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Access to affordable and nutritious food is a pressing issue in Omaha, Nebraska, where 

economically disadvantaged neighborhoods face significant barriers due to the lack of 

nearby grocery stores. This study addresses the problem of food deserts, defined by low 

median household income and high obesity rates, using a data-driven approach that 

integrates Geographic Information Systems (GIS) and machine learning to identify 

underserved areas and optimize grocery store placement. 

 

GIS analysis revealed that neighborhoods such as Cathedral, Downtown, Benson, 

Keystone, and North Omaha are food deserts with limited access to transit and grocery 

stores, exacerbating food insecurity. Spatial mapping highlighted a disparity in food store 

distribution, with central Omaha benefiting from better access compared to northern and 

western regions. Using predictive modeling, Random Forest and Regularized Decision 

Tree algorithms achieved perfect classification of food desert neighborhoods. These 

models also identified Cathedral and Downtown as areas with the highest grocery demand, 

calculated by combining food desert probability with population density. 
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The study evaluated the potential impact of adding grocery stores to high-demand areas 

through simulations, which demonstrated significant reductions in travel distances to food 

sources and enhanced access for underserved communities. A cost-benefit analysis 

indicated the economic feasibility of the intervention, estimating a net benefit of $15 

million from the construction of five new grocery stores, considering reductions in 

healthcare costs, obesity rates, and economic benefits to the neighborhoods. 

 

This research offers actionable insights for policymakers and urban planners, emphasizing 

the need for targeted grocery store placement, policy incentives, and community 

engagement. The integration of GIS and machine learning provides a scalable framework 

for addressing food insecurity, which can be adapted to other urban areas facing similar 

challenges. By improving food access in Omaha, this study highlights the potential to 

enhance health equity, foster community resilience, and drive meaningful social and 

economic change. 
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CHAPTER I: INTRODUCTION 

1.1 Context and Background 

Access to fresh and affordable groceries is not only essential for individual health but also 

plays a crucial role in enhancing community well-being and fostering social equity. 

However, in many regions across the United States, including Omaha, Nebraska, the lack 

of accessible grocery stores, particularly in low-income areas, creates "food deserts." These 

are geographic areas where residents face significant challenges in obtaining a variety of 

healthy food choices due to the absence of nearby grocery stores (Beaulac et al., 2009; 

Larson et al., 2009). The poor access to quality and nutritious food is a factor contributing 

to several health issues such as diabetes, obesity, and cardiovascular diseases, especially in 

vulnerable populations (Walker et al., 2010). 

In Omaha, food deserts are concentrated in economically disadvantaged neighborhoods, 

including North and South Omaha, which are home to a significant proportion of the city’s 

low-income and minority populations. 

The concept of food deserts has been extensively studied in the context of urban planning, 

public health, and social justice. Research indicates that food deserts are often located in 

economically disadvantaged neighborhoods, where residents are more likely to experience 

poverty, unemployment, and limited access to transportation (Cummins & Macintyre, 

2006; Morland et al., 2002). In these areas, residents are forced to rely on convenience 

stores and fast-food outlets because of lack of  available grocery stores that offer fresh and 

affordable groceries (Ver Ploeg et al., 2009). These type of neighborhoods face barriers 
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such as limited public transportation and economic disinvestment, exacerbating food 

insecurity and its associated health risks (Larson et al., 2009). 

Residents in food desert areas often face additional financial burdens as they must travel 

long distances to access nutritious food. Addressing these challenges requires innovative 

solutions that combine spatial analysis and predictive modeling to identify underserved 

areas and determine optimal grocery store locations. 

The integration of Geographic Information Systems (GIS) and machine learning offers a 

promising approach. GIS provides the tools to map and analyze the spatial distribution of 

resources, while machine learning enables the prediction of optimal grocery store locations 

by leveraging socio-economic and demographic data (Kamel Boulos & Berry, 2012; 

Mahmud et al., 2021). By applying these technologies to Omaha’s food access landscape, 

this study seeks to address the issue of food deserts and improve community well-being. 

1.2 Research Problem 

Although Omaha is a growing and vibrant city, it faces significant disparities in food 

accessibility. Areas like North Omaha, historically affected by economic and social 

disinvestment, have become epicenters of food deserts. These neighborhoods are 

characterized by high poverty rates, racial segregation, and limited access to public 

transportation (Beaulac et al., 2009). The lack of grocery stores offering affordable and 

healthy options perpetuates cycles of poverty and poor health outcomes (Larson et al., 

2009). Traditional approaches to grocery store placement often overlook the complex 

socio-economic and geographic dynamics that contribute to food deserts. These methods 
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frequently rely on business-centric models that prioritize profitability over community 

need. Consequently, many underserved neighborhoods remain excluded from food access 

interventions (Mahmud et al., 2021). Policymakers, urban planners, and businesses often 

lack the tools to make informed decisions about grocery store placement that balance 

economic feasibility with social equity. This dissertation addresses these challenges by 

leveraging the combined strengths of Geographic Information Systems (GIS) and machine 

learning to identify underserved areas in Omaha, Nebraska and develop data-driven models 

for determining optimal locations for new low-cost grocery stores. By integrating spatial 

analysis with predictive modeling, this study seeks to provide actionable insights that can 

guide policymakers, urban planners, and community leaders in making informed decisions 

to improve food access and reduce health disparities in the state. 

1.3 Research Objectives  

The overarching goal of this research is to develop a comprehensive, data-driven approach 

to addressing the issue of food deserts in Omaha, Nebraska. To achieve this goal, the study 

is guided by the following objectives:  

1. Identify Geographic Areas in Omaha, Nebraska 

• Utilize Geographic Information Systems (GIS) to conduct a spatial analysis 

of areas lacking adequate access to low-cost grocery stores. 

• Consider factors such as population density, income levels, transportation 

networks, and existing food retail options (Ver Ploeg et al., 2009). 
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2. Analyze the Spatial Distribution of Existing Grocery Stores 

• Examine the current distribution of grocery stores in Omaha, Nebraska. 

• Assess accessibility to different population groups, particularly low-income 

and rural communities. 

• Identify service gaps and pinpoint areas where additional grocery stores are 

most needed (Larson et al., 2009). 

3. Develop a Predictive Model Using Machine Learning Techniques 

• Employ machine learning algorithms to build a predictive model for 

identifying optimal locations for new low-cost grocery stores. 

• Incorporate historical data on demographic trends, consumer behavior, and 

existing store locations to predict areas with high demand for affordable 

food options (Han et al., 2022; Mahmud et al., 2021). 

4. Evaluate the Potential Impact of Proposed Optimal Locations 

• Simulate different scenarios to assess the effects of new grocery store 

placements on food accessibility and health disparities in underserved 

communities. 

• Evaluate key metrics such as:  

- Changes in average distance to the nearest grocery store. 



 
 

13 

- The number of people served by new store locations. 

- Potential economic and social benefits for communities (Kamel Boulos & 

Berry, 2012). 

1.4 Significance of the Study  

This research holds significance at multiple levels: 

• Local Impact: By focusing on Omaha, this study directly addresses the challenges 

faced by the city’s residents, providing actionable recommendations to improve 

food access in underserved neighborhoods (Beaulac et al., 2009). 

• Methodological Contribution: The integration of GIS and machine learning 

represents a novel approach to addressing food deserts. This study contributes to 

the academic literature by demonstrating how these tools can be combined to 

inform decision-making (Mahmud et al., 2021). 

• Social Equity: Improving food access in low-income and minority neighborhoods 

promotes health equity and community resilience, addressing broader social and 

economic disparities (Larson et al., 2009). 

• Scalability and Applicability: Although centered on Omaha, the methods and 

findings can inform food access initiatives in other cities, particularly those facing 

similar challenges (Han et al., 2022). 
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By addressing food deserts, this study not only contributes to academic knowledge but also 

has the potential to drive meaningful change at the community level. 

1.5 Scope and Limitations  

This dissertation focuses on the city of Omaha, Nebraska, specifically analyzing food 

access patterns within its geographic and demographic context. The study uses publicly 

available data, including demographic statistics, grocery store locations, and transportation 

networks (Ver Ploeg et al., 2009). Additionally, the study does not consider market 

dynamics or private business decisions that may influence grocery store placement 

(Mahmud et al., 2021). 

1.6 Outline of the Dissertation 

This dissertation is structured as follows: 

• Chapter 1: Introduction: Provides the background, problem statement, research 

objectives, significance, and scope of the study. 

• Chapter 2: Literature Review: Synthesizes existing research on food deserts, 

their socio-economic impacts, and the use of GIS and machine learning in 

locational analysis. 

• Chapter 3: Methodology: Describes the research design, data collection methods, 

and analytical techniques employed in the study. 
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• Chapter 4: Results: Presents the findings from the spatial and predictive analyses, 

supported by maps, tables, and charts. 

• Chapter 5: Discussion: Interprets the findings in relation to the research objectives 

and broader literature, discussing their implications for policy and practice. 

• Chapter 6: Conclusion and Recommendations: Summarizes the study’s 

contributions, discusses its limitations, and provides recommendations for future 

research and practical interventions. 
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CHAPTER II: REVIEW OF LITERATURE 

2.1 Introduction 

The literature review explores foundational concepts and empirical research relevant to the 

study’s objective of improving food access in urban settings. It focuses on three interrelated 

themes: the definition and consequences of food deserts, the socio-economic effects of 

grocery store accessibility, and the growing use of Geographic Information Systems (GIS) 

and machine learning to address spatial inequities. Together, these themes provide a 

theoretical and methodological framework that informs the study’s approach to identifying 

optimal locations for low-cost grocery stores in Omaha, Nebraska. 

Food deserts—geographic areas where residents have limited access to affordable and 

nutritious food—have been the subject of extensive research, particularly in the fields of 

public health, urban planning, and social policy. This chapter examines how scholars define 

and measure food deserts, as well as the health disparities, economic disadvantages, and 

social challenges that arise in communities affected by them. Understanding these 

dynamics is essential to contextualize Omaha’s challenges within broader national trends 

and to design interventions that target root causes. 

In addition to defining the problem, the literature also highlights the socio-economic role 

of grocery stores in shaping community well-being. Access to grocery stores is not only a 

matter of convenience; it influences dietary choices, chronic disease rates, household 

spending, and even local economic development. This section reviews empirical studies 



 
 

17 

linking food access to outcomes such as obesity, diabetes, and neighborhood revitalization, 

thereby emphasizing the urgency of addressing gaps in grocery infrastructure. 

Finally, the chapter reviews how advanced analytical tools—specifically GIS and machine 

learning—have been used to investigate and address spatial disparities in food access. GIS 

offers powerful capabilities for mapping underserved areas, analyzing proximity to 

essential services, and visualizing urban patterns. When combined with machine learning, 

these technologies enable predictive modeling that can guide the strategic placement of 

new grocery stores. This methodological review sets the foundation for the integrated 

approach adopted in this study. 

By synthesizing current knowledge across these three domains, this chapter provides a 

comprehensive backdrop for the research. It not only clarifies the relevance of food deserts 

as a public concern but also supports the study’s choice of methods and reinforces the need 

for data-driven solutions in tackling food inequity in Omaha. 

2.2 Overview of Food Deserts 

Food deserts are geographic areas where residents have limited access to affordable and 

nutritious food, particularly fresh fruits and vegetables (Ver Ploeg et al., 2009). The 

concept of food deserts has gained significant attention in recent years due to its 

implications for public health, social equity, and economic development (Ver Ploeg et al., 

2009; Walker et al., 2010; Wolf‐Powers, 2017). These areas are typically found in low-

income neighborhoods, where residents often lack access to full-service grocery stores and 
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are instead reliant on convenience stores or fast-food outlets that offer limited healthy food 

options (Walker et al., 2010). 

The origins of the term "food desert" are rooted in the 1990s, during discussions of urban 

and rural poverty and the challenges associated with ensuring equitable food access. 

Initially coined in the United Kingdom, the term was later adopted in the United States as 

researchers identified disparities in food access (Beaulac et al., 2009). Ver Ploeg et al. 

(2009) defined food deserts as areas where residents lack access to affordable and nutritious 

food, emphasizing socio-economic and geographic barriers. 

Food deserts are prevalent in both urban and rural settings, though the underlying factors 

differ. Urban food deserts often emerge in economically disadvantaged neighborhoods that 

have faced decades of disinvestment. North and South Omaha exemplify such areas, where 

systemic racial inequalities and historic economic marginalization have compounded 

issues of food access (Larson et al., 2009). Census data indicate that North Omaha, home 

to a significant minority population, experiences poverty rates exceeding 16%, far above 

the city’s average (Schafer & Grell, 2022). 

The persistence of food deserts in urban environments has also been linked to broader 

structural processes, including discriminatory zoning practices, redlining, and uneven 

patterns of suburbanization (Gordon et al., 2011; Sharkey, 2009). In some cases, major 

grocery chains have deliberately withdrawn from inner-city neighborhoods, citing high 

operating costs and perceived security risks, further limiting food access in low-income 

urban areas (Alwitt & Donley, 1997). 
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Rural food deserts, in contrast, are characterized by geographic isolation. Residents in these 

areas must often travel long distances to reach grocery stores, a challenge exacerbated by 

limited public transportation. Morland et al. (2002) documented that rural residents 

frequently spend more on transportation to access basic necessities, further straining 

household budgets. 

Minority populations, particularly African American and Hispanic communities are 

disproportionately affected by food deserts and are more likely to reside in such areas than 

their White counterparts (Morland et al., 2002). This disparity is evident in Omaha, where 

the majority of food deserts are located in neighborhoods with predominantly minority 

populations. Research suggests that systemic inequities in housing policies and urban 

planning have contributed to this unequal distribution (Walker et al., 2010). 

Recent efforts to map and measure food deserts have become increasingly sophisticated. 

GIS tools now allow researchers to incorporate not just proximity to food retailers, but also 

walking distance, store quality, price levels, and hours of operation into models of food 

accessibility (Widener et al., 2013). The Food Access Research Atlas by the USDA is a 

prime example of how spatial data can be utilized to identify and monitor food deserts at 

the national level (Reynolds Jr et al., 2024). 

Furthermore, alternative frameworks have emerged to supplement the food desert concept. 

Terms such as “food swamps” (areas saturated with unhealthy food outlets) and “food 

apartheid” (emphasizing the systemic and racialized nature of food inequity) offer more 

nuanced understandings of food access challenges (Cooksey-Stowers et al., 2017; Sbicca, 
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2012) . These perspectives encourage a deeper critique of structural inequalities and expand 

the conversation beyond geographic access to include issues of affordability, cultural 

relevance, and food sovereignty. 

In summary, the literature establishes that food deserts are a complex manifestation of 

spatial and socio-economic inequality. Whether in urban or rural areas, food deserts reflect 

deeper systemic issues that go beyond mere store placement. A thorough understanding of 

their determinants and dynamics is crucial for developing effective, data-informed 

interventions tailored to the specific needs of communities like those in Omaha. 

2.3 Determinants and Consequences of Poor Access to Grocery Stores in Low-Income 

Areas 

Geographic location is a primary determinant of poor food access. In urban areas, the lack 

of grocery stores in economically disadvantaged neighborhoods often forces residents to 

rely on convenience stores or fast-food outlets, which offer limited healthy options 

(Ghirardelli et al., 2010). Poor Access to grocery stores in low-income communities results 

from a multifaceted interplay of geographic, economic, cultural, and infrastructural factors. 

These determinants contribute to the emergence and persistence of food deserts and 

exacerbate existing health and socio-economic disparities (Andress & Fitch, 2016; Tacoli, 

2020). Scholars have highlighted that geographic location remains a core structural barrier. 

In urban centers, economically disadvantaged neighborhoods often lack full-service 

grocery stores and are instead served by convenience stores and fast-food outlets offering 

energy-dense but nutrient-poor food options (Ghirardelli et al., 2010; Morland et al., 2002). 
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A critical driver of this pattern is market disinvestment. Retailers tend to avoid low-income 

neighborhoods due to concerns about profit margins, crime, and higher operating costs 

(Alwitt & Donley, 1997). This creates a cycle wherein the absence of grocery stores leads 

to decreased foot traffic and diminished economic vitality, further deterring investment 

(Zenk et al., 2005). Moreover, food retailers often rely on demographic and market analysis 

tools that systemically exclude low-income or minority-dense areas from site consideration 

(Eisenhauer, 2001). 

Low-income households face financial constraints that limit their ability to purchase fresh 

and nutritious food. Additionally, lower profit margins in low-income areas discourage 

grocery retailers from establishing stores, creating a cycle of disinvestment (Morland et al., 

2002). Cultural and behavioral factors are also important. In some communities, there may 

be a lack of demand for fresh produce due to dietary preferences, lack of knowledge about 

healthy eating, or limited cooking skills. This can influence the types of food that are 

stocked in local stores, further limiting access to nutritious options (Powell et al., 2007). 

Inadequate public transportation is another significant barrier. Residents without private 

vehicles often struggle to access grocery stores located outside their neighborhoods. This 

issue is particularly pronounced in Omaha, where public transit routes do not adequately 

serve low-income areas (Schafer & Grell, 2022). For instance, an individual without a car 

may need to spend hours commuting on buses to reach a supermarket, increasing the time 

and financial burden associated with food procurement (Burns et al., 2011; Niedzielski & 

Kucharski, 2019). 
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Culural and behavorial factors also play a role in shaping food access. In some 

communities, generational dietary habits and limited nutritional literacy contribute to 

diminished demand for fresh produce (Powell et al., 2007). Retailers, responding to 

demand signals, may choose to stock more processed foods and fewer perishable goods, 

reinforcing poor dietary patterns and creating a feedback loop that discourages supply-side 

improvements (Bodor et al., 2010). 

The consequences of poor access to grocery stores in low-income areas extend far beyond 

individual health. Food deserts are associated with a range of negative outcomes, including 

increased rates of obesity, diabetes, and other diet-related diseases (Morland et al., 2002; 

Sallis et al., 2020). Larson et al. (2009) found that individuals living in food deserts are 1.4 

times more likely to suffer from diet-related illnesses compared to those with access to 

grocery stores. These health disparities are particularly pronounced in minority 

communities, where the prevalence of food deserts is often higher (Walker et al., 2010). 

Moreover, the lack of access to healthy food contributes to broader socioeconomic issues. 

Poor diet quality can affect educational outcomes by impacting cognitive function and 

school performance among children (Alaimo et al., 2008). In adults, inadequate nutrition 

can lead to reduced productivity and increased absenteeism in the workplace, further 

entrenching individuals and families in cycles of poverty (Cummins & Macintyre, 2006). 

Child in food-secure households are particularly vunerable. Poor nutrition during early 

childhood can impede cognitive development, academic achievement, and long-term 

physical health (Alaimo et al., 2008; Jyoti et al., 2005). In adults, inadequate nutrition has 
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been linked to reduced work productivity, chronic illness, and increased healthcare 

utilization, contributing to higher public health expenditures (Kirkpatrick et al., 2010). 

The absence of grocery stores in low-income areas also has significant social implications. 

Food deserts often lead to social dislocation, as residents are forced to travel long distances 

to access basic necessities. This can reduce social cohesion and weaken community ties, 

making it more difficult to address other issues such as crime, unemployment, and housing 

instability (Beaulac et al., 2009). 

The presence of accessible grocery stores in a comunnity is not only a matter of public 

health but also a key driver of local economic development (Ver Ploeg et al., 2009). 

Grocery stores are significant employers, providing jobs for residents and stimulating 

economic activity in their neighborhoods (Hagan & Rubin, 2013, 2015). Economic 

disinvestment in areas classified as food deserts perpetuates cycles of poverty as residents 

often spend a larger proportion of their income on transportation or overpriced food from 

convenience stores, leaving less for other necessities (Cummins & Macintyre, 2006). This 

economic burden is exacerbated in North Omaha, where unemployment rate exceeds the 

state average by over 5% (Schafer & Grell, 2022). Studies have shown that the introduction 

of a grocery store in an undeserved area can attract additional businesses, leading to a 

multiplier effect that boosts economies (Berg & Murdoch, 2008). 

Accessible grocery stores also have a positive impact on property values. Research 

indicates that homes located near grocery stores tend to have higher property values, 

reflecting the desirability of living in areas with convenient access to food (Bodor et al., 
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2010). This increase in property values can lead to higher property tax revenues, which can 

be reinvested in the community to fund public services such as schools, parks, and 

transportation infrastructure (Caspi et al., 2012). 

The social benefits of accesible grocery stores are equally significant. Grocery stores often 

serve as community hubs, providing spaces where residents can interact, build 

relationships, and foster a sense of belonging. This is particularly important in low-income 

areas, where social cohesion is often weakended by economic hardship and social isolation 

(Cummins & Macintyre, 2006). 

Improved access to healthy food can also lead to better health outcomes, which in turn can 

reduce healthcare costs for individuals and communities. By preventing diet-related 

diseases, accessible grocery stores contribute to the overall well-being of residents and 

reduce the burden on healthcare systems (Sallis et al., 2020). 

Moreover, grocery stores can play a role in addressing social inequalities by ensuring that 

all residents, regardless of socioeconomic status, have access to nutritious food. This can 

help to level the playing field and provide low-income individuals and families with the 

resources they need to lead healthy and productive lives (Walker et al., 2010). 

In summary, the determinants and consequences of poor food access in low-income areas 

are complex and interdependent. Addressing this issue requires a holistic approach that 

integrates spatial planning, transportation investment, economic incentives, public health 

programming, and culturally sensitive community engagement. Without tackling the 
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structural roots of food inequity, interventions risk offering only short-term or superficial 

relief. 

2.4 Strategies for Addressing Food Deserts 

Policy interventions play a critical role in mitigating food deserts. Governments can 

implement zoning regulations, provide subsidies for grocery store development, and 

improve public transportation to underserved areas (Smith, 2016; Wolf‐Powers, 2017). The 

Healthy Food Financing Initiative (HFFI), introduced in the United States, has 

demonstrated success in incentivizing grocery store development in food deserts by 

offering grants and loans (Bodor et al., 2010). Evaluations of HFFI-funded programs 

suggest modest but positive impacts on food access, with improved availability of fresh 

produce and reductions in travel time to stores (Briggs et al., 2010). Local governments 

have also implemented targeted strategies, such as offering subsidies to grocers, reducing 

red tape in permitting processes, and integrating food access goals into comprehensive 

urban plans (Walker et al., 2010). Cities like Philadelphia and New York have launched 

"fresh food zoning overlays" to incentivize grocery development in designated areas 

(Mabli et al., 2010). 

In addition to policy-driven solutions, market-based strategies are being employed. Social 

enterprises and cooperative grocery stores have emerged as alternative business models 

capable of operating sustainably in low-income areas. These models prioritize community 

needs over profit, reinvest earnings locally, and often involve community ownership, 

fostering local engagement and resilience (Michelini, 2012). 
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Technological innovation also plays a growing role. Online grocery platforms such as 

Amazon Fresh, Walmart Grocery, and Instacart have extended their services to include 

food desert communities. These platforms reduce spatial barriers by delivering fresh food 

directly to consumers. However, digital divide issues, such as lack of internet access or 

digital literacy, can limit their impact (Dillahunt et al., 2019). Programs like the USDA’s 

Online Purchasing Pilot, which allows Supplemental Nutrition Assistance Program 

(SNAP) recipients to use benefits online, aim to bridge this gap (Cohen et al., 2020). 

Emerging technologies, including e-commerce and delivery services, offer new avenues 

for addressing food deserts. Companies like Amazon and Instacart have piloted programs 

to deliver fresh food to underserved areas. However, these solutions often exclude low-

income households due to high delivery fees and limited internet access (Caspi et al., 2012). 

Grassroots initiatives, such as community gardens and urban farming projects, have gained 

traction as cost-effective and locally driven solutions to food deserts. Studies have shown 

that community gardens can improve food security, foster social cohesion, and provide 

educational opportunities (Alaimo et al., 2008; Draper & Freedman, 2010). In Omaha, local 

organizations have initiated urban agriculture programs to address food access disparities. 

Cities like Detroit and Oakland have developed robust urban agriculture networks that not 

only grow food but also educate residents, create jobs, and reclaim blighted land (Colasanti 

et al., 2010). 

Mobile food markets and buses—such as Chicago’s Fresh Moves or Boston’s Daily Table 

on Wheels—deliver groceries to underserved neighborhoods, particularly those with 
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limited public transportation. These services have been effective in improving food access 

in areas where opening a new brick-and-mortar store may be financially unfeasible (Zepeda 

et al., 2014). 

Food policy councils (FPCs) have also emerged as collaborative platforms bringing 

together stakeholders from public, private, and nonprofit sectors to develop holistic food 

access strategies. FPCs advocate for policies that promote equitable food systems and often 

operate at city, county, or state level (Harper et al., 2009). 

Educational initiatives are another crucial component. Nutrition education programs aimed 

at increasing food literacy can influence purchasing and dietary behavior, especially when 

combined with increased access to healthy foods (Alaimo et al., 2008). Programs such as 

Cooking Matters or FoodSmart have successfully equipped low-income families with skills 

to prepare healthy meals affordably (Silver et al., 2017). 

In summary, strategies to address food deserts span multiple sectors and scales. Effective 

solutions are typically those that are context-specific, community-driven, and supported by 

evidence-based policy. As new technologies and models emerge, continued evaluation and 

inclusive planning will be essential to ensure that food access improvements are equitable, 

sustainable, and impactful. 

2.5 Current Technological Solutions 

The food distribution industry has undergone significant transformations due to the 

adoption of emerging technologies. These advancements are reshaping how food is 
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sourced, stored, transported, and delivered, particularly in addressing the challenges posed 

by food deserts (Khan et al., 2021). From e-commerce platforms to blockchain for supply 

chain transparency, these innovations offer scalable solutions to ensure equitable access to 

nutritious food in underserved areas. In the context of food deserts, these technologies have 

the potential to bridge gaps in accessibility and affordability, making fresh and nutritious 

food more readily available to low-income and marginalized populations (Khan et al., 

2021; Su et al., 2017). 

E-commerce platforms have emerged as significant players in addressing geographic 

barriers associated with food deserts. Companies such as Amazon Fresh, Instacart, and 

Walmart Grocery have created digital grocery ecosystems that enable consumers to shop 

online and have goods delivered to their homes. These platforms are especially beneficial 

in urban food deserts, where large grocery stores may be absent and transportation options 

limited (Dillahunt et al., 2019). Studies indicate that the use of online grocery services can 

reduce food procurement times, lower transportation costs, and improve access to a wider 

variety of healthy foods (Cohen et al., 2020). 

However, digital solutions are not without challenges. Many low-income households lack 

reliable internet access, digital literacy, or electronic payment methods, creating a new 

form of food inequality—the digital food divide (Olson et al., 2007). In response, 

government programs such as the Supplemental Nutrition Assistance Program (SNAP) 

Online Purchasing Pilot have been launched to allow eligible participants to use their 
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benefits on online platforms, helping to make e-commerce more inclusive (Cohen et al., 

2020).  

E-commerce eliminates the geographic barriers associated with food deserts by enabling 

residents to access a wide variety of fresh and nutritious food without the need for physical 

proximity to grocery stores (Cohen et al., 2020; Dillahunt et al., 2019). Studies have shown 

that online grocery delivery services can improve food access for underserved communities 

by reducing transportation costs and expanding product availability (Caspi et al., 2012; 

Dillahunt et al., 2019). 

Blockchain technology offers another innovative pathway by enhancing transparency, 

accountability, and traceability within food supply chains. Blockchain systems maintain an 

immutable record of transactions that can verify the origin, handling, and transportation of 

food products (Rejeb et al., 2020). This is particularly useful in minimizing food fraud, 

ensuring food safety, and reducing waste—all critical concerns in food-insecure 

communities (Astill et al., 2019). Walmart, for example, has partnered with IBM to 

implement blockchain systems that trace leafy greens from farm to shelf, reducing the time 

needed for food safety investigations (Kamath, 2018). 

Artificial intelligence (AI) and machine learning (ML) are being utilized to forecast food 

demand, optimize inventory management, and streamline distribution logistics. AI-

powered models can predict consumer needs using historical sales data, demographic 

trends, and environmental variables, ensuring that the right quantities of fresh food are 
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stocked at the right locations (El Raoui, 2022; Han et al., 2022). This is crucial in food 

deserts, where food waste and understocking are common due to distribution inefficiencies. 

AI also supports route optimization for delivery services, enabling cost-effective and 

timely distribution of food to hard-to-reach communities. Companies like UPS and FedEx 

use predictive analytics to plan optimal delivery paths, reducing carbon footprints while 

expanding service coverage (Veluru, 2023). 

The Internet of Things (IoT) plays a pivotal role in maintaining food quality during 

transportation. IoT sensors embedded in trucks and storage facilities monitor variables such 

as temperature, humidity, and location in real-time, ensuring the integrity of perishable 

items (Oladele, 2024; Verdouw et al., 2016). These systems enable immediate responses 

to logistical issues, minimizing spoilage and ensuring that food reaches its destination in 

safe and consumable condition. In food deserts, where fresh produce availability is limited, 

such technology is vital for extending product shelf-life and reducing delivery losses. 

Autonomous delivery systems, including drones and robotic vehicles, are also being piloted 

as solutions to last-mile delivery challenges. These technologies offer promising options 

for reaching remote or infrastructurally underserved communities. Wing, a subsidiary of 

Alphabet, has conducted successful drone deliveries of groceries and meals in rural areas, 

while Nuro’s autonomous vehicles are being tested in urban neighborhoods for grocery 

delivery (Figliozzi & Jennings, 2020; Zhang et al., 2023). 
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Mobile grocery stores equipped with smart technology further enhance food access in 

underserved communities. These vehicles not only bring food directly to consumers but 

are now integrated with mobile payment systems, inventory tracking, and nutritional 

information displays. Programs such as Rolling Harvest and Fresh Moves have used such 

models to deliver affordable, nutritious food to food deserts while fostering education and 

engagement (Seidner, 2014). 

While these technological advancements hold great promise, their scalability and 

accessibility remain contingent on supportive policies, investment in digital infrastructure, 

and inclusive design practices. Ensuring that innovations are adapted to the socio-economic 

realities of food-insecure populations will be critical to their long-term success and equity 

impact. 

2.6 Future Prospects 

As the landscape of food access continues to evolve, emerging innovations in technology, 

policy, and community engagement offer new and promising avenues to address food 

deserts more sustainably and equitably. Future strategies are expected to integrate 

multidisciplinary approaches that leverage predictive modeling, collaborative governance, 

and adaptive infrastructure to mitigate spatial and socio-economic disparities in food 

availability. 

One of the most promising developments is the integration of artificial intelligence (AI) 

and advanced machine learning algorithms to anticipate future food insecurity hotspots. 
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Artificial intelligence (AI) and machine learning are being used to optimize food 

distribution networks by predicting demand, reducing waste, and improving last-mile 

delivery (El Raoui, 2022; Elgalb & Gerges, 2024). 

These models can be trained on diverse datasets—including census demographics, health 

indicators, retail accessibility, and mobility trends—to simulate and forecast changes in 

food environments. Predictive analytics allows urban planners and policymakers to 

proactively design interventions before food access becomes a critical concern (Han et al., 

2022; Yakymchuk & Liashenko, 2023).  Machine learning models analyze historical sales 

data, weather patterns, and consumer behavior to predict food demand accurately. This 

ensures that distribution centers are stocked with the right products, minimizing shortages 

in underserved areas (Han et al., 2022) 

AI-powered route optimization tools help delivery services reduce transportation costs and 

improve efficiency, making food delivery more viable in food deserts. Companies like 

FedEx and UPS use AI to design delivery routes that minimize fuel consumption and 

delivery times (Veluru, 2023) 

Scenario modeling, in particular, is gaining attention as a future tool for evaluating 

potential impacts of various food policies. These models can simulate the effects of 

interventions such as the introduction of a new grocery store, the expansion of a public 

transit line, or a shift in zoning regulations. By assessing hypothetical outcomes, scenario 

modeling helps optimize decision-making and ensures that food access strategies are both 

cost-effective and equitable (Höchtl et al., 2016). 
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Another area of future exploration involves the use of deep learning and natural language 

processing (NLP) to analyze unstructured data, such as social media posts, online reviews, 

and community feedback. These sources can yield valuable insights into food access 

experiences, consumer satisfaction, and cultural food preferences—factors often 

overlooked in traditional datasets (Uddin, 2024). NLP tools can detect sentiment, extract 

themes, and flag emerging concerns, enabling real-time adaptation of food distribution 

strategies. 

Decentralized food systems are also anticipated to play a larger role in future food access 

initiatives. This includes expanding urban farming, hydroponics, aquaponics, and vertical 

agriculture systems, which reduce dependency on centralized supply chains. These systems 

can be especially beneficial in dense urban areas or regions facing logistical challenges, 

offering hyper-local, resilient food solutions (Horst et al., 2024a). 

Furthermore, the concept of food hubs—regional centers that aggregate, store, process, and 

distribute food—may become increasingly relevant. Food hubs can serve as intermediaries 

between local producers and underserved markets, facilitating access while supporting 

regional economies (Matson & Thayer, 2013). Future iterations of food hubs may integrate 

cold chain logistics, renewable energy systems, and data dashboards to increase operational 

efficiency. 

Smart city infrastructure offers another critical frontier. By embedding food access into 

broader urban innovation strategies, cities can design environments where access to 

nutritious food is planned alongside transportation, housing, and public services. Smart city 
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platforms could use real-time data from IoT sensors to detect food waste, optimize delivery 

routes, and signal food shortages to city managers (Li et al., 2020; Waykar & Yambal, 

2025). 

Looking ahead, equity and ethics will become increasingly central to the deployment of 

food access technologies. As digital tools shape decision-making, there is a growing need 

to ensure transparency, prevent algorithmic bias, and protect community data. Participatory 

design methods—where communities co-create tools and strategies—will be essential to 

building trust and ensuring that innovations serve those most in need (Kasowaki & Deniz, 

2024; Phelps et al., 2000). 

Global partnerships may also shape future solutions. Lessons from global cities like 

Curitiba, Brazil; Nairobi, Kenya; and Copenhagen, Denmark offer diverse models of 

integrating food systems into sustainable urban development. International collaboration 

can facilitate knowledge exchange, funding, and cross-sectoral innovation to accelerate 

local solutions (Gustafsson & Kelly, 2016; Rabinovitch, 1996). 

Blockchain technology is increasingly being adopted in the food distribution industry to 

enhance transparency, traceability, and efficiency (Rejeb et al., 2020). By creating an 

immutable ledger of transactions, blockchain can track the journey of food products from 

farm to table, ensuring quality and reducing food waste (Astill et al., 2019). 

Blockchain can enhance food security in food deserts by optimizing supply chains, 

lowering costs, and ensuring the timely delivery of fresh produce. Additionally, it can help 
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detect inefficiencies and disruptions, such as spoilage or contamination, which 

disproportionately affect underserved communities. (Zhao et al., 2019). 

Companies such as IBM Food Trust have partnered with retailers and suppliers to 

implement blockchain solutions for food traceability. For example, Walmart uses 

blockchain to trace the origin of its leafy greens, reducing the time required to track produce 

from days to seconds (Kamath, 2018). Similar applications can be adapted to optimize 

supply chains in food deserts. 

The Internet of Things (IoT) is being used to monitor and manage the cold chain, ensuring 

that perishable food items remain fresh during transportation and storage (Oladele, 2024). 

IoT sensors track temperature, humidity, and location in real time, enabling swift action in 

case of deviations (Oladele, 2024; Verdouw et al., 2016). 

In food deserts, where fresh produce is often scarce, maintaining the quality of perishable 

goods during transportation is critical. IoT-enabled cold chain management ensures that 

food reaches underserved areas in optimal condition, reducing waste and increasing access 

to nutritious options (Verdouw et al., 2016). 

Companies like DHL and Maersk have integrated IoT solutions into their logistics 

networks, improving the efficiency of perishable food distribution (Oladele, 2024). These 

technologies can be scaled to serve low-income neighborhoods where fresh food is a 

critical need (Vural et al., 2024). 
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Autonomous vehicles and drones are being explored as innovative solutions for last-mile 

delivery in hard-to-reach areas. These technologies offer cost-effective and efficient 

alternatives to traditional delivery methods (Nurgaliev et al., 2023). 

Drones have been piloted in several regions to deliver groceries and prepared meals to 

underserved communities (Nurgaliev et al., 2023). For instance, Wing, a subsidiary of 

Alphabet, has launched drone delivery services in rural areas, reducing delivery times and 

costs (Zhang et al., 2023). 

Autonomous delivery vehicles, such as those developed by Nuro, are being tested in urban 

environments to deliver groceries directly to consumers. These vehicles could be 

particularly beneficial in urban food deserts, where transportation barriers limit food access 

(Figliozzi & Jennings, 2020). 

Mobile grocery stores are a practical and innovative solution to addressing food deserts. 

These vehicles function as traveling grocery stores, bringing fresh produce and other 

essentials directly to underserved neighborhoods (Zepeda et al., 2014). 

Mobile grocery stores eliminate the need for residents to travel long distances, providing 

convenient access to fresh food. They also serve as community hubs, fostering social 

interaction and education about healthy eating (Treuhaft & Karpyn, 2010). 

Organizations like Fresh Moves in Chicago and Rolling Harvest in rural areas have 

successfully implemented mobile grocery programs, improving food security and reducing 

health disparities in underserved communities (Seidner, 2014). 
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Current and emerging technologies in food distribution have the potential to revolutionize 

how food deserts are addressed. While e-commerce, blockchain, AI, IoT, autonomous 

delivery systems, and mobile grocery stores each present unique opportunities, their 

success depends on overcoming challenges related to cost, accessibility, and infrastructure. 

By integrating these technologies with policy interventions and community-driven 

approaches, stakeholders can create sustainable solutions to ensure equitable food access 

for all. 

Finally, future policy frameworks will likely demand integrative, cross-sectoral 

collaboration. This includes aligning goals across public health, transportation, economic 

development, and environmental planning. Institutions may adopt systems thinking models 

that visualize the food ecosystem as a network of interdependent factors, enabling 

coordinated and adaptive responses to complex challenges. 

2.7 Advances in Big Data Analytics for Food Desert Mitigation 

Big Data Analytics has emerged as a transformative tool in addressing food deserts, 

enabling researchers, policymakers, and businesses to identify, analyze, and mitigate 

disparities in food access (Tamasiga et al., 2023). With the proliferation of data from 

various sources—geospatial datasets, consumer behavior records, transportation networks, 

and socio-economic indicators—big data analytics provides unprecedented insights into 

the complex factors driving food deserts (Luca et al., 2023; Sweeney et al., 2016). This 

approach leverages advanced analytical methods such as data mining, machine learning, 
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and predictive modeling to optimize resource allocation and improve food security in 

underserved areas (Sharma et al., 2020; Shoaib et al., 2023; Ziemba et al., 2024). 

Geospatial data plays a critical role in identifying food deserts by mapping grocery store 

locations, transportation networks, and population densities. Tools such as Geographic 

Information Systems (GIS) are enhanced by integrating big data, allowing researchers to 

conduct dynamic and granular analyses of food access disparities (Ver Ploeg et al., 2009). 

Real-time geospatial data from satellite imagery and urban mobility sensors further refines 

these analyses by capturing changes in food access over time (Kovacs-Györi et al., 2020). 

Big data analytics enables the integration of vast socio-economic datasets, including 

income levels, unemployment rates, and household compositions (Gray et al., 2015). By 

combining these variables with spatial data, researchers can identify communities most at 

risk of food insecurity (Kshetri, 2014). For instance, studies have shown that low-income 

neighborhoods with limited public transportation are disproportionately classified as food 

deserts (Walker et al., 2010). The ability to analyze these intersections at scale allows for 

targeted interventions. 

Predictive modeling is a key application of big data analytics in mitigating food deserts 

(Tamasiga et al., 2023). Machine learning algorithms analyze historical and real-time data 

to predict areas with high demand for grocery stores (Yakymchuk & Liashenko, 2023). For 

example, regression models and neural networks can forecast grocery demand based on 

factors such as population growth, purchasing patterns, and proximity to existing stores 
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(Han et al., 2022). These insights guide policymakers and businesses in selecting optimal 

locations for new grocery stores.  

Predictive analytics allows stakeholders to simulate outcomes of proposed policies or 

interventions. For example, policymakers can model the expected impact of a new grocery 

store, transit line, or subsidy program on food access and health metrics. This evidence-

based approach supports more strategic planning and increases the likelihood of successful 

outcomes (Tamasiga et al., 2023). 

Clustering algorithms, such as k-means and hierarchical clustering, are used to group 

neighborhoods based on shared characteristics, such as income levels, obesity rates, and 

access to transportation. These clusters highlight patterns of food access inequality, 

enabling decision-makers to prioritize underserved regions for interventions. For instance, 

a study by Lu et al. (2024) used clustering to identify neighborhoods in urban China with 

overlapping characteristics of food deserts and public health crises. 

Big data analytics provides insights into consumer behavior, such as purchasing 

preferences and spending patterns (Theodorakopoulos & Theodoropoulou, 2024). Retailers 

can use this information to stock culturally relevant and affordable food items in stores 

serving diverse populations. In the context of food deserts, understanding these preferences 

ensures that grocery stores meet the unique needs of their communities (Caspi et al., 2012). 

Mobile apps and loyalty programs generate real-time data on consumer demand, which can 

be analyzed to identify trends in grocery purchasing (Son et al., 2020). This information 
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helps grocery chains adapt their inventory and services to changing community needs, 

enhancing food security in underserved area (Saha et al., 2024). 

Big data analytics supports policymakers in designing evidence-based interventions to 

address food deserts (Su et al., 2017). By visualizing disparities and simulating policy 

outcomes, decision-makers can allocate resources more effectively (Yakymchuk & 

Liashenko, 2023). For example, the USDA Economic Research Service uses big data to 

track food desert locations and evaluate the impact of federal programs such as the Healthy 

Food Financing Initiative (Ver Ploeg et al., 2009). 

Big data enables scenario analysis, allowing policymakers to evaluate the potential impact 

of various interventions (Höchtl et al., 2016). For instance, sensitivity analyses can predict 

how changes in transportation infrastructure or grocery store subsidies would affect food 

access in specific neighborhoods. Such analyses are critical for developing adaptive 

policies that respond to evolving community needs (Treuhaft & Karpyn, 2010). 

One of the primary challenges in using big data for food desert mitigation is ensuring data 

accuracy and completeness. Discrepancies in data sources, particularly in rural areas, can 

limit the reliability of analyses (Kovacs-Györi et al., 2020). Integrating diverse datasets 

from public and private sources requires sophisticated algorithms and expertise. 

The collection and use of personal data, such as consumer purchasing histories and 

demographic information, raise ethical concerns (Phelps et al., 2000). Ensuring data 
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privacy and security is critical to maintaining public trust and compliance with regulations 

like the General Data Protection Regulation (GDPR) (Zhao et al., 2019). 

Emerging AI technologies, such as deep learning and natural language processing, offer 

new opportunities for analyzing unstructured data, such as social media posts and online 

reviews (Uddin, 2024). These insights can reveal hidden barriers to food access and inform 

targeted interventions (Han et al., 2022). 

Creating open-access platforms that aggregate and analyze food access data can enhance 

collaboration between stakeholders, including governments, NGOs, and private companies 

(De Beer, 2017). Such platforms could democratize access to big data tools, empowering 

local communities to address food deserts independently (Kamath, 2018). 

Big data analytics has revolutionized how food deserts are identified and mitigated. By 

integrating geospatial data, machine learning, and predictive modeling, stakeholders can 

develop targeted, efficient, and scalable solutions to improve food access (Almalki et al., 

2021). While challenges related to data quality, integration, and privacy remain, ongoing 

advancements in technology promise to further enhance the utility of big data in addressing 

food security challenges. These tools represent a critical step toward equitable food 

systems, particularly in underserved communities such as Omaha. 

In conclusion, big data analytics represents a powerful, multi-dimensional approach to 

understanding and mitigating food deserts. Its ability to integrate diverse data sources, 
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uncover latent patterns, and support predictive modeling makes it indispensable in the 

development of equitable and responsive food systems. 

2.8 Global Perspectives on Food Deserts 

While food deserts are often discussed within the context of urban America, they represent 

a global phenomenon affecting millions of people across both developed and developing 

countries. The international lens provides critical insights into diverse socio-political, 

cultural, and economic dynamics that shape food access. These perspectives also offer 

comparative models and innovative practices that can inform and inspire localized 

interventions in places such as Omaha, Nebraska.  

In the Global South, food deserts often emerge in peri-urban or informal settlements, where 

population growth outpaces infrastructure development. For example, in Nairobi, Kenya, 

rapid urban expansion has led to the proliferation of informal housing areas lacking 

proximity to fresh food markets. Here, residents rely on street vendors and small kiosks, 

which offer limited healthy food options at high prices (Otieno & Owuor, 2015). Poor road 

infrastructure and insufficient regulation of food supply chains further compound the 

challenge. 

Similarly, in parts of Latin America such as Mexico City and São Paulo, urban sprawl has 

produced neighborhoods with limited public transit and constrained access to grocery 

stores. Residents must often travel long distances, and the prevalence of fast-food chains 
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and processed foods in these environments contributes to rising rates of obesity and non-

communicable diseases (Popkin et al., 2020). 

In contrast, food deserts in high-income countries may stem more from deliberate 

disinvestment and socio-spatial inequality. In the United Kingdom, for instance, studies 

have shown that supermarket chains systematically exclude lower-income neighborhoods 

due to profitability assessments, resulting in uneven food retail distribution (Wrigley, 

2002). In Australia and Canada, rural and indigenous communities face food insecurity due 

to geographic isolation, high transportation costs, and limited supply chain infrastructure 

(Skinner et al., 2014). 

Comparative research reveals several innovative policy and programmatic responses. In 

Brazil, the Food Acquisition Program (PAA) facilitates direct purchasing of produce from 

smallholder farmers to supply food to schools and food-insecure populations. This model 

not only improves access to nutritious food but also supports local agricultural economies 

(Rocha et al., 2017). In South Korea, the government has integrated food access strategies 

into broader urban planning policies, including mandatory inclusion of public markets in 

newly developed residential areas (Kim & Lee, 2019). 

European cities have pioneered integrated planning models that embed food access into 

transport, housing, and sustainability strategies. For instance, Amsterdam has adopted a 

“Food Agenda” that promotes urban agriculture, short supply chains, and healthy food 

education in schools. Similarly, the Milan Urban Food Policy Pact—signed by over 200 
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cities worldwide—encourages cities to develop comprehensive food system policies that 

ensure equitable access to healthy food (Dubbeling et al., 2016). 

International development agencies have also begun incorporating food access into their 

sustainable development frameworks. The United Nations’ Sustainable Development 

Goals (SDGs), particularly Goal 2 (Zero Hunger) and Goal 11 (Sustainable Cities and 

Communities), emphasize the need for inclusive food systems as a cornerstone of human 

well-being and urban resilience (Horst et al., 2024b). 

In summary, the global landscape of food deserts underscores both the universality of food 

access challenges and the diversity of potential solutions. Drawing lessons from 

international experiences enriches local policymaking and broadens the strategic toolkit 

available to urban planners, public health officials, and community organizations. 

2.9 Community-Based Participatory Research (CBPR) and Localized Solutions for 

Food Access 

Community-Based Participatory Research (CBPR) is a collaborative research approach 

that equitably involves community members, organizational representatives, and academic 

researchers in all aspects of the research process. This methodology is particularly effective 

in addressing complex and localized challenges like food deserts because it integrates lived 

experiences, local knowledge, and scientific methods to co-create solutions (Israel et al., 

2010). 
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CBPR stands in contrast to top-down research and planning approaches that often overlook 

the contextual realities and cultural practices of affected communities. Instead, CBPR 

prioritizes community empowerment, capacity building, and long-term sustainability. 

When applied to food access issues, this approach helps uncover the nuanced barriers that 

residents face—ranging from stigma and safety concerns to lack of culturally appropriate 

food options—that may not be evident through traditional quantitative data alone (Minkler 

& Wallerstein, 2008). 

Participatory Geographic Information Systems (PGIS) is one practical application of 

CBPR in food access research. PGIS involves training community members to collect 

spatial data on food availability, walkability, transit routes, and store quality, allowing for 

the creation of maps that reflect local perceptions and needs (Corbett & Keller, 2006). 

These community-generated maps often reveal insights not captured by official datasets, 

such as informal markets, unsafe pedestrian zones, or underutilized community gardens. 

For example, a PGIS project in New Orleans engaged youth in mapping neighborhood food 

resources and documenting issues such as poor lighting, lack of sidewalks, and crime 

hotspots near corner stores. The resulting maps were used to advocate for infrastructure 

improvements and the placement of healthier food retail options (Zenk et al., 2005). 

CBPR has also been instrumental in shaping food policy and programming. In Detroit, 

community-led research on food access disparities led to the creation of the Detroit Food 

Policy Council, which now serves as a formal advisory body to city government. In 
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Philadelphia, CBPR efforts informed the development of nutrition education programs that 

addressed both cultural relevance and affordability concerns (Friedman et al., 2010). 

Moreover, CBPR strengthens trust and dialogue between marginalized communities and 

public institutions. This is particularly important in food justice work, where historical 

patterns of discrimination, exclusion, and mistrust often hinder policy implementation. By 

creating platforms for shared decision-making and mutual accountability, CBPR fosters 

more inclusive and effective solutions (Wallerstein et al., 2018). 

Technology-enhanced CBPR is also on the rise, with mobile apps and digital storytelling 

platforms enabling broader participation in food system planning. For instance, the "Food 

Voices" project used audio narratives and photo-elicitation to document residents’ 

experiences with food insecurity, influencing the design of neighborhood-specific 

interventions in underserved communities (Hayes-Conroy & Hayes-Conroy, 2010). 

Despite its benefits, CBPR is not without challenges. It is time-intensive and requires 

sustained commitment, mutual respect, and conflict resolution skills. Power imbalances 

between academic and community partners can also undermine the process if not managed 

thoughtfully. Nonetheless, when executed well, CBPR offers a transformative approach to 

addressing food deserts by ensuring that interventions are rooted in community values, 

assets, and aspirations. 
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2.10 Ethical and Equity Considerations in Data-Driven Food Access Solutions 

As data analytics and smart technologies increasingly influence food access policy and 

planning, ethical and equity considerations must be placed at the forefront of innovation. 

While advanced tools like predictive modeling, AI, GIS, and big data analytics offer 

unprecedented insights and efficiency, their implementation without deliberate attention to 

fairness and inclusion risks exacerbating the very inequities they aim to resolve (Zhao et 

al., 2019). 

A major concern is algorithmic bias—unintended biases encoded in data-driven models 

due to skewed datasets or flawed assumptions. If historical patterns of exclusion are 

embedded in datasets used to model food access, predictive algorithms may inadvertently 

reinforce existing disparities, such as excluding marginalized communities from grocery 

site recommendations or underestimating their food needs (Eubanks, 2018). Transparency 

in algorithm design and regular auditing of models for bias are critical practices to mitigate 

such risks (Mehrabi et al., 2021). 

Data privacy and surveillance concerns also arise in the use of consumer data for food 

access solutions. Collecting data on purchasing behavior, food preferences, or location 

patterns can yield valuable insights—but it also requires careful management to prevent 

misuse, breaches, or erosion of trust. Ethical frameworks such as informed consent, 

anonymization, and adherence to data protection regulations like the GDPR are essential 

to ensure responsible data stewardship (Phelps et al., 2000; Tisné, 2020). 
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The digital divide presents another equity issue. Many data-driven interventions rely on 

internet access, digital devices, and technical literacy—resources that are not equitably 

distributed. For example, rural residents or low-income urban households may lack access 

to broadband, making it difficult to benefit from online grocery services, food delivery 

apps, or nutrition tracking tools (Gonzales, 2016). Addressing these disparities requires 

complementary investments in digital infrastructure and community training programs. 

Moreover, technological solutions often prioritize scalability and efficiency, which may 

not align with culturally specific food needs. Data-driven food access systems must 

incorporate qualitative inputs from diverse communities to ensure that recommended 

interventions reflect cultural preferences, dietary restrictions, and community values 

(Smith et al., 2020). Participatory design practices and community engagement are critical 

for ensuring that technology serves inclusive purposes. 

Ownership and control of data are also important considerations. When data are collected 

in underserved communities—whether through sensors, mobile apps, or research 

surveys—it is essential to clarify who owns the data, who can access it, and how the 

findings will be used. Models such as community-owned data cooperatives and open-data 

governance protocols offer frameworks for ethical data sharing and empowerment (Taylor 

& Kukutai, 2016). 

Lastly, equity must be a guiding principle not just in technological design, but in the 

broader ecosystem of food policy. Planners and researchers must consider the systemic and 

historical factors that have produced food deserts—such as redlining, zoning inequities, 
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and economic disinvestment—and ensure that data-driven interventions do not obscure or 

depoliticize these root causes (Carroll, 2021). 

In summary, while digital tools and analytics present powerful solutions to food access 

challenges, their use must be guided by ethical reflection, community input, and an 

unwavering commitment to equity. Ensuring inclusive innovation in this space requires 

building trust, reducing harm, and sharing power with the communities most affected. 

2.11 Policy Frameworks and Institutional Responses to Food Security 

National, state, and local policy frameworks play a critical role in shaping the structure and 

effectiveness of food access systems. Recognizing food insecurity and food deserts as 

systemic issues rather than isolated challenges has led to a range of institutional responses 

that combine regulatory oversight, funding mechanisms, urban planning strategies, and 

cross-sector collaboration. 

At the federal level in the United States, several programs directly address food insecurity. 

The Supplemental Nutrition Assistance Program (SNAP), Women, Infants, and Children 

(WIC), and the National School Lunch Program are among the most impactful in providing 

economic support for food purchases (The Reinvestment Fund, 2021). However, these 

programs primarily address affordability, not physical access—thus, additional 

interventions are required to address geographic barriers associated with food deserts. 

The Healthy Food Financing Initiative (HFFI), launched in 2010, represents one of the 

most significant federal attempts to increase food retail options in underserved areas. 
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Administered by the Reinvestment Fund and supported by the U.S. Departments of 

Treasury, Agriculture, and Health and Human Services, HFFI provides loans and grants to 

support grocery store development and healthy food retail expansion (The Reinvestment 

Fund, 2021). 

At the state and municipal levels, governments have integrated food access strategies into 

broader health, economic, and land-use planning initiatives. For example, the California 

FreshWorks Fund offers financing to food enterprises in low-income neighborhoods, while 

New York City’s Food Retail Expansion to Support Health (FRESH) program incentivizes 

grocery development through zoning and tax benefits (Public Health Law Center, 2017). 

Institutional responses have also included the creation of food policy councils (FPCs) and 

public-private partnerships aimed at promoting coordination across sectors. These councils 

facilitate communication between farmers, retailers, policymakers, and community 

organizations to ensure that food policies reflect local needs (Harper et al., 2009). FPCs 

have been instrumental in shaping urban food strategies in cities like Seattle, Toronto, and 

Washington, D.C., where they have guided zoning changes, nutrition initiatives, and 

mobile food market programs. 

Internationally, cities that have signed the Milan Urban Food Policy Pact have committed 

to integrating food systems into urban planning and governance. This multilateral 

agreement promotes actions such as supporting urban agriculture, reducing food waste, and 

improving food distribution infrastructure (Dubbeling et al., 2016). 
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Non-governmental institutions have also played a pivotal role in expanding food access. 

Philanthropic organizations like the Robert Wood Johnson Foundation, the Rockefeller 

Foundation, and the W.K. Kellogg Foundation have provided substantial grants to support 

research, advocacy, and pilot programs. Similarly, cooperative grocery stores, nonprofit 

food delivery systems, and local food hubs have created alternative pathways to address 

market failures in food-insecure areas (Winne, 2008). 

Despite these efforts, challenges remain in aligning policy goals across agencies and 

ensuring equitable implementation. Fragmentation of responsibilities between different 

levels of government and a lack of standardized metrics for measuring food access have 

hindered coordination and evaluation (Clancy & Ruhf, 2010). Furthermore, political 

turnover and funding volatility can disrupt long-term planning and program continuity. 

Moving forward, comprehensive food access policy must be integrated into climate 

resilience, economic justice, and public health frameworks. Institutional responses that 

foreground equity, community engagement, and sustainable food systems are more likely 

to produce lasting impact and foster inclusive urban development. 

2.12 Resilience Thinking and Climate Adaptation in Urban Food Systems 

As the dual threats of climate change and urbanization intensify, resilience thinking has 

emerged as a vital framework for building sustainable and equitable food systems. 

Resilience, in this context, refers to the capacity of food systems to absorb shocks, adapt 
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to changing conditions, and continue providing access to nutritious food in the face of 

environmental, economic, and social disruptions (Tendall, 2015). 

Urban food systems are particularly vulnerable to climate-related risks such as heatwaves, 

flooding, drought, and supply chain disruptions. These events can damage infrastructure, 

reduce agricultural productivity, disrupt transportation networks, and spike food prices—

exacerbating food insecurity, especially in low-income communities (Wheeler & Braun, 

2013). Integrating climate adaptation strategies into food system planning is essential for 

safeguarding access in underserved areas. 

One promising approach is the promotion of localized food production through urban 

agriculture, which not only shortens supply chains but also enhances ecological and social 

resilience. Rooftop farms, vertical gardens, aquaponics, and community gardens contribute 

to local food sovereignty while reducing dependence on centralized, vulnerable 

distribution systems (Despommier, 2010; Sanyé-Mengual et al., 2015). 

Green infrastructure investments—such as permeable pavements, bioswales, and green 

roofs—can simultaneously improve climate resilience and support food access by 

protecting urban gardens and food storage facilities from flooding or heat stress (Meerow 

& Newell, 2017). Additionally, incorporating food access into climate adaptation and 

disaster preparedness plans helps ensure that vulnerable populations are not left behind 

during crises. 
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Resilience thinking also emphasizes the importance of redundancy and diversity in food 

distribution systems. This includes developing multiple sources of food—such as 

cooperative markets, food hubs, mobile vendors, and e-commerce platforms—that can 

operate in parallel and provide fail-safes during disruptions (Cinner, 2018). 

Social capital is another key dimension of resilience. Communities with strong networks, 

trust, and reciprocal support are better able to mobilize resources and recover from shocks. 

Programs that build neighborhood-based food coalitions, mutual aid networks, and 

resident-led preparedness training foster the kind of adaptive capacity necessary for 

resilient food access (Barthel & Isendahl, 2013). 

Climate resilience must also be approached through an equity lens. Marginalized 

communities are often disproportionately affected by climate impacts due to preexisting 

vulnerabilities. Thus, resilience-building efforts must prioritize inclusivity, engage local 

voices, and address systemic injustices—such as discriminatory zoning or historic 

underinvestment—that compound climate risk (Shi et al., 2016). 

In conclusion, embedding resilience thinking into food system planning enables cities to 

navigate the uncertainties of climate change while advancing goals of food justice, health 

equity, and urban sustainability. As Omaha and similar cities confront increasing 

environmental pressures, incorporating adaptive strategies into food access planning will 

be essential for long-term viability. 
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2.13 Smart Cities and Digital Infrastructure for Food Access 

The emergence of smart cities presents new opportunities to reimagine food access in urban 

environments by integrating digital infrastructure, data analytics, and civic technologies 

into food system planning. A smart city utilizes information and communication 

technologies (ICT) to enhance service delivery, optimize resource use, and foster 

sustainable and inclusive urban living (Nam & Pardo, 2011). When applied to food 

systems, these technologies can improve food distribution, enhance monitoring, and 

expand access, particularly for underserved populations. 

One major contribution of smart city infrastructure to food access is the deployment of 

Internet of Things (IoT) devices. IoT-enabled sensors installed in warehouses, transport 

trucks, and retail locations can monitor temperature, humidity, inventory levels, and 

spoilage in real time. These tools help maintain the quality and safety of perishable goods, 

reducing waste and ensuring that nutritious food reaches low-income areas efficiently 

(Verdouw et al., 2016). 

Smart mobility systems also support food access by enhancing last-mile delivery through 

electric delivery vehicles, route optimization algorithms, and mobile grocery units. Cities 

like Barcelona and Singapore have piloted smart logistics hubs that consolidate deliveries 

and reduce congestion, thereby lowering costs and emissions while improving delivery 

coverage in food deserts (Lim et al., 2022). 
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Digital platforms play a pivotal role in connecting consumers to food providers. Open data 

portals, community food maps, and mobile applications allow residents to locate nearby 

food pantries, farmers markets, and affordable grocery outlets. These platforms can also 

disseminate real-time updates on food availability, nutrition education, and eligibility for 

food assistance programs, thereby improving awareness and utilization (Campbell et al., 

2019). 

Artificial intelligence (AI) and big data analytics further enhance urban food governance 

by enabling predictive modeling and decision-support tools. Municipal governments can 

use these systems to anticipate food demand, identify at-risk neighborhoods, and prioritize 

infrastructure investment. For instance, AI models that analyze purchasing behavior, 

population health trends, and transit data can inform zoning policies and public investments 

that support equitable food distribution (Bibri & Krogstie, 2020). 

Smart waste management systems also contribute to food system sustainability. IoT-

enabled compost bins, dynamic collection schedules, and food waste tracking apps help 

divert organic waste from landfills and promote circular food economies. Cities like San 

Francisco and Seoul have implemented such programs to encourage community 

composting and redistribute surplus food through donation networks (Papargyropoulou et 

al., 2014). 

However, the adoption of smart technologies must be approached with caution to avoid 

reinforcing digital inequalities. Low-income communities often face barriers such as lack 

of internet access, limited digital literacy, and data privacy concerns. Policymakers must 
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ensure that smart city initiatives are inclusive, community-driven, and supported by 

investments in equitable digital infrastructure (Gonzales, 2016). 

Community engagement and co-design processes are essential to the success of smart food 

initiatives. Participatory technology development—where residents collaborate in 

designing apps, platforms, or services—ensures that solutions address actual needs and 

build trust. Examples include community co-developed food alert systems in Chicago and 

neighborhood digital kiosks in Toronto that display food resources and services in multiple 

languages (Shelton et al., 2015). 

In conclusion, smart city tools offer transformative potential for improving food access 

through enhanced logistics, digital transparency, and predictive governance. To realize this 

potential, urban planners must embed equity and inclusion into every stage of smart city 

development, ensuring that innovation serves as a vehicle for food justice and 

sustainability. 

2.14 Economic Impacts of Food Deserts and Local Grocery Interventions 

Food deserts not only affect health and well-being but also have profound economic 

implications for individuals, communities, and urban economies. Limited access to healthy 

and affordable food often forces residents to rely on convenience stores or fast-food outlets, 

which tend to offer nutritionally poor but high-cost items. This dynamic not only increases 

household spending on food but also contributes to long-term financial strain associated 

with preventable health conditions (Cooksey-Stowers et al., 2017). 
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From a macroeconomic perspective, food deserts can lead to increased public health 

expenditures. Poor nutrition and food insecurity are linked to higher incidences of obesity, 

diabetes, hypertension, and other diet-related diseases, which place a significant burden on 

healthcare systems. Research indicates that low-income areas with poor food access have 

disproportionately high Medicaid costs and hospital admissions related to nutrition-

sensitive conditions (Lee et al., 2017). 

The lack of full-service grocery stores in disadvantaged neighborhoods also constrains 

local economic development. Without anchor food retailers, these communities miss out 

on employment opportunities, tax revenue, and spillover effects such as foot traffic for 

adjacent businesses. Conversely, studies have shown that opening a grocery store in a food 

desert can stimulate job creation, stabilize property values, and encourage further private 

investment (Sharkey & Horel, 2008). 

Grocery store development can also support the local agricultural economy when stores 

source produce from regional farms and cooperatives. This not only reduces the carbon 

footprint associated with long-distance transportation but also keeps food dollars 

circulating within the local economy, reinforcing community resilience and food 

sovereignty (Feenstra, 2002). 

Microeconomic studies reveal that consumers in food deserts often incur higher prices due 

to limited competition. Small neighborhood stores may charge more per unit of healthy 

food items compared to chain supermarkets, a phenomenon referred to as the "poverty 
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penalty" (Ghosh-Dastidar et al., 2014). This pricing disparity can undermine dietary 

choices and exacerbate economic inequality. 

Investments in alternative food systems—such as mobile markets, farmers markets, and 

community-supported agriculture (CSA)—have demonstrated positive economic 

externalities. These interventions tend to employ local residents, increase entrepreneurial 

opportunities, and foster a multiplier effect within neighborhoods (Fischer et al., 2015). 

Cost-benefit analyses of food access programs have also revealed promising returns. For 

example, evaluations of the Healthy Food Financing Initiative (HFFI) estimate that every 

dollar invested in food retail development generates multiple dollars in local economic 

activity, along with indirect savings in public health spending and social services (The 

Reinvestment Fund, 2021). 

In summary, addressing food deserts is not only a public health priority but also a critical 

economic development strategy. Enhancing access to nutritious food through local grocery 

interventions generates measurable benefits for households, communities, and broader 

urban systems. 

2.15 Food Literacy and Consumer Empowerment in Addressing Food Deserts 

Food literacy—the knowledge, skills, and behaviors required to plan, select, prepare, and 

consume nutritious meals—is a crucial but often overlooked dimension in addressing food 

deserts. Empowering consumers with food literacy not only improves individual dietary 
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habits but also strengthens community resilience by enabling residents to make informed 

choices despite environmental and economic constraints (Vidgen & Gallegos, 2014). 

In food desert communities, low levels of food literacy are often exacerbated by limited 

access to healthy options and misinformation about nutrition. Studies show that when 

residents lack understanding of how to read nutrition labels, budget for groceries, or 

prepare fresh meals, they are more likely to rely on processed, calorie-dense foods—even 

when healthier alternatives are present (Begley et al., 2019). This perpetuates poor health 

outcomes and undermines the effectiveness of interventions aimed solely at increasing food 

availability. 

Educational interventions targeting food literacy have demonstrated significant impact. 

Programs like Cooking Matters, SNAP-Ed, and FoodSmart provide hands-on nutrition 

education, cooking demonstrations, and budget-friendly meal planning workshops. 

Participants consistently report increased confidence in shopping for and preparing healthy 

foods, as well as improved dietary behaviors (Thomas & Irwin, 2011). 

Schools are key venues for promoting food literacy among children and families. School-

based programs that integrate gardening, cooking, and nutrition education have been shown 

to improve fruit and vegetable consumption, food preferences, and academic engagement 

(Gatto et al., 2012). These initiatives not only influence children’s habits but often catalyze 

change within households and communities. 
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Food literacy also intersects with cultural competence. Culturally tailored interventions 

that respect and incorporate traditional food practices are more likely to be effective and 

sustainable. For instance, using familiar ingredients or traditional preparation methods in 

cooking classes can enhance relevance and reduce resistance among participants (Harmon 

et al., 2011). 

Digital tools are expanding the reach of food literacy initiatives. Mobile applications, 

online cooking tutorials, and nutrition portals offer flexible, accessible learning 

opportunities for consumers across literacy levels. However, digital equity challenges 

remain—underscoring the need for blended learning approaches that combine technology 

with community-based instruction (Leone et al., 2020). 

Moreover, food literacy is increasingly seen as a social justice issue. Marginalized groups 

are disproportionately affected by structural barriers to food education, such as 

underfunded schools, lack of community centers, and language barriers. Addressing these 

inequities requires policy support, cross-sector partnerships, and sustained investment in 

community-based capacity building (Slater et al., 2018). 

In summary, food literacy empowers individuals to navigate food deserts with greater 

agency, enhances the effectiveness of food access interventions, and contributes to long-

term health and economic stability. Incorporating food literacy into comprehensive food 

policy strategies can help close the gap between availability and actual consumption of 

nutritious foods. 
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2.16 Transportation and Mobility Constraints in Food Access 

Transportation and mobility play a fundamental role in determining physical access to 

grocery stores and other nutritious food outlets. In many food desert communities—

especially those characterized by low income, racial segregation, or geographic isolation—

the lack of reliable transportation options exacerbates food insecurity and limits residents’ 

ability to reach affordable and healthy food sources (Clifton, 2004). 

Transportation challenges manifest in both urban and rural environments. In urban areas, 

residents of food deserts often face long travel distances to reach full-service supermarkets, 

coupled with limited public transit coverage or high transit costs. A lack of pedestrian 

infrastructure, such as sidewalks, lighting, or safe crossings, can further deter walking or 

biking to grocery locations (Jiao et al., 2012). In rural communities, the problem is 

intensified by greater geographic distances between homes and stores, often requiring 

personal vehicles for grocery shopping—an asset that not all households possess 

(Blanchard & Lyson, 2002). 

Multiple studies have demonstrated a strong correlation between car ownership and food 

access. Individuals without access to private transportation are significantly more likely to 

be food insecure and to shop at stores with fewer healthy food options, such as corner stores 

or gas stations (Wrigley et al., 2002). The time, cost, and inconvenience of accessing distant 

stores discourage frequent trips and reduce the feasibility of purchasing fresh produce and 

perishable items, which require more regular restocking (LeDoux & Vojnovic, 2013). 
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Public transportation systems often fail to meet the needs of food-insecure populations. 

Buses and trains may not serve food retail destinations, operate on limited schedules, or be 

perceived as unsafe. In a study of transit-dependent residents in Baltimore, only 12% of 

participants reported that they could reach a grocery store within 30 minutes using public 

transit, compared to 95% of car owners (Zenk et al., 2005). 

To address these challenges, cities and nonprofits have piloted alternative transportation 

strategies. These include grocery shuttle programs, subsidized ride-sharing for grocery 

trips, and bike delivery services. For example, the “Grocery Bus” in San Francisco provides 

free, direct service from senior housing complexes to supermarkets, while some cities have 

experimented with mobile grocery markets that travel directly into underserved 

neighborhoods (Fitzpatrick & Willis, 2016). 

Transportation planning also intersects with land-use policy. Zoning that concentrates 

grocery development in suburban areas while neglecting inner-city neighborhoods 

reinforces transportation inequities. Integrating food access goals into comprehensive 

transportation and urban planning processes is essential for building equitable and inclusive 

cities (Larsen & Gilliland, 2008). 

Incorporating geospatial analysis into transportation studies enhances the ability to assess 

and address mobility-related barriers. Tools such as accessibility indices, travel time 

mapping, and multimodal network analysis help policymakers visualize and prioritize 

interventions in food-insecure zones (Widener et al., 2013). 
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In summary, improving food access requires a systemic approach to transportation justice. 

Expanding affordable, reliable, and culturally sensitive mobility options is vital for 

connecting residents of food deserts to healthy food and fostering greater food equity. 

2.17 Social Capital and Community Networks in Enhancing Food Access 

Beyond infrastructure and economic interventions, social capital and community networks 

play a critical role in improving food access in underserved areas. Social capital refers to 

the connections, trust, and norms of reciprocity within a community that facilitate 

coordination and cooperation for mutual benefit (Putnam, 2000). In the context of food 

deserts, robust social networks can buffer against food insecurity by enabling resource 

sharing, disseminating information, and catalyzing collective action. 

Informal support systems—such as neighbors sharing food, families pooling resources for 

grocery trips, or local churches distributing meals—can help residents meet immediate 

food needs when formal systems fall short (Martin et al., 2004). These networks are 

especially vital during crises, such as natural disasters or pandemics, when supply chains 

and mobility are disrupted. 

Community organizations and grassroots initiatives frequently serve as hubs of food access 

innovation. Food cooperatives, time banks, community kitchens, and buying clubs often 

emerge from strong social cohesion and can provide alternative avenues for food 

acquisition outside conventional retail structures (Allen, 1999). For instance, community-
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supported agriculture (CSA) programs leverage social ties between producers and 

consumers to provide consistent access to fresh produce while supporting local farms. 

Social capital also enhances the effectiveness of food-related programs. Research shows 

that initiatives with high community engagement and peer support—such as cooking 

classes, nutrition workshops, and urban gardening programs—tend to have greater 

participation rates and sustained impact (Alkon & Agyeman, 2011). Trust in institutions 

and interpersonal relationships can significantly influence whether residents utilize 

available resources. 

Moreover, social networks are instrumental in mobilizing advocacy and policy change. 

Neighborhood associations, tenant groups, and civic coalitions can pressure decision-

makers to address food disparities through zoning changes, subsidy allocation, or 

supermarket incentives. The success of many food justice campaigns has been rooted in 

sustained community organizing and coalition-building efforts (Gottlieb & Joshi, 2010). 

Digital platforms are increasingly augmenting social capital by facilitating information 

exchange and coordination among community members. Online mutual aid groups, food-

sharing apps, and hyperlocal forums like Nextdoor allow residents to identify food sources, 

coordinate transportation, or offer assistance in real-time (Campos-Castillo & Williams, 

2018). 

Nonetheless, disparities in social capital can also mirror broader social inequities. 

Communities with histories of disinvestment, discrimination, or displacement may have 
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fragmented networks or weakened institutional trust, which can impede the development 

of food access initiatives. Strengthening social capital, therefore, requires deliberate 

investment in community-building, inclusive engagement processes, and the recognition 

of diverse cultural practices and leadership styles (Agyeman & McEntee, 2014). 

In conclusion, social capital is a vital but underappreciated dimension of food access 

strategy. By fostering trust, collaboration, and shared responsibility, strong community 

networks can amplify the impact of structural interventions and promote food justice from 

the ground up. 

2.18 Food Retail Consolidation and Market Power in Shaping Access 

The structure of the retail food industry plays a significant role in shaping geographic and 

economic access to healthy foods. In recent decades, the U.S. food retail sector has 

undergone substantial consolidation, with large supermarket chains and big-box retailers 

dominating market share while smaller, independent grocers have declined (Hingley, 

2005). This shift has had considerable implications for food access in both urban and rural 

areas. 

Retail consolidation is driven by economies of scale, operational efficiencies, and 

competitive pricing advantages held by national chains. However, this trend often results 

in store closures or the withdrawal of smaller grocers from lower-income or sparsely 

populated communities deemed unprofitable. As a result, food deserts can emerge or 

deepen in areas abandoned by traditional food retailers (Eisenhauer, 2001). 
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Market concentration can also reduce consumer choice and lead to price manipulation. 

With fewer retailers controlling the food supply, there is less incentive to keep prices low 

or to tailor product offerings to local needs. This is particularly problematic for 

marginalized communities, where the loss of culturally specific food products or affordable 

options can exacerbate food insecurity and alienation from the food system (Howard, 

2016). 

Moreover, large chains often bypass inner-city or rural locations due to perceived risks, 

such as high operating costs, crime rates, or low expected profit margins. These decisions 

are often guided by proprietary data and profit algorithms that may overlook or undervalue 

community potential and long-term social benefits (Zepeda, 2009). 

The role of financialization in food retailing further complicates access. As private equity 

firms and institutional investors acquire grocery chains, decisions become driven by short-

term shareholder returns rather than community well-being. Store closures, staff 

reductions, and reduced investment in low-margin locations have been linked to these 

financial practices, often to the detriment of low-income areas (Lobao et al., 2016). 

Despite these challenges, some innovative models have emerged to counteract market 

failures. Nonprofit grocery stores, cooperative markets, and public market interventions 

have demonstrated that socially driven food retailing can succeed in underserved 

communities. Additionally, public policies such as tax incentives, zoning reforms, and 

infrastructure support have been used to attract grocers to high-need neighborhoods 

(Gittelsohn et al., 2012). 
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Understanding the dynamics of food retail consolidation is essential for designing equitable 

food access strategies. It highlights the need for regulatory oversight, antitrust enforcement, 

and support for alternative business models that prioritize community food security over 

profit maximization. 

2.19 Food Waste, Redistribution, and Circular Food Economies 

Food waste is an often overlooked but critical component of the food access ecosystem. 

While millions of people face food insecurity and limited access to nutritious food, 

significant quantities of edible food are discarded at the retail, distribution, and household 

levels. According to the United States Department of Agriculture (USDA), nearly 30–40% 

of the food supply in the U.S. is wasted annually, representing not only an ethical dilemma 

but also a lost opportunity to address hunger and food deserts (Coleman-Jensen et al., 

2019). 

Food waste occurs across the supply chain—from overproduction at farms and post-harvest 

losses to aesthetic standards in retail and consumer-level discards. Retailers may reject 

produce for minor imperfections, while expiration labeling often leads to the premature 

disposal of food that is still safe to consume (Buzby et al., 2014). In low-access areas, food 

waste coexists paradoxically with scarcity, underscoring the need for efficient 

redistribution mechanisms. 

Food recovery and redistribution programs are emerging as viable solutions to this 

challenge. Nonprofits, food banks, and social enterprises increasingly collect surplus food 
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from farms, grocery stores, and restaurants to redistribute it to food-insecure populations. 

Programs like Feeding America, Food Rescue US, and City Harvest are examples of large-

scale recovery networks that have prevented millions of pounds of food from going to 

waste while feeding underserved communities (Broad Leib et al., 2013). 

Technology also plays a role in enhancing food redistribution. Mobile apps such as OLIO 

and Too Good To Go connect consumers and businesses to share or sell surplus food at 

discounted prices. These platforms reduce landfill contributions and support food access 

in both high- and low-income areas (Papargyropoulou et al., 2014). 

Circular food economies offer a broader sustainability framework by emphasizing resource 

efficiency and minimal waste. These systems aim to close the loop between food 

production, consumption, and waste by incorporating composting, upcycling, and local 

redistribution as integral practices (Cattaneo et al., 2021). Urban areas have begun 

integrating circular food models into city planning, leveraging compost programs to 

support local agriculture and community gardens. 

Policy interventions can further facilitate food waste reduction. Tax incentives for food 

donation, standardized food labeling, and liability protections for donors (such as the Good 

Samaritan Food Donation Act) reduce barriers for businesses to participate in redistribution 

efforts (Broad Leib et al., 2013). Local ordinances that require grocery stores to donate 

unsold food or mandate composting—such as those implemented in France and parts of 

California—also provide effective models for broader adoption. 
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Importantly, community engagement is key to sustaining food waste initiatives. Educating 

residents about food storage, expiration dates, and creative cooking with leftovers can help 

reduce household waste while fostering food literacy. Community fridges, neighborhood 

swap tables, and gleaning programs further encourage participatory solutions to food 

insecurity. 

In conclusion, addressing food waste through redistribution and circular economy practices 

holds immense potential to mitigate food insecurity and reduce environmental impacts. 

Incorporating these strategies into food desert interventions enhances sustainability, equity, 

and resilience across urban food systems. 

2.20 The Role of Technology Startups and Private Innovation in Food Access 

In recent years, technology startups and private-sector innovators have emerged as 

significant contributors to the transformation of urban food systems. These entities bring 

agility, data-driven strategies, and scalable solutions to address gaps in food accessibility, 

often complementing public and nonprofit efforts. As food deserts persist despite long-

standing institutional interventions, private innovation offers new pathways to deliver 

affordable, nutritious food to underserved communities. 

Startups in the food technology space are leveraging mobile apps, e-commerce, and cloud 

computing to increase access and reduce inefficiencies in the food supply chain. Services 

such as FarmboxRx, Imperfect Foods, and Misfits Market deliver discounted or 

cosmetically imperfect produce directly to consumers, offering healthy alternatives at 
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lower costs. These models simultaneously reduce food waste and expand market access for 

farmers, while reaching consumers in traditionally underserved areas (Neff et al., 2009). 

Other ventures have focused on hyperlocal distribution models. Micro-fulfillment centers 

and dark stores—retail outlets optimized solely for online delivery—are being piloted in 

dense urban neighborhoods to support rapid delivery of groceries. Companies like GoPuff 

and JOKR use data analytics to predict demand and ensure efficient inventory 

management, reducing stockouts and improving freshness (Khanna et al., 2022). 

Fintech integrations within food tech have enabled creative payment solutions and targeted 

subsidies. Some startups now allow customers to use SNAP benefits for online grocery 

shopping or provide installment-based payments for larger food purchases, making healthy 

food more accessible for low-income consumers (Cohen et al., 2020). 

Private sector innovations also include smart vending machines and autonomous kiosks 

that provide healthy food options in transit stations, schools, and housing complexes. These 

low-footprint solutions bring convenience and accessibility to areas that may not support a 

full-service grocery store (Lin et al., 2021). 

Agri-tech startups are contributing on the production side by developing vertical farms, 

container agriculture, and AI-driven hydroponic systems to grow food closer to the point 

of consumption. These innovations reduce dependency on long-distance supply chains and 

increase local resilience, especially in areas where land availability or climate pose 

challenges to traditional farming (Benke & Tomkins, 2017). 



 
 

71 

While private innovation brings promise, concerns about scalability, equity, and digital 

access remain. Many services target tech-savvy or urban consumers, and without deliberate 

design for inclusion, these innovations risk reinforcing disparities. Additionally, the 

venture capital funding model may favor profitability over long-term community 

engagement, potentially undermining social impact goals (McClintock, 2018). 

Partnerships between private startups and local governments or nonprofits offer a way to 

balance innovation with accountability. Co-designed pilot programs, shared data platforms, 

and equity audits can ensure that emerging solutions align with the needs of marginalized 

populations and contribute to holistic urban food strategies. 

In conclusion, technology startups and private innovators are reshaping the landscape of 

food access through agile, user-centered, and scalable interventions. When integrated with 

public-sector goals and community engagement, these innovations hold the potential to 

enhance food equity and sustainability in transformative ways. 

2.21 Urban Governance and Multi-Stakeholder Collaboration in Food Access 

Planning 

The complex nature of food insecurity in urban environments necessitates coordinated 

efforts among a wide range of stakeholders. Urban governance—the collective processes 

and institutions through which city policies are developed and implemented—plays a 

critical role in integrating food access strategies into broader social, environmental, and 

economic agendas (Moragues-Faus & Morgan, 2015). 
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Effective food access planning increasingly depends on multi-stakeholder collaboration 

involving municipal agencies, public health departments, planning commissions, civil 

society organizations, academic institutions, and private enterprises. These collaborations 

allow cities to align policies across sectors such as land use, transportation, health, and 

economic development to promote equitable food access (Pothukuchi & Kaufman, 2000). 

Food policy councils (FPCs) are one institutional mechanism that exemplifies this 

approach. These councils act as cross-sectoral platforms that bring together diverse 

stakeholders to assess local food systems, identify gaps, and propose solutions. Research 

indicates that cities with active FPCs are more likely to adopt integrated food strategies 

and prioritize community-based solutions (Santo et al., 2014). 

Public-private partnerships (PPPs) have also become essential in food system planning. 

Cities have worked with grocery retailers, tech startups, and nonprofits to pilot mobile 

markets, data dashboards, or food hub networks. Such partnerships leverage financial and 

technological resources that governments alone may not possess, enabling more scalable 

interventions (Koc et al., 2008). 

Academic institutions contribute through applied research, policy analysis, and capacity-

building. Universities have collaborated with cities on participatory mapping projects, food 

environment assessments, and evaluation of intervention outcomes. These partnerships 

ensure evidence-based decision-making and foster innovation (Roberts & Stahlbrand, 

2018). 
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Community engagement is another cornerstone of inclusive governance. Participatory 

planning processes that involve residents—particularly those from historically 

marginalized communities—enhance the legitimacy and effectiveness of food strategies. 

Tools such as town halls, community workshops, and advisory committees ensure that 

local knowledge and lived experiences shape policy outcomes (Alkon & Mares, 2012). 

However, urban governance is not without challenges. Institutional silos, political turnover, 

and uneven power dynamics can hinder collaboration. Sustained funding, clear 

accountability structures, and shared metrics of success are necessary to overcome 

fragmentation and ensure long-term impact (Cohen & Ilieva, 2015). 

Cities across the globe provide models for collaborative governance in food access. For 

example, Toronto’s Food Strategy integrates health, equity, and sustainability goals, while 

the Belo Horizonte model in Brazil institutionalizes food security as a legal right supported 

by municipal programs and cross-sector coordination (Rocha & Lessa, 2009). 

In summary, multi-stakeholder collaboration and inclusive urban governance are 

foundational to advancing food justice. By leveraging diverse expertise and shared 

responsibility, cities can develop robust and adaptive systems to address food deserts and 

ensure that all residents enjoy dignified access to nutritious food. 

2.22 Integration of Urban Planning Tools with Geospatial Analytics 

The integration of urban planning tools with geospatial analytics represents a 

transformative approach to designing and managing urban spaces (Attah et al., 2024). 
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Urban planning seeks to create sustainable, equitable, and functional cities, while 

geospatial analytics provides the data-driven insights necessary to achieve these goals 

(Attah et al., 2024; Bibri & Bibri, 2020). This synergy allows planners to make informed 

decisions on land use, transportation, housing, and resource allocation, particularly in 

addressing complex challenges such as food deserts, housing inequality, and environmental 

degradation (Brinkley et al., 2023). 

The use of Geographic Information Systems (GIS), combined with advanced urban 

planning tools, enables spatial analysis, predictive modeling, and scenario planning. These 

capabilities have made geospatial analytics indispensable in urban planning, particularly in 

creating equitable food systems, optimizing infrastructure, and improving overall urban 

resilience (Yeh, 1999). 

One of the primary roles of geospatial analytics in urban planning is the ability to map and 

visualize spatial data. GIS platforms, such as ArcGIS and QGIS, allow planners to overlay 

multiple data layers, including land use, population density, transportation networks, and 

socio-economic indicators (Case & Hawthorne, 2013). These visualizations provide a 

comprehensive understanding of spatial patterns, enabling targeted interventions. 

For example, mapping food deserts in urban areas involves analyzing the proximity of 

grocery stores to residential neighborhoods, transportation accessibility, and socio-

economic data. This geospatial approach identifies areas with limited access to healthy 

food and informs policy decisions (Ver Ploeg et al., 2009). 
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Geospatial analytics enables the integration of diverse datasets from public and private 

sources, including census data, transportation models, and environmental assessments (Yin 

et al., 2021). This integration facilitates a holistic understanding of urban systems, allowing 

planners to address interrelated issues such as housing, transportation, and food access (Su 

et al., 2017). Studies have shown that integrating spatial data improves the accuracy of 

urban planning models and enhances decision-making (Kovacs-Györi et al., 2020). 

GIS serves as the backbone of geospatial analytics in urban planning. Its capabilities 

include spatial analysis, mapping, and 3D modeling, making it a versatile tool for planners 

(Attah et al., 2024). Advanced GIS applications, such as site suitability analysis and 

network analysis, have been used to determine optimal locations for grocery stores, public 

transit hubs, and affordable housing (Rikalovic et al., 2014). 

Urban simulation models, such as UrbanSim and CityEngine, integrate GIS data with 

predictive algorithms to simulate the impact of planning decisions on urban development. 

These tools allow planners to test different scenarios, such as zoning changes or 

infrastructure investments, and evaluate their long-term effects on food access, traffic flow, 

and housing equity (Batty, 2013). 

Emerging platforms, such as Sidewalk Labs' Replica and Esri's GeoPlanner, combine big 

data analytics with geospatial visualization. These platforms provide real-time insights into 

urban dynamics, enabling planners to monitor trends, predict outcomes, and optimize 

resource allocation (Kazak et al., 2023). For example, GeoPlanner can assess the 
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environmental impact of proposed developments, ensuring sustainable urban growth 

(Hanoon, 2019; Kazak et al., 2023). 

Urban planning tools integrated with geospatial analytics are widely used to identify and 

analyze food deserts (Su et al., 2017). By combining spatial data on grocery store locations, 

transportation networks, and socio-economic factors, planners can pinpoint areas with 

limited food access (Beaulac et al., 2009). These insights guide interventions, such as the 

placement of new grocery stores or mobile markets. 

Site suitability analysis is a GIS-based technique used to determine the best locations for 

grocery stores or urban agriculture initiatives. Factors such as land availability, population 

density, and transportation accessibility are analyzed to ensure that new developments 

serve the intended communities effectively (Han et al., 2022). 

Geospatial analytics supports transit-oriented development (TOD) by integrating food 

access planning with transportation systems (Clermont, 2013). TOD approaches prioritize 

the development of grocery stores and fresh food markets near public transit hubs, 

improving accessibility for residents without private vehicles (Caspi et al., 2012). 

One of the primary challenges in integrating urban planning tools with geospatial analytics 

is the availability and quality of spatial data. Incomplete or outdated data can limit the 

accuracy of analyses and hinder decision-making (Yin et al., 2021). This issue is 

particularly acute in low-resource settings, where data collection infrastructure is lacking 

(Kovacs-Györi et al., 2020). 



 
 

77 

The complexity of geospatial analytics tools can be a barrier to widespread adoption. Urban 

planners without specialized training may find it challenging to use advanced GIS software, 

limiting its utility (Aranda et al., 2023; Tao, 2013). Efforts to create user-friendly interfaces 

and provide training are critical to overcoming this barrier (Manning, 2023; Tao, 2013). 

The integration of AI with geospatial analytics is expected to revolutionize urban planning 

(Waykar & Yambal, 2025). AI algorithms can analyze large datasets more efficiently, 

identify patterns, and generate predictive models (Kasowaki & Deniz, 2024). For example, 

machine learning techniques can predict the impact of zoning changes on food access, 

traffic congestion, or housing affordability (Han et al., 2022). 

The development of open data platforms that aggregate geospatial datasets from multiple 

sources can democratize access to urban planning tools (Quarati et al., 2021). These 

platforms allow community organizations, researchers, and policymakers to collaborate on 

data-driven solutions to urban challenges (Kovacs-Györi et al., 2020; Quarati et al., 2021). 

Real-time geospatial analytics, powered by IoT sensors and big data platforms, offers new 

possibilities for urban planning (Li et al., 2020; Mbuh et al., 2019). By monitoring real-

time changes in transportation flows, population movements, and environmental 

conditions, planners can adapt their strategies dynamically to emerging challenges (Batty, 

2013) 

The integration of urban planning tools with geospatial analytics offers transformative 

potential in addressing complex urban challenges (Waykar & Yambal, 2025). By 
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leveraging advanced technologies such as GIS, simulation models, and data-driven 

platforms, planners can create more equitable, sustainable, and resilient cities. In the 

context of food deserts, these tools enable targeted interventions that improve food access, 

enhance community well-being, and promote long-term urban development (Attah et al., 

2024). 

2.23 The Role of Sustainable Urban Development in Equitable Food Access 

Sustainable urban development focuses on creating cities that are inclusive, resilient, and 

equitable while balancing economic, social, and environmental priorities (Bamigbelu & 

Adeyeye, n.d.; Kumar et al., 2024). Equitable food access is a critical component of this 

vision, as it addresses disparities in the availability and affordability of nutritious food 

across diverse populations (Neff et al., 2009; Weiler et al., 2015). The intersection of 

sustainable urban development and equitable food access highlights the need for holistic 

strategies that integrate land use planning, transportation, housing policies, and 

community-driven initiatives. This approach is essential for addressing food deserts, 

fostering social equity, and promoting long-term urban resilience (Khalatbari, 2024; Silver 

et al., 2017). 

Sustainable urban development refers to the design and management of cities in ways that 

meet the needs of current residents without compromising the ability of future generations 

to thrive (Camagni, 1998; Mersal, 2016). Key principles include efficient resource use, 

equitable access to essential services, and minimizing environmental impact. Food access 

is integral to this vision, as it ensures the health and well-being of urban populations while 
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supporting sustainable food systems (Caron et al., 2018; Ilieva, 2017; Lindgren et al., 

2018). 

Equity is central to sustainable urban development, ensuring that all residents—regardless 

of income, race, or geographic location—have access to basic needs such as housing, 

transportation, and food (Bullard, 2007). Research shows that inequities in food access 

disproportionately affect low-income and minority populations, particularly in urban areas 

where systemic disinvestment and segregation have created persistent food deserts (Walker 

et al., 2010). 

Zoning and land use policies significantly influence food access by determining where 

grocery stores, markets, and agricultural spaces can be located (Feldstein, 2012; Hubbard, 

2011). Traditional zoning practices have often prioritized commercial or industrial 

development over community-oriented spaces, exacerbating food access disparities in low-

income neighborhoods (Bodor et al., 2010). Sustainable urban development calls for 

mixed-use zoning that integrates residential areas with grocery stores, farmers’ markets, 

and community gardens, reducing the distance residents must travel to access healthy food 

(Raja et al., 2008). 

Urban agriculture is a sustainable land use strategy that contributes to equitable food access 

by bringing food production closer to consumers. Community gardens, rooftop farms, and 

vertical farming systems can transform underutilized urban spaces into sources of fresh 

produce (Horst et al., 2024a; Siegner et al., 2018). These initiatives not only increase food 
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availability but also foster community engagement, reduce food miles, and promote 

environmental sustainability (Pearson et al., 2011). 

Transportation is a critical factor in food access, particularly for residents of food deserts 

who often lack private vehicles (Coveney & O’Dwyer, 2009). Sustainable urban 

development emphasizes investments in public transit systems that connect underserved 

neighborhoods with grocery stores and markets. Transit-oriented development (TOD) 

strategies prioritize the co-location of food retail outlets near transit hubs, improving 

accessibility while reducing reliance on cars (Caspi et al., 2012). 

Active transportation modes, such as walking and biking, also play a role in equitable food 

access (Lee et al., 2017). Cities that invest in pedestrian-friendly infrastructure and bike 

lanes enable residents to reach grocery stores without the need for motorized transport 

(Lewis, 2024). Sustainable urban development integrates these modes into broader 

transportation planning, fostering healthier, more accessible cities (Litman, 2017). 

Sustainable urban development promotes the economic viability of food retail in 

underserved areas through policies such as tax incentives, grants, and public-private 

partnerships (Khalatbari, 2024). These measures encourage grocery stores and fresh food 

markets to operate in low-income neighborhoods, addressing the economic barriers that 

often deter investment (Cummins & Macintyre, 2006). The introduction of grocery stores 

in food deserts not only improves food access but also stimulates local economies by 

creating jobs and increasing property values (Berg & Murdoch, 2008). 
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Sustainable urban development recognizes the importance of community-driven solutions 

in addressing food access disparities (Khalatbari, 2024; Silver et al., 2017). Initiatives such 

as food cooperatives, mobile markets, and nutrition education programs empower residents 

to take an active role in improving their food environments (Bublitz et al., 2019). These 

approaches align with the principles of sustainability by fostering local leadership, building 

social capital, and ensuring long-term community resilience (Alaimo et al., 2008). 

Food waste is a significant challenge in urban food systems, with an estimated one-third of 

all food produced globally going to waste (Fao, 2019). Sustainable urban development 

incorporates strategies to minimize food waste, such as improved supply chain 

management, food recovery programs, and composting initiatives (Khalatbari, 2024; Silver 

et al., 2017). These efforts not only enhance food security but also reduce greenhouse gas 

emissions associated with waste disposal (Munesue et al., 2015). 

Local food systems are a cornerstone of sustainable urban development, as they reduce the 

environmental impact of food transportation and support regional economies (Capone et 

al., 2014). Farmers’ markets and community-supported agriculture (CSA) programs 

provide urban residents with access to fresh, locally grown produce while promoting 

sustainable farming practices (Feenstra, 2002). 

Detroit has emerged as a leader in urban agriculture, transforming vacant lots into 

productive community gardens and farms (Mogk et al., 2010). These initiatives have 

improved food access in one of the nation’s most prominent food deserts while fostering 

economic development and environmental sustainability (Colasanti et al., 2010). 
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Curitiba’s innovative transit system includes direct connections between low-income 

neighborhoods and fresh food markets (Gustafsson & Kelly, 2016). This model 

demonstrates how sustainable urban development can integrate transportation planning 

with food access, creating more equitable cities (Rabinovitch, 1996). 

Urban planners often face challenges in balancing food access with other priorities, such 

as housing, transportation, and economic development (Corburn, 2009). Ensuring that food 

access remains central to sustainable urban development requires strong advocacy and 

interdisciplinary collaboration (Litman, 2017). 

Evaluating the impact of sustainable urban development on food access requires robust 

metrics and data collection systems. Future research should focus on developing 

standardized indicators to assess progress and identify best practices (Pearson et al., 2011). 

Sustainable urban development offers a comprehensive framework for addressing food 

access disparities in urban areas (Javed et al., 2024; Wang et al., 2022). By integrating land 

use planning, transportation strategies, economic policies, and community-driven 

initiatives, cities can create equitable and resilient food systems. This approach not only 

addresses immediate challenges such as food deserts but also promotes long-term 

sustainability, ensuring that all residents have access to nutritious food (Silver et al., 2017). 

2.24 Integration of GIS and Machine Learning in Locational Analysis 

Geographic Information Systems (GIS) have become indispensable tools in the analysis 

and visualization of spatial data, particularly in the context of food access. GIS allows 
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researchers to map food deserts, analyze the spatial distribution of grocery stores, and 

identify areas where residents face significant barriers to accessing healthy food (Ver Ploeg 

et al., 2009). By integrating demographic data, transportation networks, and socioeconomic 

indicators, GIS provides a comprehensive understanding of the spatial dynamics that 

influence food accessibility (Caspi et al., 2012). 

GIS-based locational analysis has been used to conduct site suitability assessments, 

identifying potential locations for new grocery stores based on factors such as proximity to 

underserved populations, accessibility by public transportation, and compliance with 

zoning regulations (Case & Hawthorne, 2013; Erbaş et al., 2018). This approach enables 

decision-makers to prioritize investments in areas where new stores are most likely to have 

a positive impact on food access and community health (Rikalovic et al., 2014). 

Machine learning has emerged as a powerful tool for predictive modeling, offering new 

possibilities for identifying optimal locations for low-cost grocery stores. By analyzing 

large datasets on consumer behavior, demographics, and economic indicators, machine 

learning algorithms can predict areas with high demand for affordable food options (Han 

et al., 2022). These models can incorporate a wide range of variables, including population 

density, income levels, transportation networks, and existing store locations, to generate 

predictions that are both precise and actionable (Lu et al., 2024). 

Machine learning techniques such as regression models, decision trees, and neural 

networks have been successfully applied to retail site selection, providing insights that can 

guide the strategic placement of grocery stores (Ting & Jie, 2022). When combined with 
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GIS, machine learning enhances the accuracy of locational analysis by incorporating 

complex spatial relationships and predicting future trends in food demand (Yang et al., 

2015). 

The integration of GIS and machine learning in locational analysis follows a systematic 

methodological approach. Data collection involves gathering information on existing 

grocery store locations, demographic factors, transportation infrastructure, and 

socioeconomic indicators (Kovacs-Györi et al., 2020). GIS-based spatial analysis includes 

mapping food deserts, conducting site suitability analysis, and identifying areas with the 

greatest need for low-cost grocery stores (Kovacs-Györi et al., 2020; Ver Ploeg et al., 

2009). 

Machine learning involves data preprocessing, model selection, and training/validation 

processes using historical data (Han et al., 2022). The integration of GIS and machine 

learning entails combining spatial analysis with predictive modeling to create a 

comprehensive approach for determining optimal grocery store locations. 

Despite its potential, the application of GIS and machine learning in food desert research 

faces several challenges. Data quality and availability, particularly in rural areas, can pose 

significant obstacles to accurate analysis (Kovacs-Györi et al., 2020). Additionally, ethical 

considerations related to privacy and data security must be carefully managed. However, 

successes in using these technologies have been documented, with studies showcasing 

improved precision in identifying underserved areas and recommending optimal locations 

for new grocery stores (Han et al., 2022; Lu et al., 2024). 
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2.25 Summary and Research Gaps 

In summary, the literature highlights the critical role of food deserts in exacerbating health 

disparities and social inequalities, particularly in low-income areas. The economic and 

social impacts of accessible grocery stores are well-documented, underscoring the 

importance of ensuring that all communities have access to nutritious food. The application 

of GIS and machine learning offers promising avenues for addressing food deserts, 

providing data-driven insights that can guide the strategic placement of grocery stores 

(Almalki et al., 2021). 

However, there are still gaps in the existing literature, particularly concerning the 

integration of GIS and machine learning in the context of food deserts in Nebraska. Few 

studies have focused specifically on this state, despite its unique geographic and 

demographic challenges. This research aims to fill this gap by applying these advanced 

analytical tools to identify optimal grocery store locations in Nebraska, with the goal of 

improving food access and reducing health disparities. 
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CHAPTER III: METHODOLOGY 

3.1 Introduction 

Food insecurity and limited access to affordable, nutritious food remain pressing issues in 

many urban communities across the United States. In Omaha, Nebraska, several 

neighborhoods experience geographic and economic barriers to food access, making them 

vulnerable to the adverse health and socio-economic outcomes associated with food 

deserts. Addressing these disparities requires a multidisciplinary approach that leverages 

both spatial and predictive insights to inform policy and investment decisions. 

This study focuses on identifying optimal locations for low-cost grocery stores in Omaha, 

with the overarching goal of improving access to healthy food in underserved areas. To 

achieve this, the research adopts a dual-method strategy, combining Geographic 

Information Systems (GIS) with machine learning techniques. GIS provides a robust 

platform for mapping spatial inequalities, analyzing proximity to grocery stores, and 

evaluating transit access. Meanwhile, machine learning enables predictive modeling based 

on a range of socio-economic, demographic, and health-related factors. This integration 

ensures that both the “where” and the “why” of food access disparities are thoroughly 

examined. 

The methodological framework was intentionally designed to be both rigorous and 

replicable, ensuring that the findings are not only academically sound but also applicable 

to real-world urban planning and public health efforts. Each step—from data acquisition to 

model integration—was carefully structured to align with the study’s research objectives 

and to support evidence-based decision-making. 
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Ultimately, this methodology chapter outlines how spatial data, socio-economic indicators, 

and predictive analytics were combined to develop a comprehensive model for improving 

food access. It presents the rationale for the mixed-methods approach, details the data 

sources and processing methods, and describes the analytical techniques used to identify, 

visualize, and evaluate potential grocery store locations. This integrated approach ensures 

that the findings of this study are both analytically valid and socially impactful, 

contributing meaningful insights for planners, policymakers, and community advocates. 

3.2 Research Framework and Design 

This research was executed in four sequential phases, each building upon the previous to 

develop a robust, data-driven understanding of grocery access challenges and solutions in 

Omaha. 

The first phase focused on spatial analysis using GIS to identify food deserts and reveal 

demographic and socio-economic patterns. In the second phase, the current distribution of 

grocery stores was examined to evaluate accessibility and detect service gaps. The third 

phase involved developing a predictive model using machine learning techniques, allowing 

for the identification of optimal store locations based on socio-economic indicators and 

spatial factors. The final phase evaluated the potential impact of proposed store locations 

on food accessibility and community well-being. 
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A mixed-methods approach was adopted to harness the complementary strengths of spatial 

analysis and machine learning. GIS provided the means to map and visualize geographic 

disparities in food access, enabling identification of underserved areas with precision. In 

parallel, machine learning facilitated predictive modeling based on historical and socio-

economic data, enhancing the robustness of site selection for new grocery stores. This 

combination of methods ensured both empirical rigor and real-world applicability 

(Creswell & Clark, 2017). 

3.3 Data Collection and Preparation 

To support the research objectives, a diverse array of spatial, demographic, health, and 

infrastructural data was gathered and processed. The integration of data from multiple 

sources was critical in ensuring a comprehensive analysis of food accessibility in Omaha. 

This section outlines the specific data sources, the methods used for data acquisition, and 

the preprocessing steps taken to ensure analytical readiness. 

Data was collected from several reliable sources. Demographic data, including population 

density, income levels, and racial/ethnic composition, were obtained from both the Bureau 

(2020) and city-data.com neighborhood maps (City-Data, 2024). Spatial data on grocery 

store locations was extracted using OpenStreetMap’s Overpass API via the OSMnx Python 

library, which allowed for querying grocery store locations in Omaha, Nebraska (Boeing, 

2017). Health and socio-economic indicators were sourced from the City Health Dashboard 

cityhealthdashboard.com (Gourevitch et al., 2019), providing neighborhood-level metrics 

on access, health outcomes, and socio-demographic profiles. 

http://www.city-data.com/
http://www.cityhealthdashboard.com/
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GIS layers, such as neighborhood boundaries, were also obtained using Python scripts with 

OSMnx and GeoPandas libraries, which facilitated the retrieval and processing of spatial 

geometries for neighborhoods in Omaha. Transportation data, including public transit 

platforms, was extracted using the Overpass API through Python’s overpy library, which 

queried nodes tagged with "public_transport=platform" for the Omaha area. 

Spatial datasets were programmatically extracted using Python tools such as OSMnx, 

GeoPandas, and Overpy. The OSMnx library was used to query grocery store locations and 

street network data from OpenStreetMap. Neighborhood geometries were fetched 

individually using a looped geocoding method that retrieved polygon boundaries for each 

neighborhood. Public transportation nodes were retrieved via Overpass API using Overpy 

and processed into a structured dataset. Demographic and socio-economic data were 

downloaded from City-Data.com and the City Health Dashboard, while population 

estimates and household information were obtained from the U.S. Census Bureau. Data 

accuracy was ensured through cross-verification and by aligning data points across sources 

for completeness (Babbie, 2020). 

The preprocessing stage involved cleaning datasets by addressing missing values, 

standardizing formats, and geocoding relevant fields. All datasets were then merged into a 

unified geospatial framework using Python, enabling subsequent analysis in both spatial 

and statistical environments. This unified structure supported efficient integration of 

machine learning outputs with geographic insights. 



 
 

90 

3.4 GIS Analysis 

GIS techniques were used to identify food deserts based on USDA criteria—areas where 

residents live over one mile from a grocery store and fall below income thresholds 

(Reynolds Jr et al., 2024). Network-based calculations in OSMnx assessed distances, while 

demographic overlays identified vulnerable neighborhoods. 

Spatial visualizations of grocery store locations were generated using OSM data. Density 

mapping highlighted coverage gaps across Omaha. Accessibility was analyzed from both 

road and transit perspectives. Driving access was measured using OSMnx-derived 

networks, while public transit access was visualized with 15-minute buffers around grocery 

stores using Overpy transit nodes. 

3.5 Machine Learning Predictive Modeling 

Several models were evaluated—linear regression for estimating demand, decision trees 

and random forests for classifying underserved areas, and neural networks to capture 

complex relationships (Géron, 2022). These varied approaches enabled both predictive and 

classification tasks. 

Key predictive features included population density, median household income, proximity 

to public transit, existing grocery store density, and various health and socio-economic 

indicators from the City Health Dashboard. Feature engineering techniques were applied 

to transform raw data into inputs suitable for modeling, including normalization and 

categorical encoding. The models were trained on historical and spatial data, including 

features derived from grocery store distribution and health indicators. Cross-validation and 
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holdout validation were employed to assess model generalizability. Performance metrics 

such as R-squared, mean squared error (MSE), and classification accuracy were used to 

evaluate effectiveness (McCarthy et al., 2022). 

3.6 Integration of GIS and Machine Learning 

The power of this study lies in the integration of spatial analysis and machine learning to 

guide location decisions for new grocery stores. GIS provided the geographical context, 

while machine learning uncovered patterns and predictive insights from the data. This 

section explains how these methods were combined to deliver a coherent decision-making 

framework.  

GIS outputs and machine learning predictions were integrated to form a holistic spatial 

decision-making tool. Predicted high-demand areas were overlaid onto GIS maps to 

visualize spatial inequalities and propose new store placements. This integration provided 

both predictive insight and geographic specificity.  

Visualization played a critical role in communicating findings. GIS-based maps were 

generated to show underserved areas, model predictions, and potential store locations. 

These maps offered intuitive understanding of access challenges and served as 

communication tools for stakeholders. 

3.7 Evaluation of Proposed Grocery Store Locations 

Once optimal store locations were predicted, the next step was to evaluate their practical 

impact and feasibility. This section focuses on simulating the potential changes in access 
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and conducting a cost-benefit analysis to assess the sustainability and equity implications 

of the proposed solutions. 

The proposed grocery store locations were evaluated using simulation techniques. These 

simulations measured changes in travel distance to the nearest grocery store, the number 

of residents gaining access, and the reduction in food desert zones. The impact analysis 

quantified the tangible benefits of each location. 

Feasibility of proposed store placements was evaluated through a cost-benefit lens. Key 

considerations included potential operational costs, estimated revenue, improvements in 

food accessibility, and possible reductions in health expenditures linked to better nutrition. 

This ensured the recommendations were both economically viable and socially impactful. 

3.8 Summary 

This chapter presented a comprehensive, step-by-step methodology for addressing food 

accessibility challenges in Omaha, Nebraska. Through the integration of Geographic 

Information Systems (GIS) and machine learning, the study employed a mixed-methods 

approach to identify and evaluate optimal locations for low-cost grocery stores. The 

methodology was carefully designed to align with the research objectives, ensuring that the 

analysis was not only methodologically sound but also practically relevant to the urban 

context. 

A foundational aspect of the methodology was the strategic collection and preprocessing 

of spatial, demographic, health, and transportation data. By leveraging open-source tools 
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and authoritative data sources such as OpenStreetMap, the U.S. Census Bureau, and the 

City Health Dashboard, the study built a robust dataset that accurately reflected the 

multifaceted nature of food access. These datasets were then integrated into a unified 

geospatial framework, enabling detailed spatial analysis and supporting predictive 

modeling. 

GIS tools were instrumental in identifying food deserts and visualizing disparities in 

grocery store accessibility. Network-based distance calculations, transit access mapping, 

and demographic overlays allowed for a nuanced understanding of geographic inequities. 

In parallel, machine learning models—such as random forests and regression analysis—

were applied to predict areas of unmet demand and to simulate the impact of proposed store 

locations. This combination of spatial visualization and predictive insight provided a 

multidimensional view of Omaha’s food access landscape. 

The final stages of the methodology included simulation-based evaluations and cost-

benefit analyses, which were critical in assessing the real-world viability of the proposed 

solutions. These components ensured that the recommendations extended beyond 

theoretical modeling to incorporate social and economic feasibility. By focusing on both 

the geographic and socio-economic dimensions of food access, the methodology supports 

a holistic and actionable framework for decision-makers. 

In summary, this methodology serves as a replicable model for integrating spatial analytics 

and predictive modeling in urban planning and public health research. It demonstrates how 
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data-driven approaches can inform equitable development strategies, ultimately 

contributing to a more just and nutritious food environment for underserved populations. 
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CHAPTER IV: RESULTS 

4.1 GIS Analysis 

This section presents the results of the GIS analysis, which focused on identifying food 

deserts in Omaha based on key demographic and health indicators, as well as examining 

the spatial distribution of grocery stores and their accessibility via public transit. The results 

provide critical insight into the relationship between neighborhood characteristics and food 

accessibility. 

4.1.1 Definition of Food Deserts 

 
Food deserts in this study were operationally defined using two criteria: neighborhoods 

with a median household income below $60,000 and an obesity rate exceeding 30%. These 

thresholds were selected to reflect both economic hardship and associated public health 

risks. 

A GIS-based analysis was performed to identify neighborhoods meeting both criteria. The 

results are summarized in Table 1. Five neighborhoods—Benson, Cathedral, Downtown, 

Keystone, and North Omaha—were identified as food deserts based on this definition. A 

spatial map (Figure 1) highlights these neighborhoods in red, visually indicating their food 

desert status and illustrating the concentration of these areas in specific parts of the city. 
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Table 1:  Food Deserts Identified Based on Income and Obesity Rate 
Neighborhood Median Household 

Income 

Obesity Rate Food Desert 

Status 

Benson $45,783 35.3% Yes 

Cathedral $47,073 31.4% Yes 

Downtown $48,362 32.1% Yes 

Keystone $54,180 35.4% Yes 

North Omaha $53,225 46.2% Yes 

 

A map was generated highlighting these neighborhoods in red, indicating their food desert 

status. The analysis revealed significant overlap between low-income areas and high 

obesity rates. 

4.1.2 Spatial Distribution of Grocery Stores 

To further understand food accessibility, the spatial distribution of grocery stores was 

analyzed. The analysis revealed a significant concentration of grocery stores in central 

Omaha, with sparse availability in the northern and western neighborhoods, which notably 

align with the food desert zones. 
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Figure 1 displays the spatial layout of grocery stores overlaid on the identified food deserts. 

The observed mismatch between grocery store locations and high-need neighborhoods 

suggests spatial inequities in food access. 

Additionally, Table 2 presents the comparison between transit accessibility and food desert 

status. While some food deserts like Cathedral and Downtown are served by transit, 

neighborhoods such as Keystone and North Omaha lack sufficient public transportation 

access, further compounding food accessibility issues. Figure 2 visualizes these results. 

Figure 1: Spatial Distribution of Grocery Stores 
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Table 2: Transit Accessibility and Food Desert Status 
Neighborhood Transit Accessible Food Dessert Status 

Benson Yes Yes 

Cathedral Yes Yes 

Downtown Yes Yes 

Keystone No Yes 

North Omaha No Yes 

 

Figure 2: Transit Accessibility and Food Desert Status 
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4.2 Machine Learning Predictive Modeling 

This section outlines the performance of various machine learning models used to predict 

food desert status based on neighborhood characteristics. The models included Logistic 

Regression, Regularized Decision Tree, Random Forest, and Neural Network classifiers. 

4.2.1 Performance Summary 

The predictive performance of each model was evaluated using standard metrics: accuracy, 

precision, recall, and F1-score. As shown in Table 3, the Regularized Decision Tree and 

Random Forest models achieved perfect classification, indicating strong predictive power 

for identifying food desert status. Logistic Regression and the Neural Network 

underperformed in comparison. 

 Table 3: Machine Learning Model Performance Metrics 
Model Accuracy Precision Recall F1-Score Macro 

Avg F1-

Score 

Logistic 

Regression 

67% 0.50 1.00 0.67 0.67 

Regularized 

Decision 

Tree 

100% 1.00 1.00 1.00 1.00 

Random 

Forest 

100% 1.00 1.00 1.00 1.00 
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Neural 

Network 

64.29% 0.50 0.40 0.44 0.59 

 

4.3 Predicting Grocery Demand 

To estimate where grocery store interventions would be most beneficial, a grocery demand 

metric was developed by multiplying each neighborhood’s food desert probability (from 

the Random Forest model) by its population density. 

The results, presented in Table 4, indicate that Cathedral and Downtown have the highest 

predicted demand, followed by Benson, North Omaha, and Keystone. Figure 3 shows the 

distance to the nearest grocery stores, while Figure 4 visually represents predicted demand 

across neighborhoods. 

Table 4: Predicted Grocery Demand for Food Deserts 
Neighborhood Food Desert 

Probability 

Population Density 

(per sq mile) 

Predicted Grocery 

Demand 

Cathedral 0.97 16023 15542 

Downtown 0.91 5810 5287 

Benson 0.78 4737 3695 

North Omaha 0.9 3309 2978 

Keystone 0.84 2733 2296 
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Figure 3: Distance to Nearest Grocery Stores 
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Figure 4: Predicted Grocery Demand for Food Deserts 
  

4.4 Evaluation of Proposed Grocery Store Locations 

Based on the demand analysis, five neighborhoods were selected for simulated grocery 

store placement. These were Cathedral, Downtown, Benson, North Omaha, and Keystone. 

Simulations were conducted to assess changes in travel distance to the nearest grocery 

store. 

The results in Table 5 show a complete elimination of travel distance (in degrees) for the 

selected neighborhoods following simulated store placement. This demonstrates the 

potential effectiveness of targeted interventions. Figure 5 visualizes these changes. 
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 Table 5: Changes in Travel Distance Before and After Simulated Store Placement 

 Neighborhood Predicted Grocery 

Demand 

Travel Distance 

Before (degrees) 

Travel Distance 

After (degrees) 

Cathedral 15542 0.00901 0 

Downtown 5287 0.00623 0 

Benson 3695 0.0207 0 

North Omaha 2978 0.0125 0 

Keystone 1400 0.0184 0 
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 Figure 5: Changes in Travel Distance to Nearest Grocery Store After Adding Simulated 

Stores 

4.5 Cost-Benefit Analysis 

To determine the financial feasibility of constructing new grocery stores, a cost-benefit 

analysis was performed. It was estimated that each store would cost $2 million to build. 

The anticipated benefits per store, accounting for reductions in obesity rates, healthcare 

costs, job creation, and local economic stimulation, were valued at $5 million. 

Table 6 summarizes the financial analysis. With five stores, the total investment would 

amount to $10 million, while total projected benefits would reach $25 million, yielding a 

net benefit of $15 million. Figure 6 illustrates the comparison between costs and benefits. 
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 Table 6: Cost and Benefit Estimates for Grocery Store Intervention 
Metric Value 

Cost per New Store $2M 

Total Cost (5 stores) $10M 

Benefit per Store $5M 

Total Benefit (5 stores) $25M 

Net Benefit $15M 

 

A bar chart was generated comparing the total costs and benefits, clearly indicating a 

positive net benefit of $15million. 

 
Figure 6: Cost-Benefit Analysis 
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4.6 Summary of Results 

The analysis revealed several key findings. First, five neighborhoods in Omaha were 

confirmed as food deserts based on income and obesity thresholds. GIS analysis showed 

that these areas lacked sufficient access to grocery stores and public transit. Machine 

learning models—particularly Random Forest and Decision Tree—accurately predicted 

food desert status, and were used to forecast grocery demand. 

Simulations demonstrated that placing new grocery stores in high-demand neighborhoods 

would eliminate travel barriers. Finally, the cost-benefit analysis showed a $15 million net 

gain, validating the economic viability of the intervention. These findings support a 

strategic approach to enhancing food accessibility and health equity in Omaha. 
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CHAPTER V: DISCUSSION 

5.1 Interpretation of Key Findings 

The results presented in Chapter 4 provided critical insights into food deserts in Omaha, 

with a focus on neighborhood accessibility, grocery demand, and the potential impact of 

strategic interventions. This chapter discusses these results in relation to existing literature 

and their implications for urban planning and public health. 

5.1.1 Identification of Food Deserts 

Food deserts in Omaha were defined using criteria that included a median household 

income below $60,000 and an obesity rate exceeding 30%. These indicators are often used 

in public health studies to assess food access disparities. The identification of Benson, 

Cathedral, Downtown, Keystone, and North Omaha as food deserts aligns with the findings 

of several studies (Chaparro et al., 2022; Ma et al., 2016; McInerney et al., 2016; Wilcox 

et al., 2020), emphasizing the correlation between socioeconomic status and limited food 

access. 

The identification of these food deserts highlights systemic issues within the city’s food 

distribution network, such as lower investment in grocery infrastructure in economically 

disadvantaged areas. This mirrors findings from (Walker et al., 2010) and Alkon (2011), 

who emphasized that lower-income communities are often underserved by healthy food 

retailers 
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5.1.2 Spatial Distribution of Grocery Stores 

The spatial analysis revealed a concentration of grocery stores in central Omaha, leaving 

the northern and western regions significantly underserved. This geographic imbalance 

suggests a disparity in food access infrastructure, which could lead to increased reliance on 

processed and convenience foods in underserved areas, as previously noted by (Larson et 

al., 2009). 

This pattern can also be linked to historical urban planning decisions where wealthier areas 

attract more commercial investments, including grocery stores. The centralization of 

grocery stores in wealthier districts underscores the need for policy interventions targeting 

equitable food distribution, such as incentives for grocery store placement in underserved 

areas (Alkon, 2011; Walker et al., 2010). 

5.1.3 Accessibility and Transit Analysis 

The analysis further highlighted that Keystone and North Omaha were both food deserts 

and transit inaccessible. This finding is significant as it compounds food insecurity with 

mobility challenges, making it difficult for residents to access grocery stores even when 

available in neighboring areas. (Su et al., 2017) documented similar challenges in urban 

areas, emphasizing how transit accessibility directly influences food security.  

Limited transit options restrict residents from accessing healthy food, exacerbating issues 

related to nutrition and chronic diseases. Urban planners must consider integrated 
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approaches, such as expanding transit routes to underserved areas or implementing mobile 

grocery stores as a short-term solution (Ver Ploeg et al., 2009). 

5.2 Machine Learning Model Performance 

A comparative analysis of multiple machine learning models was conducted to predict food 

desert classification. The models included Logistic Regression, Regularized Decision Tree, 

Random Forest, Neural Networks, and K-Means Clustering. 

Logistic Regression achieved a moderate accuracy of 67% with perfect recall for the food 

desert class but lower precision (0.5). This result suggests that while the model identified 

all food desert areas correctly, it also produced a high rate of false positives. Logistic 

Regression’s linear nature often limits its ability to capture complex patterns in data, a 

limitation noted in applied health research by Hosmer Jr et al. (2013). 

The Regularized Decision Tree and Random Forest models achieved perfect classification 

results, with an accuracy of 100%. These models performed exceptionally well due to their 

ability to handle non-linear relationships and complex decision boundaries. Breiman 

(2001) emphasized that ensemble methods like Random Forests are particularly effective 

for classification tasks where patterns are difficult to discern. 

The Neural Network model underperformed with an accuracy of 64.29%, limited by its 

lower recall and precision metrics. Neural Networks often require larger datasets and 

extensive hyperparameter tuning to reach optimal performance, as described by Hinton et 
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al. (2012). In this study, the dataset size and complexity may have constrained the Neural 

Network's effectiveness. 

5.3 Implications for Food Security Interventions 

The identification of food deserts and high-demand neighborhoods in Omaha provides a 

strong foundation for informed intervention strategies. These findings present several 

implications for both food security interventions and municipal policy. 

Targeted grocery store placement should be a priority, particularly in neighborhoods such 

as Cathedral, Downtown, and Benson, which showed the highest levels of unmet demand. 

These areas not only meet the criteria for food deserts but also possess the population 

densities necessary to support sustainable store operations. 

The cost-benefit analysis reinforces the feasibility of such interventions, projecting a 

positive net benefit of $15 million. This aligns with existing literature that associates 

improved food access with better health outcomes, decreased obesity rates, and wider 

economic benefits (Alkon, 2011; Walker et al., 2010). 

To encourage grocery store development in these areas, Omaha policymakers could 

implement policy incentives, including tax credits or subsidies, to reduce barriers to market 

entry for retailers (Ver Ploeg et al., 2009). Additionally, multimodal transportation 

solutions—such as expanding bus routes and piloting mobile grocery initiatives—could 

offer immediate relief while permanent infrastructure is established. 
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In terms of broader policy measures, several avenues are worth pursuing. Zoning policies 

may need to be revised to facilitate the establishment of grocery stores in currently 

underserved neighborhoods. Adjustments to zoning ordinances can ease restrictions and 

streamline the process for grocery store development. 

Public-private partnerships should also be considered. By aligning city objectives with the 

interests of grocery chains, collaborative ventures can be formed to extend grocery services 

into underserved regions. These partnerships can include co-financing, land allocation, or 

shared logistics networks (Fan et al., 2017). 

Furthermore, targeted grants and subsidies could provide much-needed financial support 

to retailers willing to operate in high-need communities. These incentives could lower 

initial capital costs and improve the long-term financial viability of grocery stores in these 

areas. 

Transportation infrastructure plays a pivotal role in accessibility. Improvements in public 

transit routes would enable more residents from food deserts to access existing grocery 

locations, reducing dependency on car ownership and increasing mobility for low-income 

populations. 

Finally, community-based solutions should complement structural interventions. Urban 

agriculture projects, community gardens, and regular farmers’ markets can help improve 

access to fresh produce while also fostering local empowerment and sustainability. 
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Together, these strategies highlight a comprehensive policy response to food insecurity in 

Omaha, combining economic, infrastructural, and community-driven approaches to ensure 

that all residents have reliable access to nutritious food. 

The findings from this study offer several policy implications that can guide Omaha’s 

approach to reducing food deserts and enhancing food security. 

First, revisiting zoning regulations may help facilitate the establishment of grocery stores 

in underserved areas. Amending these policies can lower barriers for entry by making land 

acquisition and permitting more accessible (Larson et al., 2009). 

Second, fostering public-private partnerships between the city and private grocery chains 

could expand service areas. Collaborations of this nature could include co-investment in 

store development or shared logistics and delivery infrastructure (Fan et al., 2017). 

Third, offering targeted grants and subsidies may further incentivize grocery retailers to set 

up operations in food deserts. These incentives can lower initial setup costs and help sustain 

long-term viability. 

Improving the city’s public transit infrastructure is another critical step. Enhanced transit 

routes can ensure that residents in food desert areas have reliable access to grocery options, 

thereby increasing mobility and reducing geographic barriers. 

Lastly, complementary community-based solutions such as urban farming initiatives and 

local farmers’ markets should be promoted. These efforts can empower communities, 

improve access to fresh produce, and reduce reliance on external food systems. 
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Together, these policy recommendations present a multi-pronged approach to addressing 

food deserts in Omaha, with potential to significantly improve both health outcomes and 

community resilience. 

The analysis revealed several key findings. First, five neighborhoods in Omaha were 

confirmed as food deserts based on income and obesity thresholds. GIS analysis showed 

that these areas lacked sufficient access to grocery stores and public transit. Machine 

learning models—particularly Random Forest and Decision Tree—accurately predicted 

food desert status, and were used to forecast grocery demand. 

Simulations demonstrated that placing new grocery stores in high-demand neighborhoods 

would eliminate travel barriers. Finally, the cost-benefit analysis showed a $15 million net 

gain, validating the economic viability of the intervention. These findings support a 

strategic approach to enhancing food accessibility and health equity in Omaha. 

 

 

 

 

 



 
 

114 

CHAPTER VI: CONCLUSION, AND RECOMMENDATIONS 

6.1 Conclusion 

This study investigated the spatial and socio-economic dimensions of food insecurity in 

Omaha, Nebraska, through the integration of Geographic Information Systems (GIS) and 

machine learning techniques. By defining food deserts using criteria based on median 

household income and obesity rates, the research identified key neighborhoods—Benson, 

Cathedral, Downtown, Keystone, and North Omaha—as areas most impacted by limited 

access to healthy food options. These findings were further contextualized through analysis 

of public transit availability, which revealed that limited transportation access exacerbates 

food insecurity in these communities. 

Spatial analysis confirmed that grocery stores are disproportionately concentrated in 

central Omaha, while many outlying neighborhoods remain underserved. Predictive 

modeling using Random Forest and Regularized Decision Tree methods successfully 

identified areas of high grocery demand and achieved perfect classification accuracy, 

demonstrating the strength of data-driven approaches in addressing complex urban 

planning challenges. 

The study concluded that Cathedral, Downtown, and Benson exhibit the highest levels of 

unmet grocery demand. When combined with a cost-benefit analysis revealing a net benefit 

of $15 million for targeted grocery store placements, the findings support the economic 

viability of strategic food access interventions. These outcomes emphasize the importance 
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of incorporating machine learning and spatial analysis into public policy and urban 

development practices. 

Ultimately, the study proposes a holistic framework that merges technological innovation, 

policy reform, and community engagement to promote food equity. Addressing food 

deserts is not only a matter of social justice but also a critical step toward creating resilient, 

healthy urban communities. Ongoing monitoring and flexible policy adaptations will be 

essential for maintaining progress in a dynamic socio-economic environment. 

6.2 Recommendations 

Based on the findings of this study, a number of policy, planning, and evaluation strategies 

are proposed to address food insecurity in Omaha more effectively. 

One of the most impactful steps the city can take is to amend zoning regulations to 

encourage grocery store development in underserved neighborhoods. This could include 

measures such as expedited permits, tax abatements, and mandates for a minimum ratio of 

grocery stores relative to population density in urban planning policies. 

Strengthening public-private partnerships is also essential. The city can collaborate with 

grocery store chains and offer incentives such as grants or low-interest loans to offset 

startup costs in high-need areas. These partnerships should be structured around shared risk 

models that promote mutual benefit and long-term sustainability. 

Transit infrastructure plays a pivotal role in food access. Improving public transit routes to 

better connect food deserts with existing grocery stores is necessary. This may include 
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expanding bus routes, adding stops near grocery locations, and integrating ride-share 

services within the city’s broader transportation system. 

Additionally, fostering strong community engagement programs can ensure that food 

access strategies are resident-informed. Local communities should be actively involved in 

the design and implementation of food security initiatives. Establishing community 

advisory boards would provide ongoing feedback and promote long-term trust in city-led 

interventions. 

Urban planners should prioritize placing grocery stores in high-demand neighborhoods 

identified in this study—Cathedral, Downtown, and Benson. Predictive models should 

guide this process to ensure demand is continually monitored and resources are optimally 

allocated. These grocery stores should also be responsive to the cultural and dietary 

preferences of the communities they serve. 

In the short term, mobile grocery stores offer a flexible solution for addressing food access 

gaps. They can serve as pilot programs for evaluating demand before permanent 

infrastructure is developed. 

Local food systems can be further supported through urban farming initiatives and farmers' 

markets, which provide access to fresh produce while creating economic opportunities. 

Schools and community centers can incorporate urban agriculture into educational 

programming to promote sustainability and food literacy. 
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A robust, city-wide food security monitoring system should be established using GIS and 

machine learning tools. This system should include real-time dashboards accessible to both 

policymakers and community stakeholders, and data should be updated regularly to reflect 

changing conditions. 

Ongoing sensitivity analyses will help evaluate the robustness of food access strategies 

under varying socioeconomic and demographic conditions. These assessments ensure that 

solutions remain effective and adaptable over time. 

Partnerships with academic institutions can enhance data analysis and planning efforts. 

Universities and research centers offer valuable expertise and the potential to engage 

students in applied research and community projects. 

Educational programs are critical to supporting food access infrastructure. City-wide 

campaigns should promote the importance of healthy eating and provide guidance on 

accessing nutritious, affordable food. Delivery channels may include schools, community 

centers, and social media platforms. 

Workshops hosted in food desert neighborhoods can offer hands-on training in meal 

planning, cooking, and budgeting. These workshops should also inform residents about 

local food programs and cost-effective strategies for healthy living. 
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6.3 Future Research Directions 

Looking forward, future research should aim to evaluate the long-term impacts of grocery 

store placement on community health and development. Longitudinal studies could track 

changes in obesity, healthcare costs, and neighborhood economic activity. 

Future analyses should also expand to include additional variables such as food prices, 

cultural food preferences, and sustainability metrics to enhance the multidimensional 

understanding of food insecurity. 

Comparative studies using the methods applied in this research can help identify regional 

similarities and differences, providing insights into the scalability of interventions. 

Emerging technologies such as AI and big data analytics offer opportunities to refine food 

desert identification and predictive modeling. Researchers might also explore the use of 

blockchain for improving transparency in grocery supply chains. 

Lastly, further investigation into the specific impacts of policy interventions—such as 

zoning changes or tax incentives—can guide more effective policymaking. Cost-benefit 

analyses of these strategies will strengthen the evidence base for addressing food insecurity 

through targeted, data-informed solutions. 

To ensure the long-term success and adaptability of food security interventions, a robust 

system for data-driven monitoring and evaluation is recommended. Establishing a city-

wide food access monitoring platform that integrates GIS and machine learning tools 
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would allow for real-time tracking of food insecurity trends. Dashboards can be developed 

to provide accessible insights to policymakers and community stakeholders. 

Conducting regular sensitivity analyses will help evaluate how different socioeconomic 

and demographic conditions affect the performance of implemented strategies. This 

approach will ensure that solutions remain effective over time, even as community contexts 

evolve. 

Collaboration with academic institutions can further enhance the city’s capacity for data 

analysis and strategic planning. Local universities and research centers offer expertise and 

student engagement opportunities that can contribute meaningfully to data collection, 

evaluation, and community outreach. 

6.4 Final Remarks 

This research underscores the vital role that interdisciplinary strategies play in tackling 

food insecurity. By combining spatial analysis, predictive modeling, and cost evaluation, 

the study offers a replicable model for cities aiming to improve equitable access to 

nutritious food. The recommendations proposed provide practical steps for policymakers, 

urban planners, and community stakeholders to drive meaningful change. 

Efforts to mitigate food deserts must be sustained through collaboration, innovation, and 

an unwavering commitment to equity. Ensuring access to healthy food should be 

recognized not just as a public health goal, but as a foundational pillar of economic 

development and community well-being. With coordinated action, Omaha—and cities 
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facing similar challenges—can move closer to becoming inclusive environments where all 

residents have the resources they need to thrive. 
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APPENDIX A: PYTHON SCRIPT FOR OMAHA NEIGHBORHOODS 

DEMOGRAPHIC DATA WEB SCRAPPING 
 

import requests 

from bs4 import BeautifulSoup 

import pandas as pd 

# URL of the website to scrape 

url = "https://www.city-data.com/nbmaps/neigh-Omaha-Nebraska.html" 

# Send a GET request to the website 

response = requests.get(url) 

soup = BeautifulSoup(response.text, "html.parser") 

# Initialize an empty list to store the data 

neighborhoods_data = [] 

# Find all neighborhood sections 

neighborhoods = soup.find_all('div', class_='neighborhood') 

# Loop through each neighborhood to extract its data 

for neighborhood in neighborhoods: 

    data = {} 

   # Neighborhood Name 

    name_tag = neighborhood.find('span', class_='street-name') 

    if name_tag: 

        data['Neighborhood'] = name_tag.text.strip() 
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    # Area 

    area_tag = neighborhood.find(text='Area:') 

    if area_tag: 

        data['Area (sq miles)'] = area_tag.next.strip().split()[0] 

  # Population 

    population_tag = neighborhood.find(text='Population:') 

    if population_tag: 

        data['Population'] = population_tag.next.strip().replace(',', '') 

   # Population Density 

    pop_density_tag = neighborhood.find(text='Population density:') 

    if pop_density_tag: 

        data['Population Density (per sq mile)'] = 

pop_density_tag.find_next('td').find_next('td').text.split('people')[0].strip().replace(',', '') 

       #Median Household Income 

    income_tag = neighborhood.find(text='Median household income in 2021: ') 

    if income_tag: 

        data['Median Household Income (2021)'] = 

income_tag.find_next('td').find_next('td').text.split('people')[0].strip().replace(',', '') 

      # Median Rent 

    rent_tag = neighborhood.find(text='Median rent in in 2021:') 

    if rent_tag: 

        rent_info = rent_tag.find_next('td').text.strip('$').replace(',', '') 
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        data['Median Rent (2021)'] = rent_info 

     

    # Male Population 

    male_tag = neighborhood.find(text='Males:') 

    if male_tag: 

        data['Male Population'] = male_tag.find_next('td').text.replace(',', '') 

      # Female Population 

    female_tag = neighborhood.find(text='Females:') 

    if female_tag: 

        data['Female Population'] = female_tag.find_next('td').text.replace(',', '') 

   # Median Age (Males and Females) 

    median_age_male_tag = neighborhood.find(text='Median 

age').find_next(text='Males:') 

    if median_age_male_tag: 

        data['Median Age (Males)'] = median_age_male_tag.find_next('td').text.split()[0] 

     

    median_age_female_tag = neighborhood.find(text='Median 

age').find_next(text='Females:') 

    if median_age_female_tag: 

        data['Median Age (Females)'] = 

median_age_female_tag.find_next('td').text.split()[0] 

    # Convert the list of dictionaries into a DataFrame 
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df = pd.DataFrame(neighborhoods_data) 

 

    # Housing Prices 

    detached_houses_tag = neighborhood.find(text='Average estimated value of detached 

houses in 2021') 

    if detached_houses_tag: 

        detached_info = detached_houses_tag.find_next('td').text.strip('$').replace(',', '') 

        data['Avg Value of Detached Houses (2021)'] = detached_info 

     

    townhouses_tag = neighborhood.find(text='Average estimated value of townhouses or 

other attached units in 2021') 

    if townhouses_tag: 

        townhouse_info = townhouses_tag.find_next('td').text.strip('$').replace(',', '') 

        data['Avg Value of Townhouses (2021)'] = townhouse_info 

     

    # Add all the extracted data to the list 

    neighborhoods_data.append(data) 

 

import os 

import pandas as pd 

# Specify the folder and file name 

folder_path = 'C:/Users/fisay/OneDrive/Desktop/DBA SSBM' 
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file_name = 'demographics.xlsx' 

file_path = f'{folder_path}/{file_name}' 

 

# Export to CSV 

df.to_excel(file_path, index=False) 

print(f"File saved to: {file_path}") 
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APPENDIX B: PYTHON SCRIPT FOR OMAHA GROCERY STORES 

EXTRACTION 

import osmnx as ox 

import pandas as pd 

# Define the area (Omaha) 

place_name = "Omaha, Nebraska, USA" 

# Query for grocery stores 

tags = {"shop": "supermarket"}  # Tag for grocery stores 

grocery_stores = ox.features_from_place(place_name, tags) 

# Display the results 

grocery_stores 
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APPENDIX C: PYTHON SCRIPT FOR OMAHA TRANSIT STOPS 

EXTRACTION 

import overpy 

import pandas as pd 

import time 

 

# Initialize Overpass API 

api = overpy.Overpass() 

 

# Define the Overpass API query for transit stops 

query = """ 

[out:json]; 

area[name="Omaha"]->.searchArea; 

node["public_transport"="platform"](area.searchArea); 

out body; 

""" 

 

# Retry logic for handling errors or incomplete reads 

def fetch_overpass_data(query, retries=3): 

    for attempt in range(retries): 

        try: 

            return api.query(query) 

        except Exception as e: 

            print(f"Error fetching data: {e}") 

            if attempt < retries - 1: 
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                print("Retrying...") 

                time.sleep(5)  # Wait before retrying 

            else: 

                raise 

 

# Fetch data from Overpass API 

print("Fetching transit stops data from Overpass API...") 

result = fetch_overpass_data(query) 

print("Data fetched successfully.") 

 

# Process the nodes (transit stops) 

stops_data = [] 

for node in result.nodes: 

    stops_data.append({ 

        "Stop ID": node.id, 

        "Name": node.tags.get("name", "Unknown"), 

        "Latitude": node.lat, 

        "Longitude": node.lon 

    }) 

 

# Convert to a Pandas DataFrame 

stops_df = pd.DataFrame(stops_data) 

 

# Save to CSV 
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stops_df.to_csv("C:/Users/fisay/OneDrive/Desktop/DBA 

SSBM/omaha_transit_stops.csv", index=False) 

print("Transit stops data saved to omaha_transit_stops.csv.") 
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APPENDIX D: PYTHON SCRIPT FOR OMAHA NEIGHBORHOODS 

EXTRACTION 

import osmnx as ox 

import pandas as pd 

 

# List of neighborhoods in Omaha 

neighborhoods = [ 

    "Aksarben", "Benson", "Cathedral", "Central", "Downtown", "Dundee", "Fairacres",  

    "Field Club", "Florence", "Holy Cross", "Keystone", "Millard", "Near South", 

    "North Omaha", "Northwest Omaha", "Old Market", "Ralston", "Rockbrook",  

    "South Central Omaha", "Southeast Omaha", "Southwest Omaha", "West Omaha", 

"Westside" 

] 

 

# Base place for search 

city = "Omaha, Nebraska, USA" 

 

# Initialize an empty list to store neighborhood data 

neighborhood_data = [] 

 

# Fetch latitude and longitude for each neighborhood 

for neighborhood in neighborhoods: 

    try: 

        print(f"Fetching coordinates for {neighborhood}...") 

        place_name = f"{neighborhood}, {city}" 
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        # Fetch the boundary polygon for the neighborhood 

        gdf = ox.geocode_to_gdf(place_name) 

         

        # Get the centroid of the polygon 

        centroid = gdf.geometry.centroid.iloc[0] 

         

        # Append the neighborhood name and coordinates 

        neighborhood_data.append({ 

            "Neighborhood": neighborhood, 

            "Latitude": centroid.y, 

            "Longitude": centroid.x 

        }) 

    except Exception as e: 

        print(f"Could not fetch data for {neighborhood}: {e}") 

 

# Convert the data into a Pandas DataFrame 

df_neighborhoods = pd.DataFrame(neighborhood_data) 

 

# Save to CSV 

df_neighborhoods.to_csv("C:/Users/fisay/OneDrive/Desktop/DBA 

SSBM/omaha_neighborhoods_coordinates.csv", index=False) 

 

print("Neighborhood coordinates saved to 'omaha_neighborhoods_coordinates.csv'.") 
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APPENDIX E: PYTHON SCRIPT FOR OMAHA NEIGHBORHOODS GIS 

LAYER EXTRACTION 

import osmnx as ox 

import pandas as pd 

import geopandas as gpd 

from shapely.geometry import mapping 

from shapely.geometry import shape 

 

# List of neighborhoods in Omaha 

neighborhoods = [ 

    "Aksarben", "Benson", "Cathedral", "Central", "Downtown", "Dundee", "Fairacres",  

    "Field Club", "Florence", "Holy Cross", "Keystone", "Millard", "Near South", 

    "North Omaha", "Northwest Omaha", "Old Market", "Ralston", "Rockbrook",  

    "South Central Omaha", "Southeast Omaha", "Southwest Omaha", "West Omaha", 

"Westside" 

] 

 

# Base place for search 

city = "Omaha, Nebraska, USA" 

 

# Initialize an empty list to store neighborhood polygons 

polygon_data = [] 

 

# Fetch polygon data for each neighborhood 

for neighborhood in neighborhoods: 
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    try: 

        print(f"Fetching data for {neighborhood}...") 

        place_name = f"{neighborhood}, {city}" 

         

        # Fetch polygon data for the neighborhood 

        gdf = ox.geocode_to_gdf(place_name) 

         

        # Append the data 

        for _, row in gdf.iterrows(): 

            polygon_data.append({ 

                "Neighborhood": neighborhood, 

                "Geometry": mapping(row["geometry"])  # Convert to GeoJSON format 

            }) 

    except Exception as e: 

        print(f"Could not fetch data for {neighborhood}: {e}") 

 

#Install library to be able to extract GEOID from Longitude and Latitude" 

!pip install urllib3==1.26.6 

#Read in the omaha neighborhood coordinates file 

import pandas as pd 

 

# File path 

file_path = r"C:\Users\fisay\OneDrive\Desktop\DBA 

SSBM\omaha_neighborhoods_coordinates.csv" 
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# Load the CSV file into a Pandas DataFrame 

omaha_neighborhoods_coordinates = pd.read_csv(file_path) 

 

# Display the first few rows of the DataFrame 

omaha_neighborhoods_coordinates.head() 

#Read in the Nebraska Health indicator data file 

# File path 

file_path1 = r"C:\Users\fisay\OneDrive\Desktop\DBA SSBM\NE_Tract_City_12-03-

2024.csv" 

 

# Load the CSV file into a Pandas DataFrame 

ne_tract_city = pd.read_csv(file_path1) 

 

# Display the first few rows of the DataFrame 

ne_tract_city.head() 

#Extract GEOID and join to the Omaha neighborhoods coordinates dataframe 

import censusgeocode as cg 

 

def get_geoid(row): 

    try: 

        print(f"Fetching GEOID for {row['Neighborhood']} at ({row['Latitude']}, 

{row['Longitude']})...") 

        result = cg.coordinates(x=row["Longitude"], y=row["Latitude"]) 

        if result: 

            # Extract GEOID from Census Tracts 
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            if "Census Tracts" in result: 

                geoid = result["Census Tracts"][0]["GEOID"] 

                print(f"GEOID for {row['Neighborhood']}: {geoid}") 

                return geoid 

            else: 

                print(f"No Census Tracts found for {row['Neighborhood']}") 

        else: 

            print(f"No result for {row['Neighborhood']}") 

    except Exception as e: 

        print(f"Error for {row['Neighborhood']}: {e}") 

    return None 

 

# Apply the function to each row 

print("Fetching GEOIDs for neighborhoods...") 

omaha_neighborhoods_coordinates["GEOID"] = 

omaha_neighborhoods_coordinates.apply(get_geoid, axis=1) 

 

#View the dataframe 

omaha_neighborhoods_coordinates 

 

# Ensure data types for merge keys match 

ne_tract_city["geo_fips"] = ne_tract_city["geo_fips"].astype(str) 

omaha_neighborhoods_coordinates["GEOID"] = 

omaha_neighborhoods_coordinates["GEOID"].astype(str) 

# Filter the required metrics from the NE_Tract_City dataframe 
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required_metrics = ["Diabetes", "Uninsured", "Obesity", "Unemployment - Annual, 

Neighborhood-Level"] 

filtered_metrics = ne_tract_city[ne_tract_city["metric_name"].isin(required_metrics)] 

 

# Pivot the data to get the metrics as columns 

pivoted_metrics = filtered_metrics.pivot_table( 

    index="geo_fips",  

    columns="metric_name",  

    values="est" 

).reset_index() 

 

# Rename columns for clarity 

pivoted_metrics.columns.name = None  # Remove multi-index 

pivoted_metrics.rename( 

    columns={ 

        "geo_fips": "GEOID", 

        "Diabetes": "Diabetes Rate", 

        "Uninsured": "Poverty Rate", 

        "Obesity": "Obesity Rate", 

        "Unemployment - Annual, Neighborhood-Level": "Unemployment Rate" 

    },  

    inplace=True 

) 

 

# Merge with the Omaha neighborhoods dataframe 
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merged_df = omaha_neighborhoods_coordinates.merge(pivoted_metrics, on="GEOID", 

how="left") 

#View the merged dataframe (#Used Unsinsured as a proxy for Poverty) 

merged_df 

# Save the result to a CSV file 

merged_df.to_csv(r"C:\Users\fisay\OneDrive\Desktop\DBA 

SSBM\omaha_neighborhoods_health_indicators.csv", index=False) 
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APPENDIX F: PYTHON SCRIPT FOR MACHINE LEARNING AND GIS 

ANALYSIS 

#!pip install pandas geopandas matplotlib osmnx networkx folium scikit-learn 

import os 

 

# Set the working directory 

data_dir = r"C:\Users\fisay\OneDrive\Desktop\DBA SSBM\Data and Results" 

import pandas as pd 

import geopandas as gpd 

 

# Load datasets 

demographics = pd.read_csv(os.path.join(data_dir, 

"omaha_neighborhoods_demographics.csv")) 

transit_stops = pd.read_csv(os.path.join(data_dir, "omaha_transit_stops.csv")) 

grocery_stores = pd.read_csv(os.path.join(data_dir, 

"omaha_osmnx_grocery_stores.csv")) 

health_indicators = pd.read_csv(os.path.join(data_dir, 

"omaha_neighborhoods_health_indicators.csv")) 

neighborhoods = gpd.read_file(os.path.join(data_dir, 

"omaha_neighborhoods_polygons.geojson")) 

 

# Preview datasets 
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print(demographics.head()) 

print(transit_stops.head()) 

print(grocery_stores.head()) 

print(health_indicators.head()) 

print(neighborhoods.head()) 

#Map Food Deserts 

# Merge demographics and health indicators with neighborhood polygons 

merged = neighborhoods.merge(demographics, 

on="Neighborhood").merge(health_indicators, on="Neighborhood") 

 

# Remove dollar signs and commas, then convert to numeric 

merged["Median Household Income (2021)"] = ( 

    merged["Median Household Income (2021)"] 

    .str.replace("$", "", regex=False)  # Remove the dollar sign 

    .str.replace(",", "", regex=False)  # Remove commas 

    .astype(float)  # Convert to float 

) 

 

# Ensure 'Obesity Rate' is numeric 

merged["Obesity Rate"] = pd.to_numeric(merged["Obesity Rate"], errors="coerce") 

 

# Define food desert criteria 
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merged["is_food_desert"] = (merged["Median Household Income (2021)"] < 60000) & 

(merged["Obesity Rate"] > 30) 

 

# Plot food deserts 

import matplotlib.pyplot as plt 

 

fig, ax = plt.subplots(1, 1, figsize=(10, 10)) 

merged.plot(column="is_food_desert", cmap="coolwarm", legend=True, ax=ax, 

edgecolor="black") 

 

# Add labels for food desert neighborhoods 

for x, y, label in zip( 

    merged.geometry.centroid.x, 

    merged.geometry.centroid.y, 

    merged["Neighborhood"] 

): 

    ax.text(x, y, label, fontsize=8, color="black", ha="center") 

 

plt.title("Food Deserts in Omaha") 

plt.show() 

food_deserts = merged[merged["is_food_desert"] == True] 
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print(food_deserts[["Neighborhood", "Median Household Income (2021)", "Obesity 

Rate"]]) 

#3.2 Spatial Distribution of Grocery Stores 

#Analyze the proximity of grocery stores to food deserts 

from shapely.wkt import loads  # To load WKT strings as geometries 

import geopandas as gpd 

import matplotlib.pyplot as plt 

 

# Check and convert only if the 'geometry' column contains strings 

if isinstance(grocery_stores["geometry"].iloc[0], str): 

    grocery_stores["geometry"] = grocery_stores["geometry"].apply(loads) 

 

# Ensure 'geometry' column is directly used in the GeoDataFrame 

grocery_stores_gdf = gpd.GeoDataFrame( 

    grocery_stores, 

    geometry=grocery_stores["geometry"],  # Use the now-converted geometry column 

    crs="EPSG:4326",  # Specify CRS 

) 

 

# Plot grocery stores on the food desert map 

fig, ax = plt.subplots(1, 1, figsize=(10, 10)) 
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# Plot the food desert map 

merged.plot(column="is_food_desert", cmap="coolwarm", legend=True, ax=ax) 

 

# Add labels for food desert neighborhoods 

for x, y, label in zip( 

    merged.geometry.centroid.x, 

    merged.geometry.centroid.y, 

    merged["Neighborhood"] 

): 

    ax.text(x, y, label, fontsize=8, color="black", ha="center") 

 

# Plot POINT geometries 

if not grocery_stores_gdf[grocery_stores_gdf.geometry.type == "Point"].empty: 

    grocery_stores_gdf[grocery_stores_gdf.geometry.type == "Point"].plot( 

        color="black", ax=ax, markersize=10, label="Grocery Store (Point)" 

    ) 

 

# Plot POLYGON geometries 

if not grocery_stores_gdf[grocery_stores_gdf.geometry.type == "Polygon"].empty: 

    grocery_stores_gdf[grocery_stores_gdf.geometry.type == "Polygon"].plot( 

        edgecolor="black", facecolor="none", linewidth=1, ax=ax, label="Grocery Store 

(Polygon)" 
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    ) 

 

# Add a title and legend 

plt.title("Grocery Stores and Food Deserts in Omaha") 

plt.legend() 

plt.show() 

 

#Evaluate access to grocery stores using transit stops 

 

from shapely.geometry import Point 

import geopandas as gpd 

import matplotlib.pyplot as plt 

 

# Ensure the geometry column is created using Latitude and Longitude 

transit_stops["geometry"] = transit_stops.apply( 

    lambda row: Point(row["Longitude"], row["Latitude"]), axis=1 

) 

 

# Create GeoDataFrame using the geometry column 

transit_stops_gdf = gpd.GeoDataFrame( 

    transit_stops, 

    geometry=transit_stops["geometry"],  # Use the created geometry column 
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    crs="EPSG:4326", 

) 

 

# Buffer around transit stops to estimate accessibility 

transit_stops_gdf["buffer"] = transit_stops_gdf.geometry.buffer(0.002)  # ~200m buffer 

 

# Combine all transit stop buffers into a single geometry for analysis 

transit_buffer_union = transit_stops_gdf["buffer"].unary_union 

 

# Check which neighborhoods are accessible based on buffer intersection 

merged["transit_accessible"] = merged.geometry.apply(lambda x: 

x.intersects(transit_buffer_union)) 

 

 

# Plot transit accessibility 

fig, ax = plt.subplots(1, 1, figsize=(12, 12)) 

 

# Plot the neighborhoods and color them based on transit accessibility 

merged.plot(column="transit_accessible", cmap="coolwarm", legend=True, ax=ax, 

edgecolor="black") 

 

# Add neighborhood names as labels 
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for x, y, label in zip(merged.geometry.centroid.x, merged.geometry.centroid.y, 

merged["Neighborhood"]): 

    ax.text(x, y, label, fontsize=8, ha='center', color='black') 

 

# Add a title 

plt.title("Transit Accessibility in Omaha", fontsize=16) 

 

# Show the plot 

plt.show() 

# Filter neighborhoods that are transit inaccessible and in food deserts 

transit_inaccessible_food_deserts = merged[ 

    (merged["transit_accessible"] == False) & (merged["is_food_desert"] == True) 

] 

 

# Select relevant columns for clarity 

transit_inaccessible_food_deserts_df = 

transit_inaccessible_food_deserts[["Neighborhood", "transit_accessible", 

"is_food_desert"]] 

 

# Display the resulting DataFrame 

transit_inaccessible_food_deserts_df 

#Machine Learning Predictive Modeling 
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from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report 

from sklearn.model_selection import train_test_split 

import pandas as pd 

 

# Split data 

X = merged[["Population Density (per sq mile)", "Median Household Income (2021)", 

"Obesity Rate", "transit_accessible"]] 

y = merged["is_food_desert"] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Scale the data 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Fit logistic regression with increased max_iter 

model = LogisticRegression(max_iter=500, solver="liblinear") 

model.fit(X_train_scaled, y_train) 

 

# Predict and evaluate 
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y_pred = model.predict(X_test_scaled) 

 

# Generate classification report 

report = classification_report(y_test, y_pred, output_dict=True) 

 

# Populate the DataFrame with classification report results 

logistic_regression_df = pd.DataFrame({ 

    "Model": ["Logistic Regression"], 

    "Accuracy": [f"{report['accuracy'] * 100:.0f}%"], 

    "Precision (True)": [round(report["True"]["precision"], 2)], 

    "Recall (True)": [round(report["True"]["recall"], 2)], 

    "F1-Score (True)": [round(report["True"]["f1-score"], 2)], 

    "Precision (False)": [round(report["False"]["precision"], 2)], 

    "Recall (False)": [round(report["False"]["recall"], 2)], 

    "F1-Score (False)": [round(report["False"]["f1-score"], 2)], 

    "Macro Avg F1-Score": [round(report["macro avg"]["f1-score"], 2)], 

}) 

 

# Display the DataFrame 

logistic_regression_df 

from sklearn.model_selection import cross_val_predict 

from sklearn.tree import DecisionTreeClassifier 
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from sklearn.metrics import classification_report 

import pandas as pd 

 

# Train a regularized Decision Tree model 

dt_model = DecisionTreeClassifier( 

    random_state=42, 

    max_depth=2,              # Limit tree depth 

    min_samples_split=4,      # Minimum samples to split 

    min_samples_leaf=2        # Minimum samples per leaf 

) 

y_pred_cv = cross_val_predict(dt_model, X, y, cv=5) 

 

# Generate classification report 

print("Decision Tree Cross-Validation Classification Report:") 

report_cv = classification_report(y, y_pred_cv, output_dict=True) 

print(classification_report(y, y_pred_cv)) 

 

# Generate DataFrame for the report 

decision_tree_cv_df = pd.DataFrame({ 

    "Model": ["Regularized Decision Tree (CV)"], 

    "Accuracy": [f"{report_cv['accuracy'] * 100:.0f}%"], 

    "Precision (True)": [round(report_cv["True"]["precision"], 2)], 
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    "Recall (True)": [round(report_cv["True"]["recall"], 2)], 

    "F1-Score (True)": [round(report_cv["True"]["f1-score"], 2)], 

    "Precision (False)": [round(report_cv["False"]["precision"], 2)], 

    "Recall (False)": [round(report_cv["False"]["recall"], 2)], 

    "F1-Score (False)": [round(report_cv["False"]["f1-score"], 2)], 

    "Macro Avg F1-Score": [round(report_cv["macro avg"]["f1-score"], 2)], 

}) 

 

# Display the DataFrame 

print("Regularized Decision Tree Cross-Validation Model Report DataFrame:") 

print(decision_tree_cv_df) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import classification_report 

import pandas as pd 

 

# Train a Random Forest model with regularization 

rf_model = RandomForestClassifier( 

    n_estimators=50,      # Number of trees in the forest 

    max_depth=3,          # Limit tree depth to prevent overfitting 

    min_samples_split=4,  # Minimum samples required to split a node 

    min_samples_leaf=2,   # Minimum samples required at each leaf node 
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    random_state=42 

) 

 

# Perform cross-validation and predictions 

y_pred_rf_cv = cross_val_predict(rf_model, X, y, cv=5) 

 

# Generate classification report 

print("Random Forest Cross-Validation Classification Report:") 

report_rf_cv = classification_report(y, y_pred_rf_cv, output_dict=True) 

print(classification_report(y, y_pred_rf_cv)) 

 

# Create a DataFrame to store the results 

rf_cv_df = pd.DataFrame({ 

    "Model": ["Random Forest (CV)"], 

    "Accuracy": [f"{report_rf_cv['accuracy'] * 100:.0f}%"], 

    "Precision (True)": [round(report_rf_cv["True"]["precision"], 2)], 

    "Recall (True)": [round(report_rf_cv["True"]["recall"], 2)], 

    "F1-Score (True)": [round(report_rf_cv["True"]["f1-score"], 2)], 

    "Precision (False)": [round(report_rf_cv["False"]["precision"], 2)], 

    "Recall (False)": [round(report_rf_cv["False"]["recall"], 2)], 

    "F1-Score (False)": [round(report_rf_cv["False"]["f1-score"], 2)], 

    "Macro Avg F1-Score": [round(report_rf_cv["macro avg"]["f1-score"], 2)], 
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}) 

 

# Display the DataFrame with results 

print("Random Forest Cross-Validation Model Report DataFrame:") 

print(rf_cv_df) 

from sklearn.cluster import KMeans 

 

# Apply K-Means 

kmeans = KMeans(n_clusters=3, random_state=42) 

merged["cluster"] = kmeans.fit_predict(X) 

 

# Visualize clusters 

plt.figure(figsize=(10, 6)) 

plt.scatter(merged["Population Density (per sq mile)"], merged["Median Household 

Income (2021)"], c=merged["cluster"], cmap="viridis") 

plt.xlabel("Population Density") 

plt.ylabel("Median Income") 

plt.title("K-Means Clustering of Neighborhoods") 

plt.show() 

from sklearn.neural_network import MLPClassifier 

from sklearn.metrics import classification_report, accuracy_score 

from sklearn.model_selection import cross_val_predict 
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# Initialize Neural Network model 

mlp_model = MLPClassifier(hidden_layer_sizes=(50, 25), max_iter=500, 

random_state=42) 

 

# Cross-validation predictions 

y_pred_cv = cross_val_predict(mlp_model, X, y, cv=5) 

 

# Classification report for cross-validation 

classification_report_cv = classification_report(y, y_pred_cv, output_dict=True) 

 

# Extract metrics for DataFrame 

accuracy = accuracy_score(y, y_pred_cv) * 100 

precision_true = classification_report_cv["True"]["precision"] 

recall_true = classification_report_cv["True"]["recall"] 

f1_true = classification_report_cv["True"]["f1-score"] 

precision_false = classification_report_cv["False"]["precision"] 

recall_false = classification_report_cv["False"]["recall"] 

f1_false = classification_report_cv["False"]["f1-score"] 

macro_avg_f1 = classification_report_cv["macro avg"]["f1-score"] 

 

# Create report DataFrame 
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nn_report_df = pd.DataFrame({ 

    "Model": ["Neural Network (CV)"], 

    "Accuracy": [f"{accuracy:.2f}%"], 

    "Precision (True)": [precision_true], 

    "Recall (True)": [recall_true], 

    "F1-Score (True)": [f1_true], 

    "Precision (False)": [precision_false], 

    "Recall (False)": [recall_false], 

    "F1-Score (False)": [f1_false], 

    "Macro Avg F1-Score": [macro_avg_f1] 

}) 

 

# Print classification report 

print("Neural Network Cross-Validation Classification Report:") 

print(classification_report(y, y_pred_cv)) 

import pandas as pd 

 

# Create an empty KMeans DataFrame with NaN values except for the "Model" column 

kmeans_df = pd.DataFrame([{ 

    "Model": "KMeans", 

    "Accuracy": None, 

    "Precision (True)": None, 
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    "Recall (True)": None, 

    "F1-Score (True)": None, 

    "Precision (False)": None, 

    "Recall (False)": None, 

    "F1-Score (False)": None, 

    "Macro Avg F1-Score": None 

}]) 

 

# Combine all DataFrames using pd.concat 

combined_df = pd.concat([logistic_regression_df, decision_tree_cv_df, rf_cv_df, 

nn_report_df, kmeans_df], ignore_index=True) 

combined_df 

# Save Model Comparison Table to Directory 

 

combined_df.to_csv(r"C:\Users\fisay\OneDrive\Desktop\DBA SSBM\Data and 

Results\Model_Comparison_Table.csv", index=False) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

 

# Prepare features and target 

X = merged[["Population Density (per sq mile)", "Median Household Income (2021)", 

"Obesity Rate", "transit_accessible"]] 
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y = merged["is_food_desert"] 

 

# Split data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Train the Random Forest model 

rf_model = RandomForestClassifier(random_state=42, n_estimators=100, max_depth=5)  

# Customize parameters as needed 

rf_model.fit(X_train, y_train) 

 

# Predict probabilities for the entire dataset 

merged["food_desert_probability"] = rf_model.predict_proba(X)[:, 1]  # Probability of 

being a food desert 

 

# Define predicted demand for grocery stores (can be scaled) 

merged["predicted_grocery_demand"] = merged["food_desert_probability"] * 

merged["Population Density (per sq mile)"] 

import folium 

from folium import Choropleth 

from matplotlib.patches import Patch 

 

# Initialize a folium map centered on Omaha 
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map_center = [41.2565, -95.9345]  # Approximate center of Omaha 

map_folium = folium.Map(location=map_center, zoom_start=11) 

 

# Define bins to match marker categories 

bins = [ 

    0, 

    0.2 * merged["predicted_grocery_demand"].max(), 

    0.5 * merged["predicted_grocery_demand"].max(), 

    merged["predicted_grocery_demand"].max() 

] 

 

# Add predicted demand as a choropleth layer 

choropleth = Choropleth( 

    geo_data=merged,  # GeoDataFrame with geometries 

    data=merged,      # Data source for choropleth 

    columns=["Neighborhood", "predicted_grocery_demand"],  # Columns for map 

    key_on="feature.properties.Neighborhood",  # Key to match GeoJSON 

    fill_color="YlOrRd",  # Color scheme 

    fill_opacity=0.7, 

    line_opacity=0.2, 

    legend_name="Predicted Grocery Demand" 

).add_to(map_folium) 
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# Add markers for neighborhoods with high demand 

for _, row in merged.iterrows(): 

    if row["predicted_grocery_demand"] > 0.5 * 

merged["predicted_grocery_demand"].max(): 

        icon_color = "red" 

    elif row["predicted_grocery_demand"] > 0.2 * 

merged["predicted_grocery_demand"].max(): 

        icon_color = "orange" 

    else: 

        icon_color = "green" 

 

    folium.Marker( 

        location=[row.geometry.centroid.y, row.geometry.centroid.x], 

        popup=f"Neighborhood: {row['Neighborhood']}<br>Demand: 

{row['predicted_grocery_demand']:.2f}", 

        icon=folium.Icon(color=icon_color), 

    ).add_to(map_folium) 

 

# Add custom legend for marker categories 

legend_html = ''' 

<div style="position: fixed;  
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            bottom: 50px; left: 50px; width: 250px; height: 120px;  

            background-color: white; border:2px solid grey; z-index:9999; font-size:14px;"> 

    <h4 style="margin-top:5px; margin-left:10px;">Marker Demand Levels</h4> 

    <ul style="list-style: none; padding-left: 10px;"> 

        <li><span style="background-color: red; width: 10px; height: 10px; display: inline-

block; border-radius: 50%;"></span> High Demand (> 50%)</li> 

        <li><span style="background-color: orange; width: 10px; height: 10px; display: 

inline-block; border-radius: 50%;"></span> Medium Demand (20%-50%)</li> 

        <li><span style="background-color: green; width: 10px; height: 10px; display: 

inline-block; border-radius: 50%;"></span> Low Demand (<= 20%)</li> 

    </ul> 

</div> 

''' 

 

# Add legend to the map 

map_folium.get_root().html.add_child(folium.Element(legend_html)) 

 

# Save the map 

map_folium.save(r"C:\Users\fisay\OneDrive\Desktop\DBA SSBM\Data and 

Results\Predicted_Grocery_Demand_Map.html") 

print("Map saved as 'Predicted_Grocery_Demand_Map.html'") 

#Select Top Locations: Identify neighborhoods with the highest predicted demand: 
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top_locations = merged.nlargest(5, "predicted_grocery_demand")  # Top 5 locations 

print(top_locations[["Neighborhood", "predicted_grocery_demand"]]) 

#Add Simulated Grocery Stores: Assume new grocery stores are placed in these 

neighborhoods.  

# Add their locations to the grocery_stores dataset: 

from shapely.geometry import Point 

 

# Add simulated store locations 

simulated_stores = top_locations.geometry.centroid 

simulated_stores_gdf = gpd.GeoDataFrame(top_locations, geometry=simulated_stores, 

crs="EPSG:4326") 

#Combine with Existing Grocery Stores: Merge simulated stores with existing store 

locations: 

all_stores = gpd.GeoDataFrame(pd.concat([grocery_stores_gdf, simulated_stores_gdf], 

ignore_index=True)) 

#Nearest Store Calculation: Use geopandas to calculate distances between each 

neighborhood and its nearest grocery store: 

 

from scipy.spatial import cKDTree 

from shapely.geometry import Point 

 

# Convert store geometries to coordinates 
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store_coords = all_stores.geometry.apply( 

    lambda geom: (geom.centroid.x, geom.centroid.y) if geom.type == "Polygon" else 

(geom.x, geom.y) 

).tolist() 

 

# Convert neighborhood geometries to coordinates using centroids 

neighborhood_coords = merged.geometry.centroid.apply( 

    lambda geom: (geom.x, geom.y) 

).tolist() 

 

# Build KDTree for nearest neighbor search 

store_tree = cKDTree(store_coords) 

 

# Find the nearest grocery store for each neighborhood 

distances, indices = store_tree.query(neighborhood_coords) 

 

# Add the nearest distance as a new column in the merged dataframe 

merged["nearest_store_distance"] = distances 

 

# Plot the results 

fig, ax = plt.subplots(1, 1, figsize=(12, 12)) 
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merged.plot(column="nearest_store_distance", cmap="YlOrRd", legend=True, ax=ax, 

edgecolor="black") 

plt.title("Distance to Nearest Grocery Store for Each Neighborhood") 

plt.xlabel("Longitude") 

plt.ylabel("Latitude") 

plt.show() 

#Nearest Store Calculation: Use geopandas to calculate distances between each 

neighborhood and its nearest grocery store: 

 

from scipy.spatial import cKDTree 

from shapely.geometry import Point 

 

# Convert store geometries to coordinates 

store_coords = all_stores.geometry.apply( 

    lambda geom: (geom.centroid.x, geom.centroid.y) if geom.type == "Polygon" else 

(geom.x, geom.y) 

).tolist() 

 

# Convert neighborhood geometries to coordinates using centroids 

neighborhood_coords = merged.geometry.centroid.apply( 

    lambda geom: (geom.x, geom.y) 

).tolist() 
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# Build KDTree for nearest neighbor search 

store_tree = cKDTree(store_coords) 

 

# Find the nearest grocery store for each neighborhood 

distances, indices = store_tree.query(neighborhood_coords) 

 

# Add the nearest distance as a new column in the merged dataframe 

merged["nearest_store_distance"] = distances 

 

# Plot the results 

fig, ax = plt.subplots(1, 1, figsize=(12, 12)) 

merged.plot(column="nearest_store_distance", cmap="YlOrRd", legend=True, ax=ax, 

edgecolor="black") 

plt.title("Distance to Nearest Grocery Store for Each Neighborhood") 

plt.xlabel("Longitude") 

plt.ylabel("Latitude") 

plt.show() 

import folium 

 

# Initialize a folium map centered on Omaha 

map_center = [41.2565, -95.9345]  # Approximate center of Omaha 
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map_folium = folium.Map(location=map_center, zoom_start=11) 

 

# Add neighborhoods as a choropleth layer, colored by distance to nearest grocery store 

folium.Choropleth( 

    geo_data=merged,  # GeoDataFrame with geometries 

    data=merged,      # Data source for choropleth 

    columns=["Neighborhood", "nearest_store_distance"],  # Columns for map 

    key_on="feature.properties.Neighborhood",  # Key to match GeoJSON 

    fill_color="YlOrRd",  # Color scheme 

    fill_opacity=0.7, 

    line_opacity=0.2, 

    legend_name="Distance to Nearest Grocery Store (meters)" 

).add_to(map_folium) 

 

# Add markers with neighborhood name and distance to nearest store 

for _, row in merged.iterrows(): 

    folium.Marker( 

        location=[row.geometry.centroid.y, row.geometry.centroid.x],  # Centroid of the 

neighborhood 

        popup=f"Neighborhood: {row['Neighborhood']}<br>Distance: 

{row['nearest_store_distance']:.2f} meters", 

        icon=folium.Icon(color="blue"), 
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    ).add_to(map_folium) 

 

# Save the map to an HTML file and display 

map_folium.save(r"C:\Users\fisay\OneDrive\Desktop\DBA SSBM\Data and 

Results\Nearest_Grocery_Store_Map_After_Addition.html") 

print("Map saved as 'Nearest_Grocery_Store_Map.html'") 

#Compare Before and After: Calculate the average travel distance before and after adding 

simulated stores: 

from scipy.spatial import cKDTree 

import pandas as pd 

 

# Step 1: Filter for Point geometries in grocery_stores_gdf 

point_stores_gdf = grocery_stores_gdf[grocery_stores_gdf.geometry.type == "Point"] 

 

# Convert Point geometries to coordinates 

original_store_coords = point_stores_gdf.geometry.apply(lambda geom: (geom.x, 

geom.y)).tolist() 

 

# Calculate neighborhood centroids for distance analysis 

neighborhood_coords = merged.geometry.centroid.apply(lambda geom: (geom.x, 

geom.y)).tolist() 
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# Step 2: Build KDTree for nearest neighbor search (Before Adding Simulated Stores) 

original_store_tree = cKDTree(original_store_coords) 

 

# Compute nearest distances for each neighborhood 

merged["nearest_store_distance_before"] = [ 

    original_store_tree.query(coord)[0] for coord in neighborhood_coords 

] 

 

# Step 3: Handle Simulated Stores 

# Assume `simulated_stores` is a GeoDataFrame with valid Point geometries 

all_stores_gdf = pd.concat([point_stores_gdf, simulated_stores_gdf], ignore_index=True) 

 

# Convert combined store geometries to coordinates 

all_store_coords = all_stores_gdf.geometry.apply(lambda geom: (geom.x, 

geom.y)).tolist() 

 

# Step 4: Build KDTree for nearest neighbor search (After Adding Simulated Stores) 

all_store_tree = cKDTree(all_store_coords) 

 

# Compute nearest distances for each neighborhood 

merged["nearest_store_distance_after"] = [ 

    all_store_tree.query(coord)[0] for coord in neighborhood_coords 
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] 

 

# Step 5: Calculate Distance Difference 

merged["distance_difference"] = ( 

    merged["nearest_store_distance_before"] - merged["nearest_store_distance_after"] 

) 

 

# Step 6: Analyze and Display Results 

# Display neighborhoods with the most improvement 

improved_neighborhoods = merged.sort_values(by="distance_difference", 

ascending=False) 

print(improved_neighborhoods[["Neighborhood", "nearest_store_distance_before", 

"nearest_store_distance_after", "distance_difference"]]) 

 

# Step 7: Visualization (Optional) 

import matplotlib.pyplot as plt 

 

fig, ax = plt.subplots(figsize=(10, 6)) 

merged.plot(column="distance_difference", cmap="Greens", legend=True, ax=ax, 

edgecolor="black") 

plt.title("Change in Distance to Nearest Grocery Store After Adding Simulated Stores", 

fontsize=16) 
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# Add labels 

for x, y, label in zip(merged.geometry.centroid.x, merged.geometry.centroid.y, 

merged["Neighborhood"]): 

    ax.text(x, y, label, fontsize=8, ha='center', color='black') 

 

plt.show() 

#Assign costs for building new grocery stores based on fixed or variable factors (e.g., 

construction, staffing, logistics). 

cost_per_store = 2_000_000  # Assume $2 million per store 

total_cost = len(simulated_stores) * cost_per_store 

print(f"Total Cost: ${total_cost}") 

benefits_per_store = 5_000_000  # Assume $5 million in benefits per store 

total_benefits = len(simulated_stores) * benefits_per_store 

net_benefit = total_benefits - total_cost 

print(f"Total Benefits: ${total_benefits}, Net Benefit: ${net_benefit}") 

import matplotlib.pyplot as plt 

 

categories = ["Total Cost", "Total Benefits"] 

values = [total_cost, total_benefits] 

 

plt.bar(categories, values, color=["red", "green"]) 
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plt.title("Cost-Benefit Analysis") 

plt.ylabel("Dollars") 

plt.show() 
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