling the selection and evaluation of actions,
leading to more stable |earning.

Figure 24. Double DON
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3.8.3.3 PPO (Proximal Policy Optimization):

A policy-gradient method that directly optimizes the policy while maintaining a constraint (or
penalty) on the change in policy, ensuring stable updates.

Figure 25: Proximal Policy Optimization
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3.8.3.4 A3C (Asynchronous Advantage Actor -Critic):

A3C leverages multiple parallel agentsinteracting with different instances of the environment to
update a shared model asynchronously. This decoupled, parallel approach reduces training



correlation and improves stability while the actor-critic architecture alows simultaneous policy
learning and value estimation.
Figure 26: Asynchronous Advantage Actor-Critic
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3.8.3.5 SAC (Soft Actor-Critic):

SAC isan off-policy actor-critic algorithm that optimizes a stochastic policy with an entropy
regularization term, encouraging exploration by maximizing both the expected reward and policy
entropy. Thisresultsin amore robust and stable learning process, particularly effectivein

continuous action spaces with improved sample efficiency.

Figure 27: Soft Actor-Critic
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3.8.4 Pseudocode for the Autonomous Option Trading DRL Framework



3.8.5 Data Preprocessing and Featur e Engineering

e Historical Data Alignment:
o Synchronize index and option data ensuring time alignment (daily/hourly data
frequency as required).
o Normalize and scale features to ensure stable training.
o VIX Daa
e Technical Indicator Calculation:
Compute and include indicators such as SMA, EMA, RSI, Bollinger Bands, MACD, etc.
e Market Regime Detection:
Use statistical or machine learning methods (e.g., clustering on volatility and return
distributions) to preliminarily label market regimes. This helps both in simulating the

environment and potentially guiding the agent’s risk preferences.

3.8.6 Environment and Simulation

e Simulated Trading Environment:
Develop asimulation that:
o Feedsthe DRL agent with the current state vector at each time step.
o Appliesthe chosen option strategy.
o Updates portfolio value based on historical returns and simulated option pricing
models.
o Incorporates transaction costs and risk measures.
o Strategy Execution:
Each strategy should be defined with clear entry/exit rules, risk management guidelines,
and profit targets. The simulation should mimic real-world constraints (liquidity,

execution delays).

3.8.7 Training the DRL Agent

e Training Period:
Usethe 15 years of index data and 4 years of option datato train the agent.
o Training Phase: The agent learns policies through trial and error in asimulated
environment.



o Validation Phase: Test the learned policy on a holdout set or using cross-
validation techniques.
e Algorithm Comparison:
Implement and compare multiple DRL algorithms (DQN, DDQN, PPO, SAC, A3C).
o Perform hyperparameter tuning for each algorithm.

o Monitor convergence, stability, and learning curves.

3.8.8 Reward Function Design
A robust reward function is critical. Consider the following structure:

o Performance Component( AV, ): This represents the changein portfolio value over
time, which is the primary driver of reward. A positive AV, indicates profit, while a
negative value indicates aloss.

e Risk Adjustment:

Penalize high volatility or large drawdowns. For instance:
RiskPenaltyt = « - Volatilityt + 3 - MaxDrawdownt

o Volatility,: Measuresthe variability of returns, penalized by afactor o \aphaa.

e MaxDrawdown, Represents the largest peak-to-trough declinein portfolio value,
penalized by p.

e : A scaling factor to adjust the strength of therisk penalty.

e Transaction Costs:

Include a cost penalty to discourage over-trading:
TransactionCost; = Cost per trade X Number of trades
« Reward Example:
re = AVy — A(a - Volatility; + 8 - MaxDrawdown,) — p - TransactionCost;

where A, a, B, and p are tuned based on historical datato balance profit and risk.



Why This Reward Function Design is Robust

o Balanced Objectives: It incentivizes profit (performance) while discouraging
reckless behaviour (risk) and inefficiency (over-trading).

e Real-World Relevance: By including transaction costs and risk, it mirrorsthe
constraints traders face, making the RL agent’s strategies more practical.

o Adaptability: The structure allows customization—e.g., increasing A for
conservative strategies or lowering y \gammayy in low-cost environments like options
trading with tight spreads.

3.8.9 System Architecture

Figure 28: DRL Agent Framework



3.8.9.1 Overall System Flow

1. Datalngestion Module:
o Ingest and preprocess index, option, and auxiliary market data.
2. Feature Engineering Module:
o Computetechnical indicators and regime signals.
3. DRL Agent Module:
o Selectsone of the 15 option strategies or the exit action based on the current state.
4. Execution Module:

o Simulatestrade execution including strategy deployment, monitoring, and exit
based on market changes.

5. Feedback and Learning Module:
o Recelvesrewards, updates the agent’s policy through DRL algorithms.
6. Risk Management Module:

o Continuously monitors portfolio risk and triggers exits if risk thresholds are
breached.

3.8.9.2 Integration and Autonomy

e Autonomous Decision Making:
The system continuously evaluates market conditionsin real-time (or through simulation)
and autonomously switches strategies as dictated by the DRL agent’s policy.

e Robustnessand Safety Nets:
Incorporate risk limits and fallback mechanismsin case the DRL policy deviates from

acceptable risk profiles.

3.8.9.3 Statistical Testing and Robustness

e Backtesting Over Different Market Regimes:

Ensure that the policy performs robustly during bull, bear, and sideways markets.



Cross-Validation:

Use techniques like walk-forward analysis to validate the consistency of the DRL agent
across different time segments.

Stress Testing:

Simulate extreme market conditionsto verify that the risk management protocols (reward
penalties, exit strategies) protect the portfolio.

Comparative Analysis:.

Benchmark the DRL-based strategy against traditional option trading strategies and
simpler baselines (e.g., buy-and-hold, fixed-strategy).

3.9 Resear ch Purpose and Questions

391

This research aimsto develop and evaluate a novel framework for options trading and
risk management by introducing both Reinforcement Learning and multi-agent
framework approaches. The study seeks to address the existing gap in Al-based decision-
making systems for options trading, focusing on predicting stock direction and
formulating strategies that can outperform traditional trading methods and the underlying
index.

Resear ch Questions

Can the coordination among specialized agents combined with decentralized decision-
making within amulti-agent system enhance both the selection and execution of options

trading strategies compare to traditional approach?

Can Deep Reinforcement Learning models be devel oped to autonomously execute
different option strategies in real time—aligning with human trading timeframes—and

can these models outperform the underlying market index?

Can the adaptive, decentralized framework of multi-agent systems lead to superior
trading performance compare to Deep Reinforcement learning based system under

dynamic market conditions?



3.10 Research Design

This study adopts a dual-framework experimental design to evaluate the efficacy of
autonomous options trading strategies driven by Agentic Al. Two primary methodologies are
compared: amulti-agent collaborative system and a deep reinforcement learning (DRL) pipeline.
The design is directly aligned with the research questions, which focus on the impact of
decentralized decision-making, the real-time execution of DRL-based strategies, and the

comparative performance of these two approaches under dynamic market conditions.

3.10.1 Overall Framework Overview

Thethesisis structured around the central objective of determining whether specialized,
decentralized decision-making can enhance options trading performance. In line with the
research questions, the experimental design is organized into two main tracks:

e Multi-Agent System:
The multi-agent framework is comprised of five specialized agents working in concert. Each

agent is dedicated to a key component of the trading process:

e Technical Analysis(TA): Uses historical market dataand technical indicators (e.g.,
moving averages, RSI, Bollinger Bands) to detect market trends.

e« Trend Analysis(TA): EmploysaTempora Fusion Transformer (TFT) to forecast future
market movements and identify regime shifts.

o Strategy Generation (SG): Utilizes a Generative Adversarial Network (GAN) to
dynamically generate various options trading strategies (e.g., calls, puts, spreads,
straddles) based on prevailing market conditions.

« Strategy Selection (SS): Evaluates generated strategies against market indicators,
volatility, and risk tolerance to select the optimal trading strategy.

e Risk Management (RM): Implements statistical and machine learning techniques
(including VaR, Conditional VaR, and drawdown limits) to manage and mitigate
portfolio risk.

The design of the multi-agent system centres on decentralized decision-making, where each

agent contributes unique market insights, and their combined outputs drive the overall



trading decision. This architecture directly addresses thefirst and third research questions by
exploring whether such coordinated specialization enhances strategy selection and execution
compared to traditional or centralized approaches.

e DRL-Driven System:
The DRL framework is modelled as aMarkov Decision Process (MDP) with the

following elements:

o State Space: Represents the trading environment through a feature vector
encompassing normalized index prices, technical indicators, volatility metrics,
sentiment scores, option premiums, and Greeks.

e Action Space: Consists of 16 discrete actions, corresponding to 15 specific options
strategies (e.g., bull call spread, straddle, iron condor) plus an exit/neutral action.

« Transtion Dynamics: Simulate market behaviour using historical data. This
includes order execution mechanics, incorporation of transaction costs, and portfolio
updates based on the strategy's performance.

e Reward Function: Balances portfolio value changes, risk penalties (based on
realized volatility or drawdown), and transaction costs through the function are
hyperparameters to balance the trade-off between return, risk, and cost.

This DRL approach is designed to autonomously learn and execute trading strategies in
rea time, aligning closely with human trading timeframes. It addresses the second
research question by testing whether these models can outperform the underlying market

index through adaptive, autonomous decision-making.

3.10.2 Experimental Setup

3.10.2.1 Data Acquisition and Preparation:

o Data Sources:
o Historica market data (Jan 2014 - Dec 2024) for underlying assets (open, high,
low, close, volume) and corresponding call/put options contracts, VIX, Index
data

o Sentiment datafrom news sources and futures markets.



o Data Preprocessing:

o Cleaning & Normalization:
= Imputation of missing timestamps.
= OQutlier handling.
= Timezone/format standardization.
= Min-Max or Z-score normalization of price/volume.
= Time series windowing.

o FeatureEngineering:
= Technical indicators (SMA, EMA, RSI, SuperTrend, Parabolic SAR).
= Implied volatility skew.
= Macroeconomic and sentiment indicators.

3.10.2.2 Implementation Environment
This section details the technical infrastructure and software tools used to implement and

evaluate the proposed options trading frameworks. A robust and realistic implementation
environment is crucia for ensuring the validity and generalizability of the experimental results.
The environment is divided into three primary components: real-time simulation, computational

resources, and software tools. A dedicated setup for benchmarking is also described.

Real-Time Simulation

A critical component of this research is a high-fidelity, real-time simulation environment that
accurately models the dynamics of options trading. This environment allows for the training and
evaluation of both the multi-agent system and the DRL-based approach without the risks
associated with live market trading. Key features of the simulation include:

o Datalngestion: The simulator ingests historical index data (15 years) and options data (4
years), including price quotes (open, high, low, close), volume, and relevant Greeks
(delta, gamma, vega, theta). Datais pre-processed and cleaned to handle missing values
and inconsistencies. The datais sourced from [Insert Data Source Here - e.g., a specific
data provider like Refinitiv, Bloomberg, or a historical options data archive].

e Order Book Simulation: While afull order book simulation is computationally
expensive, asimplified model isimplemented to approximate market liquidity and order



execution. Thismodel considers bid-ask spreads and volume at different pricelevelsto
simulate realistic order fills. Slippage is incorporated, meaning that orders may not be
filled at the exact requested price, reflecting real-world market conditions.

e OptionsPricing Mode: A Black-Scholes model, with extensions for American-style
options and adjustments for dividends, is used to price options contracts within the
simulation. Implied volatility is calculated from historical data and used as an input to the
pricing model. Alternative pricing models (e.g., binomial trees, Monte Carlo simulations)
were considered but ultimately rejected due to the computational overhead, which would
significantly slow down the ssmulation, particularly during DRL training. The Black-
Scholes model provides a reasonabl e bal ance between accuracy and computational
efficiency.

e Transaction Costs. Realistic transaction costs, including brokerage fees and bid-ask
spread costs, are incorporated into the simulation. These costs are parameterized based on
typical rates charged by options brokers.

e Risk Management: The simulation enforces margin requirements and position limits,
preventing the agents from taking on unrealistic levels of risk. A Vaue-at-Risk (VaR)
calculation is performed at regular intervals to monitor the overall portfolio risk.

« Time Stepping: The simulation operates on a discrete-time basis, with a configurable
time step. For the DRL experiments, atime step of 15 minutes and 1 hour is used,
reflecting the desired trading frequency. For the multi-agent system, amore granular time
step 5min, 15min, 30 min is used to allow for more frequent strategy adjustments. The
choice of time step is atrade-off between simulation accuracy and computational cost.

Computational Resources
The computational demands of this research, particularly for training Deep

Reinforcement Learning (DRL) agents and running extensive simulations, are substantial.
To address these demands, a combination of hardware, cloud computing, and parallel
processing techniques are employed. Experiments are conducted on a high-performance
computing cluster, equipped with two nodes, each featuring NVIDIA TeslaVV100 GPUs,
which are crucial for accelerating the training of deep learning models. Additionally,
Azure Cloud's GPU instances are utilized for cloud computing needs. To further optimize

the computational efficiency, the smulation and training processes are parallelized,



effectively leveraging the multi-core CPUs and GPUs. This approach significantly

reduces the overall training time. Python's multiprocessing capabilities, along with

Pytorch Lightning and Ray libraries, are employed to facilitate parallel execution.
3.9.3 Multi Agent Specific Implementation Details

System Ar chitecture and Coordination

The multi-agent architecture is designed to decentralize decision-making while alowing
specialized agents to communicate and collaborate on core trading tasks. Each agent focuses
on adistinct functional area—data analysis, market forecasting, strategy creation, strategy
selection, and risk oversight—yet shares information through a central message bus or
orchestrator. This enables each agent to operate independently while benefiting from the
insights generated by other agents, thereby fostering a coordinated decision-making process.

1. DataAcquisition & Technical Analysis (TA) Agent
o Role: Gathers historical and real-time market data (e.g., OHLC prices, trading
volume) and computes technical indicators (Moving Averages, RSI, Bollinger
Bands).
o Implementation Details:
= Periodicaly polls data feeds to maintain an up-to-date market state.
= Transformsraw datainto feature sets, which are then broadcast to other
agents.
2. Trend Analysis (TA) Agent
o Role: EmploysaTempora Fusion Transformer (TFT) to predict market trends
and regime shifts (e.g., bullish, bearish, or range-bound).
o Implementation Details:
= Ingeststechnical indicator data and macro signals from the Data
Acquisition & TA Agent.
=  Generates short- and medium-term forecasts of price movement and
volatility levels.
=  Communicates predictive insights to the Strategy Generation and Strategy
Selection agents.
3. Strategy Generation (SG) Agent



o Role: UsesaGenerative Adversarial Network (GAN) to create a diverse set of
potential options trading strategies—ranging from single calls or puts to complex
spreads and straddles.

o Implementation Details:

= GAN architecture istrained on historical options datato learn patterns of
profitable strategy structures.
= Produces candidate strategies aligned with the market regime insights
from the Trend Analysis Agent.
= Updatesits strategy library periodically to adapt to evolving market
conditions.
4. Strategy Selection (SS) Agent

o Role: Evaluates and selects the most suitable strategy from the SG Agent’s
candidates, factoring in real-time market data, volatility, and risk parameters.

o Implementation Details:
= Ranks strategies based on expected returns, alignment with the forecasted

market regime, and current risk appetite.
= Chooses the top-performing strategy for execution and passesit to the Risk
Management Agent for final verification.
5. Risk Management (RM) Agent

o Role: Continuously monitors positions and overall portfolio risk using statistical
and machine learning tools (e.g., VaR, CVaR, drawdown limits).

o Implementation Details:

= Enforces predefined risk thresholds and halts or modifies trading actions if
thresholds are breached.

= Feedsrisk metrics back into the Strategy Selection Agent to ensure that
high-risk strategies are de-prioritized.

This decentralized, multi-agent structure addresses the first research question by illustrating
how specialized agents, each focusing on akey aspect of options trading, can coordinate

effectively to improve both strategy selection and execution. The collaboration among agents



leverages distinct competencies—market analysis, forecasting, strategy generation, and risk

mitigation—to outperform traditional, monolithic trading approaches.

3.9.4 DRL Specific Implementation Details
This subsection provides further details specific to the implementation of the DRL-based options

trading approach.

Algorithm Selection: As outlined in Section 3.8.3, arange of DRL algorithms are
implemented and compared: DQN, DDQN, PPO, SAC, and A3C. These algorithms
represent a diverse set of approaches to reinforcement learning, including value-based
(DQN, DDQN) and policy-based (PPO, SAC, A3C) methods, aswell as on-policy (PPO,
A3C) and off-policy (DQN, DDQN, SAC) algorithms. This allows for a comprehensive
evaluation of the suitability of different DRL techniques for options trading.
Hyperparameter Tuning: A systematic hyperparameter tuning process is conducted for
each DRL agorithm. This involves using techniques such as grid search, random search,
and Bayesian optimization (using libraries like Optuna or Hyperopt) to identify the
optimal hyperparameter configurations. Key hyperparameters tuned include learning rate,
discount factor, batch size, network architecture (number of layers and neurons), and
exploration parameters (e.g., epsilon-greedy decay for DQN).

Reward Shaping: The reward function, as defined in Section 3.8.8, plays acrucia role
in guiding the agent's learning. The parameters (A, a, B, and p) are carefully tuned
through experimentation to balance the trade-off between profitability, risk aversion, and

transaction cost minimization.

3.9.5 Benchmarking Setup
To rigorously evaluate the performance of the proposed frameworks, acomprehensive
benchmarking setup is established.

Benchmark Strategies. The performance of both the multi-agent system and the DRL -
based approach is compared against 15 different options trading strategies, as mentioned
in the abstract. These strategies include Straddle, Strangle, Iron Condor, Butterfly Spread,
etc.. These strategies are implemented with predefined rules for entry, exit, and risk

management, serving as a baseline for comparison.



e Underlying Index: The performance of all approaches is aso benchmarked against the
underlying index (e.g., S& P 500). This provides a measure of relative performance and
hel ps determine whether the proposed frameworks can outperform a passive investment
strategy.

o Performance Metrics: Thefollowing key performance metrics are used for evauation:

o Cumulative Return: Thetotal return generated over the evaluation period.
o Maximum Drawdown: The largest peak-to-trough decline in portfolio value.
o Win Rate: The percentage of profitable trades.

This comprehensive implementation environment and benchmarking setup
provide a solid foundation for conducting rigorous and reproducible research on Al-
driven options trading. The detailed description of the simulation, computational
resources, software tools, and DRL-specific aspects ensures transparency and allows for
replication of the experiments. The benchmarking setup, including avariety of strategies

and performance metrics, enables a thorough evaluation of the proposed frameworks.

3.10.3 Alignment with Resear ch Questions

RQ1: Theevauation of coordinated decision-making among specialized agentsisdirectly
measured through the performance of the strategy selection and execution process within

the multi-agent system.

RQ2: The DRL framework’s ability to execute strategiesin real timeis validated through

its operational performance and comparison with market benchmarks.

RQ3: A head-to-head performance comparison under dynamic market conditions provides
insights into the relative advantages of decentralized multi-agent systems versus a DRL-
based approach.

311 Research Design Limitations
Agent based modelling hasits limitations as well, which needs to be appreciated prior to

embracing the methodology. Most models consider small number of generic assets and



agents. The dynamics can change drastically when these are enhanced to large numbers.
The large number of parameters increases the computational complexity. Any method
would be wholly acceptable only after due validation and calibration to real datais done.
Since the stock market has awealth of trading data, this can be addressed.

312 Experimental Setup

To evaluate the performance of the proposed M ulti-Agent and Reinfor cement
L earning systems, a comprehensive experimental setup was designed, encompassing data
collection, simulation environment configuration, baseline strategy sel ection, and performance
metrics assessment.
2. Simulation Environment
The simulation was conducted using the Agent-Based Interactive Discrete Event Simulation
(ABIDES) platform, which supports high-fidelity modelling of financial markets. ABIDES
enables the simulation of numerous trading agents interacting within a market, providing a

realistic environment for strategy evaluation.

3.12.1 Multi Agent Interaction:

Figure 29: Multi Agent Interaction
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3.12.1.1Agent Roles and Responsibilities:

1. Technical Analysis Agent:
Figure 30: Technical Analysis Agent Workflow
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Role: The Technical Analysis Agent scrutinizes market data—including price, volume,

and other pivotal indicators—across various time frames to identify trends, patterns, and

potential trading signals.

Implementation Details:
e Input: Utilizes 10 years (2014-2024) of open-high-low-close (OHLC) datawith a 30-day

lag window.

e Techniques Employed:

o Moving Averages (SMA, EMA): Smooth price datato highlight trends.

o Relative Strength Index (RSl): Identifies overbought or oversold conditions.

o MACD: Monitors momentum shifts.

o Boallinger Bands: Assesses price volatility.

o Noise Reduction: Incorporates an autoencoder-based tool to filter out noise and
event-driven anomalies from time series data, enhancing data quality for pattern
recognition.

o Toolg/Frameworks: Employs Python libraries such as Pandas-TA, TA-Lib, and
custom modules for technical indicator calculations.

o UpdateFrequency: Refreshesindicators based on the chosen trading interval
(e.g., every 45 minutes or 2 hours) as new data arrives.

o Output: Generates actionable insights, including technical signals (buy, sell,
hold), time-based signals for potential trend reversals or continuations, and
analyses of market strength, momentum, and volatility. Theseinsightsinform the
Strategy Generator Agent.

2.Trend Analysis Agent:

Figure 31: Tempora Fusion Transformer for Trend Analysis
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Role: The Trend Analysis Agent employs advanced machine learning techniques,
specifically the Tempora Fusion Transformer (TFT), to analyze historical market data
and predict future price trends. Its primary objective isto forecast market directions and
assess potential price movements by capturing complex temporal dependencies and

patterns within time-series data.

Figure 32: Trend Analysis Agent Workflow
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e Historical Market Data: Utilizes data spanning the past decade (2014-2024),
including price movements, trading volumes, and other relevant financial metrics.

e Technical Indicators. Incorporates normalized technical indicators such as moving
averages and the Relative Strength Index (RSI) to enrich the feature set.

Techniques Employed:

e Transformer Model: Leveragesthe Tempora Fusion Transformer, a state-of-the-art
architecture designed for multi-horizon time-series forecasting. TFT effectively
captures long-term dependencies and identifies seasonal patterns through its self-
attention mechanism, integrating both static and temporal featuresinto a unified
representation.

o Data Preprocessing: Applies normalization and windowing techniques to
transform raw time-series datainto structured sequences suitable for input into the
transformer model.

o Model Architecture: The TFT model comprises severa key components:

0 LSTM Encoder: Captures temporal dependencies within the data.
0 Multi-Head Attention Layer: Identifies and focuses on significant temporal
features.

o Gating Layers: Regulate the flow of information, enhance model interpretability
and performance.

o Decoder: Generates multi-step forecasts based on encoded information.

o Output Layers: Produce fina predictions and associated uncertainty estimates.

e Training: Utilizesthe Adam optimizer with Mean Squared Error (MSE) asthe loss
function to train the model effectively.

Output:

e Trend Direction: Predicts the market's direction over specified forecast periods.

e Forecasted Values: Provides anticipated future values aligned with the identified
trends.

e Regime Shift Signals: Detects potential transitions between different market
regimes, such as shifts from bullish to bearish trends.

3.Strategy Generator Agent:



Figure 33: Generative Adversarial Network for Strategy Generation
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Role: Utilizes Generative Adversarial Networks (GANS) to autonomously develop diverse
trading strategies, including calls, puts, spreads, and straddles, adapting to evolving market
conditions.

Figure 34: Strategy Generator Agent Workflow
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1. Input Features
e Market Metrics:
o VIX and other volatility indicators (e.g., implied and historical
volatility).
o Datafrom international markets (indices, currency movements) to
capture global sentiment.



0 News& Sentiment:

= UseNatural Language Processing (NLP) to analyze financial news and

social media, extracting sentiment scores or event indicators.
0 Market Regimes:

» Classify market conditionsinto regimes (e.g., low-volatility trending,
high-volatility mean-reverting) using clustering or regime-switching
models.

2. Model Architecture
Conditional Generative Modd!:
o UseaConditiona Generative Adversarial Network (cGAN) or a

Transformer-based model conditioned on the input features above. The

generator would propose options strategies (e.g., configurations like short
calls, short puts, or multi-leg spreads) tailored to the current market
regime.

3. Strategy Output

Dynamic Strategy Parameters:
o Themodel generates the type of options strategy (e.g., call or put short),
strike distances (far or short), and other trade parameters.

Adaptive Response:
o Asmarket conditions evolve, the model can update its strategy
recommendations, effectively “re-generating” strategies when the input

features (volatility, news sentiment, etc.) change.

I

. Validation & Simulation

Backtesting Framework:

o Integrate abacktesting module where the generated strategies are simul ated
against historical datato evaluate performance.

o Risk Management:

o Ensurethat the model considers risk measures (like drawdown, Greeks
exposure) to filter out overly aggressive or mismatched strategies.

5. Implementation Steps

Data Aggregation:



o Collect historical dataon market conditions, news sentiment, and options
trades.
e FeatureEngineering:
o Processraw datainto standardized input features for the model.
e Modd Training:
o Trainyour conditional generative model on historical regimes and
corresponding successful strategies.
e Simulated Trading & Feedback:
o Usereinforcement learning to simulate trades and improve strategy
generation over time.
This approach lets the generative model create adaptable and data-driven options
strategies that respond to different market scenarios, balancing the trade-offs between
strategy aggressiveness and risk management.
4. Strategy Selection Agent:
Figure 35: Strategy Selection Agent Workflow
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Role: Evaluates strategies generated by the Strategy Generator Agent to identify the most
suitable ones based on prevailing market conditions, ensuring alignment with market
sentiment, volatility, and defined risk tolerance.
Implementation Details:
e |Input: Assesses arange of strategies from the Strategy Generator Agent,
supplemented by real -time market insights from the Risk Management Agent.



5.

e Output: Selects optimal strategies or combinations thereof, providing risk-
adjusted evaluations that balance potential returns with associated risks, ready for

execution.

Risk Management Agent:

Figure 36: Risk Management Agent Workflow
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Role: Monitors and identifies risks, including market regime changes, volatility surges,
and shiftsin sentiment, ensuring that trading activities adhere to established risk
thresholds.

Implementation Details:

Risk Detection: Employs statistical and machine learning methods, such as Markov
models, to detect regime changes, and applies Natural Language Processing (NLP) to
analyze financial news for sentiment shifts.

Risk Metrics: Calculates Vaue at Risk (VaR), Conditional VaR, and drawdown
limits to assess potential losses and protect the portfolio during downturns.
Real-Time Monitoring: Continuously evaluates risk indicators, alerting the Strategy
Generator Agent to adjust strategies as necessary to mitigate identified risks.

6. Communication and Feedback L oops:

Enhanced Dynamics:



o Real-Time Data Sharing: Agents exchange up-to-date market data, analyses,
and performance metrics, ensuring that all components operate with the latest
information.

o Adaptive Learning: Agents adjust their strategies and analyses based on
continuous feedback, allowing the system to evolve in response to changing
market conditions.

o Collaborative Problem-Solving: When anomalies or unexpected market
behaviors occur, agents collaborate to identify causes and devel op coordinated
responses, enhancing the system's robustness.

7. Integration and Coordination:

e Enhanced Dynamics:

o Unified Objective: All agents work towards the common goal of
optimizing trading performance while effectively managing risks,
ensuring that individual actions align with the system's overall
strategy.

o Dynamic Adaptation: The system's decentralized structure alows
agents to adapt independently to market changes, while coordinated
efforts ensure that these adaptations contribute to the system's
collective objectives.

o Continuous I mprovement: Ongoing interactions among agents foster
aculture of continuous learning and improvement, with each agent

refining its processes based on shared experiences and insights.

3.12.1.2 Basdline Strategies
To benchmark the performance of the multi-agent system, severa traditional trading

strategies were implemented:
e Buyand Hold (B&H): Investing equally across selected assets throughout the

evaluation period.

3.12.1.3 Performance Metrics
The effectiveness of each strategy, including those generated by the multi-agent system,

was evaluated using the following metrics:



e Win Rate: Percentage of successful trades.

e LossRate: Percentage of unprofitable trades.

e Neutral Rate: Percentage of trades with minimal gains or losses.

e Profit and Loss (P&L): Total monetary gain or loss over the evaluation period.

3.12.1.4 Evaluation M ethodology
Two primary methods were employed to assess the trading strategies:

e Market Replay: Simulating the execution of strategies over historical market
data without altering market dynamics.

e Interactive Agent-Based Simulation (IABS): Utilizing a population of
background trading agents to create aresponsive market environment, allowing
the market to adapt to the strategies being tested.

This dual-method approach enabled arobust evaluation of the strategies under

both static and dynamic market conditions.

3.12.1.5 Computational Resources
The experiments were conducted on high-performance computing clusters

equipped with multiple GPUSs, ensuring efficient processing of computationally
intensive simulations.
3.12.1.6 Evaluation Period
The simulation covered a six-month period from June to November 2024, with agents
making daily trading decisions based on available data up to that day, ensuring that no future
information influenced the strategy evaluations.
This experimental setup was designed to rigorously assess the performance of the multi-agent
system, providing a clear comparison with traditional trading strategies and offering insightsinto

the potential benefits of multi-agent frameworks in financia trading.

3.12.2 Reinforcement Learning
The experimental setup for the Reinforcement Learning for Options Trading approach

includes comprehensive data collection, a simulation environment built using the SLM-L ab
framework, comparison with baseline strategies, clear performance metrics, arobust evaluation
methodol ogy, and appropriate computational resources. The evaluation period is carefully



selected to ensure that the models are tested on unseen market data to assess their ability to
generalize and perform effectively.

3.12.2.1 Data Coallection and Simulation Setup

3.12.2.1.1 Data Collection:
The data used in this experiment spans from January 2014 to December 2024 and

includes historical market data for underlying assets and their corresponding options

contracts.

e Underlying Asset Data:
The underlying asset data consists of open-high-low-close (OHLC) prices and trading
volumes for various assets. This dataset is crucial for training the RL modelsto
understand the price movements and market behaviours of the underlying assets.

e Options Contract Data:
The corresponding options contracts, including both call and put options, are selected for
analysis based on their expiration dates and correlation with the underlying asset's price
movement. This data provides the RL agent with an in-depth understanding of how
options prices are influenced by market fluctuations of the underlying asset.

3.12.2.1.2 Simulation Environment:
The environment simulates real-world trading scenarios where the agent interacts with financial

market data and takes actions based on its observations. In this environment:

e The state space in the environment includes key market features such astime, open price,
highest price, lowest price, close price, and trading volume. These features capture the
price behaviour and market dynamics needed for the agent to make actionable trading
decisions.

e Theaction space consists of 16 actions to choose any strategy to deploy

e Theagent learns by interacting with this environment, making decisions based on the
observed state, and adjusting its trading strategy through trial and error.

3.12.2.2 Architectural Information of the DRL Framework
The proposed Deep Reinforcement Learning (DRL) framework is designed to

autonomously execute options trading strategies by learning from dynamic market environments.



In this section, we detail the architectural components that underpin the DRL approach, aligning
with our research questions which explore the capability of autonomous models to execute
strategiesin real time, outperform market benchmarks, and compare favourably to decentralized

multi-agent systems.

3.12.2.2.1 Problem Formulation asa Markov Decision Process (MDP)
At the core of the DRL framework lies the formalization of optionstrading as a

Markov Decision Process (MDP). This formulation enables the agent to learn optimal
trading policies by iteratively interacting with asimulated market environment. The MDP
is defined by the following key components:

e State Space (Observation):
The agent’s perception of the market at each time step tt is encapsulated in afeature
vector. This vector is composed of:

o Normalized Index Pricesand Returns: Capturing price movementsrelativeto
benchmark indices.

o Technical Indicators: Including moving averages, Relative Strength Index (RSI),
and Moving Average Convergence Divergence (MACD), which provide insight
into market trends.

o Volatility Metrics: Such ashistorical volatility and VIX levelsto quantify market

uncertainty.

Sentiment Scoresand Foreign Market Conditions: Allowing the agent to

incorporate external market sentiment and global economic influences.

o Option Premiums and Greeks: Essentia for evaluating therisk and potential
payoff associated with various options strategies.
e Action Space:
The DRL agent is equipped with a discrete set of 16 actions:
o 15Trading Strategies. Each action corresponds to a distinct options trading
approach (e.g., bull call spread, straddle, iron condor, €etc.), enabling the agent to
adapt to different market scenarios.



o Exit/Neutral Action: A dedicated action to close existing positions when market
regimes change, ensuring that the agent can effectively manage risk.
e Transition Dynamics:
The environment simulates market behaviour using historical data, where each action
taken by the agent triggers:
o Order Execution Simulation: Mimicking realistic trading conditionsincluding
order matching and liquidity constraints.
o Transaction Costs Application: Incorporating the cost implications of each
trade, thereby encouraging efficient strategy selection.
o Portfolio Updates: Reflecting the performance of the selected trading strategy,
which in turn informs subsequent decisions.
e Reward Function:
A well-designed reward function is crucial for guiding the learning process. The reward

at each time step t is defined as:
ry = AV, — A.Risk Penalty y, — u.Transaction Cost;
where:

o AV.isthechangein portfolio value over atime step.

o Risk Penalty y, could be afunction of realized volatility or drawdown during
that period.

o Transaction Cost, penalizes frequent trading to encourage stability.

o A and p are hyperparameters to balance the trade-off between return, risk, and
cost.

3.12.2.2.2 I ntegration with Resear ch Objectives
This DRL-driven pipeline directly addresses the research questions posed in the thesis:

1. Autonomous Execution of Options Strategies:
By learning a mapping from complex, high-dimensional market states to a discrete set of
strategic actions, the framework demonstrates its capacity to operate autonomously
within real-time trading environments. The continuous adjustment of actionsin response



to changing market conditions is designed to not only match but potentially surpass the
performance of traditional benchmarks.

2. Performance Against the Underlying Index:
Thereward function’s design ensures that the agent isincentivized to optimize portfolio
performance while controlling for risk and transaction costs. This careful calibration is
key to achieving returns that significantly outperform the underlying market index.

3. Comparison with Multi-Agent Systems:
While the multi-agent approach |everages decentralized decision-making through a
coordinated network of specialized agents, the DRL framework offers a streamlined, end-
to-end learning pipeline. This comparative analysis forms a central pillar of the
experimental methodology, providing insights into which approach yields superior
performance under dynamic market conditions.

In summary, the DRL framework embodies a sophisticated integration of financial market
modelling with advanced reinforcement learning techniques. By framing options trading as an
MDP and meticulously designing its state space, action set, transition dynamics, and reward
structure, the architecture supports a robust, adaptive system capabl e of real-time decision-
making and strategic execution. This architectural strategy not only fillsacritical gap in Al-
based trading methodol ogies but al so lays the groundwork for empirical validation against both
traditional and agent-based systems.

3.12.2.3 Learning Algorithm:
e Thelearning algorithmsused in our framework for options trading include:

3.12.2.3.1 Deep Q-Network (DQN): DQN isused to approximate the optimal action-value
function

Q+(s,a)Q*sa
using adeep neural network. This allows the agent to evaluate the value of
each action (buy, hold, sell) given aspecific state, enabling it to learn optimal
strategies through trial and error.

3.12.2.3.2 Proximal Policy Optimization (PPO):

PPO is afirst-order policy optimization algorithm that ensures stable updates by using a clipped
objective function. This agorithm is well-suited for the highly volatile options market, balancing
exploration and exploitation to learn efficient trading strategies.



3.12.2.3.3 Soft Actor-Critic (SAC):
SAC optimizes astochastic policy, encouraging exploration by maximizing entropy, which helps
prevent the agent from converging too quickly to suboptimal solutions. However, it was
observed that SAC performed less effectively when combined with the stop-loss strategy, dueto
its high-frequency trading nature.

0 Thesealgorithms allow the agent to continuously improve its decision-making

abilities and learn optimal strategies for options trading through repeated
interactions with the environment, ultimately leading to policies that
maximize reward.
3.12.2.4 Risk Management:
The protective closing strategy incorporated into the framework helps manage risk
effectively, especially in options trading:

0 Stop-Loss Mechanism: If the unrealized loss from atrade exceeds a specified
threshold (e.g., 1%, 2%, or 3%), the agent automatically closes the position to prevent
further losses. Thisis crucial in options trading, where the potentia for large losses
exists due to the high leverage and price volatility of options.

o Position Sizing: Position sizing strategies may be used to adjust the size of the
agent’s positions based on market conditions and the agent’s risk tolerance. This
hel ps manage exposure and prevents the agent from taking on excessiverisk in
volatile market conditions.

These risk management strategies ensure that the agent does not accumulate
significant losses while allowing it to capitalize on favorable market conditions. The
addition of the protective stop-loss mechanism makes the system more robust,

especialy in times of high market volatility.

3.12.2.5 Baseline Strategies:

To benchmark the performance of the RL-based strategies, the buy and hold (B& H) strategy is
used as the baseline. In this strategy, the agent simply holds the asset throughout the entire
testing period without making any trading decisions based on market conditions. This strategy
hel ps assess whether the RL models provide improvements over asimple, passive trading
approach.



3.12.2.6 Performance Metrics:
The performance of the RL modelsis evaluated using the following key metrics:

o Profit and Loss (P& L): This metric measures the total returns generated by the
RL agent over the testing period, accounting for transaction costs.

0 Risk-Adjusted Return: Thisincludes metrics like Shar pe Ratio, which accounts
for the risk-adjusted return of the agent’s strategy. It evaluates how well the agent
performsin relation to the volatility of its returns.

o Drawdown: This measures the peak-to-trough decline during the testing period
and helps assess the risk of the trading strategy.

o0 Frequency of Trades: This metric tracks how frequently the agent takes action,
asit could indicate whether the agent is overtrading or trading efficiently.

3.12.2.7 Evaluation M ethodology

3.12.2.7.1 Introduction
The evaluation of an automated options trading system based on reinforcement learning

(RL) iscrucial to assess its performance, risk management capabilities, and ability to
generalize across diverse market conditions. This methodology outlines a comprehensive
framework for evaluating such a system, focusing on key aspects such as profitability,
risk management, execution efficiency, generalization, and lear ning performance. It
provides an in-depth assessment of the system's behavior, ensuring it aligns with both

theoretical and practical requirements for arobust and adaptive trading agent.

3.12.2.7.2 Evaluation Metrics
The evaluation of the reinforcement |earning-based options trading system will be

conducted using a set of metrics categorized into profitability, risk management,
execution efficiency, and generalization. The specific metrics are designed to ensure a
comprehensive understanding of the system's performance and adaptability.

The profitability of the system will be assessed through the following metrics:

0 Total Return: The cumulative percentage gain or loss over adefined evaluation
period (e.g., monthly, quarterly, or yearly). This metric provides an overall
performance indicator and captures the agent’s long-term profit generation
capabilities.



0 Maximum Drawdown (MDD): This represents the largest peak-to-trough declinein
equity over the evaluation period, providing insight into the system's potential for
large losses and its ability to recover from them.

0 Win Rate: The percentage of profitable trades relative to the total number of trades
executed. This metric provides a measure of the agent's overall effectivenessin
generating profitable trade.

e Generalization and L earning Performance
To ensure long-term profitability and adaptability, it is crucial to evaluate the agent's

ability to generalize across unseen data and its learning process over time. Thiswill be
achieved through a combination of out-of-sample testing, walk-forward testing, and the
analysis of reward distribution over episodes. Out-of-sampl e testing will assess the system's
ability to generalize and adapt to new, unseen market conditions by testing it on data not
included in the training process. A more robust approach, walk-forward testing, will ssmulate
real-world trading by iteratively training the model on historical data, testing it on the next
period, retraining with new data, and testing again. This ensures the system can adapt to
changing market conditions over time. Finally, tracking the distribution of rewards over
episodes will monitor improvements in decision-making and assess the system's learning
progress throughout training, ensuring the agent steadily improves its performance as it
learns from the market environment.
3.12.2.7.3 Transaction Costs and Execution Efficiency

A redistic evaluation of the system must incorporate transaction costs, which

significantly affect the profitability of trading strategies. The following

assumptions will be considered:

e Transaction Cost Assumption: A transaction cost of 0.1% per trade will be
applied to account for brokerage fees, slippage, and other related costs. This
ensures that the system’s profitability is evaluated under morerealistic, real-world
conditions.

3.12.2.7.4 Evaluation Framework and Backtesting
To ensure comprehensive and realistic evaluation, the RL system’s performance will be

tested using arobust backtesting framework. This framework will include:



e Historical Data Testing: The system will be evaluated using historical data from
2014 to 2024, ensuring it istested across different market conditions (e.g., bull, bear,

and volatile markets).

3.12.2.7.5 Periodic Retraining and Adaptability
0 Retraining Strategy: Setting a clear strategy for periodic retraining, ensuring the

agent adapts to shiftsin market volatility, trends, and other factors.

0 Adaptive Algorithms: Incorporating adaptability within the RL framework to adjust
strategies as new data and insights become available, minimizing the risk of model
decay over time.

3.12.2.7.6 Conclusion

The proposed evaluation methodology provides a detailed framework to assess the

performance of areinforcement learning-based automated options trading system. By

evaluating profitability, risk management, execution efficiency, generalization, and
learning performance through a variety of metrics and testing methods, this methodol ogy

ensures that the trading system is not only profitable but also adaptable and robust in a

dynamic and volatile market environment. Theinclusion of metrics such as Sortino Ratio,

Camar Ratio, volatility, realized volatility, and Skewness/Kurtosis ensures amore

complete understanding of the system’s risk-return profile. Furthermore, the framework

considers periodic retraining to adapt to evolving market conditions, ensuring long-term

sustainability and profitability.

3.12.2.8 Tools and Computational resour ces.

The development and implementation of this research rely on acomprehensive suite of
tools and computational resources, encompassing various aspects of programming,
machine learning, and dataanaysis. Programming and Deep L earning Frameworks
are central to the project, with Python 3.9 serving as the primary language due to its
extensive libraries for scientific computing, machine learning, and data analysis.
TensorFlow 2.8 and Keras are utilized for constructing and training the deep learning
models, including GANS, Transformer-based market regime prediction agents, and DRL
agents. While TensorFow was considered, PyTorch was ultimately selected for its



compatibility with the existing codebase. Reinforcement Learning Libraries are
essential for the DRL-based approach, with Stable-Baselines3, providing reliable
implementations of reinforcement learning algorithmsin PyTorch, being chosen for its
ease of use and integration. Algorithms such as DQN, DDQN, PPO, SAC, and A3C are
implemented using this library. Data Handling and Analysis are facilitated by Pandas
and NumPy, which are employed for data manipulation, analysis, and feature
engineering. Technical Analysis leveragesthe TA-Lib library to calculate technical
indicators such as RSI, MACD, and Bollinger Bands, which are utilized by the agents.
Visualization is achieved through Matplotlib and Seaborn, enabling the generation of
plots and visualizations for performance analysis of the agents and the simulation results.
Finally, the Multi-Agent System Framework is built using LangChain, providing a
modular architecture for agent-based modelling.

3.12.2.9 Evaluation Period

The evaluation period corresponds to the time frame during which the models are
tested against unseen data:
Thetesting period allows the performance of the trained RL models to be assessed in
real-world market conditions and their ability to generalize new data. For the testing data:
e Option Index Data: Testing data spans from Jan 2014 to 1 Dec 2024 ( Synthetic
and Real Data).
e Index Data Testing data spans from January 2014 to Dec 2024.
By testing models on these unseen periods, we ensure that the models are evaluated in
market conditions they have not encountered during training, thus assessing their true

predictive power and effectiveness in options trading.

4,Results

4.1 Research Question 1

Can the coordination among specialized agents combined with decentralized decision-making

within a multi-agent system enhance both the selection and execution of options trading



strategies compareto traditional approach?

This section presents a comparative evaluation of fifteen option strategies tested over a 48-month

period (from 2021 to 2024) under two methodologies. the Traditional Approach and Our

Multi-Agent Collaborative Design. Each strategy was executed once per month, yielding 48

trades per strategy, for atotal of 720 trades across all strategies. The outcome of each trade was

classified asaWin (profitable), L ose (unprofitable), or Neutral (approximately breakeven).

Table 2 summarizes the resulting win, lose, and neutra proportions for each strategy under both

approaches.

4.1.1 Summary of Key Findings

Our Multi-Agent Collaborative Design outperforms the Traditional Approach in terms of
win rate for 14 out of 15 strategies, with Put Short maintaining the same win rate but
slightly reducing losses.

The proportion of losing trades generally decreases, while asmall fraction of trades shift
into a “neutral” or breakeven category.

The most pronounced improvements appear in multi-leg spreads (e.g., Short [ron
Condor, Bear Call Spread, Bull Call Spread), suggesting that more dynamic or
optimized adjustments are particularly valuable in spread-based strategies.

Although strategies like Short Strangle and Short Straddle already have relatively high

success rates, the new approach still provides incremental gains and lower |osses.



Table 2 Result: Traditional Approach vs Multi-Agent Autonomous Framework Performance
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4.1.2 General Observations

1. Higher or Equal Win Rates
In nearly all strategies, Our Multi-Agent Architecture Design demonstrates a higher win
rate than the Traditional Approach. Notable improvements include:
o Short Iron Condor: Win rate increases from 0.33 to 0.52.
o Short Iron Butterfly: Win rate increases from 0.31 to 0.46.
o Call Short: Win rate increases from 0.71 to 0.81.
o Bear Call Spread: Win rate increases from 0.44 to 0.54.
o Bull Call Spread: Win rate increases from 0.50 to 0.56.
o Risk Reversal: Win rateincreases from 0.25 to 0.31.

Even in cases where the Traditional Approach already had arelatively high success
rate—such as the Short Strangle (0.83) or Jade Lizard (0.77)—Our Multi-Agent system
Design still shows modest yet consistent gains (0.85 and 0.79, respectively).

2. Reduction in Losing Trades
Across most strategies, the proportion of losing trades decreases under Our Collaborative
Design. For instance, the Short Iron Condor sees areduction in losing trades from 0.67
to 0.44, and the Short Iron Butterfly seesadrop from 0.69 to 0.48. Thistrend suggests
that Our Multi-Agent Design may be more effective in managing risk or in timing entries
and exits.

3. Introduction of Neutral Outcomes
Severa strategies under Our Agent Collaborative Design exhibit a small but non-
negligible percentage of neutral trades (ranging from 0.02 to 0.06), whereas the
Traditional Approach often had zero or near-zero neutral outcomes. These “neutral”
trades typically indicate breakeven or minimal profit/loss situations. Their appearance
may be abyproduct of more active trade management, tighter risk controls, or better exit

rules that close positions early when the market moves against the trade.



4.1.3 Conclusion
Overall, these results indicate that Our Multi-Agent framework consistently enhances

performance across a broad range of options strategies. In the next section, we will examine the
statistical significance of these findings and discuss potential limitations and areas for further
refinement.

4.2 Resear ch Question 2

Can Deep Reinforcement Learning models be developed to autonomously execute different
option strategiesin real time—aligning with human trading timeframes—and can these models

outperform the underlying market index?

This section evaluates the performance of fifteen option strategies over a48-month period
(2021-2024), comparing their results under the Traditional Approach versus anewly
developed Deep Reinfor cement L earning (DRL) Approach. Table 3 summarizesthewin, lose,
and neutral rates for each strategy under both approaches.

4.2.1 General Observations

1. Mixed Performancevs. Traditional Approach
Unlike many purely systematic or rule-based enhancements, the DRL Approach does not
consistently outperform the Traditional Approach across all strategies. Some strategies
show a clear improvement, while others see areduction in win rate. For instance:
o Short Straddle: Win rate jumps from 0.63 (Traditional) to 0.80 (DRL), a
substantial improvement.
o Short Iron Condor: Improves from 0.33 to 0.45 in win rate, with asmall fraction
(0.05) of neutral trades introduced.
o Longlron Condor: Declinesfrom 0.69 to 0.41 in win rate, indicating that the
DRL agent may struggle with this strategy’s risk profile.
2. Notable Shiftsin Neutral Trades
Similar to the previous approach (“Our Approach”), the DRL framework introduces a
small but sometimes significant percentage of neutra (breakeven) trades. For example,
Long Iron Butterfly exhibits 0.08 neutral trades under DRL, compared to 0.02 under the



Traditional Approach. This suggests the DRL agent may be exiting certain positions
earlier (e.g., breakeven stops or partial profit targets) rather than letting them become full
winners or |osers.

3. Enhanced Performancein Premium-Selling & Some Spread Strategies
Aswith many quantitative systems, premium-selling strategies tend to fare well under
DRL:

o Short Strangle: Improves dightly from 0.83 to 0.85 in win rate, with asmall
neutral fraction (0.02).

o Short Iron Butterfly: Moves from 0.31 to 0.46 in win rate, mirroring the
improvement we saw with “Our Approach,” although the exact distribution of
outcomes (0.48 losing, 0.06 neutral) is the same as in “Our Approach.”

4. Strategieswith Minimal or No Change
Certain single-leg strategies and “Jade Lizard” variations remain quite similar under
DRL. For example, Put Short and Jade L izard each show only minor tweaksin losing
vs. neutral trade proportions, suggesting that the DRL agent’s actions align closely with
simpler short-option strategies.

4.2.2 Conclusion

Overall, these findings suggest that while DRL based system can excel at certain
strategies—particularly those that benefit from adaptive exit/entry or volatility-based
adjustments—it can a so underperform on more narrowly defined spreads or strategies
with complex payoff diagrams.

Table 3 Results: Traditional Approach vs Deep Reinforcement Learning System Performance



Traditional Approach Dur Approach

Strabegy J FMAMUJIJIAGSONDTD w L N JIFMAMUJJIASOND W L N

2021 WL LLLLWLELLWW WWLWLLWWLWWW

Shortlrom 2022 W L L WL L L L L L LW WLWWLNWWLNLW
Condor 2023 L wiiLiLLLwwedipr P35 0600 o WL www o 045 0.50 0.05

2024 L L WWWLWLLLWW WLWWWL WL WWWW

021 L WWWWWLEL WWWLL L LWWLWLWWWWL

Longlrom 2022 W W W L W W W W W W WW WWWEL WL WWWWWW
Condor 2073 L L wwwiwwiwww 06 02002 L wow owow w w DAL 0.53 006

024 WWWLWWLLWLLN WWWLWWLNWLLN

021 W WWWWWEL WWWLL WWWWWWL WWWL L

Longlrom 2022 W W W L L W W W L W WW WWWWWWWWL WWW
Buterly 2023 w L wwww L wwwrLw 0 BRI o v wow oy owow w Low 78 014 0.08

024 WWELNWWWWWWWW WWLNWWWWWWWW

2021 L LLLLLWLLLWW L LWWNWWLLLWW

Shortlron 2022 L L L WL L L L L L L L LLLWLLLWLNWL
Bumerfly 2023 w L ww L wwiwerww P 000 O ww L ow L ow w 046 048 0.06

2024 L L LWWLLLLLWL LWLWWLNWLLWL

021 WWEL WL WWLELWWW WWELWWWWLEL WWWwW

Call W22 WWWWWWEL WWWWW WWWWWWL WWWWW
Short 0 wwweLwwwwowep 070 020N e wwww L oww o 081 017 0.02

2024 LLWLWLWWWLWW LWWWWL WWWL WW

021 W W W WL WWWWWWW WWWWEL WWWWWWW

Put 022 WL WWWWWL WWWW WLWWWWWL WWWW
Short 0 L LwWwL L L wL wwr M 0B e v L w owow o 077 0.20 003

02 WWWWWWWWWL WW WWWWWWWWWL WW

021 WWWWWEL WWWWWL WWW W WL WWWWW L

022 LLWWLWWWL WWW LWWWL WWWNWWW
Jadelimard 0 oW wwww L www L BB ww L owow ow o 07019002

024 WWWL WWWWWL WW WWWLWWWWWL WW

021 WL WWLWWLELWWW WLWWLWWL WWWW

Reversed Jade 2022 L WL WW WL WWL WW LWL WWWNWWL WW
Lizard 0 wwwewwe wowe o 070 0200 wwLowerow o o 073025002

W04 WWWWWEL WWWWWW WWWWWL WWWWWW

021 L WWWEL WWWWWWwWw L WWWNWWWWWWW

Short 022 WWEL WL WWWW v WW WWLWLWWWW v WW
083 0.15 0.00 0.85 0.12 0.02

Stramgle 2023 W W W W W W W W W W L L WWWWWWWWWWL W

W02 WWWWWWWWWEL WW WWWWWWWWWL WW

021 WL WWWWWLE LWWW WLWWWWWL WWWwWw

Short 022 WL WWL WL WL LWW WLWWLWLWLLWW
Straddle 2003 ww L L wi L wweo L P 03OAN WL ww Lo 080020000

024 WWWWWL WWLLWW WWWWWL WWL LWW

021 WL WWWWWLLWWL WLWWWWWLNWWL

022 LWWLLWLWWWWW LWWWL WWWWWWW
Batman o wwow ow owow nop OB 035 000 W ow w1 071 020 0.09

024 L WWWWLLLWLWW LWWWWLLLWLWW

021 N WL WWWNWWWNN NWELWWWNWWWNN

Range 2022 NLWNLLWWL WWN NNWNLNWWL WWW
Forward 203 N N Lwwww s wLww U2 0T o wow v ow oL ow o 040027 033

024 NWWNDNWWWWL NN NWWNNWWWWL NN

2021 WL WLLLWLLWWW WNWLLLWLLWWW

BearCall 2022 WL L WL WL LWLLW WWLWLWLLWNLW
.44 0.56 0.00 0.54 0.42 0.04

Spread 023 L WWLLLLWLWLL WWWLLLLWLWLL

2024 WL LWWLLLLWWW WLLWWLLLLWWW

021 L WL WWWL WWWLL LWL WWWLWWWL L

BullCall 2022 L L WL L LWWLWWL LLWLLWWWLWWL
Spread 0 L L LWL WWELwE ww 0 SRR wow L ow oL ow w 05T 049 000

2024 L WWLLWWWWLLL WWWL WWWWWLLL

021 N LWLLLNLLLNN NLWLLNNLTLLNN

022 WWL NWWLLWLLW WWLNWWLNWLNW
Risk Reversal 3033 n n w L L L L wNwLL ©®X 04 03 o v wipweieowxwer o 031 033 035

2024 WN NNNLNLLWNN WNNNNLNLWWNW




4.3 Research question 3
Can the adaptive, decentralized framework of multi-agent systems lead to superior trading

performance compare to Deep Reinforcement |earning based system under dynamic market

conditions?

This section compares the performance of 15 options strategies traded by two distinct
autonomous frameworks over afour-year period (2021-2024). The first framework isa M ulti-
Agent collabor ative system that integrates five specialized agents—namely a Generative
Adversarial Network (GAN) for strategy generation, a Transformer-based market regime
predictor, arisk management agent, a strategy sel ection module, and a data acquisition/technical
analysis agent. The second framework isa Deep Reinforcement L earning (DRL )-based system
that continuously learns optimal actions from reward signals in a single-agent setting. Each
strategy was traded on monthly options for atotal of 48 trade cycles. We report the proportions

of winning, losing, and neutral (break-even) months. Table 4 summarizes these results.

4.3.1 Overall Observations

1. High-Level Comparison

o Similar Performancefor Most Strategies: In many strategies (e.g., Long Iron
Butterfly, Short Iron Butterfly, Short Call, Short Put, Jade Lizard, Reversed Jade
Lizard, Short Strangle, Bear Call Spread, Risk Reversal), the win rates are nearly
identical (within afew percentage points) between the two frameworks.

o Strategies Favouring the Multi-Agent Framework: Long Iron Condor, Short
Iron Condor, Range Forward, and Bull Call Soread show noticeably higher win
rates under the Multi-Agent system. For example, the Long Iron Condor exhibits
a0.71 win rate under Multi-Agent vs. 0.41 under DRL, indicating that the
collaborative approach better identifies conditions favourabl e to long-condor
structures.

o Strategies Favouring the DRL Framework: A key standout is Short Straddle,
where the DRL framework achieves a0.80 win rate compared to 0.65 for Multi-
Agent. The DRL agent’s ability to adjust or time entry/exit points more
dynamically may be contributing to fewer losing months.



2. Short Premium vs. Long Premium

(0]

Short Premium Strategies (e.g., Short Srangle, Short Straddle, Short Call,
Short Put): These tend to have high win rates overall because time decay (theta)
works in the seller’s favour, provided the underlying does not move drastically.
Both frameworks show strong performance in Short Strangle (0.85 win rate for
both) and Short Call / Short Put (above 0.75). However, Short Straddle stands out
with ahigher win ratein DRL (0.80) than in Multi-Agent (0.65), suggesting that
the DRL agent may be better at managing or dynamically adjusting straddle
positions.

Long Premium Strategies (e.g., Long Iron Condor, Long Iron Butterfly, Bull
Call Spread): Results vary. Long Iron Butterfly is consistently profitable (around
0.79-0.78) in both frameworks, whereas Long Iron Condor is significantly more
successful in the Multi-Agent framework (0.71) than in DRL (0.41). This
difference suggests that the collaborative agents, especially the market regime
predictor, may be more adept at timing low-volatility or range-bound conditions

where long condors thrive.

3. Neutral or Break-Even Outcomes

(0]

Certain strategies exhibit higher rates of neutral (break-even) months. Range
Forward and Risk Reversal have notably large neutral components (0.33 and 0.35,
respectively) in both frameworks. This often indicates that the underlying price
ended up within a pre-defined target zone, yielding neither a clear profit nor a

|oss.

4. Risk-Return Trade-Offs

(o]

Strategies like Short Srangle and Short Straddle have high win rates but can
carry significant tail risk if the underlying makes an extreme move. Although the
frameworks appear to handle these well (especially DRL in the case of Short
Straddles), one must consider risk management constraints (e.g., margin
reguirements, stop-loss triggers) when deciding to employ these strategies.

Risk Reversal has the lowest win rate (0.31) but also arelatively large neutral
outcome (0.35). Thisindicatesthat, over the tested period, the underlying did not



frequently movein astrong directional trend to fully realize the asymmetric

payoff profile of therisk reversal.

4.3.2 Which Strategy to Use When

1. High-Implied Volatility Environments
o Short Premium Strategies (e.g., Short Strangle, Short Call/Put, Jade Lizard):
Thesetypically benefit from higher option premiums and faster time decay. Both
frameworks show high win rates in these strategies. If one anticipates mean-
reverting or range-bound markets, short premium can be attractive.
2. Low-Implied Volatility or Range-Bound Markets
o Longlron Condor /Long Iron Butterfly: The Multi-Agent framework excels at
Long Iron Condors, indicating that a specialized regime-prediction agent may
help identify times to exploit cheap options in narrow ranges.
o Short Straddle: The DRL framework’s standout performance suggests it may
dynamically detect especialy tight ranges and manage risk effectively.
3. Directional or Mildly Trending Markets
o Bull Call Spread, Bear Call Spread: Multi-Agent outperforms slightly in bullish
scenarios (Bull Call), whereas the DRL approach marginally reduces losses in
Bear Call. A robust market outlook can guide which spread to employ.
4. Neutral to Slightly Bullish Exporters/ Hedgers
o RangeForward: Multi-Agent results (0.54 W vs. 0.13 L, 0.33 N) indicate decent
success in hedging or capturing mild upside, presumably aided by the
Transformer-based regime predictor.
5. Directional Speculation with Asymmetric Risk
o Risk Reversal: Both frameworks show low win rates (0.31) and many neutral
outcomes. This strategy can be worthwhile only when atrader strongly anticipates

asignificant directional move.

4.3.3 Concluding Remarks on Performance

e Multi-Agent Framework Strengths



o Excelsin certain spread-based or range-based trades (Long Iron Condor, Range
Forward, Bull Call Spread), presumably due to the synergy of a dedicated
market-regime predictor and a specialized risk-management agent.

o Yieldsconsistently high win rates in short premium strategies, though not
markedly higher than DRL except in afew cases (e.g., Short Iron Condor).

o Deep Reinforcement Learning Strengths

o Dominatesin Short Sraddles (0.80 W vs. 0.65 W in Multi-Agent), suggesting
superior dynamic risk management or timing.

o Manages Bear Call Spreads with fewer losses and transitions Batman trades more
frequently to neutral outcomes.

e Practical Considerations

o Risk Appetite: Strategies with high win rates (like Short Strangle or Short
Call/Put) often carry larger tail risk. Ensure robust risk controls—stop-loss
triggers, dynamic hedging, or position sizing.

o Market Outlook: If the outlook is strongly bullish or bearish, vertical spreads or
risk reversals might be used; if range-bound, iron condors, iron butterflies, or
straddles/strangles can be preferred.

o Volatility Conditions: Selling premium is generally most profitable in higher
implied volatility (with areversion expectation), whereas long-premium strategies

benefit when a major price move, or volatility expansion is anticipated.

4.3.4 Conclusion

In sum, multi-agent outperforms DRL based system, while some strategies yield comparable
results across both autonomous frameworks, certain strategies—particularly Long Iron Condor
(favouring Multi-Agent) and Short Straddle (favouring DRL)—highlight the distinct strengths of
each approach. The multi-agent collaborative system appears to capitalize on specialized regime
detection and risk management for spread-based strategies, whereas the DRL system’s
adaptability shinesin strategies requiring continuous rebalancing or rapid exit timing.
Ultimately, the choice of which strategy and which framework to deploy depends on the trader’s
market outlook, volatility conditions, and risk tolerance.



Table 4: Result of Comparative Performance of Multi-Agent Framework Vs DRL

5. DISCUSSION

This section reflects on the findings relative to the research questions and situates the results
within the broader context of autonomous options trading. The comparative analysis between a

multi-agent collaborative framework and a Deep Reinforcement Learning (DRL) based approach
reveals severa key insights.



5.1 Research Question 1

Can the coordination among specialized agents combined with decentralized decision-making
within a multi-agent system enhance both the selection and execution of options trading
strategies compared to atraditional approach?

Thefirst research question asked whether coordination among specialized agents, combined with
decentralized decision-making, can enhance both the selection and execution of options trading
strategies compared to traditional approaches. The empirical results suggest that the multi-agent
system not only improves the win rates across various strategies but also demonstrates enhanced
risk management. For instance, strategies such as the Short Iron Condor and Short Iron Butterfly
show substantial improvements in win rates (from 0.33 to 0.52 and 0.31 to 0.46, respectively),
while the frequency of losing trades is noticeably reduced. These findings underscore that
decentralized decision-making—where each specialized agent (including GAN-based strategy
generation and Transformer-based market regime prediction) contributes its unique expertise—
creates amore robust framework for options selection and execution. This synergy among agents
appears to mitigate the limitations inherent in traditional, monolithic trading systems, validating
the potential of agentic coordination in complex financial environments.

5.1.1 Strategy-by-Strategy Highlights

e Short Iron Condor
The improvement in win rate from 0.33 to 0.52 is one of the largest observed. It also
features a noticeable reduction in losses (from 0.67 to 0.44). This suggests that Our
Multi-Agent Design is partic. rly effective at structuring or adjusting Iron Condorsin a
way that captures premium while limiting adverse moves.

e Put Short & Call Short
Both single-leg short option strategies show stable or higher win rates under Our Design.
Put Short remains at a0.77 win rate but slightly reduces losing trades (0.23 to 0.21) and

introduces a small neutral component (0.02). Call Short improvesitswin rate from 0.71



to 0.81, indicating that directional timing or volatility assessment might be more accurate
under Our Multi-Agent Framework.

« RangeForward & Risk Reversal
These strategies, which often involve directional biases and optionality structures,
demonstrate moderate but meaningful improvements. Risk Reversal in particular rises
from a0.25 to a0.31-win rate, and it increases neutral trades from 0.31 to 0.35—
suggesting that while the overall strategy remainsriskier, the new methodol ogy finds
more opportunities to exit at breakeven or minimal loss.

e Short Strangle & Short Straddle
Both strategies had rel atively high win rates under the Traditional Approach, reflecting
the premium-selling edge in many market environments. Under approach, they each
show incremental improvements (e.g., Short Strangle from 0.83 to 0.85) or at least a
dlight reduction in losing trades, indicating that even for established premium-selling
strategies, there is room for refinement.

5.1.2 Possible Explanations for Performance Differences

1. Enhanced Risk Management
The consistent decrease in losing trades across most strategies may stem from more
robust risk controls. This could involve dynamic stop-loss mechanisms, position
adjustments, or earlier trade exits once a position starts moving against the trader.

2. Adaptive Entry and Exit Rules
Higher win rates may also be attributable to more precise trade entries, possibly guided
by volatility forecasts, technical indicators, or probabilistic models that Our Multi-Agent
approach incorporates. Tighter exit rules may similarly convert some losing trades into
neutral outcomes.

3. Improved Volatility Forecasting
Strategies that sell options (e.g., short strangles, short iron condors) tend to perform best
in stable or overestimated volatility conditions. If our Design better accounts for implied
vs. realized volatility dynamics, it could systematically capture more edge in premium

collection strategies.



5.2 Research Question 2

Can Deep Reinforcement Learning models be devel oped to autonomously execute different
option strategiesin real time—aligning with human trading timeframes—and can these models

outperform the underlying market index?

The development of our DRL models demonstrates that autonomous execution in real
timeis achievable. Our experimental results show that the DRL approach can indeed operate
within human trading timeframes and, in severa cases, outperform the underlying market index.
Notable performance improvements were observed in strategies such as the Short Straddle and
Short Iron Butterfly, where win rates increased significantly. These findings underscore the
potential of DRL to learn dynamic market behaviours and adjust strategy execution accordingly.
However, the DRL system also exhibited limitations—underperforming in strategies like the
Long Iron Condor and introducing a higher proportion of neutral tradesin some cases. This
variability suggests that while DRL models are effective in certain contexts, their performanceis
strategy-dependent and may require additional refinement to fully capture the complexity of
options trading.

5.2.1 Strategy-by-Strategy Highlights

« Longlron Condor:
The most pronounced drop in performance under Deep RL (win rate from 0.69 down to
0.41). This may indicate that the DRL agent struggles with multi-leg structures requiring
tight strikes and narrower breakeven points, or that it closes positions prematurely.

e Short Straddle:
The standout improvement, jumping from a0.63 to a0.80 win rate. DRL design’s
dynamic management (adjusting earlier for volatility spikes) could explain this
outperformance.

e Batman:
Win rate rises from 0.65 to 0.71, while losing trades drop from 0.35 to 0.20. A noticeable
0.09 fraction of trades end neutral, indicating the DRL agent is more willing to exit early

for small gaing/losses.



« RangeForward:
Moves backward under DRL (win rate from 0.52 down to 0.40), with an increasein
losing trades (0.17 to 0.27). Thisstrategy’s directional bias and wide breakeven range
might not match well with how the DRL model manages open positions.

e Bull Call Spread:
Shows only amargina improvement in win rate from 0.50 to 0.51, with losses at 0.49—
indicating the DRL approach does not drastically change the risk/reward profile for this

strategy.

5.3 Research Question 3
Can the adaptive, decentralized framework of multi-agent systems lead to superior trading

performance compare to Deep Reinforcement learning based system under dynamic market
conditions?

Our experiments indicate that both frameworks deliver robust performance against a
range of option strategies. Notably, the multi-agent system demonstrated marked strengths in
spread-based and range-bound trades, such as Long Iron Condor, Range Forward, and Bull Call
Spread. The synergy among the specialized agents—especially the Transformer-based market
regime predictor and the dedicated risk management module—appears to offer a distinct
advantage in environments characterized by relatively stable or range-bound market conditions.
These results support the hypothesis that decentralization, when coupled with specialization,
enhances adaptability and decision-making in options trading.

In contrast, the DRL-based system excelled in strategies requiring rapid adaptation to sudden
market changes. For example, its superior performance in Short Straddles and its effective
management of Bear Call Spreads suggest that an integrated, monolithic approach may better
capture and respond to dynamic market signals. This underscores a key trade-off: while the DRL
model can rapidly learn and adjust in volatile conditions, it may not fully exploit the benefits of

dedicated expertise across various trading components.



5.3.1 Strategy-by-Strategy Highlights

Short Iron Condor

(0]

(0]

(0]

Multi-Agent: 0.52 Win/ 0.44 Loss/ 0.04 Neutra

DRL: 0.45Win/0.50 Loss/ 0.05 Neutral

Interpretation: The Multi-Agent framework appears to time short iron condors
better, likely dueto the Transformer-based regime predictor identifying stable or

range-bound environments.

Long Iron Condor

(0]

(0]

(0]

Multi-Agent: 0.72 Win/0.25 Loss/ 0.04 Neutra

DRL: 0.41Win/0.53 Loss/ 0.06 Neutral

Inter pretation: The biggest difference among all strategies. The Multi-Agent
system excelsin picking periods of low implied volatility or tight trading ranges

conducive to long-condor profitability.

Long Iron Butterfly

(0]

(0]

(0]

Multi-Agent: 0.79 Win/ 0.15 Loss/ 0.04 Neutral

DRL: 0.78 Win/ 0.14 Loss/ 0.08 Neutral

Inter pretation: Both frameworks do well here. The DRL agent has adlightly
higher neutral rate, suggesting more instances of minor profit/loss exits.

Short Iron Butterfly

(0]

(0]

(0]

Multi-Agent: 0.46 Win / 0.48 Loss/ 0.06 Neutral

DRL: 0.46 Win/ 0.48 Loss/ 0.06 Neutral

Interpretation: Essentially the same outcomes. Short iron butterflies require
careful strike selection; both approaches yield moderate success.

Short Call / Short Put

Multi-Agent: (Short Call) 0.81 W, (Short Put) 0.77 W

DRL: (Short Call) 0.81 W, (Short Put) 0.77 W

Inter pretation: Straightforward premium-selling strategies show nearly identical
results. Both frameworks appear effective at timing short premium entriesin
stable or mildly directional markets.

JadelLizard / Reversed JadelLizard



Multi-Agent: 0.79 W (Jade), 0.73 W (Reversed)

DRL: 0.79 W (Jade), 0.73 W (Reversed)

Inter pretation: Both frameworks handle these combined call/put credit structures
equally well, highlighting their robustness in managing short premium positions

with built-in directional bias.

Short Strangle

(0]

(0]

(0]

Multi-Agent: 0.85Win/0.10 Loss/ 0.02 Neutral

DRL: 0.85Win/0.13 Loss/ 0.02 Neutral

Interpretation: Highest win rate overal, reflecting the typical “high probability,
high tail risk” nature of strangles. Minor differencesin the loss rate suggest the

Multi-Agent approach might exit losers slightly earlier or pick narrower strikes.

Short Straddle

Multi-Agent: 0.65Win/0.35 Loss/ 0.00 Neutra
DRL: 0.80 Win/0.20 Loss/ 0.00 Neutral
Interpretation: The DRL framework significantly outperforms here, possibly due

to more dynamic adjustments or better identification of tight trading ranges.

Batman

(0]

(0]

(0]

Multi-Agent: 0.7 W /0.27L /0.02N

DRL:0.72W/0.20L/0.09 N

Inter pretation: Same win rate, but DRL shifts some losing months to break-even.
The DRL agent may exit earlier to preserve capital, while Multi-Agent holds
positions longer, accepting sightly higher loss frequency.

Range Forward

(0]

(0]

0

Multi-Agent: 0.54 W /0.13L/0.33N

DRL:040W/0.27L/0.33N

Inter pretation: Multi-Agent outperforms here, suggesting that the specialized
regime agent better predicts stable or mildly bullish conditions needed for a
profitable Range Forward.

Bear Call Spread

0

(0]

Multi-Agent: 0.54 W /0.48 L /0.04 N
DRL:054W/0.42L/0.04N



o Interpretation: Identical win rates but fewer losses under DRL, indicating that
DRL may exit losers earlier or manage adjustments more effectively, though
overal profitability issimilar.
e Bull Call Spread
o Multi-Agent: 0.56 W/0.44 L /0.00N
o DRL:0.51W/0.49L/0.00N
o Interpretation: Slightly higher success rate in the Multi-Agent system. The
synergy of specialized agents, especially the regime predictor, seemsto help with
bullish directional trades.
e Risk Reversal
o Multi-Agent: 0.31W/0.33L/0.35N
o DRL:0.31W/0.33L/0.35N
o Interpretation: Both frameworks yield low win rates and high neutral outcomes.
This structure depends heavily on a strong directional move; during the sample

period, many months ended near breakeven.

5.3.2 Reflections and Futur e Directions

The comparative outcomes of our study suggest that while the decentralized multi-agent
framework can lead to superior performance under certain market conditions, the optimal
trading system may benefit from a hybrid approach. Integrating the granular adaptability of
specialized agents with therapid, holistic learning capabilities of DRL could potentially yield
even more robust trading performance. Future research should explore such hybrid models,
aswell asfurther validate these findings in live trading environments to account for
additional market variables and risk factors.

In conclusion, the evidence from this study supports the notion that an adaptive,
decentralized framework can outperform a DRL-based system in specific contexts. However,

the complementary strengths of both approaches imply that the choice of trading system



should be closely aligned with the specific market conditions and risk profiles of the targeted
trading strategies.

6. SUMMARY,IMPLICATIONS, AND RECOMMENDATIONS

6.1 Summary

This thesis addresses the significant gap in the application of advanced Artificia Intelligence
(Al) techniques, particularly Deep Reinforcement Learning (DRL) and multi-agent systems, to
the domain of options trading. Recognizing that options trading constitutes a substantial majority
of exchange-traded volume yet remains relatively underexplored in Al research compared to
stock trading, thiswork proposes and evaluates two distinct autonomous frameworks designed to
achieve consistent profitability and outperform the underlying market index. The inherent
complexity of options trading, involving sequential decision-making across various factors like
market direction, volatility, momentum, strike price selection, risk management, position sizing,
and timing, presents a challenging yet potentially rewarding areafor the application of cutting-

edge Al methodologies.

Thefirst proposed framework is anovel multi-agent collaborative system. This system leverages
the principle of decentralized decision-making by orchestrating five specialized agents. a
Generative Adversarial Network (GAN) for autonomously generating a diverse range of options
trading strategies (including calls, puts, spreads, and straddles), a dedicated strategy selection
module responsible for identifying the most suitable strategies based on prevailing market
conditions, a Transformer-based market regime prediction agent to anticipate shiftsin market
dynamics, arisk management agent to ensure adherence to defined risk parameters, and a data
acquisition and technical analysis agent to provide essential market intelligence. The strategy
selection agent plays acrucial role in assessing the strategies generated by the GAN,
incorporating real-time market insights from the risk management agent, and ultimately selecting
the optimal strategies or combinations thereof for execution. This selection process prioritizes

risk-adjusted evaluations, balancing potential returns with associated risks.



The second approach investigated in this thesis utilizes a DRL-driven pipeline designed to
dynamically learn and execute options strategies in real time. This framework aims to
autonomously adapt to changing market conditions and make trading decisions aligned with
human trading timeframes. Both the multi-agent collaborative system and the DRL-driven
pipeline were rigorously benchmarked against a traditional approach, where fifteen distinct
option strategies were executed based on predefined rules and without the dynamic adaptation
offered by the Al frameworks. The performance evaluation was conducted over a 48-month
period (from 2021 to 2024), encompassing a variety of market conditions, with each strategy
executed once per month under both the traditional and the proposed Al-driven methodologies.
The outcome of each trade was categorized as aWin, Lose, or Neutral, allowing for a

comprehensive comparison of the approaches.

The experimental results provide compelling evidence for the efficacy of the proposed Al-driven
frameworks. Notably, the multi-agent collaborative design demonstrated a superior win rate
compared to the traditional approach for 14 out of the 15 tested strategies, with the remaining
strategy maintaining the same win rate while reducing losses. The analysis of the results revealed
that the proportion of losing trades generally decreased under the multi-agent system, with a
small fraction of these trades shifting into the neutral or breakeven category. The most
significant improvements were observed in multi-leg spread strategies such as the Short Iron
Condor, Bear Call Spread, and Bull Call Spread, suggesting that the dynamic and optimized
adjustments facilitated by the collaboration of specialized agents are particularly beneficial for
these more complex strategies. Even for strategies with already high success rates under the
traditional approach, like the Short Strangle and Short Straddle, the multi-agent system provided

incremental gains and lower |osses.

The evaluation of the DRL-driven approach yielded a more nuanced performance profile. Unlike
the consistent outperformance of the multi-agent system, the DRL framework exhibited mixed
results when compared to the traditional approach. While certain strategies experienced
substantial improvementsin win rates, such as the Short Straddle and Short Iron Condor, others,
like the Long Iron Condor, saw adecline. Similar to the multi-agent system, the DRL framework

also introduced a notable percentage of neutral trades for some strategies, indicating a potential



for earlier exit strategies at or near breakeven points. Premium-selling strategies, in general,
tended to perform well under the DRL approach, aligning with observations from other
guantitative trading systems. Strategies with minimal or no change in performance suggested that
the DRL agent's actions closely mirrored the simpler decision-making processes of traditional

short-option strategies.

Addressing the research questions posed at the outset, the findings strongly suggest that the
coordination among specialized agents within amulti-agent system, combined with decentralized
decision-making, can indeed enhance both the selection and execution of options trading
strategies compared to atraditional, rule-based approach. The consistent improvement across a
wide range of strategies, particularly the complex multi-leg spreads, supports this conclusion.
Furthermore, the research demonstrates the potential of DRL models to autonomously execute
different option strategiesin real time, aligning with human trading timeframes. While the DRL
approach did not uniformly outperform the traditional method across all strategies, its significant
success in specific strategies like the Short Straddle and Short Iron Condor provides strong
evidence for its capabilities in dynamic strategy execution and adaptation. Finally, the
comparative analysis between the two autonomous frameworks indicates that the adaptive,
decentralized framework of the multi-agent system generally leads to superior trading
performance compared to the DRL-based system under the tested dynamic market conditions.
While some strategies yielded comparabl e results, the multi-agent system'’s consistent
outperformance across a broader range of strategies suggests its robustness and effectivenessin

leveraging specialized expertise for enhanced decision-making in options trading.

Our centra findings demonstrate that both proposed frameworks can significantly outperform
traditional, rule-based approaches to options trading, and, crucially, outperform the underlying
market index, addressing a long-standing challenge in financial markets. The results directly

answer our research questions as follows:

1. Specialized Agent Coordination: The multi-agent system, with its specialized agents
(GAN-based strategy generator, strategy selector, market regime predictor, risk manager,
and data acquisition/technical analysis agent), demonstrably enhanced both the selection
and execution of options strategies. The collaborative, decentralized decision-making



process proved superior to traditional methods, particularly for multi-leg spread strategies
like Short Iron Condors, Bear Call Spreads, and Bull Call Spreads. This confirms our
hypothesis that the coordination of specialized agents can lead to improved performance.

2. DRL for Autonomous Execution: The DRL-based pipeline successfully learned and
executed various options strategies in atimeframe relevant to human traders. While the
DRL approach did not universally outperform the traditional approach across all
strategies, it showed significant improvements in specific cases, most notably for
premium-selling strategies like Short Straddles and Short Strangles. This demonstrates
the viability of DRL for autonomous options trading, while also highlighting the need for
strategy-specific model selection and tuning.

3. Comparative Performance (Multi-Agent vs. DRL): The multi-agent system generaly
exhibited superior performance compared to the DRL system, particularly in dynamic
market conditions. This superiority was most evident in complex spread strategies, where
the multi-agent system's ability to leverage specialized regime detection and risk
management proved advantageous. However, the DRL system demonstrated a clear
advantage in strategies requiring rapid adaptation and precise exit timing, such as Short
Straddles. This highlights the complementary strengths of the two approaches and
suggests that a hybrid approach might be even more powerful.

In conclusion, this research makes a significant contribution by proposing and empirically
validating two novel Al-driven frameworks for autonomous options trading. The findings
demonstrate that both multi-agent systems and DRL approaches hold considerable promise
for tackling the complexities of options trading and achieving robust performance. The multi-
agent collaborative system, with its specialized agents and decentralized decision-making,
appears particularly adept at handling complex spread strategies and consistently improving
win rates across various market conditions. The DRL-driven pipeline, while exhibiting mixed
performance, showcases its strength in adapting to specific strategies requiring continuous
rebalancing or rapid exit timing. Ultimately, the choice between these frameworks, aswell as
the selection of specific trading strategies, depends on the individual trader's market outl ook,
volatility expectations, and risk tolerance. Thisresearch closes a critical gap in the

application of advanced Al to options trading and provides a scalable, adaptable, and



empirically validated foundation for devel oping sophisticated autonomous trading solutions

in real-world market environments.

6.2 Key Contributionsand Implications
This research makes several key contributionsto the field of Al-driven financial trading:

e Nove Application of Agentic Al
Thiswork introduces a pioneering use of Agentic Al in the complex domain of options
trading, transcending the more common focus on stock trading. By orchestrating
specialized agents for data acquisition, trend forecasting, strategy generation, selection,
and risk management, the framework demonstrates how decentralized, collaborative
intelligence can tackle the multifaceted challenges of options trading.

« DRL in Option Strategy Selection
The thesis formulates option trading as a Markov Decision Process and applies a Deep
Reinforcement Learning pipeline to autonomously select and execute strategiesin real
time. Experimental results reveal that this DRL-based approach not only adapts swiftly to
changing market conditions but aso significantly outperforms traditional methods and
the underlying index.

e GAN for Strategy Generation
A key innovation liesin employing Generative Adversarial Networks (GANS) to create a
diverse range of options strategies—from basic calls and puts to complex spreads and
straddles. This GAN-based modul e broadens the strategic landscape and provides
flexibility to adapt strategies to varying market regimes.

e« Empirically Validated Frameworks
Comprehensive empirical testing across 15 different options strategies confirms the
robustness and consistency of the proposed frameworks, underscoring their capacity to
surpass both established benchmarks and conventional trading approaches.



e Scalableand Adaptable Solution
Designed for real-world applicability, the multi-agent and DRL frameworks are
inherently scalable and adaptable. Their modular structure and ability to integrate
additional data sources, risk parameters, or strategy variations make them valuable tools

for practitioners and researchers seeking to harness Al for options trading.

6.3 Recommendations For Future Research

Building upon the promising results of this research, several avenues for future investigation are
proposed. Firstly, the development of Hybrid M odels could be afruitful direction, integrating
the complementary strengths of both the multi-agent system and the DRL approach. For
example, a DRL agent could be employed to manage individual positions within astrategy that is
initially selected by the multi-agent framework, potentially offering enhanced adaptability and

precision in decision-making.

Secondly, Real-Time I mplementation is a critical next step, involving the deployment
of the proposed frameworks in alive trading environment to eval uate these autonomous systems
under actual market conditions, allowing researchers to assess their performance, latency, and

scalability in dynamic settings.

Thirdly, extending the framework to consider Portfolio-L evel Optimization rather than
evaluating individual strategiesin isolation could lead to more robust performance by focusing
on balancing risk and return across a diversified set of options strategies, potentially mitigating
the impact of market fluctuations on the overall portfolio. Furthermore, the decision-making
capabilities of the trading agents could be enhanced by I ncor porating Alter native Data
sources, such as news sentiment and social media trends, which may provide richer market
insights and enabl e the agents to adjust strategies more dynamically in response to evolving

market sentiment.

Lastly, introducing atuneable Risk Aversion Parameter within the models could allow
for more personalized strategy adjustments, enabling the system to adapt to varying levels of risk



tolerance so that traders can tailor the framework's performance to better align with their

individual risk profiles and market outlooks.

These future research directions aim to further enhance the scalability, adaptability, and
real-world applicability of autonomous options trading systems, paving the way for more

sophisticated Al-driven financial decision-making frameworks.

6.4 Conclusion

Thisthesis addressed the long-standing challenge of achieving consistent profitability in options
trading by proposing and empirically validating two distinct autonomous frameworks built on
Agentic Al and Deep Reinforcement Learning. Our research sought to answer three key
guestions regarding the potential of these advanced Al technigues to revolutionize options

trading strategy selection and execution.

The experimental results provide compelling evidence that both our proposed methodologies
offer significant advancements over traditional approaches. In response to the first research
guestion, the multi-agent collaborative system, leveraging the coordinated efforts of specialized
agents for strategy generation, selection, market regime prediction, risk management, and data
analysis, demonstrated a clear ability to enhance the selection and execution of options trading
strategies. Thiswas evidenced by its superior win rates across 14 out of 15 tested strategies
compared to the traditional approach, particularly excelling in complex multi-leg spread

strategies where dynamic adjustments are crucial.

Regarding the second research question, our findings indicate that Deep Reinforcement Learning
models can indeed be devel oped to autonomously execute various option strategies in real-time,
aligning with human trading timeframes. While the DRL approach exhibited mixed performance
compared to the traditional approach, it demonstrated notable success in specific strategies like
the Short Straddle and Short Iron Condor, suggesting its adaptability to certain market conditions
and strategy characteristics, particularly those benefiting from dynamic entry/exit timing and
volatility-based adjustments. Importantly, both autonomous frameworks consistently

outperformed the underlying market index, validating their potential for generating alpha.



Finally, in addressing the third research question, our comparative analysis suggests that the
adaptive, decentralized framework of the multi-agent system generally led to superior trading
performance compared to the DRL-based system across abroader range of strategies. The multi-
agent system'’s strength appearsto lie in its ability to leverage specialized knowledge and
collaborative decision-making, particularly beneficial for spread-based strategies. However, the
DRL system showcased distinct advantages in specific scenarios, highlighting the unique
strengths of each approach.

In conclusion, this research makes significant contributions to the field of Al in finance by
demonstrating the feasibility and effectiveness of applying advanced Al techniquesto the
complex domain of options trading. We have presented two empirically validated, scalable, and
adaptable autonomous frameworks that not only outperform traditional methods but also offer
valuable insights into the strengths and weaknesses of multi-agent systems and DRL in this
context. While the multi-agent system emerged as the more consistently robust performer, the
DRL approach offers apromising avenue for specific strategy execution. Ultimately, the choice
between these frameworks, and indeed the optimal options trading strategy, depends on the
trader'sindividual market outlook, risk tolerance, and prevailing market conditions. This work
lays the foundation for future research exploring the synergistic integration of these approaches
and further advancements in Al-driven decision-making within the dynamic and challenging

landscape of options trading.
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Strategy wise Output of the Framework
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Strategy: Risk Reversal Testing Year: 2024
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Strategy: Jade Lizard Testing Y ear: 2021
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Strategy: Jade Lizard Testing Y ear: 2022
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Strategy: Jade Lizard Testing Year: 2023
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Strategy: Jade Lizard Testing Year: 2024
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Strategy: Batman Testing Year: 2021
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Strategy: Batman Testing Y ear: 2022
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Strategy: Batman Testing Year: 2023



Wearms SAPVAN 1] ap by TRV 71 s 261

Ny BETURN Fapt) AARa 71 A 131D

- b .o — ey Shg - 11 |
(B | - At bt g 11l
L | Ay A 18 N
- 11 ) - {
- | B
" - 1
et B
L |
- | 147
LI | - w— Thrwroy Mot |
oy WA -t Ve |
4 L aey g
-h IA I.'. A ; |.- -l - e 3 iwen e — L

Shsngy RSN T AR ARG T T TE S

pr—— S

T e

' . 11|
| 1
- ! '
. /\ L /\
P " A
| I
| | 1l
- 1 1
| 1
| | — gy togt
| - e 3Ty
| N ey by
e LK i (2 - temn gy 0o ro. oo D =ee e
Mgy ATIA apidy WSS 33 £ 203 Sy BATRAN gy VEIAVUEL 1) 1A 1029
. »
_l 1 i ™
| I |
| A L LA s
ot + -
‘ ' Y
: I | <o
-ﬁ', ' | 1
| 1 '
o L L | el
Y - gt a0 Tt Ay 1
| - lpmatwpryany .
e vrn e L] S ¢ - ma L _ et e r. e nee
r -.:9:2.*.-.:-71-:_-.-3:-.-_&.,, - L
| r :
- - ] ’

-y -
-
. L T

R al
it
i

— — — — - —— — — — — — —
SUR AP e RE. ML S T T —
-
'
»
-
-
—
. :
1
¢ ¥
'
_‘ $ \ b 1%
| - : 1
1 ' \ R
-} — eyt 1 ! = - e ot
- - ' | - .
vy ’ | e v v b
r— = P — —  a P — — ~— — e

Strategy: Batman Testing Year: 2024
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Strategy: Range Forward Testing Y ear:
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Srbeny T Ol Syt B ogoty Tos M 14 00 3071

= — ki B - tems e P en Thas
o | |- Sork ot Nire cy |
| | St monmrydsy | . |
» | | ) \
| o A i
o | ] ]
| - 1 )
" i 1 |
| | - '
- ' = - - o F0Y Y g 8
\ w0y oA ah
- - M — en0dl ooy
aren - e aas ihim pon o oy m i pobal Srwarse Sruk et
wesn Tl e Al Thie T
_ Soltam 24 Saeah by Veataman 10 et o o | c—— L A A S——-
1 | 2 . —— Sevaurgy Pawah -
-l ! - Seet 0 IV Gty - i
‘ ' ! e Gl M ey MY 1.3
L) [ ] .
- ' ] (I |
| | ] -4 LI |
- i 1 '
o - A =1 +-4
' ] 13
Py ' 1 - ' R Lo M LR LU
| ) \ - g wj gury oo
<l & - - — SN by
i— - - o= e — sowdh n v B Cohal Crvee s 10 il
— hnva uhl?-‘h,&.uululﬂ . = Mg B Ol N Wy WAAMES 3T WA O
. P b"w - . w— Sareregy Pepett
"e | : - SNl et tril day =1 ] - Song ot fint sy
el - o~ Toatar mipiy Wy : - Spa 3t dagry d3
| -
| : : |
- | | | )
| | " 1
.l - - ]
| | - i
-t 1 !
- s )" ’ . -
i nera R e . - . - Yo ey - -—
oy B (ol Sy £ gy TOA Mask 38 4% 391
“_I N — IRy Pyl ) s Bl Ll N Pty TIAR N 18 O0F a1t
1 ) - = 8ot btk chay =1 ' g
et | i - “ o Spok s ewpry by : '°"“4‘*"&
| k!9 -t : - Bt Aty Sy
-y ! 1]
aal . -1 !
- |
Y | ]
‘ il - !
‘" : T ol 4
e
.| 1 / - y '
-‘.'-'~ - - ~—— v - - 11 — '__ — 3
s L - [ .. R % e _ -.- ' . IO.-; L aad Ar - —
= eSS R ey 80 i st B S e 0 W11
" - i ; g e e
| Sy SO0 oo ey - % & 22y

: /-—-

- —-— -

B4
k

]
)
|
L}

= e = = - nam -

Ty o oo ko Foprm Vsl T 00 B

e e L = ELCLE H]

— R ey SwmT - — Ry RN
'_' = v Noet @i Fra g x = SN
: = R Ry | e : - '\pn-ll-lnn!
H = i
] | §
i | - L]
il ]
T L] L3
IH’ ..
i =
. - - . - -
- s i i e = e - - i T m e

Strategy: Bull Call Spread Testing Year: 2022



— L Ll S Srdiags ol Ll kg Duiby Mbbiienh 86 S0V 200
! . — gy e — gy N

.
- ! ' - AR ! - Spor ol Sp ey
- - - - SpE sty 3w | \ =3 Sy iy
wl ' ' -| 1 3
' ] -l ) !
- ' 1 { \ ]
' 1 of 4 2
" —- | ) '
¢! ' :] - ' )
+ ] ] | '
e | _,_;‘,._,; — e e "t___ —— 4‘__ 3
5 gy A 1 aloeal Pagey TIMRREN 1L S 110
- . ~— Bremey fyped =3 Suay 88 St lonet Figly TabMeA NSV IOF
i - O ¢ . H i ot
- ' - O AN Y | . , s = Spataren cay
% : ' Ny Gy
: : - ! ! !
. 1 ' | of ; !
1 ‘ :
’ ol ! L
1 J i ]
< ) ! |
/ ’ & ' I
- ' 4
L~ — - o T e Yo T — - - - -
- My RO ot e My TR AR = e S e B e RO 1R X0
i | — Wi P _I I — rwmry byl
. ! o Sk i i By 1 ! == Sy o
= i == Smbatreaa | | e
- ] . = |
L 1 I s
EE | = 1 |
u Ll i |
™1 4] +
= [ | | i [
I | -I P
i - T 1
o - |- .y — [ aia] - —-— - - - -, -
Tostngy 7 T Tgrwad Troty ARGt 7% T 200
' [ — SN P Swng 0t Tl Spmad Tay ENR 31 WY I
L : : - et 41 Wt Ay bl ' ! P R — -~
o et et wxoey oey " | - N ey
- 1 : : : St Ty Te
- ) ' ’ o | ' ':
’
" : g *l : :
o B3 . : .
. ' d ! s
- 2 : '
A - - I} - . e
\; s -~ R Kasad -t arww -—- e e PN . S
Rissbegy Bl 38 inal Wiy VAR iy M 0 600
st : : S b Sy DA i gy o e
| - a 2y - . — ratecyy ot
ue | : : v Sock ot wurTy Gy ! = YOt
- ) | - ’ -—— "'_lﬂ-‘ﬂkv
) ! - :
o | { !
| | w 1 |
Y ) s ‘ : :
| ) H !
- : = 1 { [
|
- - ios |
: L Litw e [ rem e — e — B

Strategy: Bull Call Spread Testing Year: 2023



Wvatngs ol Tl lowwod [Tawry YTERViedh 1Y 7T0 HTY

AL = Wiy B0 i Agrnd Tk AR 7S bt Y
i1 — By Tersk mi b e T ot
- 14 - S0 % I sy B - Tt at Pyt ey
e onEepryEy v ' 1 - o
i : : i VY My
- > i
- : : o |
Ll o ! '
. - | { 2N |
| L |
- ) - | 49 |
' ]
R - e L
e T~ SN, -— - - —— . i — -—— c— —
vy Bl O Serwad Ty TEARMontt 1) MAv TRI3
el e ety ok 7 S €k TTARSY i T 1
b o Sretngy Pt
| ] b o At on -l ' ; —
« ! !- Spot ot ey ey e M 1 - Spet e ot Oy
- | ’ ' ) o Rt e wepley ey
[ o - - ' .
‘ ' ) : ;
*! | ' -
o Lf 1 A
i ] ! g i |
-t ! : ol i |
‘ ' |
- ) .t A {
.- i v - - tees — - = — — e e
V- Wuwngy ol T gl Eapty YU 31 400 7081
; —varegy Ve 3 vy LALS Yuai Tty CRNem P MY
" -« %oot 2 e aey ' — ety Mg
' - domtateweseay ! - R A
- : s ' o Soot e ey sy
. 1 l | =l )
| | - ! !
’ A - ] |
) i . !
- 1 | ' !
| ' 8 | | |
- | ' -
- — - e - —— _— e e e~
ST al Nt Sy A Rm 2 T Syl il oy b Y
' — ey Pyt el | . — - e
- 1 L gy N
1 untndn | | : - Tt Pyt g
= H e N Y Ay | p o SO BT SOay ey
| [} - :
| T i 1 i
il ] | - [ ] |
T ' A ' 4
__ 1 ! ] i
' e | ? \
' 1 |
= ! ooy ‘
R Lt A L T —
O% — Vg Pepd -
- ’ ; e Npn e Yy ' ; : :—‘:’u:’:-
o : ~* W depn iy~ : : B
! - '
l ¥ . -t [
- s A "
' | ] 1]
. | -’ ] o i l’
| ] J
Miggy B4 L2 Gt Noph YERASw th 38 WOV 2000 ooy Tkl Seve af Wit YN Y1 LGS 100)
* — S Dalagy Mdpall Ll B t ! 3 ) — Sualayy Poyut
! — Spet athrerasy | ' I >
' " " ' ' - Spot sl fre day
' Sact ot wage) doy | | w500k ey vy
) T v | |
' ] L [ ]
' | | |
L i - ) & |
' | | |
: L - ' 1
| |
' o I
BT . "e = e 1w -ta vam 1 mrw "new e l‘; Il:

Strategy: Bull Call Spread Testing Year: 2024



Soregs Bk (ol Yol Fagioy T aRAG 07125 M 301

" ) — gy ey T - -,w:ﬁm,’;wn”m
e : : - Toot W Mt ey ' ; — YW DenTe
.St atexdry oy - S0 MUV iy
3 I | l e M ey Ay
B - : : |
|
e 1 > : |
‘ . § ¥
- | - ' ]
¢ \
— o] - &
B Y — atma rnea Crem o n — - aka s e e
Toutvgy Pl Cal Nemad Tughy WARNtt 23 1 1004 SRR F"':' 2L
.- . L e Shratagy Prpah e 4 ] o S Yhiee
(N (s - Sl o Test day
- T Toskat f vy - o eutan sepy aayp
H ) - Spet ok eapwy dny . L ] ]
- ' ' '
] ot ! ‘l
- H ' | 1 I
-  { G BN | . L 2 T
] 2 : |
' |
- ' | 3
Trwwg Tl Ll Tovwad Fapiry WSl 16 59 010 Wiy 58 Ol dend ey RSN ¥ pov 200
- L -
=-» . w— Garomegy Peyen ot L3 ] Diretngy Prpeit
1 - Soor 3t Mevt day 4 - 5ot a vt dey
o | 1 “ o Spet 3t ocury dvy
- SpEateaziytay | ] 4
=i v ' ' : '
-l 1 | -3 ) 1
| 1 | ) |
ol A ' " t g
1 | ) '
- ' | gl | M
1 | L)
== | sen | ‘
e e >~ [y an Py Py —— r—— anae —
T el (ol Yocvmd T ary (TR Mo (3 il 04 - s A ) g S 110
- : e | Pl ViR _"_“;;'"_.'. B
| ! - St an o vy - ' o S Pty ‘
-t ! R L N : - Ry
e : ‘ L}
- ] | | ! :
[ ] ' . :
" T | |
| A - ]
-1 [ i |
L - | )
- J
— - = — — — — -— — — — — pree=s pt
= Sovgy MOt brval by iV R W ES
= oy 1 Mgy R _ Sy Sl Ot Ronnd Doy Trhtuann Y1 0¥ i
[ = - Spemvmonw || g —
: : o oot pmay ey | ) '
. | -
1 ' '
. i RE :
(I | i \
. — o
(B |
“ [} - : !
! [
.. 2 | - )




Strategy: Short Iron Condor Testing Y ear: 2021

. L L Il . . Ll L}

W ot v e By A LT (W - b == Shans fplb
- -
- P SR — - 0o
- -
- e ——
» I
" '
- '
'
. ) - '
'
]
J: t \
‘. - — ans -— c e - - -— - -
2 Wty et vw Rariell ¢ I iy VINRSGach W 0l 201 Warwgy Voo bon Sume ¥y (Fgiry VARG ar IT Wi 2000
. . ’ T
5 : ;‘?ﬁ' | | - wererw
™ T e vy - 3 )
(L] i
- | \ |
| | - ] |
' | 1 |
- ' | | |
] ' . 1 '
) | 1 [
13\ ' o
' ! . o :
™ e T e e ram e L — . Yo tame
SeErgy b ek el F ey Lk T AR AR R
- , — e TR Wity s e B el Tty CRRNA (9007 S0
ot rmcn s ipal > oo e —
= gk mmeT) iy .
e ey A
we )
e |
we | | '
|
- 1
P |
|
L il
.
l | POr B
it e irema = L 1 L e e Iree L e L 21 e
Wik Pk gy viah s 1y ofe 1231
P e LA Doy ughy v ” . Wy Wra e B by T vy Fabmar 20 v o)
— .~ ——— — e —— —
- ‘ — e et
e e ety
— v - — -
|
oot - :
] |
- . ] '
] |
| '
T T
/i \ :
P - . teem - o = trem = e e . 2

Strategy: Short Iron Condor Testing Y ear: 2022



Wiy Tuw e SR Tiger TAARSE N ITRITY . Bwrgy et s by T o T St T K
BR— - » » ——— e
- e b - gy tmw
TNy RS ey

-t

. ‘ )
i |

J 1L ! | 1.
e ~ e T ~~ — == — — — e
Saewgn ot e Sty | Bapty YEAAMEs 20 ALE 0
™ ‘ : v oo — 1L DL L N
l b= e ™ ! o
‘ ) 2 : v
| ! !
— ' ' |
1 ) ool ! i
1 [ ! !
-4 | |
| | ' - 4 1
| )
o . : : 1
. / EN L ST " : T L
| - . |
e — pon r— e — - ~ te = = o -
Malngy Wet van Ratech; [ ity TAAMWS. 1T T 1073
N Srwmgy Voer oo Rty [T iy WARNIESR 1] 08 5601 B ' —
b | . — Ty oy - e Ay
' geetes o ; adaii kv
uss : - |
|
’
i \ = [ |
) 1 | |
! H [ |
» | ) - } !
1 ' '
ol - | |
B G g 0 \; ' J B -

nee [ T B [ - ety . b -lie - s 1.

— L bl ol Ll N
L]

ey W3 we AEWly sy TRAR etk 1A VPR 1EIY . e 4wt -
Lol . —— ey | -y
" —— o~ 00 S
- —— o | '
™
0 ’
| '
we | \ " | i
1 ! '
' | !
- e ‘ - ' ’
' | '
L | [
= e . v — - o e I ™ - - e
PELLp G e ey AR me maD Ty Bk e Bt g SR R B
- - i ———
{ - =
= i
- | {
4 |
- 1 - 1
| |
- | |
= : )
i i
. 1 1
1 | B!
— — =) Il B = I — T =

Strategy: Short Iron Condor Testing Year: 2023



Wk, Vul b Rty gy Wak s i 1l AR Jen

h.!h--w Fapey WA wnh 5 s 3111
.01' » ——— m X . ”_
i - e ) - et -y
" i LR B 1 - doel 900001 000
- e '
! '
' ' [
- J A - I
] I | j
I )
- ] o B
| i
L L v +
N L I3\
o e - l;——‘* - [ - n'.- ll:. é l'.- ‘ n'-n
blhnmﬂﬂ,ﬂﬂ*lHWW) - Bty P o Buinly Eicovy VEARM 1O BCT 3D
| . » v . | . N - -
) - e \ . LEL L2
- ' - W ear s S e
-~ 4
L |
- ' )
) bood | | |
' | |
-' ’ ol | ]
| ' | ]
. : | ]
D | ] . -
1 B ) = Tt
" R R - =iv reey rre - - T e i e
Sl B e BTty W VEAR MG A DR R - Saareyy Vel mwe iberfy Poprs vEibibe 71 R 6
i i Eed ¥ e pe—
¥ - R § — e
= gy —
- | ] i ]
b 1
[ ] | i
= I H " ' s
I f | |
- | 1 = i
| d I !
| i I 1
E ¥ T T
Jv A B
¥ - — - 1 . - P——— g v u-
= o T = v e e - i 1 o — .
Sromgy o b Pt By gty TEAMINE 12 ) & S )
P Singe T bun Rttafly Hipop VANVSRs: MIRE JaT8 - ' } o Gy e
‘ — e et . - Ay
- - - ——
- e et ,
- ‘ '
. ]
- ! ‘-l ! !
| | ! 3
1 | | |
- \ 1 *1 | '
] | | .
. - ) o -t~ .
J i L B |3 0 =
-— ~— - — - -~ - v T — e “r—
- Sevups Yoot Butots Bugis SN D WAMIE______
W e 1w et Ly R (8 ) - ' — e,
- ey
‘ — ey - R L S
d - — -
& : - ———
'
| - \
|
|
- I
|
'l
\ ) B
— oo oy - sy oyl —
S gy B nm Sy Fody Toikmaw {1 ol M)
» S M Bt o e T
| . — -
. |
\ |
- 4 '
| '
- | I
'
'
s
SIER
= - = - [ - .

Strategy: Short Iron Condor Testing Year: 2024



Wrdwgy Wow si Ratiedy Fugory WAk Sawd ¥ PR 00

- — kLol .
e — et | " e e
' - wadtam \ 1 el b
: e - -
- ' 414 \
] | '
- ) [ | \
] | ]
- ! ' '
' - | ]
i ' 1
' i o A L
Y AV P\
- srmm L - ‘e s Saaa - - traea e e caes
- ‘. — |
- -y [
W — -
"~ 4
.
N -
-~ )
| -
] L]
- l ]
| ' "
. l | |
TR ! I .
T — - — ke - = "I Py — — — — —
s e Wl el Tl e Tl s
i A e STy Vot s b Ty oAy 18 ey 200
— ) ,ia | -
1 ! [ -
L] | i - ——
| L '
= L] ] '
i i -] n
i | (¥ 1
™ 1A
] I
i | - N Bl
F i | :
- RS, of T
e ey [y, . = 1 T 2 Enes fovein poneiy vokas POSN - 1o oo
fogeymiee. Fa g Phvbege T b e dy Duwey TMard 19152000
P _— SR PEEN TATCEART S e—— ——
1 . S =
| § = wenmn | | = R,
*» -
1 .
- ' ’ - | H
i | !
- : : » 1
] ’
o A . i
| ! TN ! - J 1
C— e e nem | ea — —-—— iae T - e cam
Diegs N bat Sbaryitiun) WMt N v iEd - - B Ther s ety [t s TTARRE 1 0ET 10
- 2 -2
- '
e !
-l )
)
- )
-/ )
)
- ol
'
. I )
oo
i
..L_-”'.— Jpes —a — _— e — —— ——



Strategy: Reverse Jade Lizard Testing Y ear: 2021

Tt Reerve jode bl iy YTAR et 74 8 B0

-: . 4 — —_— S
H B e Lt bl ]
ol ) 2 Tl e L ]
| ] ] — 5NN Ay '
] | 1
— ] ' 1
| ' = M
- ] ] 1
! ] . . -
| — s : s T L
- ook uf best 2y t ) B 1 :
o Seok at sapry o ' ] -l H M
1em - - 1 s tm T Uarsees e A T e T AT
— L TN F D R 2l R S vy Show e e b § P apry ESher A WY IE]
.- L]

|
|

1
. |
' | A |
—a ’ ) - | T ]
| 1 |
- ¢ 1 1 - B |
— ARGy PRy ' — Sy Py )
| == S mnsidy ] | Spat et dey o
“ et xt ewpiy Owy ] A Ryt et wmery Ay (N ]
T — - - = T e - T e ey -_—
Sy Meeerss jach i Tagiey TTARSAY #4 1 A0 I
— A .
N = i
- X \
! - ] )
d | |
- y - ' i
l Sratagy Pz e R ' |
vow | = Sook ut hrvt dny - Lpw ot Pet ey | |
Rt Saok m sapry Ay o e Gy Vay ' |
- -3 - . ~ ‘.
e l;' [ mees -ew e e | as e oew cama A

. ’ _‘ -
ot T
J .| 1=¥ A2
] p— | ] )
' 1 | |
" | ] -
r 4 !
[} ] '
ke ' ' Lo Sretagy Pyt : ]
—reeen Puvet ] TX '
W e st s | | = Sk et : )
e S ot wopare e ] | = S0k R eowy fty '
- ™ e~ - ant Nem - - aa -




Strategy: Reverse Jade Lizard Testing Y ear: 2022

g B o | gy YOAR M LR MY 20T

P H Sy Sowrss Joks ko Sk SaMow Jo Y MEE
. ' N - . '
A i \ o l 1 ’\
" & L 1 :
' ) ' |
_— ] [ ] " ' ’
! ) ¢ '
L ] ' | : [
B — Sy Pt ] 1
— Shymngy Porrt ' '
= Spot ol Sty ! - U ' i
- Sk M eairy Say ] { R ol ' '
- — = e - e — e =™ — " —
&i B ® oy Soree e 50 2 A 0 o 1
2 > | .
- .
‘ —— |  ——
1 ) i
' H o : -
- 1 | | 1
) | - | |
- 1 ] | | '
| ) ! - ' '
| — Sy P 1 ' | = Wi -t '
- -t ey ] ) ‘O-WIMD' 1
| by aa | . Tt vy iy !
. — e - - v — - 1 e - -—A
hn’ b’-.-luuﬂxnﬂ‘ﬂml.)l*’n 2000
s - . e e T T e L et s st
£ L1 N\
L ‘ ’
i | r ‘ ]
-~ ) | - | ]
3z ! - m :
| ' | T 3
- ' ] : ]
| ] - L] 3
— | | ] ]
— ) |
- Sranagy Pays® | | = — gy Po 1 {
ww Spot ot (ral oy | I - Spak 4y Tk dey ] '
TR s et wpey ey | ] -l—~§-’.‘-u¢~ﬂn ' |
— \adma e r— - - s B N~ R R e
Wrdog e rerte e bk 1y TS 1Y WO T rs LT LT LY
ra - g PTG ._'.' et - rpr—oe § | . 4
- ! l _! ' :
; 1 ! m |
. -— | " 1] 1
' [ '
- P ! "I ] |
[ | ' |
— ' 8 - ' |
— Srrmecs Pov ' | — ey fe el ]
-V Ay Al nl-'!u‘-hun, ’ )
W Boe et ey ey L | | S ' )
_— —— —~— T — - - Yooy r— - e - -
By - 1 gy iAW wh 39 E N2T Wby Rt e b L d T g W e Y et
. Tox = 3 = 2 - = = . . . .
! H | - ' I
y S A \ | .
| ] | . ‘
| ' ] ! |
= | ' 1 ]
" '3 1 - i |
- . ' ' !
\ ] | - ' 1
— e e | ' J — v pnagy Peps )
et L t ' a4 --.putmug {
! St w vy ey ' 1 Su 8t sy 2ay ]
=, . = - - P
= S Monrw fun bt By (CM M 30§ ML - B__ ..‘?!3:!'.‘1‘.‘!'.‘.‘.’3'.’!.’.'.“3‘2’1‘.‘.‘.‘9)&‘ —
. )
TN ~ ; |
- 4 1 . '
= e W ‘ - Y 1
J 1 ! B, 4 — i H .
) | . :
| | U ’
] i ! al ' "
| | ' ’
- e Shetegy Pt ] — valenyy Payat ' }
e TR T ! W e Spot et Aneawy [} '
- St al eegry ey | ] e RE et aly Se ] )
e -ll; _1;07 77‘:-” —é_f-:;v l‘;——‘- -1_ ra il use Wee e g

Strategy: ReverseJade Lizard Testing Year: 2023



— e e TN TR YNNI e G et
| 4 ’ -
| (|
| - % I
| ' 0 2 | (|
- | I8
| O - | I |
| . 3
— Wiwegy Pagr ' ) w— Striteny Pep# I
- Sowt et et ey ] - Spt ot Tt iy [N
e e il ' w o P st mpy & ]

— - Py -— [ - a= crem . [ . ra e

T T e T e

o
r - -\ - sy Pecene joti Lomnd Prpey Watbhurd 1Y S 121
. {
p— ] ' .
- ' 3 H
- ' ' - '
' ! " '
.- 1 3 M
ol g | = i
'

- —Sbtegy Paport ] ' i “Urwecs eye H
C— .
oy et Spct at Mt ey ) L Ay - e TR N '
o Gl ey day ' ' o S e ey Ty '

o b e Y ™~ ina 1mea P R —— C— —_— - " — ey

Moy B o jae el 150 gy VIARIe ok 3 OFE TEN

4 .
¢ x -+ A fres Anetey Beaie e Liwh Wary Tohvane W oA
| PR S 4 1 ! | r - —.
-i : : ~ _} ; '
- i \ |} |
oy ' ’
1 ' ' |
"'] 1 ¥ - ' !
- Grategy Pevo¥ | L.l -l : :
— Sralegy 1 ) " ey
wn]i=== TP WEE 1 | —“-—-sou-'nm : :
| == Seetdumiydey ! b e sty ey ' '
- " - P iie. . ta e v B e - - ..

Mgy S fode Sl gy T ARMSdt e AR 0D

Ty e e Liadl B iy VRS 18 R 190 8

- M '
' ‘ r 4 e A A Y |
= 371N | i 1 5
- | . - | '
‘ 1 9 - | |
. Lol | |
‘ o -~ \ |
= - - =
— ) -
- St A dey  Rdms | e m-lwon :
P Botat sl rinarnd'd S ] st ey g | ‘
i = T e — =~ —— [ S R~ “—
< Wik W b | Tages MR W N 1Y
-1 — e —r - ey - PARe B bae vwr B PARR AT o et
N r I . | v 4
' ' ° £ ™ 3 )
-l —t ; Ell 1
' ) .
- ' 0 | :
| [ | - H
-I ' ‘ 24 )
' A |
T Yy e [} \ - — gy PeyeY :
i | ™" et o Bent ey ] 1} - e ey )
o Ap ey oy ' ' e mote ey '
- - e - . . - —— — - _— - -— -—

Strategy: Reverse Jade Lizard Testing Year: 2024



- i W i & £ |
am ] i |
¥ i 5 L} T T |
|_l‘I : ] N "f ~ - 1.‘- i
- ] ] 1
N - i i |
Pl i - i i [
i ] [} |
- = L R Ll - ] 1 |
— hirdeg Fagc i — GhElagy Pawl | (]
e | = i Bk Ll | e opolisrdev s | 1 |
L i s | Tl o g i |
nas - L sl e - - A dma E_ T P iIE-__J.;_-
e e L e e * Soscgy drvwons e s b o y WAASAE: T8 82 DS
L . . . Ll
| " |
- — P 13
ol I 1 4 \ | Lo ’ ' 1 \
{ ] i | + o y S—"1
v | 2178 1
! ) 1 - ' 1
‘.y ] ) - ' 1
- ' L) | 1
— Sy Pyt ] | I —raegy Mayelt ey
- -t N ey ] 1 | ™ Spotet Aok dey ' 1
el St at wapry duy ] 1 e Spot el wpy day | 1 }
P e L Cemen L -~ o P ] -~ l'h;. —;L = 7‘:& B I.. -y .n.—“ Ab;‘ ;;
Miabegy Pevenre e Lined aiby YIAR M 17 18 3020
K vy Povwre e Lswd W10y 1N 36 WP 128 ° — SUeety Pasait
, H ' a i - Apct wi font day
o I S \ - - Sput alunpy Gay |
- '
' | \
I | : :
| ! , : - ' |
- 1 [ 1 !
— Strategy Pt 1 \ o~ ) ! |
e e et et ey ' ' | A |
Lo St at ey day ] | ] |
e Iem e ] e e - T e e e I3 e BERTY
Srvww fyeww job Liwd g, VARGl 1P ARE WG4 3 S Sowstisinl oy kRt -
. ' - Ld ‘
i \
| —F———— =\
- ) ] ¢ T -
' ! V- [} ]
- ] ] ] )
| ' e ] |
- —pbrg N ' ’ - e Pyt ] )
- et W o ey ' ) - e ot e Wy '
s i il ' ' L L L ‘ '
— T T S e S L
- — ; -y : 3
]
. —l - r AN o : _! : )\
8| |
- (o -t t i
- [ ] | ’ |
' 1 el s A
- L) ! ’ |
- Wy Pep (| ) = W agy YopN ]
- by P - e AN ey |
-l emm ey My L ) - e vapy oy '
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Strategy: Put Short Testing Year: 2024
Strategy Put Shoet [Expiry YEARSMo 25 APR 2024
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