

ENHANCING SEAMLESS SUPPLY CHAIN CONNECTIVITY AND ACHIEVING

OPERATIONAL EXCELLENCE

by

Dorin Cosmin Iacoban, MBA

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

April,2025.

ENHANCING SEAMLESS SUPPLY CHAIN CONNECTIVITY AND ACHIEVING

OPERATIONAL EXCELLENCE

by

Dorin Cosmin Iacoban

APPROVED BY

Vasiliki Grougiou

 Chairperson

RECEIVED/APPROVED BY:

Admissions Director

Dedication

I dedicate this dissertation to my parents, whose support, encouragement, and

sacrifices have been the foundation of my journey. They have instilled in me the values of

perseverance and hard work, shaping the person I am today. To my mother, for her

boundless love and unwavering faith in my abilities, and to my father, whose wisdom and

guidance continue to inspire me every step of the way.

To my mentor, Aleksandar Erceg, Ph.D., whose invaluable insights, patience, and

dedication have played a crucial role in shaping this research. Your guidance has been

instrumental in helping me navigate this academic journey, and I am deeply grateful for

that.

iv

Acknowledgments

I would like to express my deepest gratitude to Aleksandar Erceg, Ph.D., for his

invaluable support and guidance throughout my research. His expertise, insightful

feedback, and encouragement have been instrumental in shaping this dissertation. He

helped me refine my research and guided me in the right direction, ensuring that I stayed

focused and made meaningful contributions to the field.

His patience, dedication, and willingness to share his knowledge have been truly

inspiring, and I am incredibly grateful for his mentorship. This work would not have been

possible without his guidance, and I sincerely appreciate the time and effort he invested in

helping me reach this milestone.

v

ABSTRACT

ENHANCING SEAMLESS SUPPLY CHAIN CONNECTIVITY AND ACHIEVING

OPERATIONAL EXCELLENCE

Dorin Cosmin Iacoban

<year>

Dissertation Chair: <Chair’s Name>

Co-Chair: <If applicable. Co-Chair's Name>

In today's increasingly digital and data-intensive environment, supply chain

systems are challenged to process vast amounts of real-time data generated by the Internet

of Things (IoT) devices. Traditional cloud-based architectures often struggle with high

latency and bandwidth constraints, hindering timely decision-making in critical supply

chain applications. The research aims to develop and evaluate a dynamic, priority-based

task allocation framework that leverages Edge/Fog computing to address these limitations.

The core framework is a Priority Equation that integrates principles from Queuing Theory

(Willig, 1999) and dynamic thresholding, enabling the efficient distribution of tasks

processing load across Edge/Fog and Cloud layers.

The research adopts a quantitative approach to analyze the impact of the Priority

Equation on latency, resource allocation, and task prioritization in a simulated IoT supply

chain environment. Key metrics include task processing time and system scalability under

varying data loads by dynamically adjusting task priorities according to real-time demands.

The Equation was designed to ensure that critical tasks are processed with minimal delay

while optimizing the distribution of non-critical tasks. The results demonstrate that the

vi

priority-based framework reduces latency and improves operational efficiency compared

to traditional cloud-centric models. Additionally, Edge/Fog computing integration shows

improved system scalability, maintaining performance as data volume and task arrival rates

increase.

Research contributes to Supply Chain Management by introducing a scalable,

adaptive framework that enhances real-time responsiveness and resilience in complex,

data-driven environments. Priority Equation offers a practical solution for industries where

timely high-frequency data processing is essential, such as logistics, healthcare, and

manufacturing. This study lays the groundwork for a more efficient, agile, and customer-

centric supply chain model by optimizing task allocation and leveraging decentralized

computing, positioning organizations to navigate the digital age's demands better.

vii

TABLE OF CONTENTS

Acknowlegements .. iv

Abstract ... v

CHAPTER I: INTRODUCTION ... 1

1.1 Introduction ... 1
1.2 Research Problem ... 3

1.3 Purpose of Research .. 4
1.4 Significance of the Study .. 5
1.5 Research Purpose and Questions .. 5

CHAPTER II: REVIEW OF LITERATURE .. 6

2.1 Theoretical Framework ... 30
2.2 Key Benefits.. 34

2.3 Nomenclature .. 35

2.4 Priority Equation ... 36

2.5 Priority_Latency_Optimizer.py (Python) ... 37

2.6 Summary ... 40

CHAPTER III: METHODOLOGY ... 41

3. Overview of the Research Problem .. 41

3.1 System Arhitecture.. 41
3.2 Computational Model ... 42

3.3 Experimental Setup ... 52

3.3.1 Hardware & Software Environment .. 56
3.4 Conditions of Applying the Equation ... 57
3.5 Justification of Parameters .. 58

3.6 Data Sources & Acquisition Methods... 68
3.7 Data Analysis .. 73
3.8 Research Design and Limitations ... 84
3.9 Conclusion .. 89

CHAPTER IV: RESULTS ... 91

4.1 Research Question One ... 91
4.2 Research Question Two .. 93

4.3 Research Question Three .. 95

4.4 Summary of Findings .. 97
4.5 Conclusion .. 97

viii

CHAPTER V: DISCUSSION .. 99

5.1 Discussion of Results .. 99

5.2 Discussion of Research Question One .. 100
5.3 Discussion of Research Question Two ... 100

5.4 Discussion of Research Question Three ... 101

CHAPTER VI: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 103

6.1 Summary ... 103

6.2 Implications... 104

6.3 Recommendations for Future Research .. 105

6.4 Conclusion .. 108

REFERENCES ... 111

ix

LIST OF TABLES

Figure 1: Three-Tier Architecture for M/G/c Queuing in Real-Time Supply Chain 32

Table 2: Calculated E[s2] vs Approximated Values in Task Allocation Models 60

Table 3: Latency Requirements Across Different Industries .. 61

Table 4: Measured Cloud Responses Times Across Major Service Providers 63

Table 5: Task Arrival Rates and Batch Size Considerations Across IoT

Environments .. 65

Table 6: Scaling Factor and Task Prioritization in IoT Systems 66

Table 7: Utilization Factor (ρ) Interpretation and Applications 67

Figure 8: Task Rates with Standard Deviation Intervals .. 73

x

LIST OF FIGURES

Scenario A: Baseline Evaluation of Treal-Time Thresholds and Processor Scaling 76

Scenario B: Alternative Configuration with Similar Scaling ... 77

Scenario C: Fine-Tuning Local Processing Parameters .. 78

Scenario D: Introducing Cloud Dependence in Varied Workloads 79

Scenario E/E1: Adjusting Service Rate and Batch Size for Real-Time Processing 80

Scenario F: Bell Curve Simulation and Interpretation .. 82

1

CHAPTER I: INTRODUCTION

1.1 Introduction

In the dynamic landscape of today's digital era, Cloud computing has evolved into

a fundamental asset for businesses, which can spur numerous benefits for organizations,

such as capital investment savings, simplified operations, scalability, improved

information visibility, sustainability, and faster deployment (Attaran and Woods, 2018).

Renowned for its scalability, flexibility, and cost-effectiveness, the Cloud has become the

preferred choice of most enterprises (Nai-meng et al., 2019). However, with the escalating

adoption of Cloud technology, the issue of network latency has surfaced as a crucial

challenge requiring proactive attention for optimal Cloud performance. Edge computing is

considered, in most cases, the option for fast processing of vast amounts of data based on

proximity or in-house capabilities. Edge computing is the practice of processing (Ferreira,

2021) and computing client data closer to the data source rather than on a centralized server

or a cloud-based location (Mohanan, 2022). In supply chain operations, real-time decision-

making is crucial, and the latency associated with cloud-centric models poses significant

constraints on operational efficiency.

Past research (Yousefpour et al., 2019) indicates that Edge computing effectively

addresses privacy, latency, and connectivity issues, primarily attributable to its proximity

to users. The meticulous design and implementation of a supply chain infrastructure

necessitate careful consideration of critical factors, including processing speed and

bandwidth.

However, there is still a need for additional investigation into bandwidth savings

through the utilization of Edge computing (Yousefpour et al., 2019). The study by

(Yousefpour et al., 2019) highlights that as data velocity and volume increase, moving the

2

big data from the IoT devices to the Cloud might not be efficient or might even be infeasible

in some cases due to bandwidth constraints. Based on the study observation, bringing Edge

and Cloud computing closer to the user (Ahmed et al., 2017) will foster an environment of

enhanced operational efficiency throughout the entire business process.

Traditionally, Cloud computing has been the cornerstone for managing the vast

array of geographically dispersed IoT devices and their associated applications (Tuli et al.,

2019). The physical separation between Cloud data centers and IoT devices often results

in increased communication delays, affecting both data transmission and the delivery of

services. Such latency is particularly problematic for critical healthcare and smart city

infrastructure applications, which can significantly diminish Quality of Service (QoS) (Tuli

et al., 2019). Moreover, the sheer volume of data generated by IoT devices in a short span

can lead to substantial network congestion, primarily when numerous devices concurrently

transmit data to Cloud data centers via the global internet (Tuli et al., 2019). Edge

computing paradigms discussed by Bonomi et al. (2012) have been developed to address

challenges inherent in a cloud-centric IoT model. These paradigms prioritize the use of

local computing resources at the Edge of the network to execute real-time IoT applications,

effectively reducing latency and network congestion; still, network planning and design of

Edge/Fog networks is an important research topic, and yet not many studies have been

performed in this area (Berenberg and Calder, 2022).

Edge computing brings computation and data storage closer to the location where

it is needed, minimizing the latency traditionally associated with Cloud computing. This

enhancement in computational efficiency and the reduction in request-response times

significantly improve the processing overhead, thereby streamlining supply chain

operations (Perumal et al., 2022).

3

Integrating advanced technologies into Supply Chain Management practices

addresses current limitations and sets the stage for a more resilient, agile, and customer-

centric supply chain ecosystem (Kaur et al., 2024). The evolution is decisive for industries

to remain competitive in a rapidly changing economic landscape, where the efficiency of

logistics and supply chain operations directly impacts business success and customer

satisfaction.

1.2 Research Problem

In the contemporary, highly interconnected Supply Chain landscape, latency, task

allocation, and resource efficiency management have become increasingly complex,

particularly with the widespread integration of the Internet of Things (IoT), Edge/Fog, and

Cloud computing (Nguyen et al., 2024). The continuous influx of data from sensors, Radio

Frequency Identification (RFID) tags, barcodes, robotics, and other smart devices requires

real-time processing to maintain operational efficiency (Nguyen et al., 2024). Developing

a dynamic, priority-based task allocation equation is key to addressing these challenges.

Such a model would facilitate low-latency processing for time-sensitive tasks, optimize

computational resource distribution across Edge/Fog and Cloud layers, and enhance

overall cost efficiency within Supply Chain operations. Based on these observations, the

following question arises:

"How can a dynamic, priority-based task allocation equation be developed to

improve latency, manage task load, and enhance resource efficiency across Edge/Fog

and Cloud computing layers in Internet of Things-driven Supply Chain Environments?"

4

The increased need for low-latency processing reveals that traditional cloud-centric

supply chains struggle with latency, especially as IoT data sources multiply and demand

near-instantaneous processing (Oliveira and Handfield, 2019) and that Real-Time Supply

Chain applications, latency can significantly impact decision-making and, most notably the

operational efficiency.

Challenges of task allocation in multi-layered systems create a complex data flow

across Edge and Cloud layers, and the question of how to prioritize tasks to ensure critical,

time-sensitive data is processed immediately while less urgent data is handled in a way that

does not overburden the system. The question led to exploring models beyond simple

cloud-based architectures, where tasks could be allocated dynamically based on urgency.

At this point, the role of Queuing Theory (Willig, 1999) directed attention to

formalize the task prioritization process. Traditional queuing models provide insight into

managing tasks in a multi-processor environment. However, they are limited in handling

real-time prioritization needs, which led to integrating Queuing Theory with task

thresholding to manage high-velocity data and demand peaks in supply chains and a

dynamic prioritization that will adjust based on real-time load, prioritizing tasks by urgency

thresholds and managing load across processors. The Equation aims to optimize task

allocation across Edge layers, allowing the supply chain to function efficiently and highly

responsive.

1.3 Purpose of Research

The research seeks to tie the gap between traditional cloud-based supply chain

models and the emerging need for low-latency, proximity-based processing by developing

a Priority Equation that enables responsive, prioritized data handling across Edge/Fog and

Cloud layers. Through this framework, the study aims to contribute to upcoming supply

5

chains operating with enhanced agility, efficiency, and responsiveness, benefiting

industries that depend on timely data processing and decision-making.

1.4 Significance of the Study

The study is significant since it addresses critical challenges in modern supply chain

management, particularly latency and real-time decision-making in data-heavy IoT-driven

environments. By introducing and validating a Priority Equation that integrates Edge/Fog

computing with Queuing Theory and task thresholding, the research contributes to a

scalable and adaptive framework for task prioritization that meets the evolving needs of

global supply chains and also offers practical solutions for industries where responsiveness

and operational efficiency are paramount.

1.5 Research Purpose and Questions

The research aims to develop and evaluate a priority-based task allocation

framework using Edge computing guided by a dynamic Priority Equation. The framework

aims to reduce latency, optimize resource allocation, and enhance real-time decision-

making within IoT-enabled supply chain systems by addressing key questions:

• Research Question One: How does a priority-based task allocation equation affect

latency and resource utilization in a multi-layered supply chain system?

• Research Question Two: What role do dynamic thresholding and Queuing Theory

play in optimizing task prioritization within Edge/Fog computing environments?

• Research Question Three: How does integrating Edge/Fog and Cloud computing

improve the scalability and responsiveness of supply chains in real-time, high-data

environments?

6

Chapter II:

REVIEW OF LITERATURE

The increasing complexity of computational workloads in Edge, Fog, and Cloud

environments has led to the development of various task scheduling and resource allocation

methodologies. The literature reviewed in this section encompasses heuristic and

mathematical evaluating contributions and limitations in comparison to the Priority

Equation, which leverages Queuing Theory and real-time prioritization techniques.

The study "A Method Based on the Combination of Laxity and Ant Colony System

for Cloud-Fog Task Scheduling" by (Xu et al., 2019) introduces a hybrid algorithm,

combining laxity-based prioritization with an ant colony optimization system (LBP-ACS)

to address these challenges. This section examines the contributions of this approach and

evaluates its strengths and limitations. The LBP-ACS algorithm focuses on two primary

objectives: enhancing the sensitivity of task prioritization to delay requirements and

minimizing energy consumption during task scheduling. The laxity-based priority

algorithm computes task urgency by calculating the allowable delay before the task's

deadline is breached. Tasks with shorter laxity are assigned a higher priority, prioritizing

delay-sensitive operations. While this approach effectively handles interdependent tasks

modeled as directed acyclic graphs (DAGs), its reliance on static laxity metrics limits its

adaptability to dynamic workloads. In contrast, the Priority Equation incorporates real-time

system metrics, enabling dynamic task prioritization and offloading decisions that adapt to

fluctuating system conditions.

The LBP-ACS algorithm's ant colony optimization component ensures global

resource allocation optimization by iteratively improving task scheduling decisions. By

incorporating energy consumption and task deadlines as key parameters, this approach

7

achieves a balance between energy efficiency and task completion time. However, the

iterative nature of the ant colony optimization introduces computational overhead, which

may limit its scalability in large-scale IIoT deployments. The Priority Equation, designed

for Edge-Fog-Cloud architectures, provides a lightweight alternative by minimizing per-

task latency and dynamically distributing tasks between local and remote resources. It

achieves this without requiring extensive heuristic optimization, leveraging real-time task

prioritization to optimize system efficiency.

The researchers (Xu et al., 2019) highlight the benefits of their approach in reducing

task scheduling failure rates and optimizing energy consumption. Experimental results

demonstrate that LBP-ACS outperforms traditional scheduling algorithms such as HEFT

and Greedy for Energy (GfE) in scenarios with mixed task deadlines. However, the study

primarily addresses energy consumption and deadline constraints without explicitly

accounting for the impact of network latency in Edge-Fog-Cloud architectures. In contrast,

the Priority Equation addresses this gap by integrating latency as a core parameter in task

prioritization, ensuring that real-time tasks are processed locally whenever possible to

minimize transmission delays.

The study "Composition-Driven IoT Service Provisioning in Distributed Edges" by

(Deng et al., 2018) presents an optimized service cache policy designed to enhance the

performance of service provisioning in mobile edge computing (MEC) systems. This study

highlights the importance of caching strategies that leverage the composability of services

to reduce latency and improve resource utilization. By introducing a heuristic algorithm

for average service response time (ASRT) minimization, the authors aim to improve the

efficiency of MEC architectures. Deng et al. (2018) address the challenges of latency and

resource constraints in IoT systems by proposing a cache optimization framework that

classifies services as composite and atomic. They utilize service composition graphs

8

(SCGs) to model the hierarchical relationships between services and optimize caching

decisions based on service popularity, resource consumption, and composition structures.

The proposed heuristic algorithm effectively reduces the ASRT by prioritizing frequently

invoked services while accounting for the dependencies within SCGs. However, the

reliance on service popularity and static composition structures limits the adaptability of

this approach in dynamic IIoT environments where task priorities and workloads fluctuate.

A significant contribution of the "Composition-Driven" study by Deng et al. (2018)

is its incorporation of composite services, which are constructed from atomic services, into

the caching framework. This approach enhances resource reuse and minimizes redundant

computations by prioritizing caching decisions that maximize service reusability. While

effective in improving resource utilization, the method assumes that task execution times

on Edge and Cloud servers are equivalent, disregarding the impact of varying resource

capacities and network conditions on latency. The Priority Equation explicitly accounts for

latency differences by prioritizing tasks with stringent timing requirements for local

processing, ensuring compliance with IIoT latency constraints.

The experimental results presented by Deng et al. (2018) demonstrate that their

heuristic algorithm significantly reduces ASRT compared to enumeration and other

evolutionary algorithms, such as genetic algorithms and particle swarm optimization.

Despite these advancements, the heuristic approach does not incorporate dynamic

offloading thresholds or account for real-time edge-cloud collaboration. The Priority

Equation addresses these gaps by dynamically balancing local and Cloud processing based

on system states and task priorities, achieving latency performance in real-time IIoT

applications.

The subsequent literature review is "Optimization of Task Scheduling in Fog-Based

Regions and Cloud (FBRC)" by Hoang and Dang (2017), which introduces a novel concept

9

of fog-based regions combined with cloud computing to address task scheduling in latency-

sensitive environments. This framework, termed FBRC, focuses on reducing task

completion times and optimizing resource utilization by efficiently distributing

computational tasks between local Fog regions and Cloud servers. The contributions of this

work are significant in their development of an area-specific architecture and a heuristic

algorithm for task scheduling.

In their work, Hoang and Dang (2017) conceptualize regions as dynamic clusters

of Fog nodes that are geographically distributed and can exchange resources to handle

computational tasks. The authors highlight the inherent trade-offs between using local

resources in regions, which minimize data transmission latency, and relying on Cloud

servers, which offer higher computational power at the cost of increased transmission

delays. This duality forms the foundation of their FBRC framework, where tasks are

dynamically allocated based on resource availability and location proximity. While the

FBRC framework effectively leverages regional resource sharing to reduce task

completion times, its reliance on heuristic algorithms introduces challenges in adapting to

real-time workload fluctuations. The heuristic algorithm developed for FBRC employs a

multi-step process to allocate tasks across regions and Cloud servers. This algorithm

minimizes task completion time by iteratively assigning resources to tasks based on latency

constraints and resource availability. Still, its computational complexity increases

significantly with the number of regions and tasks, potentially limiting scalability in large-

scale IIoT deployments. The Priority Equation addresses this limitation by using

lightweight, real-time computations that prioritize latency-sensitive tasks for local

processing while offloading non-critical tasks to the Cloud, which ensures that the system

remains efficient even under high task loads. At the same time, the researchers Hoang and

Dang (2017) validate the FBRC framework through simulations that compare its

10

performance with cloud-only and region-only scheduling schemes. The results demonstrate

that FBRC consistently outperforms these alternatives in minimizing task completion

times, especially at higher task arrival rates. The study does not explicitly account for the

dynamic nature of task priorities, which can vary significantly in IIoT environments. The

Priority Equation builds on this gap by directly integrating task prioritization into its

framework, ensuring critical tasks are processed on time while maintaining overall system

efficiency.

Another strength of the FBRC framework lies in its emphasis on optimizing

resource allocation across heterogeneous Fog and Cloud environments by considering

varying service rates and transmission latencies, and the framework provides a balanced

approach to resource utilization. Nevertheless, its static configuration of task scheduling

parameters may hinder its ability to adapt to sudden workload or resource availability

changes. In this illustration, the Priority Equation enhances this adaptability by

dynamically adjusting offloading thresholds (s) based on real-time system states, enabling

more responsive and efficient resource allocation.

For the following study done by Sohani and Jain (2021), "A Predictive Priority-

Based Dynamic Resource Provisioning Scheme With Load Balancing in Heterogeneous

Cloud Computing," presents a novel approach to improving cloud-based task scheduling

and resource provisioning. The research introduces the Predictive Priority-based Modified

Heterogeneous Earliest Finish Time (PMHEFT) algorithm, which enhances load balancing

and scheduling efficiency in heterogeneous cloud environments. The core idea is to

dynamically allocate computing resources based on predictive modeling to minimize

makespan, reduce energy consumption, and optimize Quality of Service (QoS).

Researchers Sohani and Jain focus on optimizing task scheduling by leveraging a

priority queue that predicts resource demand and workload distribution. The PMHEFT

11

algorithm builds on existing task scheduling strategies such as HEFT (Heterogeneous

Earliest Finish Time) and CPOP (Critical Path on a Processor), modifying them to account

for dynamic workload fluctuations. Their approach significantly improves makespan

minimization and enhances load balancing across virtual machines (VMs). However, while

PMHEFT optimizes scheduling efficiency in Cloud environments, it does not explicitly

address task offloading in multi-cloud and Edge computing. Still, their study introduces a

predictive model for estimating future workloads and adjusting resource allocation

accordingly, which ensures that Cloud resources are optimally provisioned to prevent

Service Level Agreement Violation (SLA) violations and minimize resource wastage.

However, the predictive approach relies on historical workload patterns, which may not

always reflect real-time conditions.

Another key contribution of the PMHEFT algorithm is its priority-based queuing

mechanism, which ensures that high-priority tasks are executed first while balancing the

load across multiple Cloud nodes. The approach enhances load balancing and reduces the

probability of resource bottlenecks. However, PMHEFT does not explicitly consider

geographical distance-based latency variations in multi-cloud environments. The Priority

Equation does not currently integrate Critical Path Analysis. However, this could be a

potential enhancement for dynamically assigning tasks to the fastest available Cloud

provider, ensuring minimal transmission delay based on processing needs and latency

requirements. The concept might present an optimal task execution path across multiple

cloud regions, ensuring critical computations are processed with minimal transmission

latency.

The experimental evaluation of the PMHEFT algorithm demonstrates superior

performance compared to traditional HEFT, MHEFT, and Dynamic HEFT algorithms,

particularly in terms of makespan reduction and resource utilization. However, the study

12

primarily focuses on cloud-only architectures, whereas the Priority Equation is designed

for Edge-Fog-Cloud hierarchies, making it more suitable for latency-sensitive IIoT/IoT

applications.

Another reference used is the study done by Chakraborty et al. (2022), "Intelligent

Latency-Aware Tasks Prioritization and Offloading Strategy in Distributed Fog-Cloud of

Things," which presents a multi-layered latency-aware offloading model for Fog-Cloud

computing, incorporating fuzzy logic-based task prioritization and an Elitism-based

Multipopulation Jaya (EMPJ) algorithm for task scheduling. The research highlights the

importance of deadline constraints and priority-aware scheduling in distributed

environments, focusing on minimizing offloading time and computational latency while

ensuring efficient resource utilization.

One of the primary contributions of this work is the classification of tasks based on

priority levels and their deadline sensitivity. The proposed fuzzy logic-based task classifier

categorizes tasks into high-priority, medium-priority, and low-priority groups, assigning

them to different computational layers accordingly. This classification ensures that high-

priority and deadline-sensitive tasks are processed in the Cloud, while moderate-priority

tasks are assigned to Fog nodes with mixed computational resources, and low-priority tasks

are executed at local Fog nodes to prevent unnecessary transmission delays.

The EMPJ algorithm proposed in their study extends traditional metaheuristic

approaches by incorporating multi-population scheduling, which enhances exploration-

exploitation balance in computing resource allocation. The strategy effectively reduces

waiting time and service latency by dynamically mapping tasks to heterogeneous

computing nodes. However, the Priority Equation ensures that critical tasks are always

prioritized without requiring computationally intensive metaheuristic optimization

algorithms.

13

A key area of comparison lies in latency management and scheduling efficiency.

The fuzzy-based offloading strategy in the Chakraborty et al. (2022) study ensures that

tasks with hard deadlines are executed in the most resource-efficient nodes, whereas the

Priority Equation ensures that local processing capacity is fully utilized before offloading

occurs. Moreover, the Priority Equation is inherently adaptable, making it suitable for real-

time IIoT environments, whereas the EMPJ-based approach may introduce computational

overhead due to its reliance on iterative metaheuristic optimization.

The analysis performed by Bali et al. (2023), "An Effective Technique to Schedule

Priority-Aware Tasks to Offload Data on Edge and Cloud Servers," proposes the Priority-

Aware Task Scheduling (PaTS) algorithm, which prioritizes tasks based on urgency and

assigns them to Edge or Cloud servers accordingly. The PaTS approach formulates a multi-

objective optimization problem, integrating a four-queue model where very-urgent and

urgent tasks are processed at the Edge to minimize latency, whereas moderate and non-

urgent tasks are offloaded to the Cloud, where computational resources are plentiful. The

scheduling is further optimized using the NSGA-II genetic algorithm, improving average

queue delay, computation time, and energy efficiency compared to benchmark models.

Their approach shares similarities with the Priority Equation, particularly in task

prioritization and offloading strategies. Both methods aim to enhance latency-sensitive task

processing by ensuring critical tasks receive priority execution at the most suitable

computational layer. The Priority Equation is distinct in its reliance on Queuing Theory

and mathematical modeling, dynamically adjusting offloading thresholds based on real-

time system parameters, unlike PaTS, which classifies tasks into discrete priority groups

and assigns them accordingly.

Another key difference lies in the optimization methodology. The PaTS algorithm

leverages bio-inspired genetic optimization (NSGA-II) to refine scheduling, which

14

introduces computational overhead due to iterative search and selection processes. On the

other hand, the Priority Equation is lighter in computation, as it uses a closed-form

mathematical expression to dynamically determine task priority, making it more suitable

for real-time IIoT applications with high task arrival rates. Furthermore, while PaTS

effectively categorizes tasks based on urgency, it does not explicitly model the queuing

dynamics and processing delays in the same structured manner as the Priority Equation,

which integrates latency estimations directly into task prioritization calculations. This

difference gives the Priority Equation an advantage in real-time adaptability, as it accounts

for dynamic fluctuations in workload and processing speed without requiring constant re-

evaluation through genetic algorithms.

The examination conducted by You and Tang (2021), "Efficient Task Offloading

Using Particle Swarm Optimization Algorithm in Edge Computing for Industrial Internet

of Things," presents a Particle Swarm Optimization (PSO)-based task offloading strategy

aimed at optimizing latency and energy consumption in Industrial IoT (IIoT) environments.

The authors emphasize the need for an efficient task allocation strategy in mobile edge

computing (MEC) systems, where limited processing capabilities and network constraints

demand intelligent decision-making. The proposed multi-objective optimization problem

considers time delay, energy consumption, and execution cost to achieve optimal task

placement across heterogeneous Edge servers.

The PSO-based offloading approach introduced in their research enables dynamic

and adaptive task scheduling, improving system efficiency by balancing computational

loads across multiple MEC servers. The fitness function of PSO determines the most cost-

effective task placement by evaluating total offloading costs under energy constraints.

Through extensive simulations, the study demonstrates that PSO-based offloading

outperforms traditional heuristic approaches, such as the Genetic Algorithm (GA) and

15

Simulated Annealing (SA), by reducing execution delay, optimizing energy consumption,

and improving overall system throughput. However, the study acknowledges challenges in

tuning PSO parameters, as optimal performance relies on selecting appropriate acceleration

coefficients and penalty functions.

Comparing You and Tang (2021) approach to the Priority Equation, both models

aim to enhance task allocation efficiency and latency reduction in distributed computing

architectures. The Priority Equation, however, relies on Queuing Theory and real-time

prioritization metrics rather than heuristic optimization techniques, unlike the PSO-based

approach, which relies on global search heuristics. While PSO excels at finding near-

optimal task placement solutions by exploring multiple execution paths, it introduces

computational overhead due to its iterative nature. The Priority Equation offers a more

lightweight and deterministic approach, ensuring that high-priority tasks are processed first

based on system state conditions rather than evolutionary search techniques. Additionally,

the PSO model does not explicitly incorporate priority-based queuing mechanisms,

whereas the Priority Equation ensures task prioritization by dynamically allocating

computing resources according to service demands.

The research conducted by Bali et al. (2021), "Smart Architectural Framework for

Symmetrical Data Offloading in IoT," introduces a structured approach to optimizing data

offloading strategies in IoT networks. The work emphasizes the increasing burden of data

traffic on cloud-based architectures and explores the integration of Edge and Fog

computing as alternatives to mitigate network congestion and latency. The authors

categorize offloading methodologies into data offloading, computation offloading, and task

offloading, aiming to reduce system overload and improve real-time response efficiency.

The proposed smart architectural framework ensures symmetrical data offloading, evenly

16

distributing computational and storage resources across Edge and Fog nodes to maintain

balance and efficiency.

Their approach aligns with the goals of the Priority Equation, which also seeks to

reduce latency and optimize resource allocation in real-time environments. However, the

two methodologies differ significantly in their implementation. The Priority Equation

operates based on Queuing Theory and dynamic prioritization, where task arrival rates,

service rates, and utilization factors govern the offloading decisions. In contrast, the study

"Smart Architectural Framework" focuses on symmetry in data distribution rather than

adaptive prioritization. The Priority Equation prioritizes tasks dynamically, ensuring low-

latency processing of critical tasks, while the "Smart Framework" seeks to balance

computational loads across all available nodes, which may not always prioritize the most

time-sensitive operations. Another key difference is that the "Smart Architectural

Framework" relies on heuristic-based decision-making for offloading, reducing bandwidth

consumption, and maintaining even distribution across resources. While this can be

effective for long-term stability, it may not provide the real-time adaptability that latency-

sensitive applications require.

Additionally, Bali et al. (2021) propose a workflow in which data filtering occurs

at the Edge before offloading to the Cloud, preventing unnecessary transmissions and

optimizing bandwidth utilization. This structured filtering process is helpful in managing

congestion but lacks the dynamic prioritization inherent in the Priority Equation, which

adjusts task allocation in real-time based on system conditions. The Priority Equation

ensures that processing capacity is always utilized efficiently, offloading only when

necessary to prevent saturation.

The study by Bali et al. (2021) presents a well-structured offloading model that

effectively balances data distribution and resource allocation; however, its reliance on

17

static heuristic-based methodologies may limit its adaptability to real-time fluctuations in

network traffic. The Priority Equation, in contrast, is more adaptive and latency-focused,

making it more suitable for high-priority industrial IoT applications where response times

are critical. Future research could explore hybrid approaches that integrate dynamic

prioritization with structured resource balancing, leveraging the strengths of both

methodologies for optimal task scheduling in IoT networks.

The work "An Efficient Algorithm for Data Transmission Certainty in IIoT Sensing

Networks: A Priority-Based Approach" by Nalbant et al. (2024) presents a novel caching

algorithm to optimize data transmission certainty in industrial IoT (IIoT) environments.

The study introduces a periodic popularity prediction and size-based caching (PPPS)

algorithm to enhance cache hit rates and minimize latency, particularly in industrial

scenarios with strict timeliness requirements.

The PPPS algorithm centers on caching strategies tailored for IIoT applications,

emphasizing the prediction of content popularity based on recent request sequences. By

integrating metrics such as content size, timeliness, and historical popularity, the algorithm

dynamically evaluates the caching value of each item and determines optimal content

replacement strategies. Unlike conventional caching methods like LRU and LFU, which

often fail in dynamic industrial scenarios, the proposed algorithm achieves better cache hit

rates and lower transmission delays. However, while effective for improving caching

efficiency, the static prediction model employed by PPPS may struggle to adapt to real-

time workload fluctuations.

One of the significant contributions of the study by Nalbant et al. (2024) is the

introduction of a shot noise model (SNM) for user request prediction. This model captures

temporal variations in content popularity, allowing the caching algorithm to anticipate

future requests based on historical trends. However, the SNM model does not account for

18

the variability in real-time task priorities or the dynamic nature of IIoT workloads. The

Priority Equation addresses this limitation by dynamically adjusting offloading thresholds

(s) to optimize task distribution between local and remote resources, ensuring compliance

with latency-sensitive IIoT requirements.

The experimental results of the PPPS algorithm demonstrate substantial

improvements over traditional caching strategies in terms of cache hit rates and latency

reductions. For instance, under dynamic content scenarios, the proposed algorithm

achieved a 15.3% higher hit rate compared to Greedy Dual-Size (GDS) and a 24.8% higher

rate than Least Frequently Used (LFU). However, these improvements are contingent upon

pre-defined popularity patterns of user patterns and content size distributions, which may

not reflect the diverse and unpredictable workloads encountered in IIoT systems. The

Priority Equation complements these advancements by incorporating real-time

adaptability, making it more suitable for environments where workload characteristics

change frequently. The PPPS algorithm's reliance on static thresholds for determining

content popularity and caching decisions limits its scalability in large-scale IIoT

deployments. Furthermore, the authors note the limitations of the algorithm's high data

replacement rates and lack of synchronization for multi-dimensional feature analysis. In

contrast, the Priority Equation employs lightweight computations and scalable dynamic

metrics, ensuring efficient resource utilization and scalability across diverse IIoT

applications.

The research conducted by Tao et al. (2021), "Content Popularity Prediction in

Fog-RANs: A Bayesian Learning Approach," suggests a novel strategy for predicting

content popularity in Fog Radio Access Networks (F-RANs) using a Bayesian learning

framework. This method addresses the challenges of limited caching capacity in Fog

Access Points (F-APs) by developing a Gaussian process-based Poisson regression model

19

that leverages content features and request probabilities. The research introduces a

hierarchical probabilistic model designed to predict content popularity while accounting

for the nonlinear relationships between content features and request probabilities. The

research model enables F-APs to optimize caching strategies by predicting the popularity

of existing and newly added content using Bayesian learning. The approach is robust to

overfitting, especially in scenarios with sparse data. However, its focus on caching

efficiency is limited to static and semi-dynamic environments, where the request

probabilities and features are assumed to follow relatively stable patterns. The Priority

Equation, in contrast, offers a dynamic framework that adjusts task prioritization and

offloading thresholds in real-time, ensuring adaptability to highly dynamic IIoT workloads.

A key contribution of Tao et al. (2021) study is the integration of stochastic variance

reduced gradient Hamiltonian Monte Carlo (SVRG-HMC) into the Bayesian learning

model. This innovation improves the convergence rate of the model, allowing faster and

more accurate predictions of content popularity. While this method demonstrates

computational efficiency, it does not directly address latency-sensitive tasks or their

prioritization in IIoT systems. The evaluation of the Bayesian model using the MovieLens

dataset highlights its effectiveness in reducing root mean square error (RMSE) and

improving cache hit rates compared to other methods. However, the experimental

framework relies on historical data and pre-defined feature sets, which may not adequately

reflect the dynamic requirements of real-time IIoT systems. In contrast, the Priority

Equation prioritizes tasks based on current system states and dynamically allocates

resources, ensuring optimal performance in latency-sensitive applications without

dependence on historical trends.

Another limitation of the study by Tao et al. (2021) is its focus on content popularity

prediction rather than task-level prioritization or scheduling. The proposed model

20

optimizes caching decisions based on popularity but does not address the distribution of

computational tasks across Edge and Cloud resources. The Priority Equation fills this gap

by integrating dynamic offloading thresholds (s) to balance local and Cloud processing,

ensuring that critical tasks are handled with minimal latency while optimizing resource use

across the system.

The research presented with the title "An MCDM Optimization-Based Dynamic

Workflow Scheduling Used to Handle Priority Tasks for Fault Tolerance in IIoT" by Jamal

and Muqeem (2023) introduces a multi-criteria decision-making (MCDM) approach to

address these challenges. The MCDM approach proposed by Jamal and Muqeem integrates

the Best-Worst Method (BWM) and the VIKOR technique for dynamic task prioritization

and resource allocation in IIoT systems. This method emphasizes reducing the makespan,

improving throughput, and ensuring fault tolerance by dynamically allocating resources

based on task importance, deadlines, and system capacity. The authors demonstrate that

their approach outperforms traditional algorithms, such as Min Connection and Latent

Regression Topic Model (LRTM), in terms of resource utilization and fault tolerance.

However, the reliance on centralized decision-making and increased computational

complexity in the MCDM model poses limitations in highly dynamic environments where

real-time adaptability is critical. The Priority Equation addresses these limitations by

leveraging lightweight real-time parameters to ensure dynamic adaptability and efficient

task prioritization without significant computational overhead.

One of the key contributions of Jamal and Muqeem's (2023) study is its focus on

fault tolerance for priority tasks in IIoT systems. Their methodology incorporates

redundant systems and robust fault-detection mechanisms to enhance system reliability.

While this aligns with the goals of the Priority Equation, their approach does not explicitly

address latency-sensitive task prioritization in Edge computing environments. The Priority

21

Equation distinguishes itself by integrating dynamic offloading thresholds (s) and real-time

metrics to optimize task distribution between Edge and Cloud resources, ensuring lower

latency for critical tasks and better resource scalability.

The use of the VIKOR technique in the MCDM model highlights the importance

of multi-criteria optimization in IIoT task scheduling. By balancing trade-offs among

multiple objectives, such as cost, time, and resource utilization, the proposed method offers

a comprehensive framework for decision-making; however, the VIKOR model's

dependency on pre-defined criteria, which limits adaptability to sudden workload changes.

In contrast, the Priority Equation dynamically adjusts task prioritization and offloading

decisions based on current system states, providing a more flexible and responsive solution

for IIoT environments.

Another significant aspect of the MCDM approach is its emphasis on reducing

makespan and improving throughput by utilizing optimization techniques such as parallel

computing. While these improvements are notable, the approach does not fully explore the

potential of decentralized task scheduling in Edge computing architectures. The Priority

Equation, explicitly designed for Edge-Fog-Cloud architectures, ensures efficient task

allocation by prioritizing latency-critical tasks locally while offloading less critical tasks to

the Cloud, thereby achieving a balance between system performance and resource

utilization.

The research "Dynamic Multi-Level Auto-Scaling Rules for Containerized

Applications" by Taherizadeh and Stankovski (2019) presents a novel approach to

managing resource allocation in cloud environments using dynamic multi-level (DM) auto-

scaling. The method introduces dynamic thresholds for container-based applications,

integrating both infrastructure-level and application-level metrics to optimize resource

utilization and performance. Researchers Taherizadeh and Stankovski focus on fine-

22

grained resource scaling to adapt to dynamic workload fluctuations. Their method

combines CPU, memory, and bandwidth monitoring with application-specific metrics such

as response time and throughput. By introducing dynamic thresholds instead of static ones,

the DM method ensures a more adaptive response to changing conditions, preventing both

over-provisioning and under-provisioning of resources. However, while this method is

effective for containerized applications, it does not explicitly address task prioritization,

particularly for latency-sensitive tasks. The DM auto-scaling approach leverages a rule-

based algorithm that launches or terminates container instances based on real-time

monitoring data. This algorithm balances response time requirements with resource

availability, achieving significant improvements in resource utilization and system

performance compared to static scaling methods. However, the rule-based nature of the

DM method introduces limitations in highly dynamic environments where task arrival

patterns and system loads change unpredictably.

Experimental results from the DM method show superior performance compared

to traditional scaling approaches. The authors report a reduction in response time violations

and improved resource efficiency across diverse workload scenarios, including real-world

use cases. However, these experiments focus primarily on container-level resource

adjustments and do not explore the implications of task-level scheduling. Another strength

of the DM method is its ability to integrate multi-level monitoring systems, such as the

SWITCH monitoring system, which combines container-level and application-level

metrics. This integration provides a holistic view of system performance, enabling precise

scaling decisions. However, the approach relies heavily on pre-defined thresholds and

static adaptation intervals, which may hinder its responsiveness in scenarios with rapid

workload fluctuations.

23

The research conducted by Kafle and Al Muktadir (2020), "Intelligent and Agile

Control of Edge Resources for Latency-Sensitive IoT Services," presents a resource

adjustment scheme for virtualized Edge environments using machine learning (ML). This

work addresses the dynamic allocation of computational resources for latency-sensitive

virtual network functions (VNFs), employing multiple regression models for resource

demand prediction and agile adjustments. Kafle and Muktadir focus on reducing resource

utilization while maintaining service latency below specified thresholds. Their proposed

system incorporates both offline training and online retraining of regression models,

enabling continuous resource allocation optimization based on workload variations. The

models dynamically predict resource demands by analyzing input metrics such as workload

intensity, resource utilization, and system latency. While this method ensures efficient

resource use and scalability, its reliance on periodic retraining introduces potential delays

in highly dynamic environments. The Priority Equation addresses this limitation by

utilizing lightweight computations that dynamically adjust task priorities and offload

thresholds (s) in real time, achieving immediate adaptability without relying on retraining

cycles.

A key innovation of Kafle and Al Muktadir's (2020) work is the use of regression-

based models to predict CPU demand, allowing resource adjustments to occur at one-

second intervals. This scheme significantly improves resource utilization and reduces

latency violations compared to conventional threshold-based algorithms. However, the

approach prioritizes CPU-intensive tasks and does not extend to holistic resource

management, such as bandwidth or memory allocation. The Priority Equation offers a

broader perspective by optimizing task distribution across Edge, Fog, and Cloud layers,

ensuring that latency-sensitive tasks are processed locally while non-critical tasks are

offloaded to remote servers. The authors validate their approach through extensive

24

simulations using real-world workload patterns, such as proportional, step, and Poisson

distributions. They report a 58.2% reduction in latency violations and a 21.9% decrease in

CPU resource demand compared to baseline algorithms. These results highlight the

efficacy of their regression models in resource optimization. However, the experimental

framework is limited to pre-defined workloads and static latency thresholds, which may

not fully capture the dynamic nature of IIoT environments. Another strength of their

research lies in its agile resource control mechanism, which adapts resource allocation

every second, and this aspect is particularly beneficial for latency-sensitive applications

such as automated driving and telemedicine. However, relying on supervised learning for

offline training requires extensive dataset preparation, which may limit scalability in

environments with rapidly changing conditions. The Priority Equation mitigates this

challenge by employing a simplified, heuristic approach to task prioritization and

offloading, reducing dependency on historical data and enabling immediate deployment in

dynamic IIoT scenarios.

The research paper titled "Performance Interference-Aware Vertical Elasticity for

Cloud-Hosted Latency-Sensitive Applications" by Shekhar et al. (2018) introduces a

proactive vertical scaling framework designed to address the challenges of performance

interference and workload variability in cloud-hosted latency-sensitive applications. This

study optimizes resource allocation by leveraging Gaussian Processes (GP)-based machine

learning to predict real-time workload and performance interference levels.

 In their research, Shekhar et al. (2018) highlight the limitations of traditional

horizontal elasticity methods, such as initialization delays and suboptimal resource

utilization, and argue for the advantages of vertical elasticity in reducing latency and

improving resource efficiency. By dynamically resizing application containers or virtual

machines, their approach ensures better adherence to service-level objectives (SLOs) while

25

minimizing interference from co-located batch applications. However, while the

framework effectively models performance interference and predicts resource

requirements, it introduces computational overhead associated with online training and

prediction using GP models. The GP-based predictive model developed by Shekhar et al.

(2018) accounts for both workload variability and performance interference by clustering

system-level metrics using K-Means and building separate GP models for each cluster.

This aspect enables precise predictions of latency and resource needs for latency-sensitive

applications. While this approach significantly reduces tail latency and resource

contention, it assumes a static set of interference profiles and clustering thresholds, limiting

its adaptability to dynamic IIoT environments. Experimental results (Shekhar et al., 2018)

demonstrate that their proactive vertical scaling framework achieves a 39.46% reduction

in tail latency compared to reactive approaches, even at the cost of higher resource

utilization. By focusing on task-level optimization and dynamic offloading, the Priority

Equation ensures lower latency without significant increases in resource consumption,

achieving a more balanced trade-off between performance and efficiency. Furthermore,

while the vertical elasticity approach excels in managing latency-sensitive applications in

Cloud environments, its reliance on centralized resource control limits its scalability for

distributed architectures such as Edge-Fog-Cloud systems, which are central to IIoT

applications. Another key contribution of the Shekhar et al. (2018) framework is its use of

predictive modeling to enable proactive scaling decisions, mitigating the limitations of

reactive threshold-based approaches. However, this framework primarily targets CPU-

intensive applications and does not address the challenges associated with other resources,

such as memory, bandwidth, or network latency. The Priority Equation extends these

contributions by providing a comprehensive framework that dynamically distributes tasks

across local and Cloud resources, optimizing CPU, network, and storage resources.

26

Last but not least, the study "Priority-Based Task Scheduling and Resource

Allocation in Edge Computing for Health Monitoring Systems" by Sharif et al. (2023)

presents a Priority-Based Task Scheduling and Resource Allocation (PTS-RA) system to

optimize computational efficiency in mobile edge computing (MEC) for healthcare

applications. The work focuses on task prioritization based on emergency levels derived

from real-time patient monitoring data. The authors emphasize the importance of reducing

task execution latency and minimizing bandwidth consumption, particularly in emergency

healthcare scenarios, by assigning priority levels to different tasks. The PTS-RA model

dynamically determines whether a task should be processed locally at hospital workstations

(HWs) or offloaded to the Cloud, ensuring that critical healthcare tasks receive immediate

computational resources. Comparing this approach to the Priority Equation, both models

aim to reduce latency and improve task scheduling efficiency in computationally

constrained environments; however, methodologies differ significantly. The PTS-RA

system relies on heuristic-based task prioritization using urgency levels computed from

patient health metrics, which operates primarily in a healthcare monitoring setting. In

contrast, the Priority Equation is a more generalized framework applicable across diverse

industrial IoT applications where real-time task prioritization is essential.

A key distinction between these approaches is their task execution decision

mechanisms. The PTS-RA system uses a pre-defined heuristic model, where tasks are

classified based on emergency levels, and decisions are made according to available

bandwidth and computational resources. In contrast, the Priority Equation employs a

dynamic queuing-based approach, continuously updating task allocation thresholds based

on system load and latency constraints. The Equation allows a more adaptive and real-time

response to varying task loads, ensuring system resources are optimally allocated without

pre-defined emergency classifications. Another fundamental difference lies in the resource

27

management strategy. The PTS-RA system distributes tasks between hospital workstations

(acting as Edge servers) and the Cloud to prioritize critical tasks. The Priority Equation

accounts for queue dynamics and processor availability, making it more robust for scalable

and high-throughput environments, particularly in Supply Chain Management and

industrial automation, where computational demand fluctuates dynamically.

Both models contribute to the advancement of real-time task scheduling in MEC

environments, but their applicability differs. The PTS-RA system is well-suited for

structured healthcare applications, where emergency-driven prioritization is necessary for

medical decision-making. However, it may struggle to generalize to broader Edge

computing environments with diverse computational loads. The Priority Equation, in

contrast, provides a more flexible and scalable solution, making it ideal for real-time

industrial IoT deployments, where task prioritization and latency optimization are

essential.

Lastly, the study "AI-Based Sustainable and Intelligent Offloading Framework for

IIoT in Collaborative Cloud-Fog Environments" by Kumar et al. (2023) introduces an

artificial intelligence-driven framework for optimizing resource allocation in multi-layered

Cloud-Fog architectures. The research emphasizes the significance of real-time offloading

decisions to enhance Quality-of-Service (QoS) metrics such as execution time, energy

consumption, and cost. The framework incorporates fuzzy-based offloading controllers

and the Whale Optimization Algorithm (WOA) to intelligently assign tasks to the most

suitable computational resources, minimizing latency and improving overall system

efficiency. One of the primary contributions of this study is the introduction of an AI-

enabled decision-making system that dynamically determines whether tasks should be

executed locally, in a Fog node, or in a Cloud data center. This hierarchical decision-

making model is particularly relevant for Industrial Internet of Things (IIoT) applications,

28

where real-time responsiveness is crucial. The authors demonstrate that their approach

improves execution performance, reducing makespan by 37.17%, energy consumption by

27.32%, and execution costs by 13.36% compared to traditional offloading techniques.

However, the study does not explicitly address task prioritization mechanisms beyond

QoS-driven optimization, leaving a gap where more refined dynamic prioritization

techniques could be applied.

Comparing Kumar et al. (2023) work with the Priority Equation, a key distinction

is the method of task prioritization and resource allocation. While the AI-based offloading

framework uses metaheuristic algorithms (near-optimal solutions within a reasonable

timeframe) and fuzzy logic (a mathematical framework that enables reasoning with

imprecise, uncertain, or vague data) to enhance decision-making, the Priority Equation

employs mathematical modeling rooted in Queuing Theory to dynamically adjust task

offloading thresholds (s) based on real-time system conditions. The Priority Equation

ensures that high-priority tasks receive preferential processing while balancing local Fog

and Cloud computing capacities. Another key distinction is decision granularity. The AI-

based framework primarily focuses on finding optimal resource allocations for individual

task batches, making it effective for long-term system optimization. In contrast, the Priority

Equation continuously adjusts offloading decisions in real time based on task arrival rates,

service rates, and system utilization factors, ensuring dynamic adaptability in highly

variable IIoT environments. The Priority Equation is more suitable for applications that

require instantaneous decision-making and latency-sensitive operations, whereas the AI-

based method is better suited for periodic adjustments driven by metaheuristic optimization

algorithms.

While the Whale Optimization Algorithm (WOA) used in the AI framework

significantly enhances task-to-resource mapping, it introduces computational overhead,

29

requiring continuous model updates and convergence cycles. The Priority Equation avoids

this computational burden by relying on lightweight mathematical computations, making

it more efficient for real-time IIoT applications. However, integrating machine learning-

based prediction models into the Priority Equation could allow for more adaptive threshold

tuning, leveraging historical workload trends to anticipate system fluctuations.

The literature reviewed in this study highlights various methodologies for task

scheduling, resource allocation, and latency optimization in Edge, Fog, and Cloud

computing environments. A wide range of approaches, including heuristic models,

artificial intelligence-driven frameworks, multi-criteria decision-making (MCDM)

techniques, and optimization algorithms, have been examined in comparison to the Priority

Equation. While these studies offer substantial contributions to computational efficiency

and task management, each approach has distinct advantages and limitations. Across all

methodologies examined, a key differentiator of the Priority Equation is its reliance on

Queuing Theory and real-time prioritization rather than static optimization models or

computationally intensive AI-based approaches. The Priority Equation ensures optimal

latency-sensitive decision-making without requiring heavy computation by dynamically

recalibrating task scheduling thresholds based on task arrival rates, service rates, and

system utilization factors. Furthermore, while heuristic and AI-driven methods provide

enhanced predictive capabilities, the Priority Equation lightweight mathematical

foundation makes it more suitable for real-time Industrial IoT and supply chain

applications where immediate processing decisions are necessary. Future research could

explore hybrid models that integrate machine learning for dynamic threshold tuning while

maintaining the real-time adaptability of queuing-based prioritization and/or incorporating

Critical Path Analysis for cloud-based task execution, which could further refine the

Priority Equation ability to allocate tasks to the most efficient computational resources

30

across multi-cloud environments. By integrating queuing theory, real-time prioritization,

and dynamic offloading thresholds, the Priority Equation provides a balanced solution that

meets the needs of low-latency, high-throughput computing environments.

2.1 Theoretical Framework

Priority-based heuristics have been widely studied as effective strategies for task

scheduling in latency-sensitive environments. According to Alatoun et al. (2022), in

"Advancements in Heuristic Task Scheduling for IoT Applications in Fog-Cloud

Computing: Challenges and Prospects," extensive research has been conducted on

priority-based task allocation. Researchers such as Fahad et al. (2022) and Tang et al.

(2023) have explored both static and dynamic priority scheduling models to enhance the

efficiency of task execution. Static priority scheduling assigns fixed priorities based on

predefined criteria such as deadlines or importance, ensuring simplicity but lacking

adaptability in dynamic environments. In contrast, Shi et al. (2020) described that dynamic

priority scheduling adjusts task priorities in real-time, responding to fluctuating workloads

and system conditions, thus offering increased flexibility at the cost of computational

complexity. Another conceptual similarity of the Priority Equation is that it intends to

optimize task allocation in real-time and resource-constrained environments. However, it

diverges in methodology by employing a queuing-theoretic approach rather than heuristic-

based task assignment. Unlike Multi-Queue Priority (MQP) scheduling proposed by Fahad

et al. (2022), which dynamically adjusts preemption time slots to manage task starvation

issues, the Priority Equation incorporates Queuing Theory principles to determine the

likelihood of local versus offloaded task execution probabilistically. Task allocation is

mathematically structured rather than relying on predefined heuristics or manually

assigned priority levels.

31

A key difference between heuristic-based models and the Priority Equation lies in

their treatment of task execution dependencies. Studies such as Madhura et al. (2021)

introduced directed acyclic graphs (DAGs) to account for task precedence constraints,

ensuring that dependent tasks are scheduled efficiently. Similarly, heuristic methods such

as the Opposition-Based Chaotic Whale Optimization Algorithm (OppoCWOA) approach

proposed by Movahedi et al. (2021) employ optimization techniques such as the Whale

Optimization Algorithm to balance computational workloads across fog computing nodes.

While effective, these approaches require extensive computational tuning and iterative

adjustments to optimize performance. In contrast, the Priority Equation integrates Poisson-

based probability distributions and M/G/c queuing models, ensuring that latency-sensitive

tasks are prioritized dynamically without requiring heuristic parameter fine-tuning.

Many heuristic approaches, such as those proposed by Hoseiny et al. (2021) and

Choudhari et al. (2018), rely on task categorization based on pre-assigned priority levels.

While effective in structured environments, this method risks inefficiencies when faced

with unpredictable task arrivals and varying processing delays. The Priority Equation

mitigates these inefficiencies by integrating real-time computational load monitoring,

dynamically adjusting the offloading threshold based on workload conditions rather than

fixed classification levels.

An enhancement introduced by the Priority Equation is its ability to integrate

seamlessly into hybrid processing environments. Whereas heuristic models often operate

within either Fog or Cloud computing paradigms, the Priority Equation dynamically shifts

processing between Fog and Cloud nodes based on real-time latency constraints. This

makes it particularly well-suited for applications such as Supply Chain Management,

where fluctuating task loads necessitate an adaptive scheduling framework.

32

The Priority Equation derives from key Queuing Theory principles, probability

distributions, and multi-server systems, building upon the mathematical framework

established by foundational works such as Rényi (2007) and Willig (1999). The formula is

designed to address real-time task prioritization and dynamic offloading in supply chain

systems, particularly within Fog and Edge computing environments. Specifically, the

M/G/c model accounts for multi-server systems with general service time distributions,

while the task arrival process is modeled using Poisson processes (Last and Penrose, 2017),

which provide a mathematically tractable representation of stochastic task arrivals. The

integration of Poisson probability distributions into the Priority Equation ensures accurate

modeling of task distributions in Fog and Cloud environments. The stationary and

memoryless properties of the Poisson process enable efficient calculation of expected

delays and prioritization logic in real-time decision-making. Furthermore, the integration

of Campbell (1965) allows for precise computation of the expected number of tasks

processed locally versus those offloaded, reinforcing the model's validity.

 Figure 1: Three-Tier Architecture for M/G/c Queuing in Real-Time Supply Chain

(Ibrahim et al., 2022)

33

Similar to the work of Alatoun et al. (2022) in "A Novel Low-Latency and Energy-

Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud

System," the Equation shares foundational principles in system architecture. Both models

utilize a three-layer structure, where the bottom layer consists of IoT sensors, the

intermediate layer comprises Fog devices, and the top layer represents the Cloud. However,

a key distinction lies in the prioritization mechanism. While Alatoun et al. (2022) classify

tasks into "normal, moderate, and critical" based on medical parameters, the Priority

Equation defines critical response times according to supply chain efficiency requirements.

Supply chain operations require rapid data processing with optimal resource utilization,

making real-time task prioritization essential. Alatoun et al. (2022) reference the earlier

work of Cortés et al. (2015), which examined large-scale information flow in healthcare-

related IoT applications, reporting that such systems can reach a processing rate of 25,000

records per second. While healthcare applications focus on patient monitoring and medical

emergencies, Supply Chain Systems emphasize real-time logistics and operational

efficiency. Both domains handle vast volumes of data where tasks must be efficiently

distributed between local processing units and Cloud resources, ensuring time-sensitive

computations are handled with minimal delay.

The Priority Equation aligns with existing research on edge-focused task offloading

in resource-constrained environments. The work of Deng et al. (2018) in "Optimal

Application Deployment in Resource-Constrained Distributed Edge" highlights the

necessity of dynamically offloading tasks based on the real-time availability of Edge

resources. Unlike conventional task distribution models that rely on pre-configured

thresholds, the Priority Equation leverages real-time system conditions, particularly the

utilization factor, to adjust offloading probabilities dynamically. This enables a

34

probabilistic task distribution that prevents local node saturation while minimizing overall

task response time.

The approach presented in "Latency Minimization with Optimum Workload

Distribution and Power Control for Fog Computing" by Atapattu et al. (2020) contrasts

with the Priority Equation's more fluid offloading mechanism. While the three-layer IoT-

Fog-Cloud computing model assumes predefined computational capacities for each layer,

the Equation adapts dynamically based on real-time task arrival rates, service rates, and

utilization factors.

Summarizing, the Equation provides a structured, mathematically grounded

alternative to heuristic-based scheduling models by integrating Queuing Theory, Poisson

probability distributions, and real-time workload assessment. Unlike heuristic methods that

require frequent tuning and optimization, the Equation ensures real-time task execution

while maintaining low computational overhead, positioning it as an alternative to

traditional heuristic-based scheduling methods in dynamic, high-demand computing

environments. Its application in Supply Chain Systems could demonstrate the synergy

between theoretical mathematics and practical implementation, offering improved latency

management and task prioritization in fog-enabled IoT environments.

2.2 Key Benefits

The Priority Equation reduces latency by processing critical tasks closer to the data

source, minimizing response times, and enabling immediate action for high-priority events,

thereby supporting real-time decision-making. It enhances resource efficiency by

offloading non-urgent tasks to the Cloud, optimizing resource utilization at the Edge,

preventing local systems from overloading, and ensuring efficient task processing. Its

dynamic prioritization and thresholding mechanisms enable scalability, allowing the

35

system to adapt to growing data volumes and expand seamlessly within IoT-driven supply

chain environments.

2.3 Nomenclature: Priority Formula for Real-Time Supply Chain

The following table defines the key parameters used in the Priority Equation, each

playing a decisive role in optimizing task allocation and processing efficiency across

Edge/Fog and Cloud computing layers. These parameters help determine whether tasks

should be processed locally or offloaded, ensuring minimal latency, balanced workload

distribution, and efficient resource utilization.

Symbol Description
Treal-time Real-time processing threshold identifies tasks that

require immediate local processing (based on task

urgency).

T Task processing time. The time required to

complete a given task determines if it should be

processed locally or offloaded.

s Offloading threshold for non-critical tasks. Tasks

with T < s are processed locally, while tasks with

T ≥ s are offloaded.

λ Task arrival rate. Represents the frequency at

which tasks arrive in the system.

𝑬[𝒔𝟐] Second moment of service time distribution.

Reflects the variability in service times, with

higher values indicating more variability.

c Number of processors - providing the capacity to

handle tasks per millisecond.

scaling_factor A factor optimizes resource allocation. It can be

adjusted when dynamic resource scaling is

implemented.

ρ Utilization factor, defined as 𝛒=
𝝀

𝒄µ
 . Measures the

load on local processors; values close to 1 (one)

indicate high utilization.

µ Local service rate. The rate at which tasks are

processed locally by each processor.

WR Expected remote response time. Accounts for the

additional delay when tasks are offloaded to Cloud

layers.

B Batch size factor. Used in remote processing to

handle larger batches of tasks efficiently.

36

2.4 The Priority Equation for Real-Time Supply Chain – Equation as per task

The Priority Equation serves as the foundation for dynamic task allocation in an

IoT-driven supply chain environment, ensuring real-time processing efficiency while

balancing computational loads across Edge, Fog, and Cloud layers. It operates by assessing

key system parameters – such as task urgency, processing time, and resource availability –

to determine whether a task should be processed locally or offloaded to a remote server.

The Equation optimizes resource allocation, reduces latency, and prevents system overload

by integrating factors like task arrival rate, service rate, processor utilization, and

offloading thresholds. The variables parameters influence task prioritization,

computational efficiency, and decision-making for real-time and non-critical workloads,

forming the mathematical basis for optimizing supply chain operations.

𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚 = 𝑰𝑭(𝑻 < 𝑻𝒓𝒆𝒂𝒍_𝒕𝒊𝒎𝒆, (
𝜆𝐸[𝑠2]

2(𝑐 × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟)(1 − 𝜌)
+

1

µ
) , 𝑰𝑭 (𝑻 < 𝒔, (

𝜆𝐸[𝑠2]

2(𝑐 × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟)(1 − 𝜌)
+

1

µ
) , 𝜆 ×

𝑊𝑅

𝐵
)

37

2.5 Priority_Latency_Optimizer.py (Python)

As implemented in the pseudocode, the Priority Equation establishes a systematic

approach to task prioritization and distribution within real-time supply chain environments.

The algorithm dynamically determines whether a task should be processed locally at the

Edge/Fog layer or offloaded to the Cloud to minimize latency while optimizing resource

utilization. At its core, the model relies on fundamental principles of Queuing Theory, real-

time thresholding, and dynamic workload distribution.

The first step involves computing the system’s utilization factor, denoted as ρ,

which represents the ratio of the task arrival rate to the total processing capacity of the

available computational resources. This factor indicates system load, where higher values

approaching one suggest that the system is nearing full capacity. If the system is not

overloaded, the local processing latency, denoted as Llocal, is computed using an equation

derived from the M/G/c queuing model. This formulation incorporates the task arrival rate,

the second moment of service time, the number of available processors, and a scaling factor

to estimate the expected waiting time for task execution. If the utilization factor reaches or

exceeds one, it signifies an overloaded state where processing delays become excessive,

necessitating the offloading of tasks to external computing resources.

Following the computation of local processing latency, the algorithm determines

whether a task should be retained within the local system or offloaded to the Cloud. This

decision is based on a comparison between Llocal and the predefined real-time threshold,

Treal-time. If the estimated local processing latency is below this threshold, the task is

processed locally to ensure timely execution. Conversely, if the latency exceeds the

threshold, the task is offloaded to the Cloud, where the latency is governed by the Cloud

response time divided by the batch size (B). This formulation ensures that Cloud offloading

38

remains efficient, with larger batch sizes reducing per-task latency by distributing

processing overhead across multiple tasks.

The final output of the algorithm is the computed priority latency, which reflects

the task’s expected processing time based on its assigned computational pathway. By

dynamically adjusting processing decisions in response to system load conditions, the

algorithm enhances overall system performance by maintaining a balance between local

execution and Cloud offloading. This mechanism ensures that latency-sensitive tasks are

given priority for immediate execution while non-critical workloads are efficiently

managed to prevent system congestion.

This particular approach is relevant mainly in high-velocity data environments like

IoT-enabled supply chains, where RFID sensors, barcode readers, and robotic systems

generate thousands of computational tasks per second. The adaptive decision-making

process embedded within the Priority Equation ensures that these tasks are processed in an

optimized manner, preventing bottlenecks while maintaining real-time responsiveness. The

implications extend beyond supply chain management to domains such as Smart Cities,

Healthcare, and Autonomous Systems, where efficient workload distribution plays a

critical role in ensuring system reliability and performance.

From a broader perspective, the Priority Equation introduces a structured

methodology for balancing computational loads in distributed architectures, mitigating the

limitations associated with cloud-dependent models. Intelligently leveraging Edge and Fog

computing resources enables organizations to achieve lower latency, improved scalability,

and reduced reliance on centralized infrastructures. Furthermore, future research should

explore the integration of AI-driven predictive analytics into the equation to enhance its

adaptability in complex and highly dynamic processing environments.

39

40

2.6 Summary

The research explores the integration of Edge/Fog and Cloud computing to address

challenges in IoT-driven supply chain systems. It highlights the limitations of traditional

cloud-centric models, particularly concerning latency and resource efficiency, and

proposes a Priority Equation for dynamic task allocation. Equation's primary purpose is to

leverage Queuing Theory and task thresholding to optimize task prioritization, reduce

latency, and improve scalability and resource utilization. The framework enhances real-

time decision-making and operational efficiency by processing critical tasks locally and

offloading non-urgent ones to the Cloud, particularly in industries requiring timely data

handling, such as logistics, healthcare, and manufacturing. The study lays a foundation for

scalable, responsive supply chains that align with the demands of modern digital

environments.

41

CHAPTER III:

METHODOLOGY

3. Overview of the Research Problem

In the rapidly evolving landscape of IoT-driven supply chains, the increasing

volume of data generated by connected devices presents significant challenges in task

allocation, latency reduction, and resource management. Traditional task scheduling

approaches struggle to balance computational loads efficiently across Edge/Fog and Cloud

computing layers, often leading to processing bottlenecks and increased response times. In

order to address these inefficiencies, it is essential to develop an adaptive mechanism that

dynamically prioritizes and distributes tasks based on system conditions, workload

demands, and real-time processing requirements, which leads to the central research

problem:

"How can a dynamic, priority-based task allocation equation be developed to

improve latency, manage task load, and enhance resource efficiency across Edge/Fog and

Cloud computing layers in the Internet of Things-driven supply chain environments?"

3.1 System Architecture

Based on recent research on integrating Edge/Fog and Cloud computing for

optimized task allocation in IoT environments by Nguyen et al. (2024), a new proposed

system architecture enhances task prioritization and offloading by dynamically balancing

computational workloads across multiple layers. The proposed system architecture for task

prioritization and offloading consists of three main layers: the IoT Devices or Data

Sources, the Edge/Fog Layer, and the Cloud Layer. This architecture is designed to

42

dynamically prioritize and offload tasks based on urgency and processing requirements,

optimizing latency reduction and resource utilization. The IoT Devices or Data Sources

generate tasks in real-time, such as inventory tracking, fleet monitoring, or predictive

maintenance alerts. These tasks vary in priority based on urgency (e.g., critical alerts versus

non-urgent data). Each device is equipped to transmit data directly to the Edge/Fog layer

for initial processing and prioritization. The Edge/Fog layer consists of multiple processing

nodes (Fog nodes) positioned close to IoT devices to minimize latency. Fog nodes handle

high-priority tasks requiring immediate processing, such as critical alerts. A local task

queue is maintained at each Fog node, where tasks are initially evaluated based on

predefined Real-Time Threshold (Treal-time) and Offloading Threshold (s) parameters. Tasks

are processed locally at the Fog layer if their urgency and resource demands meet the local

processing criteria; otherwise, they are offloaded to the Cloud.

The Cloud layer is for non-urgent tasks, where more extensive computational

resources are available. The Cloud processes tasks that do not require real-time responses,

such as trend analyses or data aggregation. The Cloud layer also acts as a backup in cases

where Fog nodes reach their processing capacity, ensuring that tasks are still handled

without compromising the overall system's efficiency.

3.2 Computational Model

The computational model relies on a queuing-based priority system with

parameters that guide task distribution and prioritization based on urgency, processing

capacity, and latency requirements.

A - The task arrival rate (λ-lambda)

The task arrival rate, denoted as λ, is a fundamental parameter in Queuing Theory

and is used to model the frequency at which tasks arrive for processing within a system. In

43

the context of fog-enabled IoT networks, the task arrival rate represents the number of tasks

generated per unit of time by terminal devices (TDs), such as sensors, radio frequency

identification (RFID), and embedded IoT devices. This rate is essential in determining

system performance, as it directly affects latency, resource allocation, and overall

efficiency of task processing within Fog and Cloud computing environments.

A widely accepted assumption in modeling task arrival rates within IoT-based systems

is that task generation follows a Poisson process (Ibrahim et al., 2022). The Poisson

distribution is commonly employed because it models independent arrivals over time,

which aligns well with the behavior of IoT devices that generate tasks randomly based on

user interactions, environmental changes, or scheduled triggers. The Poisson-based

characterization of task arrival rates has been validated in various simulation studies

(Bukhari et al., 2022; Ibrahim et al., 2022), demonstrating that dynamic offloading

mechanisms can optimize task scheduling and minimize latency. These findings emphasize

the importance of selecting an appropriate arrival rate λ based on real-time monitoring of

system load and computational capacity. Furthermore, in intelligent task offloading

models, such as the logistic regression-based framework proposed by (Bukhari et al.,

2022), the arrival rate is dynamically adjusted based on historical data, ensuring that

resource allocation remains optimal even under fluctuating workloads.

Within the framework of the Priority Equation, λ plays a critical role in determining

system load and influencing task prioritization. A higher arrival rate indicates a more

frequent influx of tasks, necessitating rapid assessment and prioritization to ensure efficient

processing. An increase in λ may also demand greater utilization of local processing

resources or more aggressive task offloading strategies to prevent congestion and maintain

low latency. Effectively managing λ is essential for optimizing computational resource

allocation and sustaining real-time performance in IoT-driven environments.

44

B - Processing Rates (µedge, µcloud)

Each computational layer in a fog-enabled IoT system is characterized by its own

service rate, denoted as μ, which defines the rate at which tasks are processed and

completed. The service rate is crucial in determining the efficiency of task execution and

directly influences system latency, queuing times, and overall computational performance.

The value of μ varies across different computational layers, with the Cloud layer typically

exhibiting the highest processing rate due to its extensive computing resources, while Fog

and Edge layers prioritize real-time task execution at lower but more immediate processing

capacities (Ibrahim et al., 2022).

Mathematically, the service rate μ is defined as the reciprocal of the average service

time, expressed in tasks per second, which provides a quantitative measure of processing

speed (Taha, 1998). A higher service rate corresponds to faster processing and lower

queuing delays, making it a critical factor in performance optimization (Bukhari et al.,

2022). The processing rate at the Edge layer (μedge) is often optimized to handle latency-

sensitive tasks that require immediate responses, whereas the cloud processing rate (μcloud)

is better suited for batch processing and computationally intensive tasks that do not have

stringent real-time constraints.

The impact of μ on system performance is significant, mainly when evaluated

alongside the task arrival rate λ. When μ is high relative to λ, tasks are processed efficiently

with minimal delays. Conversely, if μ is low compared to λ, the system may experience

congestion, leading to increased queuing times and performance bottlenecks. As

demonstrated in queuing models applied to Fog computing, such as M/G/c systems, an

optimal balance between λ and μ is essential to maintaining system stability and preventing

excessive task accumulation (Ibrahim et al., 2022).

45

Moreover, dynamic adaptation of μ through virtualization techniques, such as

adjusting the number of processors or virtual machines (VMs) in Fog environments,

enhances flexibility and resource utilization. Research has shown that incorporating

speedup factors in Fog computing, where each VM can scale its processing rate

dynamically, improves task allocation efficiency and mitigates latency concerns (Ibrahim

et al., 2022). The ability to allocate resources dynamically ensures that system performance

remains optimal even under fluctuating task loads.

C - Processor count (c):

The processor count, denoted as c, is a fundamental parameter in Queuing models

used to characterize task response time in Fog-enabled IoT networks. In the context of Fog

and Cloud computing, c represents the number of parallel processing units or virtual

machines (VMs) available to handle incoming tasks. This parameter directly influences the

system’s capacity to process tasks efficiently, reducing latency and mitigating congestion

in high-load scenarios.

The inclusion of c in priority-based task scheduling models aligns with the M/G/c

queuing framework, where multiple servers operate in parallel to handle incoming tasks

(Ibrahim et al., 2022). The performance of a fog-enabled system is significantly impacted

by c, as increasing the number of processing units enhances system throughput and

decreases waiting times. The mathematical relationship between the number of processors

and task latency is evident in Queuing Theory (Willig, 1999), where the expected waiting

time is inversely proportional to c. Specifically, in M/G/c systems, the expected delay for

tasks depends on both the arrival rate λ and the processing rate μ, adjusted by c, ensuring

that task allocation remains efficient under varying loads (Ibrahim et al., 2022).

46

In practical implementations, the choice of c depends on the computational

demands of the system. For instance, in Fog environments where latency-sensitive

applications require immediate responses, increasing c ensures that tasks are processed

with minimal queuing delays. The study by (Bukhari et al., 2022) emphasizes the role of

dynamic scaling, where the number of active processors is adjusted based on real-time

system load, optimizing resource utilization while maintaining service quality. This

dynamic adjustment prevents resource underutilization during low-load periods and

ensures adequate processing power during peak loads.

From a system optimization perspective, balancing c, λ, and μ is critical for

maintaining an efficient computing environment. If c is too low relative to λ, task queues

accumulate, leading to increased response times and potential system congestion.

Conversely, an excessively high c can lead to underutilization of resources, reducing

overall efficiency. Therefore, dynamic provisioning of processing units, guided by real-

time monitoring and predictive analytics, is essential in achieving an optimal balance in

Fog and Cloud-integrated architectures.

D - Utilization Factor (ρ-rho):

The utilization factor, denoted as ρ, is a critical parameter in queuing models that

determines the efficiency and stability of task processing in Fog-enabled IoT networks. It

is defined as the ratio of the task arrival rate λ to the total service capacity, given by the

product of the number of processors c and the service rate μ, expressed mathematically as:

𝜌 =
𝜆

𝑐𝜇

This metric quantifies the fraction of time that processing resources are occupied.

When ρ is low, the system experiences minimal congestion, leading to reduced queuing

delays. However, as ρ approaches unity, the system reaches saturation, resulting in

47

increased waiting times and potential task loss if buffer capacities are exceeded (Ibrahim

et al., 2022).

In priority-based task scheduling, ρ plays a crucial role in determining the

feasibility of real-time processing. A well-balanced system maintains ρ at an optimal level

to prevent bottlenecks while ensuring efficient resource utilization. In M/G/c queuing

models widely used in Fog computing architectures, a system is considered stable if ρ<1,

meaning that the service rate is sufficient to handle incoming tasks without indefinite

queuing (Willig, 1999). Furthermore, dynamic task offloading mechanisms utilize ρ as a

decision metric to distribute workloads efficiently between local Fog nodes and Cloud

resources. If ρ exceeds a predefined threshold, indicating high congestion, tasks are

offloaded to Cloud servers to prevent excessive queuing delays. Conversely, when ρ is low,

more tasks are processed locally to optimize real-time performance (Bukhari et al., 2022).

The significance of ρ extends to latency optimization strategies in Fog computing.

Research has demonstrated that adjusting c and μ in response to fluctuations in λ can

enhance system adaptability, maintaining an optimal ρ range that minimizes queuing time

while maximizing throughput (Ibrahim et al., 2022). By integrating ρ into Priority

Equations, modern scheduling algorithms can dynamically adjust processing thresholds,

ensuring efficient task allocation across computational layers.

An example from the logistics network is parcels arriving at a distribution center,

which needs sorting, labeling, and dispatching tasks. If parcels arrive frequently (λ is high),

the distribution center's local processors (e.g., five handling stations with a rate μ) might

struggle to keep up, resulting in a high utilization factor ρ. For instance, if ρ reaches close

to 1 (indicating full utilization of resources), parcels may face delays in processing. In order

to avoid an overload situation, the system may offload lower-priority tasks (e.g., handling

non-urgent packages) to a remote processor (like cloud-based planning systems) or delay

48

them until resources become available. Conversely, if ρ is low (indicating under-

utilization), more parcels can be processed locally, allowing for faster turnaround and

enhanced real-time decision-making.

E - Threshold (s):

The offloading threshold, denoted as s, is a fundamental parameter in fog-enabled

IoT network priority-based task scheduling model. It defines the boundary between locally

processed tasks and those offloaded to a remote processing unit, such as a Fog node or

Cloud server. The threshold s is crucial for managing computational loads efficiently and

minimizing latency by ensuring real-time and latency-sensitive tasks are processed closer

to the source while less urgent tasks are offloaded for remote execution (Ibrahim et al.,

2022).

Mathematically, the offloading decision is modeled using a Queueing-Theoretic

approach, where tasks arrive following a Poisson process (Last and Penrose, 2017) and

have service times that follow a generally distributed. The probability that a task is

processed locally is given by:

𝑎 = 1 − 𝑒−𝜆𝑠

where λ represents the task arrival rate, the equation quantifies the proportion of tasks

handled locally based on the defined threshold “s” (Ibrahim et al., 2022). If the execution

time of a task exceeds s, it is offloaded to the Cloud, thereby balancing computational

resources and avoiding excessive congestion at local processing units.

The choice of s directly impacts system performance, as a higher threshold

increases the number of locally processed tasks, reducing the overhead associated with task

transmission. However, an excessively high s value can lead to local resource saturation,

resulting in increased queuing delays. Conversely, a lower s value promotes task

49

offloading, alleviating local congestion but potentially increasing network transmission

delays and cloud queuing times (Ibrahim et al., 2022).

Empirical studies in Fog computing have demonstrated that an optimal s value must

be dynamically adjusted based on real-time system conditions. It is particularly relevant

for adaptive offloading mechanisms considering varying workload conditions, resource

availability, and energy consumption constraints (Bukhari et al., 2022). Research has

shown that dynamically optimizing s improves response times and enhances overall system

efficiency by ensuring critical tasks are processed within latency constraints while

optimizing resource utilization across Fog and Cloud layers (Bukhari et al., 2022).

An example from the supply chain is the monitoring system of warehouse

temperatures with IoT sensors. If the temperature spikes to a critical level (e.g., due to a

cooling failure), an urgent alert needs immediate action to prevent spoilage. Here, the

processing time Treal-time for the alert is short and falls below s, so it is processed locally at

the Fog level for a quick response. In contrast, regular temperature readings, which are not

as time-sensitive, are sent to the Cloud for analysis and storage since their processing time

exceeds “s”.

F - Priority Parameters:

The parameter Treal-time represents the upper time limit within which tasks must be

processed locally to meet real-time constraints. It plays a role in determining whether a

task is retained for local execution or offloaded to a higher processing tier, such as the

Cloud. The selection of Treal-time directly impacts system latency, ensuring that critical tasks

receive immediate processing while balancing computational loads across different layers

of the network (Ibrahim et al., 2022).

50

In fog-enabled IoT systems, task arrival follows a Poisson process (Last and

Penrose, 2017), and service times are generally modeled using exponential or truncated

exponential distributions. Tasks exceeding Treal-time are offloaded to avoid local congestion,

whereas tasks within the Treal-time threshold are prioritized for local execution to minimize

end-to-end latency. The decision to process a task locally or offload it is governed by a

Queuing Theoretic approach, where real-time tasks are retained at the Edge while non-real-

time tasks are distributed across Fog and Cloud resources – the threshold Treal-time must be

set dynamically to adapt to fluctuating workloads and varying system conditions. If the

threshold is too high, excessive tasks remain in the local queue, potentially causing

bottlenecks and increasing processing delays. Conversely, if it is set too low, tasks may be

unnecessarily offloaded, incurring additional transmission delays and increasing reliance

on Cloud resources. The study by (Ibrahim et al., 2022) emphasizes the importance of

adaptive thresholding, where machine learning or predictive models are employed to adjust

Treal-time based on system congestion and task urgency dynamically.

G - Latency and Resource Allocation:

The local latency component, Llocal, is crucial in optimizing resource allocation

within Fog/Edge computing environments. Local latency represents the time required to

process tasks within the local computational layer, significantly impacting real-time

applications. Efficient resource allocation in Fog and Edge computing minimizes Llocal by

dynamically distributing computational workloads between local servers and offloading

mechanisms. According to research on Fog-based resource allocation, the efficient

assignment of computing resources ensures that tasks with strict latency constraints remain

within the local processing environment, while less urgent tasks can be offloaded to the

Cloud (Rezaee et al., 2024). The allocation of processing capacity at the Edge requires an

51

optimal balance between task processing speed, energy consumption, and system

throughput, which directly influences the efficiency of local latency management (Alenizi

and Rana, 2021).

H - Task Prioritization Mechanism:

The prioritization of tasks is primarily governed by their urgency, execution

requirements, and resource constraints, and it is implemented through structured queuing

and scheduling strategies. In Fog and Cloud computing architectures, priority-based

scheduling is a well-established method to manage latency-sensitive applications, ensuring

that critical tasks receive processing priority over less urgent ones (Alatoun et al., 2022).

One approach to task prioritization involves a hierarchical scheduling mechanism

where tasks are categorized into different priority levels. High-priority tasks, such as real-

time monitoring applications in IoT systems, are processed at the Edge/Fog layer to

minimize latency, while lower-priority tasks are deferred to Cloud computing resources,

where processing power is superior but response times are typically longer (Jamal and

Muqeem, 2023). The execution of tasks in such environments is often governed by a

queueing model where tasks are dynamically assigned to available processors based on

their priority rank and resource availability.

A significant enhancement in task prioritization mechanisms is the integration of

adaptive scheduling algorithms, which allow real-time adjustments based on system load,

network congestion, and processing capability. These adaptive systems employ decision-

making algorithms that dynamically adjust the priority weight of tasks depending on

network conditions and workload distribution (Ibrahim et al., 2022). Additionally, machine

learning-based techniques, such as reinforcement learning, have been explored to optimize

52

task scheduling by predicting task execution times and adjusting priorities accordingly

(Jamal and Muqeem, 2023).

Furthermore, the effectiveness of task prioritization is also influenced by resource

availability and utilization. Studies have shown that efficient resource mapping strategies,

such as priority-based dynamic resource allocation, can significantly improve system

performance by balancing workload distribution across Fog and Cloud nodes (Alatoun et

al., 2022). By incorporating such mechanisms, the Priority Equation ensures that critical

tasks are processed with minimal latency while optimizing computational efficiency for all

other tasks. The core idea behind this approach is to prioritize tasks based on urgency and

execution constraints. Tasks that must meet strict time constraints are processed locally,

ensuring low latency, while tasks with more flexible deadlines are allocated to remote

computing resources. The Equation provides a scalable and adaptive solution for modern

IoT-based supply chain environments where fluctuating workloads require dynamic

resource allocation. The model is particularly beneficial for latency-sensitive applications

such as real-time inventory management, predictive maintenance, and automated logistics,

where processing delays can significantly impact supply chain performance. Combining

queuing models with adaptive prioritization ensures higher system responsiveness,

improved efficiency, and balanced resource utilization across Fog and Cloud layers.

3.3 Experimental Setup

The latency associated with offloading IoT tasks to the Cloud is critical in Supply

Chain Operations and real-time applications. In traditional cloud-based models, tasks

generated by IoT devices are transmitted to the Cloud for processing, introducing

significant transmission delays due to network congestion, bandwidth limitations, and

cloud server response times. The transmission latency increases as more tasks are offloaded

53

to centralized cloud servers, which can negatively impact applications requiring real-time

processing (Bukhari et al., 2022).

The offloading processing time is given by:

Poffload = Ttransmit + Tqueue + Texecute

where Ttransmit represents the transmission delay from IoT devices to Cloud servers, Tqueue

accounts for queuing delays in the Cloud environment, and Texecute is the actual task

execution time on the Cloud server. Studies indicate that Cloud offloading results in higher

latency due to network dependencies, as Cloud servers are often geographically distant

from IoT devices, leading to increased transmission and queuing delays (Bukhari et al.,

2022; Malik et al., 2022). Transmission delays depend on factors such as network

bandwidth, data packet size, and routing complexity (Almutairi and Aldossary, 2021).

Furthermore, once offloaded, tasks experience queuing delays before execution, which are

influenced by:

• λ (task arrival rate) – the frequency at which new tasks arrive at Cloud processing

units.

• WR (expected remote response time) – the total delay from network transmission

(Ttransmit) and Cloud execution delays.

• B (batch size factor) – task are often processed in batches to optimize system

throughput, reducing per-task latency.

The batch-based queuing delay due to the Cloud processing effect is modeled as follows:

𝝀𝑾𝑹

𝑩

54

where dividing by B accounts for task parallelization benefits in bulk processing (Bukhari

et al., 2022). Fog computing has emerged as a viable alternative to mitigate Cloud-induced

delays, enabling proximity-based task execution that significantly reduces transmission

time (Almutairi and Aldossary, 2021). Fog nodes allow the processing of time-sensitive

tasks locally, minimizing dependency on remote Cloud infrastructures. The incorporation

of dynamic offloading thresholds further optimizes latency-sensitive applications, ensuring

real-time responsiveness in supply chain networks (Bukhari et al., 2022).

In supply chain networks, a larger capacity processor (c) enables parallel task

execution, reducing queuing congestion before offloading to the Cloud (Khinchin et al.,

2013). Maintaining an optimized processor-to-task ratio is essential in real-time

applications, where delays must remain within strict operational constraints.

The scaling_factor functions as an adaptive control mechanism in task scheduling

models. In Fog and Cloud computing, computational resources experience fluctuations in

demand, necessitating dynamic workload balancing. The inclusion of scaling_factor in the

denominator of queuing-based models reflects its role in enhancing local service efficiency

(Khinchin et al., 2013). Higher values of scaling_factor improve computational

performance, aligning with workload-aware scheduling frameworks.

Finally, the term (1−ρ) represents idle capacity in queuing systems. As ρ>1, the system

experiences congestion, causing exponential increases in latency (Ibe, 2013). The impact

of high utilization necessitates dynamic resource allocation strategies, such as scaling

processor availability (c) to accommodate increased workloads and adaptive offloading

thresholds to optimize task distribution between local, Fog, and Cloud layers.

Little’s Law, which relates queue length to response time, underscores that high “ρ”

leads to exponentially increasing waiting times, reinforcing the importance of balanced

task scheduling (Ibe, 2013).

55

The Priority Equation for Real-Time Supply Chain offloads tasks to the Cloud only

when tasks exceed the threshold “s”, which keeps non-critical tasks from adding latency to

local critical tasks. Tasks are processed closer to the source, with critical tasks prioritized

for real-time processing.

𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚 = (
𝛌𝐄[𝒔𝟐]

𝟐𝒄 × 𝒔𝒄𝒂𝒍𝒊𝒏𝒈_𝒇𝒂𝒄𝒕𝒐𝒓(𝟏 − 𝝆)
+

𝟏

µ
)

By introducing
𝟏

𝝁
 in the Priority Equation, it ensures that real-time supply chain

tasks are processed efficiently at the Fog/Edge layer, reducing unnecessary offloading to

the Cloud. This term directly contributes to latency minimization, making it a key factor in

balancing computational workloads between local and remote execution environments.

The integration of
𝟏

𝝁
 enhances the model's adaptability, improving supply chain efficiency

while maintaining real-time task execution requirements (Khinchin et al., 2013).

The differences between locally processed tasks and those sent to the Cloud affect

latency. On the other hand, the Priority Equation calculates the priority level of tasks based

on arrival rates and processing factors, which helps decide whether tasks should be handled

locally or offloaded. It guides task prioritization to ensure that high-importance tasks

receive processing attention when system resources are limited by including λ to scale the

entire equation, emphasizing the role of arrival rates in determining its priority. High arrival

rates inherently increase the calculated priority, which helps dynamically adjust the

urgency of tasks based on the system load.

The comparison components of latency and task handling capture the delay

incurred by offloading tasks from IoT devices to the Cloud, a standard approach in

traditional, cloud-centric supply chains. It represents the time data travels from the Edge to

the Cloud, whereas the Priority Equation uses similar Queuing and processing components

56

but focuses on prioritizing tasks rather than directly calculating latency. The Equation does

not focus on individual task delays but rather on dynamically prioritizing tasks based on

load and processing conditions, adjusting priorities to avoid latency for high-priority tasks.

3.3.1 Hardware and Software Environment

The simulation experiments were conducted on a personal computing environment

to evaluate task prioritization and latency optimization in an IoT-driven supply chain

system. The specifications of the computing environment are as follows:

Hardware Configuration

• Operating System: Microsoft Windows 11 Home (Version 10.0.26100, 64-bit)

• Processor: Intel Family 6 Model 158 (Intel Core, ~1700 MHz)

• Cores & Threads: 1 Processor installed (limited to 1 core)

• Total RAM: 12 GB DDR4

• Available RAM: 4.45 GB at the time of testing

• Storage: Not explicitly mentioned, but assumed to be an SSD/HDD setup

• BIOS Version: AMI F.12 (06/24/2020)

Networking Setup

• Active Network Interface: Realtek RTL8821CE 802.11ac PCIe Adapter (Wi-Fi)

• VPN Adapters: NordVPN TAP & OpenVPN interfaces (disabled during

simulations)

• Ethernet Adapter: Realtek PCI(e) (Media Disconnected)

• IPv4 Address: 192.16x.x.xx (for internal networking)

• DNS & DHCP: Managed by local router

57

The system runs on a 1-core processor at 1.7 GHz, which limits the ability to run highly

parallelized simulations. However, it is sufficient for mid-scale task prioritization models.

If larger datasets were used, computations may have been offloaded to an external server

or cloud service. The available RAM of 4.45 GB at runtime means that simulations were

optimized to avoid excessive memory usage. Large-scale experiments may require batch

processing or cloud execution and the Wi-Fi connection was used for cloud-based

simulations.

3.4 Conditions of Applying The Equation for Real-Time Supply Chain

The Priority Equation for Real-Time Supply Chain has the following conditions

IF(T<Treal-time) and IF(T<s) play crucial roles in determining the urgency of tasks and

whether they should be processed locally or offloaded to the Cloud computing resources.

IF(T<Treal-time) means real-time processing thresholds, and it is a strict threshold,

typically set to a low value, e.g., 50 milliseconds, based on research done by Nawaz et al.

(2021), identifying tasks that require immediate, near-instantaneous processing. Tasks

deemed high priority and time-sensitive require local processing (at the Edge/Fog level) to

meet the stringent time requirement. When T<Treal-time meets the "True" criteria, the

equation prioritizes immediate local processing, ensuring that critical, real-time tasks do

not experience delays from offloading or queuing. This threshold is essential for tasks

where any delay (such as transmission to the Cloud) could compromise system

responsiveness or affect outcomes.

IF(T<s) is a secondary threshold that identifies tasks suitable for local processing

but less urgent than those needing real-time response. When a task's processing time T is

less than s (but greater than Treal-time), the Formula directs the task to be processed locally

rather than offloaded to the Cloud, as local processing minimizes latency. However, this

58

condition is less strict than the real-time condition, allowing for some flexibility. This

threshold identifies tasks that are less time-sensitive than those under Treal-time conditions

but where local processing is still advantageous. If T<s is "Within," tasks are processed

locally unless resources are highly constrained. Otherwise, tasks that do not meet this

threshold are offloaded to the Cloud, where they can be managed with higher latency but

greater resource availability.

3.5 Justification of Parameters

The task arrival rate λ represents the frequency at which IoT devices generate tasks or

signals that require processing (sensors, tracking devices, machine monitoring systems,

etc.) It directly influences system utilization, latency, and task distribution. Lambda (λ)

affects the system load by calculating the utilization factor 𝝆 =
𝝀

𝒄𝝁
, which indicates the

proportion of the system capacity being used. In Lpriority a higher λ increases the system

workload, potentially leading to a higher latency. A low λ means fewer tasks arrive, and

the system operates under capacity, leading to lower latency. When λ is high, more tasks

arrive and potentially can exceed processing capacity, causing higher queue delays and

offloading to the Cloud. In the healthcare IoT, the usual rate is between 100 to 500

tasks/second (Shukla et al., 2017) through wearable devices and patient monitoring systems

(for the research, all seconds are transformed into milliseconds). In smart cities and

pollution monitors, the rate is between 500 to 2,500 tasks/second (Shukla et al., 2017),

whereas in the Industrial Internet of Things (IIoT), the rate increases to 5,000 to 10,000

tasks/second (Shukla et al., 2017), usually seen in assembly line sensors, robotics, and

predictive maintenance.

The processor count c represents the number of processors available locally, such as at

the Edge/Fog layer, that can handle tasks before they are offloaded to the Cloud. More

59

processors increase the system's ability to process multiple tasks in parallel, improving

performance and reducing latency. Based on the utilization factor 𝝆 =
𝝀

𝒄𝝁
 a higher c

(processor count) decreases ρ (utilization factor), reducing the likelihood of system

overload and allowing the system to handle a greater task load without queuing or delays.

With more processors, the system can handle more tasks per unit of time, which means an

improved throughoutput of the system. Another aspect is a decrease in latency as tasks can

be distributed among processors (c – number of processors increase), directly reducing wait

times and queuing. Lastly, adding more processors c allows the system to scale (system

scalability) by increasing task arrival rate λ. In large-scale Industrial Internet of Things

(IIoT) systems, the number of processors must grow in proportion to task load to maintain

performance.

In the context of the Priority Equation, the number of processors (c) plays a crucial role

in reducing queuing delays. However, diminishing returns occur as adding more

processors provides lesser performance improvements beyond a certain point. If the task

arrival rate (λ) is low or the system is under-utilized (ρ close to zero), increasing c

(processor count) offers limited benefits. Since additional processors increase costs, the

optimal value of c balances performance gains and cost efficiency. Scaling c becomes

essential when the task arrival rate exceeds the system's processing capacity (μ⋅c),

especially in high-throughput IIoT systems or environments handling large data volumes.

The service rate μ represents the rate at which each processor can complete tasks.

The second moment of service time is often denoted as 𝑬[𝒔𝟐] is a measure from

Probability Theory (Rényi, 2007) and Queuing Theory (Ibrahim et al., 2022; Willig, 1999)

that provides insight into the variability in service times. The service time s is the time

required to process a task at a server (e.g., Edge/Fog nodes or Cloud). It captures both the

average service time and its variability. A higher 𝑬[𝒔𝟐] indicates greather variability in

60

service time, leading to longer queues and higher latency whereas a lower 𝑬[𝒔𝟐] sugest

consistent processing time, improving system predictability. The values chosen for the

calculation are 0.1 and 1.0 since, in many practical applications (Willig, 1999), these values

are used to simplify calculations and are reasonable for systems where tasks take longer to

process or have more variability (network latency, hardware performance, resource

contentions). For complex data tasks (data aggregation or analytics), service times are more

variable, leading to larger 𝑬[𝒔𝟐] values. For low-variance workloads such as barcode

scanning, RFID readings, and sensor data collection in IoT-based supply chain operations,

using 𝑬[𝒔𝟐] is a reasonable approximation due to their near-deterministic service times

with minimal variance. However, for systems handling mixed workloads that include high-

variance tasks, a higher 𝑬[𝒔𝟐] value may be necessary to capture processing variability

accurately. Early Queuing Theory (Willig, 1999) often uses 𝑬[𝒔𝟐]=1.0 as default or

baseline, reflecting systems with moderate variability.

Table 2: Calculated 𝑬[𝒔𝟐] vs Approximated Values in Task Allocation Models:

Scenario Use Calculated 𝑬[𝒔𝟐] Use Approximate 𝑬[𝒔𝟐]
High-precision modeling  x

Known consistent service times  x

High-task variability x 

Lack of detailed service time data x 

Complex tasks with outliers x 

Early-stage system design x 

The offloading threshold “s” is a based threshold, typically measured in milliseconds,

which governs the decision to offload a task. The offloading threshold s determines

whether a task should be processed locally (e.g., at the Edge/Fog layer) or offloaded to a

remote processing resource like the Cloud. It represents the maximum tolerable local

61

queuing and processing delay for tasks before they are considered for Cloud processing.

The value of s for Process and Factory Automation is roughly 100ms (Ma et al., 2019),

similar to telesurgery based on findings by Nankaku et al.(2022).

Table 3: Latency Requirements Across Different Industries

Industries Milliseconds
Smart cities 50-150

Healthcare IoT 10-50

Autonomous robots 10-25

Drones 10-50

Industrial IoT (IIoT) 20-100

Smart agriculture 100-300

When T<s tasks are processed locally on the Edge/Fog, and when T≥s are offloaded to

the Cloud. This approach can use a fixed threshold of s=150 ms (Puleri et al., 2016) to

determine task allocation. It ensures that tasks requiring shorter processing times are

prioritized for local handling at the Edge/Fog, leveraging their proximity to the data source.

Tasks exceeding this threshold are strategically offloaded to the Cloud, preventing

overburdening local resources while maintaining availability. This fixed-threshold

approach simplifies task distribution, optimizing system performance and effectively

balancing the load across computing layers.

In many real-time systems, Treal-time defines the maximum allowable delay for a task to

be considered real-time. Setting Treal-time between 1ms to 150ms means any task that

requires completion within Treal-time threshold will be classified as real-time (Puleri et al.,

2016). This threshold is used in IoT industries like Supply Chains, Robotics, and

Autonomous Systems. The Real-Time threshold (Treal-time) is a strict predefined time limit

to identify tasks that require immediate processing to meet stringent latency requirements.

62

This threshold ensures that high-priority tasks critical to system performance or outcomes

are processed locally (e.g., at the Edge or Fog layer) without delay. It means that tasks that

meet the condition T < Treal-time are handled immediately and locally to avoid any latency

introduced by offloading (e.g., transmission delay or remote queuing), and it prioritizes the

allocation of local resources (processors) for tasks that cannot tolerate delays, ensuring

high-priority tasks are not affected by non-critical workloads. While Treal-time is stricter and

targets the most urgent tasks, the offloading threshold s serves as a secondary condition to

identify tasks suitable for local processing but less critical than real-time tasks.

The remote response time, or WR, is the average time required for a task to be offloaded

to a remote computing resource, such as the Cloud or a centralized server. It captures the

delay incurred due to the queuing, processing, and communication involved in handling

tasks at a remote location. A higher WR indicates longer delays for tasks offloaded to the

Cloud, which can negatively impact time-sensitive operations. In contrast, a lower WR

indicates more efficient processing at the remote resource, which is favorable for handling

non-critical tasks without significantly affecting overall system performance. In the

Priority Equation, WR is included in the remote delay, appearing in the second case of the

Equation when task processing time exceeds the real-time threshold Treal-time. The

offloading component
𝑾𝑹

𝑩
 reflects the average response time per batch for tasks processed

at the Cloud level. Lower WR (via faster Cloud services or reduced transmission delays)

improves offloading performance. WR influences task distribution between local and Cloud

processing, guiding the system to offload only when local processing is infeasible, which

is optimal for dynamic adjustments. A higher WR can create bottlenecks in the system,

making monitoring and minimizing this parameter for high-throughput environments

critical.

63

 Transmission delay (Ttransmit) is the time taken to send data to the remote system

(Cloud server), and it is influenced by bandwidth, latency, and distance.

𝑻𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕 =
𝑫𝒂𝒕𝒂 𝒔𝒊𝒛𝒆 (𝒃𝒊𝒕𝒔)

𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑩𝒂𝒏𝒅𝒘𝒊𝒕𝒉 (𝒃𝒊𝒕𝒔 𝒑𝒆𝒓 𝒔𝒆𝒄𝒐𝒏𝒅)

For this case, the Cloud or Remote response time (Tprocess) is the time taken for remote

servers to process the task or batch, and it is modeled using Quesing Theory (Willig, 1999)

Tprocess =
𝟏

𝝁𝒄𝒍𝒐𝒖𝒅
; where μcloud is the service rate of the Cloud system.

Table 4: Measured Cloud Response Times Across Major Service Providers

Ping times Milliseconds
Amazon Web Services 175

Microsoft Azure 229

Google Cloud 177

Digital Ocean 174

Linode 173

Alibaba Cloud 376
For the purpose of this research, Azure's ping time is utilized as a benchmark to calculate latency, providing a consistent

reference point for analysis.

The Batch Size (B) refers to the number of tasks processed together as a single group

or batch at a remote location, such as the Cloud or Fog computing node. Batching is a

common optimization technique used to improve the efficiency of processing non-critical

tasks (Zhang et al., 2019) by reducing the overhead associated with individual task

handling. The batch size B reduces the impact of remote queuing delays by dividing the

remote response time WR across the number of tasks in the batch. Batch processing allows

the system to handle multiple tasks simultaneously, improving efficiency in scenarios

where individual task processing incurs significant delays or overhead. When tasks are

64

offloaded to the Cloud
𝑾𝑹

𝑩
 represents the average latency per task in the batch. A larger B

(batch) reduces the per-task latency because WR (the remote response time) is shared

among tasks. Implementing batch processing improves efficiency by grouping tasks, which

reduces the overhead of initiating multiple transmissions or processing requests. It helps

with network optimization; fewer transmissions mean less network congestion, which is

especially important in environments with limited bandwidth. Lastly, it reduces latency per

task by dividing WR by B, ensuring that the average latency per task decreases as batch

size increases.

Selecting the appropriate batch size (B) involves optimizing system performance to

meet the application's requirements. The decision is influenced by factors such as the task

arrival rate, real-time constraints, and the system's throughput demands. For systems with

strict real-time parameters, a smaller batch size is preferable to minimize delays associated

with batch filling. Conversely, in scenarios where high throughput is prioritized, a larger

batch size is advantageous as it enhances efficiency and reduces the overhead associated

with processing individual tasks. In the context of the Priority Equation, the benchmark

suite's stream workloads, derived from real-world IoT observations in Smart Cities,

highlight task arrival rates ranging from 500 to 10,000 messages per second (Shukla et al.,

2017) and analysis based on data collected mean of 17,817 batch size. These varying rates

and diverse frequency distributions underscore the need for dynamic prioritization and

adaptive processing strategies to ensure efficient resource allocation and real-time

response, particularly in high-throughput environments.

65

Table 5: Task Arrival Rates and Batch Size Considerations Across IoT Environments

(Shukla et al., 2017)

The scaling_factor was determined using Pairwise Comparison Principles and Priority

Weighting Methods found in Saaty's (1977) work on hierarchical structures ("A Scaling

Method for Priorities in Hierarchical Structures"). According to the Engineering

Optimization journal by Zhang et al. (2023) on job priority heuristics ("A New Job Priority

Rule for the NEH-Based Heuristic"), a scaling factor is introduced after matrix

multiplication to prevent excessive variance when computing task priorities and the aspect

is similar to Priority Equation, where scaling ensures that latency calculations remain

within a feasible range. The scaling_factor in the Priority Equation serves as a dynamic

multiplier that adjusts the system's processing efficiency in response to varying operational

conditions and as a baseline for normalization rather than a direct indicator of system

efficiency. This empirical parameter quantifies the system's ability to scale resources, such

as processors, to accommodate fluctuating task loads. The scaling_factor plays a critical

role in system optimization by adapting the processing capacity to current conditions –

such as task arrival rates, resource availability, or processor utilization. In highly optimized

Dataset Task Arrival Rate

(tasks/ms)

Batch Size (B)

(ms)

IoT Application Rationale for Batch

Size
FIT Dataset 500 50-250 Fitness tracker and

health monitoring.
Small batches minimize
delays for real-time health

alerts while maintaining

system efficiency.

NYC Taxi Dataset 4,000 1,000 – 2,000 Urban transportation

and fleet tracking

Moderate batch size balance

latency and throughoutput

for near real-time tracking.

Sence Your City
(CITY)

5,000 500 – 2,500 Smart city monitoring
(air quality, noise

levels).

Smaller batch sizes ensure
real-time responsiveness

while balancing

throughoutput.

GRID Dataset 10,000 5,000 – 10,000 Smart grid energy

management

Larger batches optimize

throughoutput for high-

volume data streams while
reducing per-task overhead.

66

systems equipped with advanced hardware, the scaling factor remains at 1.0, ensuring

stable prioritization and minimal queuing overhead. In contrast, resource-constrained

systems or those operating under significant load experience increased queuing delays and

higher utilization (ρ), necessitating dynamic offloading and resource-aware task

distribution to maintain efficiency.

Table 6: Scaling Factor and Task Prioritization in IoT Systems

Scaling_factor as resource

Representation

Scaling_factor as

prioritization of all tasks

Suitable for systems

1.0 – single resource

performance (e.g., one type of

processor or uniform task

distribution)

1.0 – equal prioritization of all

tasks

1.0 - IoT sensors (uniform

workloads), predictable

workloads, all tasks treated

equally.

2.0 – double the capacity or

efficiency, representing higher-

performing resources or

optimized local processing.

2.0 – higher emphasis on critical

tasks, reflecting greater resource

allocation.

2.0 - Edge-Cloud Systems

(moderate variability). Edge

processing is faster, but Cloud

offloading introduces variability.

3.0 – triple the capacity or

efficiency for sensors with

significantly better resources

(specialized Edge devices).

3.0 – strong prioritization;

modeling systems where critical

tasks dominate.

3.0 - Critical real-time systems,

focused on prioritizing critical

tasks, account for variability and

real-time requirements.

The utilization factor ρ(rho) is a key parameter in Queuing Theory (Ibrahim et al., 2022)

that measures how heavily the system's processing resources are utilized. It represents the

proportion of the system's capacity that is currently in use, providing insight into the

system's load and efficiency. The ρ is defined by
𝝀

𝒄µ
 λ-task arrival rate (tasks per second),

c-number of processors available, μ service rate of each processor (tasks per second). The

utilization factor can range from 0 (no load on the system) to 1 (full utilization of processing

capacity), and values that exceed ρ>1 indicate an overloaded system (where the task arrival

rate exceeds the system's total processing capacity). In cases where ρ increases, queuing

delays grow because tasks spend more time waiting for resources, and in cases where ρ=1

67

or near 1, delays can increase exponentially as tasks compete for the limited remaining

capacity. In order to keep ρ at a manageable level, resource allocation is needed by adding

more processors to increase total processing capacity c, optimizing the service rate µ of

each processor (e.g., faster hardware), or by reducing task arrival rate λ by offloading non-

critical tasks.

Table 7: Utilization Factor (ρ) Interpretation and Applications

ρ value Interpretation Applications
ρ=1.0 System is fully utilized but

stable

High-priority real-time systems

ρ=0.7 to 0.8 Efficient operation with buffer

space

General IoT/IIoT systems with

variability

ρ<0.5 Underutilized system System with low task rate

The local service rate (μ) in the Priority Equation represents the speed at which an

individual processor handles tasks, measured in tasks per second. Higher μ decreases the

utilization factor 𝝆 =
𝝀

𝒄𝝁
, reducing queuing delays and enhancing system stability. Stability

is achieved when μ⋅c ≥ λ, ensuring ρ≤1. Conversely, if μ⋅c < λ, the system becomes

unstable, with increasing queues and delays. Furthermore, higher μ reduces latency by

shortening each task's time in service. Combined with the number of processors

(c), μ determines the system's ability to scale with growing task arrival rates (λ) and

supports efficient handling of increasing workloads.

The value of μ is influenced by hardware capabilities such as processor speed,

memory bandwidth, and task complexity. Simpler, repetitive tasks yield higher μ, while

complex operations, such as Artificial Intelligence-based processing or image analysis,

lower it. The system environment also plays a role, as Edge devices typically exhibit

68

lower μ due to resource limitations, whereas Cloud servers benefit from higher μ because

of their advanced hardware.

In the Priority Equation, μ is essential for accurate modeling of system latency,

reflecting real-world processing behavior. By balancing local and Cloud processing,

higher μ enables more tasks to be handled locally, reducing dependency on Cloud

offloading and minimizing transmission delays. Additionally, μ is integral to Queuing

Theory (Willig, 1999) models like M/G/c (Ibrahim et al., 2022), where it determines

utilization (ρ), waiting times, and system capacity. In M/G/c models, μ influences queuing

delays through the second moment of service time, 𝑬[𝒔𝟐], making it crucial for

performance optimization. Overall, μ encapsulates the system's processing efficiency and

is vital for optimizing performance, stability, and scalability.

3.6 Data Sources and Acquisition Methods

The datasets utilized in this research was downloaded from Kaggle.com. The Bot-IoT

dataset is publicly available for academic research under a perpetual license for scholarly use by

Koroniotis (2020), Koroniotis et al. (2020a, 2020b, 2019, 2018), Koroniotis and Moustafa (2020).

However, any commercial application necessitates prior authorization from the dataset's creators.

The authors have retained their rights under copyright law, and any utilization of the Bot-IoT

dataset must include appropriate citations of the relevant publications that document its

development and characteristics.

The dataset used in the research is extensive, necessitating a strategic selection of

parameters most relevant to developing and implementing the Priority Equation. Given the

focus on real-time supply chain operations, it is essential to identify key factors that directly

impact task prioritization, resource allocation, and the decision-making process for local

https://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot?select=data_1.csv

69

versus cloud processing. The selection of parameters was guided by their significance in

determining system efficiency, latency, and adaptability to varying workload conditions.

One of the most critical parameters chosen is the task arrival rate, denoted as

lambda\λ. This value represents the rate at which tasks, such as temperature readings, RFID

scans, and barcode processing, enter the system. Including this parameter is crucial for

workload management, as it provides insight into how frequently the system must process

incoming tasks. The service rate, denoted as mu\μ, is another fundamental component, as

it defines the processing capability of local computational resources. By incorporating the

utilization factor, rho\ρ, calculated as ρ=
𝜆

𝑐𝜇
, the formula ensures that system load is

continuously monitored, preventing overload and dynamically adjusting the distribution of

tasks between local processing and offloading to the cloud when necessary. The process

also incorporates batch processing, represented as B, which determines how tasks are

grouped for execution. This approach optimizes system performance by reducing the

computational overhead associated with processing individual tasks separately.

Furthermore, the cloud response time, WR, ensures that when offloading occurs, the latency

associated with remote processing is accounted for, thus maintaining the efficiency and

responsiveness of the system.

These parameters were selected by the dataset's structure, which contains numerous

attributes related to network traffic, packet transmission, and processing characteristics.

Task arrival rate was derived from features such as stime (total tasks divided by average

duration), which provide information on the number of tasks per second (λ). The batch size

(B) was determined based on the bytes attribute (sum of bytes divided by total tasks) and

local service (μ) derived from the duration (dur) column 𝜇 =
1

𝑚𝑒𝑎𝑛 (𝑑𝑢𝑟)
.

The choice of these parameters is particularly advantageous, given the large size of

the dataset. The Priority Equation extracts only the most impactful attributes rather than

70

processing all available columns, which would introduce unnecessary computational

overhead. This selective approach enhances processing efficiency and ensures the system

remains scalable as task volumes increase. Additionally, by dynamically adjusting task

distribution based on real-time system conditions, the Priority Equation prevents

bottlenecks and reduces latency. Through this structured selection of relevant parameters,

the Priority Equation can balance computational workload, improve processing efficiency,

and support the real-time decision-making requirements of Modern Supply Chain Systems.

71

72

73

3.7 Data Analysis (Observations and Performance for Priority Equation)

In Queuing Theory (Willig, 1999) and performance analysis, calculating the task

arrival rate λ and the utilization factor ρ is crucial for evaluating system efficiency. The

following analysis demonstrates how these metrics are derived and interpreted using real-

world data collected from the above datasets. The context involves assessing task

processing efficiency in a computational system with one processor.

Figure 8: Task Rates with Standard Deviation Intervals

Calculating Mean Task Rate (λ) by quantifying the number of tasks arriving in the

system (stime):

𝑀𝑒𝑎𝑛 𝑇𝑎𝑠𝑘 𝑅𝑎𝑡𝑒 (𝜆) = 7,832 𝑡𝑎𝑠𝑘𝑠/ sec = 7.832 𝑡𝑎𝑠𝑘𝑠/𝑚𝑠

The calculated task rate indicates that, on average, 7.832 tasks arrive every

millisecond, which serves as the basis for subsequent performance metrics.

74

Calculating Service Time and Service Rate μ represents the system's ability to

process tasks per millisecond. It is derived from the average task duration (dur) provided

in the 74 million dataset.

 Mean Task Duration (dur): 23.89 milliseconds or 24milliseconds =μ

The local service rate μ indicates that the probability for a single processor can

handle approximately 24 simple tasks/inputs per millisecond, highlighting the system's

processing capacity.

Calculating Utilization Factor ρ measures the fraction of a processor's capacity

being used, and it is calculated by using the task arrival rate λ, service rate μ, and the

number of processors (c).

• Task Arrival Rate (λ-lambda): 7.832 tasks/ms

• Local Service Rate (µ-mu): 24 tasks/ms

• Number of Processors (c): 1

𝜌 =
𝜆

𝑐𝜇
=

7.832

1 ∗ 24
= 32.63%

The utilization factor ρ of 32.63% indicates that the system is underutilized, and

the calculations of λ, µ, and ρ provide a foundational analysis for evaluating system

performance. The system's underutilized state highlights optimization opportunities, such

as load balancing or task redistribution, to enhance efficiency in real-world scenarios. This

methodology is critical for designing scalable and responsive computational systems in

Supply Chain applications and beyond. Despite the underutilized state of the processor,

tasks are offloaded to the Cloud when they exceed the predefined Treal-time or s threshold,

ensuring that critical latency requirements are met. This approach balances local and Cloud

75

processing to optimize performance while maintaining compliance with stringent real-time

criteria.

Local latency (Llocal) is a critical metric in Queuing Theory, measuring the time

taken to process a task locally, including the queuing and service times. This calculation is

based on the Priority Equation, which incorporates key system parameters such as task

arrival rate (λ), service rate (µ), utilization factor (ρ), and the second moment of the service

time 𝐸[𝑠2].

The Formula for local latency is expressed as:

Llocal = (
𝜆∗𝐸[𝑠2]

2(𝑐∗𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟)(1−𝜌)
+

1

µ
)

Where:

• λ: task arrival rate (tasks per second) – 7.832 tasks/ms

• 𝐸[𝑠2]: second moment of service time – 0.1 𝑚𝑠2

• c: number of processors – 1 (single processor)

• scaling_factor: adjustment factor for system dynamics – 1.0 (default adjustment

factor)

• ρ: utilization factor – 32.63%

• µ: local service rate (tasks per second) – 24 tasks/ms

The different scenario analysis of real-time task processing in a supply chain system

involves evaluating the impact of various parameters, such as task arrival rates, processor

counts, service rates, and real-time constraints, on system performance. Examining all five

different scenarios (A, B, C, D, and E), each highlights how these parameters' variations

76

influence the decision to process tasks locally or offload them to the Cloud. The primary

objective is to determine the optimal configuration that minimizes Cloud dependency while

ensuring low latency and efficient task execution.

Scenario A: Baseline Evaluation of Treal-time Thresholds and Processor Scaling

Scenario A focuses on assessing the impact of increasing the real-time threshold (Treal-

time) while scaling the number of processors (c) from 1 to 8. The task arrival rate (λ =

7.832 tasks/ms) and local service rate (μ = 24 ms) remain constant. At the lowest Treal-time

(1 ms), the local system is unable to process incoming tasks efficiently, leading to Cloud

offloading with a significant delay of 229.03 ms. As Treal-time increases, the system gains

more time to process tasks locally, gradually reducing Cloud dependency. When Treal-time

reaches 5 ms, local processing becomes fully sufficient, eliminating Cloud offloading.

Increasing Treal-time to 100 ms significantly decreases system utilization (ρ=4.08%),

indicating that the system can handle tasks efficiently with minimal congestion at this

threshold. Beyond this point, adding more processors yields diminishing performance

gains, as utilization remains low and local processing capacity is sufficient for the given

workload.

The second part of Scenario A explores the effect of increasing the local service

rate (μ) by 10% to 100% while keeping Treal-time at 100 ms. The results show a steady decline

in system utilization, further reinforcing that enhancing processing speed improves

efficiency and reduces resource strain. However, beyond a 50% increase in μ, the additional

gains become marginal, suggesting diminishing returns on performance improvements.

77

Scenario B: Alternative Configuration with Similar Scaling

Scenario B replicates the conditions of Scenario A while evaluating alternative

processor distributions. The results align closely with Scenario A, confirming that

increasing Treal-time and c improves local processing capability while reducing Cloud

dependency. The critical transition occurs at Treal-time = 5ms, where local processing

becomes feasible, allowing a utilization factor below 10%. Similar to Scenario A, a 100%

increase in μ yields a utilization factor as low as 2.72%, demonstrating efficient real-time

task processing at optimal conditions.

78

Scenario C: Fine-Tuning Local Processing Parameters

Scenario C further refines the evaluation of real-time task processing by testing

additional increments in Treal-time. The results validate Scenarios A and B observations,

reinforcing that Cloud offloading becomes unnecessary once Treal-time exceeds 5 ms. The

study also highlights that increasing c beyond a certain threshold (approximately eight

processors) diminishes performance, as system utilization remains low regardless of

additional processing power. This Scenario solidifies the claim that balancing λ, μ, and c

is crucial for achieving optimal efficiency without over-provisioning computational

resources.

79

Scenario D: Introducing Cloud Dependence in Varied Workloads

Unlike previous scenarios, Scenario D introduces conditions where Cloud

processing remains partially necessary even as Treal-time increases. The results show that for

certain configurations, even when c is increased, the local system remains unable to meet

stringent real-time constraints, resulting in continued Cloud offloading. The utilization

factor remains relatively high, suggesting that some real-world applications may require

hybrid processing solutions. Additionally, due to the overwhelming demand on local

processors, the Cloud remains a necessary component for Smart City and IIoT applications

with higher task rates (e.g., 10,000 tasks/ms).

80

Scenario E: Adjusting Service Rate and Batch Size for Real-Time Processing

Scenario E introduces an increased local service rate (μ= 50 ms) while evaluating

its effect on batch processing efficiency. The findings indicate that while a higher μ

improves overall performance, it does not entirely eliminate Cloud dependency when task

arrival rates exceed a critical threshold. The system remains self-sufficient mainly in

Wearable Devices and Smart City applications, but offloading is still required in IIoT

applications with extreme task loads. This scenario emphasizes that while increasing μ

improves performance, hybrid processing strategies remain necessary for high-intensity

workloads.

81

In contrast, Scenario E/1 explores the impact of increasing the number of processors

(c) while keeping the task rate stable at 24 tasks/ms. The results show that as c increases,

system utilization (ρ) decreases significantly. Initially, with fewer processors, the system

operates at a higher utilization rate, requiring efficient scheduling to meet real-time

constraints. However, as additional processors are introduced, utilization drops, ensuring

that local resources can accommodate the workload efficiently without exceeding real-time

thresholds.

At c = 8 or c = 9, the system achieves near-optimal local processing with a

utilization factor of 4.08% to 4.63%, indicating that further processor increases yield

minimal performance benefits. This comparison suggests that while increasing μ and c both

contribute to performance gains, they serve different purposes: an increased μ enhances

batch processing efficiency, whereas a higher c ensures scalability and resilience under

high-demand conditions.

82

Scenario F: Bell Curve Simulation and Interpretation

The simulation results based on the Bell Curve Analysis provide an analytical view

of task distribution, system efficiency, and performance thresholds. The analysis evaluates

task processing at different confidence levels (68.26%, 95.44%, and 99.72%) to determine

how effectively the system maintains task prioritization and resource utilization.

At the 68.26% confidence level, the system handles 11.72 tasks, employing eight

processors within a total system capacity of 50. The utilization factor remains at 0.803, and

the priority adjustment factor remains at 0.15, with a processing percentage of 2.93% and

a threshold value of 0.095. The classification remains TRUE, confirming that the system

is operating within expected limits and that all tasks are processed efficiently at the local

level.

At the 95.44% confidence level, the system processes 0.058 tasks using two

processors, representing a minimal task load. The utilization factor (0.803) and service

parameters remain unchanged, ensuring stable operations. The percentage of tasks

processed at this level is 0.06%, with a priority threshold of 0.021, maintaining

performance within acceptable bounds. This characteristic confirms the system’s ability to

handle lower task loads effectively without significant deviations.

At the 99.72% confidence level, the system manages 19.49 tasks across 13

processors, reflecting an increased task influx. The utilization factor remains constant, with

83

a priority threshold of 0.097, and the percentage of tasks processed at this level is 3.00%.

Unlike the previous dataset, the new results indicate that despite a high task rate, the system

remains within operational boundaries, and the classification remains TRUE, signifying no

critical overload.

The value adjustments/tests demonstrate the model’s resilience under different

workload conditions, ensuring that local processing remains efficient even under higher

loads, and it further emphasizes the importance of dynamic scaling in real-time

environments, allowing for adaptive task prioritization while preventing system saturation.

Across all scenarios, a clear trend emerges: increasing Treal-time and c significantly

reduces Cloud dependency, but only up to a certain threshold. Once c surpasses an optimal

value (around 8-10 processors in most cases), additional computational resources yield

minimal benefits. Increasing μ is effective but follows a pattern of diminishing returns

beyond a 50% improvement. The most significant performance enhancements occur when

Treal-time transitions from 1-5 ms, after which system utilization stabilizes. Local processing

is highly effective when tuned appropriately for standard Supply Chain Applications with

moderate task rates. However, Cloud dependency remains inevitable in large-scale

environments such as IIoT and Smart Cities unless fundamental breakthroughs in local

processing capabilities occur. The most practical approach is a balanced hybrid processing

model, where critical tasks are handled locally while non-time-sensitive workloads are

offloaded.

84

The analysis comprehensively evaluates real-time processing efficiency in a supply

chain context. The findings suggest that real-time task prioritization, processor scaling, and

service rate optimization collectively minimize latency and reduce Cloud reliance.

However, cloud offloading remains necessary for extremely high-demand environments,

reinforcing the need for dynamic resource allocation strategies. Future research should

explore adaptive scheduling mechanisms that dynamically adjust c, μ, and Treal-time based

on real-time workload fluctuations to enhance performance efficiency further.

Additionally, integrating critical path analysis into task routing strategies can help identify

the closest available Cloud resources, optimize offloading decisions, and further minimize

latency.

3.8 Research Design and Limitations

The research employs a quantitative methodology to evaluate the impact of the

proposed priority-based task allocation framework within an IoT-driven Supply Chain

Environment. The methodology integrates computational modeling, simulation-based

performance analysis, and empirical validation to assess the Priority Equation efficiency.

The primary objective is to establish how dynamic task prioritization and task offloading

thresholds influence latency, resource allocation, and overall operational efficiency. Given

the complexity of multi-layered computing infrastructures, the research design

incorporates a Queuing-Theoretic approach combined with performance metrics derived

from real-time simulation models.

The study follows a structured computational framework where task arrival rates,

processing rates, and utilization factors are varied across Edge/Fog and Cloud layers. The

experimental setup is based on real-world datasets and parameters, such as the FIT dataset

for health monitoring, the NYC Taxi dataset for fleet tracking, and the GRID dataset for

85

Smart Grid Management. These datasets ensure that task prioritization models are tested

under diverse operational conditions. Furthermore, the research employs multi-scenario

evaluations, comparing different priority thresholds, processor scaling, and offloading

strategies to validate the model's adaptability and effectiveness. By simulating multiple

task execution environments, the study explores how adjustments in real-time processing

thresholds influence task allocation efficiency and latency management.

• The system utilization factor (ρ) – should be efficient but not overloaded (ideally

between 0.5 and 0.8).

• Local latency – should be minimized to keep real-time processing efficient.

• Processing decision based on s – preferably more or all tasks to be processed locally

to reduce Cloud dependency in order to avoid Cloud delays.

• Real-Time – should be high enough to ensure local processing efficiency.

Scenarios B, C, D, E, and E/1 illustrate a pattern where increasing processor count

(c) and improving local service rate (μ) significantly reduce local latency. Local processing

becomes dominant at higher processor counts (c ≥ 7), reducing Cloud dependency. The

best balance seems to happen where ρ remains low (below 50%) while maximizing real-

time local task processing. A question arises from observation: Why “ρ” is so low?

Could the system be inefficient due to a low ρ, and the answer is not necessarily. A

low utilization factor can be beneficial if the goal is to ensure the system's real-time

responsiveness since the system is not saturated, tasks are processed immediately without

waiting in a queue, and local processing remains highly responsive, which is crucial for

real-time supply chains. A low ρ creates a buffer zone preventing slowdowns during

sudden spikes in demand as well as ensuring that critical and latency-sensitive tasks are

always prioritized without experiencing congestion. Another question could be, “How

about if ρ is too low (e.g. ≤ 10%)?” This situation might indicate an over-provisioning of

86

resources, meaning more processors than necessary are allocated, and an underutilization

of computing power, which leads to potential inefficiencies like the cost-effectiveness of

the system. The low ρ observation across different scenarios confirms that the system is

designed for high responsiveness rather than high throughput utilization, and it ensures

tasks are handled in real time without queuing delays, yet, fine-tuning of processor

allocation could improve efficiency without sacrificing performance.

The implementation is conducted within a controlled simulation environment,

leveraging Queuing Models such as M/G/c to analyze task distribution dynamics. The core

computational model evaluates the impact of key parameters, including the task arrival

rate, service rate, processor count, and utilization factor. The experimental conditions

simulate different workload intensities to examine system scalability, efficiency under

peak loads, and the balance between local and cloud-based task processing. Including batch

processing parameters ensures that Cloud task handling is realistically modeled, addressing

the computational constraints of large-scale IoT distributions.

The simulation results reveal refinements to the research design and highlight both

the strengths and limitations of the Priority Equation in real-world supply chain

applications. While the Equation demonstrates strong performance in balancing local and

Cloud processing to optimize latency, task prioritization, and resource utilization, certain

limitations persist, particularly under extreme real-time constraints. These limitations are

aligned with relevant conditions of the complexity of Dynamic Supply Chain

environments, where unpredictable task patterns, stringent real-time requirements, and

network variability can pose challenges.

The Equation's notable strength lies in its ability to efficiently handle predictable

task arrival patterns and distribute workloads through processor scaling. The simulations

demonstrate that the system effectively reduces queuing delays and local latency for

87

moderate task rates and appropriately scaled resources. It is particularly evident in

operational scenarios such as inventory management, predictive maintenance, and dynamic

routing, where localized processing enhances responsiveness while reducing dependency

on Cloud infrastructure. The results underscore the Priority Equation's capacity to achieve

real-time decision-making within acceptable latency ranges, ensuring optimal performance

for tasks with moderate time constraints.

Additionally, the Equation's sensitivity to real-time thresholds highlights its

versatility across diverse supply chains. The equation consistently facilitates local

processing with minimal delays in scenarios with relaxed thresholds – such as Smart

Agriculture (100 – 300 ms) and Smart City systems (50 – 150 ms). Even in IIoT

applications, where thresholds range between 20 – 100 ms, the Equation demonstrates

robust performance when processor count and service rates are scaled to meet demand.

This adaptability positions the Equation as a tool for optimizing latency-sensitive

operations in the Supply Chain, mainly where local processing can reduce reliance on

centralized cloud systems.

However, while the Equation performs well in moderate real-time environments,

the simulations highlight ongoing challenges under stringent latency requirements for

extreme use cases such as autonomous robotics and high-speed industrial automation.

These scenarios reveal that the system may require further optimization to meet such

demanding constraints consistently. Potential improvements include increasing the number

of processors, enhancing service rates, and reducing task variability to mitigate queuing

delays and ensure tasks are processed within the stringent time frames.

The Equation's reliance on predefined task priorities serves as a structured resource

allocation approach while allowing for dynamic adjustments based on real-time system

conditions. The predefined thresholds, such as Treal-time and s, enable the system to

88

categorize and process tasks efficiently, ensuring that time-sensitive tasks are handled at

the Fog/Edge network while others are offloaded as needed. Although task prioritization

follows a systematic framework, real-world supply chain operations involve shifting

priorities due to unexpected disruptions and varying demand patterns. The Equation

inherently adapts by continuously assessing task arrival rates, processor availability, and

system utilization to determine optimal task distribution. However, further refinement

could enhance its responsiveness by integrating adaptive mechanisms that adjust task

priorities dynamically based on workload fluctuations and evolving operational needs. By

incorporating such enhancements, the Equation can optimize real-time task allocation,

ensuring critical processes consistently receive the necessary resources while maintaining

system efficiency.

Furthermore, while transmission delay remains a factor in Cloud offloading, the

Priority Equation provides a structured framework for prioritizing tasks based on latency

and real-time requirements. The simulations indicate that, under stable network conditions,

the Equation effectively integrates Edge and Cloud processing to balance workload

distribution while maintaining operational efficiency. Nevertheless, in supply chain

environments characterized by network variability or geographically distributed

infrastructure, the sensitivity of the Equation to transmission delays may require further

consideration to optimize performance under less stable conditions.

Finally, security and data privacy considerations remain outside the scope of this

study. The focus on latency and efficiency does not incorporate security mechanisms for

data protection, access control, or cyber threats, which are critical in Supply Chain

Operations. Future research should explore how priority-based task allocation integrates

with secure computing protocols to ensure resilience against cybersecurity threats.

89

In order to overcome these limitations, future work should focus on real-world

implementation and empirical validation of the Priority Equation within live Supply Chain

Networks. The testing and implementation would provide a deeper understanding of

practical performance metrics, including real-time latency fluctuations and hardware

constraints. Additionally, adaptive task prioritization models should incorporate machine

learning techniques to predict workload variations dynamically, enabling more efficient

task distribution without excessive recalibration overhead.

Expanding the research to cover industry-specific adaptations of the Priority

Equation will enhance its applicability across various domains. Additionally, integrating

the framework with blockchain-based security models could strengthen data integrity and

authentication mechanisms, ensuring secure and efficient task processing across

decentralized IoT environments. Extending the model to multi-cloud architectures will

provide insights into optimizing computational workloads across heterogeneous cloud

service providers, enhancing scalability and cost-effectiveness for Enterprise-level Supply

Chain Operations.

3.9 Conclusion

In conclusion, the Priority Equation effectively optimizes latency-sensitive Supply

Chain operations by leveraging local processing for moderate task rates and dynamically

offloading excess workloads to the Cloud under high demand. The results underscore the

Equation's scalability, latency reduction, and task prioritization strengths across a range of

real-world applications, including wearable devices, smart cities, and IIoT environments.

While local processing consistently delivers superior performance with minimal latency,

the equation's ability to integrate Cloud processing ensures system resilience and

scalability under increased task loads. These findings highlight the Priority Equation as an

90

adaptable framework for improving real-time decision-making and operational efficiency

in Modern Supply Chain Systems. Future enhancements, such as adaptive task

reprioritization and further system optimization, can address challenges in extreme real-

time scenarios, further solidifying its practical applicability in dynamic and latency-

sensitive environments.

91

CHAPTER IV:

RESULTS

4.1 Research Question One

How does a priority-based task allocation equation affect latency and resource

utilization in a multi-layered supply chain system?

The Priority Equation for Real-Time Supply Chain represents a structured, priority-

based task allocation mechanism that optimizes latency management and resource

utilization within multi-layered supply chain environments. This equation dynamically

distributes computational tasks across local processing layers (Edge/Fog) and remote

processing layers (Cloud), ensuring that real-time, latency-sensitive tasks are prioritized

for execution closer to the data source while non-urgent tasks are offloaded to higher-

capacity, centralized computing environments. By incorporating queuing models,

threshold-based decision-making, and dynamic workload distribution, this approach

mitigates network congestion, prevents resource bottlenecks, and enables supply chain

systems to operate with greater efficiency, responsiveness, and adaptability to fluctuating

task loads.

The adaptive nature of this equation allows it to respond dynamically to changing

system conditions, such as varying task arrival rates, processing capacities, and network

bandwidth constraints. By leveraging real-time task prioritization, the Equation ensures

that high-priority operations – such as order processing, inventory tracking, and logistics

coordination – are executed with minimal latency while balancing system load to prevent

resource exhaustion. The intelligent distribution mechanism enhances scalability, allowing

Supply Chain infrastructures to accommodate growing data volumes and increasing task

complexities without suffering from performance degradation.

92

From a resource utilization perspective, the Priority Equation optimally distributes

computational workloads based on system utilization factors, ensuring that processors at

the Edge/Fog layer operate within an optimal efficiency range before tasks are redirected

to the Cloud. This targeted allocation prevents underutilization of local resources while

also minimizing unnecessary Cloud processing costs, a critical factor for organizations

aiming to reduce computational overhead and energy consumption. Additionally, the

ability to balance processing loads across different computational layers ensures that

available resources are leveraged in the most effective manner, enhancing overall system

throughput and stability.

The multi-layered nature of modern supply chain networks, driven by the

conception of IoT devices, robotics, and AI-driven automation, requires real-time, data-

driven decision-making. The Priority Equation, by design, supports distributed processing

frameworks that enable seamless interaction between sensor-driven edge devices,

intermediate fog nodes, and high-capacity cloud infrastructures. It ensures that critical

supply chain operations maintain low-latency execution, particularly in time-sensitive

environments such as warehouse automation, fleet tracking, and demand forecasting.

Furthermore, the equation’s scalability and resilience allow multi-layered supply

chain systems to handle diverse workloads with predictable and optimized performance.

Its dynamic allocation strategy facilitates faster decision-making, improved task execution

efficiency, and better resource allocation, ultimately enhancing the overall operational

intelligence of real-time supply chain ecosystems. As a result, businesses can achieve

greater agility, reduced processing delays, and a more cost-effective computational

framework, all of which contribute to improved efficiency in handling complex and rapidly

evolving Supply Chain Operations.

93

4.2 Research Question Two

What role do dynamic thresholding and queuing theory play in optimizing task

prioritization within Edge/Fog computing environments?

Dynamic thresholding and Queuing Theory (Ibrahim et al., 2022; Willig, 1999)

serve as fundamental components in optimizing task prioritization within Edge and Fog

computing environments, enabling intelligent workload distribution and efficient system

operation. Dynamic thresholding refers to the real-time adjustment of task processing and

offloading thresholds based on key system conditions such as task arrival rates, processor

utilization levels, network latency, and system congestion levels. This adaptive mechanism

ensures that computational resources are allocated dynamically, allowing Edge/Fog nodes

to operate within optimal performance parameters while mitigating the risk of overloading

or underutilizing processing nodes.

By contrast, Queuing Theory provides the mathematical framework necessary to

model, analyze, and optimize task-handling strategies within distributed computing

systems. It enables precise estimations of waiting times, processing delays, and overall

system utilization, thereby guiding the development of efficient task allocation policies. In

Edge/Fog computing environments, where computational resources are fundamentally

diverse and geographically distributed, Queuing Theory facilitates the optimization of

scheduling mechanisms by determining the most effective allocation of tasks across local

processing nodes (Edge/Fog) and remote high-performance computing infrastructures

(Cloud). These queuing-based models allow for real-time assessment of service rates,

response times, and queue length variations, ensuring that computational loads are

effectively balanced across the system.

The integration of dynamic thresholding and Queuing Theory-based workload

management enables scalable, latency-efficient, and resource-aware computing. Dynamic

94

thresholding adjusts task allocation decisions based on real-time system constraints,

preventing task queues from exceeding critical thresholds while ensuring that latency-

sensitive tasks remain within acceptable execution timeframes. In Edge/Fog environments,

where computing nodes must process diverse workloads with varying degrees of urgency,

this real-time adaptability ensures that high-priority tasks receive immediate processing

while lower-priority tasks are scheduled efficiently to avoid bottlenecks.

Queuing models, mainly M/M/1, M/M/c, and M/G/c (Mohamed et al., 2022),

provide the necessary theoretical foundation for predicting and managing system

congestion, allowing Edge/Fog systems to dynamically adjust task distribution policies

based on queue length estimations, task service times, and expected computational loads.

By integrating probabilistic queuing techniques with threshold-based dynamic scheduling,

Edge/Fog computing environments benefit from enhanced workload predictability,

reduced processing delays, and improved system responsiveness.

Furthermore, the interchange between dynamic thresholding and queuing-based

task management ensures high adaptability to fluctuating workload conditions, particularly

in applications where task priorities shift dynamically, such as smart logistics, real-time

sensor data analysis, and automated industrial workflows. By adjusting offloading

decisions based on queue congestion levels and computing node availability, the system

prevents unnecessary task transmission delays and optimizes end-to-end processing

efficiency.

The collaborative effect of these two mechanisms fosters scalability and resilience

in Edge/Fog architectures, allowing systems to scale computational workloads across

multiple layers while maintaining low-latency task execution as well as ensuring that real-

time computing environments, particularly those in Supply Chain Automation, Smart City

95

Infrastructures, and Autonomous Systems, remain responsive and efficient under variable

load conditions.

4.3 Research Question Three

How does integrating Edge/Fog and Cloud computing improve the scalability and

responsiveness of supply chains in real-time, high-data environments?

Integrating Edge, Fog, and Cloud computing provides a scalable, efficient, and

responsive framework for managing high-volume, real-time data processing within modern

supply chains by strategically distributing computational tasks across different layers. This

integration minimizes latency, enhances system agility, and ensures Supply Chains remain

resilient despite variable demand fluctuations, network congestion, and evolving

processing constraints.

A key advantage of this hierarchical model is proximity to data sources, where Edge

computing processes data directly at its origin. This localized processing capability is

critical in Supply Chain operations, as it allows for immediate analysis and execution of

time-sensitive tasks, such as inventory updates, sensor-triggered alerts, and automated

quality control measures. By bypassing the need for centralized Cloud transmissions, Edge

computing significantly reduces data transfer latency and allows mission-critical actions to

be executed in real-time. This aspect is particularly beneficial in environments such as

Automated Warehouses, Smart Logistics, and IIoT systems, where quick responsiveness

is essential for maintaining operational continuity.

Beyond localized execution, Fog computing serves as an intermediary processing

layer, bridging the gap between Edge devices and Cloud infrastructure. By aggregating,

filtering, and pre-processing data from multiple sources, Fog computing prevents Edge

devices from becoming overwhelmed with computational loads while simultaneously

96

reducing unnecessary data transmissions to the Cloud. This distribution of computational

tasks across Fog nodes enables real-time analytics for semi-complex operations, such as

predictive maintenance, demand forecasting, and dynamic resource allocation, all of which

contribute to better decision-making and improved supply chain efficiency. By

dynamically adapting to increasing data volumes, Fog computing ensures that workloads

are balanced across available processing nodes, reducing bottlenecks and enhancing the

overall scalability of the system.

At the highest level of this architecture, Cloud computing provides centralized

analytics, large-scale data storage, and long-term operational intelligence. Unlike Edge and

Fog computing, which handle time-sensitive, real-time data processing, the Cloud supports

strategic, large-scale decision-making through advanced computational capabilities.

Cloud-based AI-driven analytics, historical data modeling, and Global Supply Chain

monitoring allow managers to synchronize operations, forecast demand, and optimize

logistical workflows across geographically distributed networks. With virtually unlimited

scalable resources, Cloud computing ensures supply chain decision-makers have access to

comprehensive, high-resolution insights that inform immediate tactical adjustments and

long-term strategic planning.

This study confirms that integrating Edge, Fog, and Cloud computing is essential

for ensuring modern supply chains' scalability, responsiveness, and efficiency. Future

research should explore how AI-driven workload orchestration, blockchain-enhanced

security, and federated learning models can further optimize the interactions between these

computational layers, enabling next-generation supply chains to operate with even greater

intelligence, efficiency, and adaptability in high-data environments.

97

4.4 Summary of Findings

 The findings underscore the transformative impact of integrating advanced

computational models and distributed architectures in supply chain management built on a

priority task allocation that reduces latency and optimizes resource utilization. The

Formula uses dynamic thresholding and queuing theory, enabling adaptive task

prioritization and workload management in Edge/Fog environments. The interaction

between Edge/Fog and Cloud computing enhances the scalability and responsiveness of

supply chains, making them robust and efficient in real-time, high-data environments, and

it provides a foundation for advanced supply chain technologies, ensuring they meet the

demands of increasingly complex and dynamic global operations.

4.5 Conclusion

This research highlights the transformative role of advanced computational models,

particularly the Priority Equation, in mitigating latency and optimizing real-time decision-

making within modern supply chain systems. The study demonstrates how adaptive

workload distribution across Edge/Fog and Cloud computing layers significantly enhances

system responsiveness and scalability by integrating Queuing Theory, dynamic

thresholding, and task prioritization.

The findings emphasize that while processor scaling and service rate optimization

contribute to performance improvements, they reach a saturation point where additional

computing resources yield diminishing returns. Particularly, increasing Treal-time to 100 ms

resulted in a sharp drop in system utilization (ρ=4.08%), reinforcing the principle that

additional processors contribute minimally to performance gains beyond a certain

threshold. However, the research underscores that Cloud offloading remains essential in

extremely high-load conditions, particularly in industrial IoT (IIoT) applications. The

98

balance between local and remote processing requires dynamic resource allocation

strategies that adjust c (processor count), μ (service rate), and Treal-time (real-time task

threshold) based on fluctuating workloads.

A novel contribution of this study is the introduction of Critical Path Analysis

(CPA) for Cloud selection, ensuring that tasks are allocated to the closest and fastest Cloud

node to minimize transmission delays when offloading is necessary. This approach

enhances the efficiency of hybrid supply chain architectures by integrating proximity-

based Edge processing with latency-aware Cloud selection mechanisms.

From a practical standpoint, the study provides a scalable framework applicable to

Smart Logistics, Healthcare, Manufacturing, and City, where latency-sensitive, high-

frequency data processing is crucial. By dynamically adapting task allocation, the Priority

Equation ensures that supply chains remain agile, resilient, and capable of handling large-

scale, data-intensive operations.

Future research should consider adaptive scheduling algorithms by developing

machine-learning-driven models to dynamically tune Treal-time, ρ, and offloading thresholds

based on historical workload patterns. Another consideration is multi-cloud optimization,

which can be done by experimenting with the Critical Path selection to incorporate real-

time Cloud performance monitoring, ensuring optimal offloading decisions. Security and

Blockchain Integration is another option for enhancing data integrity and transparency in

distributed Edge-Fog-Cloud systems.

99

CHAPTER V:

DISCUSSION

5.1 Discussion of Results

The results in this study highlight the impact of a priority-based task allocation

framework on improving latency management, resource utilization, and overall system

efficiency within a multi-layered Supply Chain computing environment. The results

indicate that Edge/Fog computing significantly reduces latency by prioritizing local real-

time task execution while dynamically offloading non-urgent tasks to the Cloud. This

approach enables adaptive workload balancing, preventing high-demand supply chain

operations bottlenecks and ensuring efficient computational resource utilization.

The Priority Equation, designed using Queuing Theory and dynamic thresholding,

effectively optimizes task prioritization by ensuring that latency-sensitive processes remain

within the Edge/Fog layers while less time-critical workloads are offloaded based on

system congestion and real-time availability of computational resources. The experimental

findings demonstrate that scalability and responsiveness improve when adjusting task

allocation decisions. Increasing the real-time processing threshold to reduce system

utilization significantly confirms that excessive provisioning of computational resources

beyond a critical threshold does not necessarily lead to performance gains.

From a latency perspective, the research confirms that the integration of proximity-

based processing through Edge/Fog computing achieves lower transmission delays and

better real-time responsiveness than traditional cloud-centric Supply Chain models.

Reducing network congestion and processing delays ensures that critical supply chain data

– such as inventory tracking, fleet monitoring, and demand forecasting – is processed

efficiently without experiencing major transmission bottlenecks.

100

Regarding resource utilization, the study underscores that a balanced hybrid

approach between local and remote computing optimizes system performance. The system

dynamically shifts computational workloads to the Cloud when the utilization factor

surpasses a predefined threshold. However, maintaining a well-optimized Edge/Fog layer

reduces dependency on centralized Cloud processing, leading to lower bandwidth

consumption and improved energy efficiency. The findings further suggest that processor

scaling and service rate adjustments significantly improve latency and throughput until

reaching a saturation point, after which additional processing power yields diminishing

returns.

5.2 Discussion of Research Question One

• How does a priority-based task allocation equation affect latency and resource

utilization in a multi-layered supply chain system?

The "Priority Equation for Real-Time Supply Chain" uses a dynamic approach to

balance task load between local (Edge/Fog) and remote (Cloud) processing layers in a

supply chain system. By prioritizing tasks based on their urgency and processing

requirements, the Equation ensures that critical tasks are processed locally to minimize

latency while less urgent tasks are offloaded to the Cloud to optimize resource utilization.

This dynamic distribution helps maintain low latency for time-sensitive operations and

efficiently uses available resources, demonstrating the equation's effectiveness in

enhancing real-time processing capabilities in multi-layered supply chain systems.

5.3 Discussion of Research Question Two

What role do dynamic thresholding and Queuing Theory play in optimizing task

prioritization within Edge/Fog computing environments?

101

Dynamic thresholding and Queuing Theory are pivotal in optimizing task prioritization

within Edge/Fog computing by enabling real-time adjustments and efficient resource

management. Dynamic thresholding allows the system to adapt quickly to changing

conditions by adjusting task processing and offloading thresholds based on current

demands. Queuing Theory provides a mathematical framework to analyze and predict task-

processing behaviors, ensuring that resources are allocated efficiently and effectively.

5.4 Discussion of Research Question Three

How can the integration of Edge, Fog, and Cloud computing improve the

scalability and responsiveness of supply chains in real-time, high-data environments?

The integration of Edge/Fog and Cloud computing enhances the scalability and

responsiveness of Supply Chains by enabling distributed data processing, real-time

decision-making, and seamless task allocation across computing layers. This synergy

addresses the challenges of managing high volumes of data and meeting real-time

requirements in dynamic, complex supply chain environments. Key takeaways are the

proximity to data sources where Edge computing processes data close to its origin,

minimizing latency and enabling rapid responses to critical events (e.g., sensor alerts,

inventory updates). Low latency by bypassing the need to send data to centralized Cloud

servers, Edge computing reduces transmission delays, ensuring real-time actions. Local

decision-making for tasks that require immediate attention, such as quality control or real-

time routing adjustments, is handled at the Edge for faster execution. Fog computing acts

as a bridge between Edge devices and the Cloud, aggregating and analyzing data from

multiple sources for pre-processing and filtering, distributing the computational load by

reducing the risk of bottlenecks and enabling the system to scale dynamically with

increasing data volumes. Fog nodes can handle semi-complex tasks (e.g., predictive

102

maintenance and resource allocation) by improving responsiveness without overloading

the cloud layer. Cloud computing is used for centralized analytics where scalable resources

are virtually unlimited. It can process large datasets, run advanced analytics, store historical

information, and act as a centralized monitoring and coordination system by providing

supply chain managers with a comprehensive overview of operations.

103

CHAPTER VI:

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS

6.1 Summary

The research investigates the integration of Edge/Fog and Cloud computing within

Supply Chain Management to address the challenges posed by latency, resource allocation,

and real-time task prioritization. Traditional cloud-centric models, while scalable, often

suffer from high latency due to data transmission overhead, making them inadequate for

real-time supply chain operations. In contrast, Edge and Fog computing enables proximity-

based processing, reducing response times by executing tasks closer to data sources.

However, effectively balancing local and remote processing remains a critical challenge.

This research's core is the Priority Equation, a dynamic task allocation model that

integrates Queuing Theory, real-time thresholding, and resource utilization metrics to

optimize computational efficiency. The equation prioritizes tasks based on urgency and

workload conditions, ensuring that latency-sensitive tasks are processed locally while

lower-priority tasks are offloaded to the Cloud only when necessary. This approach

improves operational efficiency, scalability, and system responsiveness by preventing local

processor congestion while reducing unnecessary Cloud dependency.

The study establishes a mathematically scalable Supply Chain framework that

dynamically adjusts task distribution, prioritization, and processing thresholds based on

real-time system conditions. Future research should explore machine learning-driven task

scheduling, multi-cloud optimization, and energy-efficient Fog computing to enhance the

adaptability and sustainability of real-time supply chain operations.

104

6.2 Implications

The research has significant implications for theoretical advancements and

practical applications in Supply Chain Management, particularly in optimizing real-time

computational efficiency through Edge/Fog and Cloud computing. The development and

application of the Priority Equation demonstrate how advanced computational models can

revolutionize task prioritization and latency management, leading to more agile and

scalable supply chain systems.

One of the key implications of this study is the shift from traditional cloud-

dependent architectures to decentralized computing models that prioritize real-time data

processing at the Edge/Fog layers. Organizations can mitigate network congestion,

minimize latency, and improve overall system efficiency by reducing reliance on the

Cloud. This shift is particularly beneficial for latency-sensitive applications in logistics,

industrial IoT (IIoT), and real-time monitoring systems, where timely decision-making is

crucial.

The study also provides a scalable computational framework that can be applied

across various industries. The integration of Queuing Theory, dynamic thresholding, and

workload distribution ensures that the model remains adaptable under different workload

conditions, making it applicable not only in supply chain management but also in Smart

Cities, Healthcare, and Autonomous Systems. The Priority Equation facilitates proactive

resource allocation, preventing computational bottlenecks and ensuring optimal utilization

of processing power across Edge/Fog and Cloud layers.

From a technological perspective, the findings underscore the importance of real-

time adaptive scheduling in distributed computing environments. The results indicate that

processor scaling and service rate optimization significantly improve latency performance

up to a certain threshold, beyond which additional computational resources yield

105

diminishing returns. This aspect directly impacts designing and deploying scalable supply

chain architectures, where organizations must carefully evaluate resource allocation

strategies to avoid over-provisioning or underutilization.

Furthermore, the study highlights the interdisciplinary nature of Modern Supply

Chain Optimization, bridging computational science, network engineering, and operations

research. The findings suggest that future supply chain models will increasingly rely on

mathematical optimization techniques, AI-driven scheduling mechanisms, and predictive

analytics to adapt dynamically based on changing operational demands.

From a business standpoint, the research presents evidence that investing in Edge

and Fog computing infrastructure can yield long-term operational efficiencies.

Organizations can achieve lower operational costs, reduced energy consumption, and

improved real-time performance by reducing dependency on Cloud-based processing.

Additionally, intelligent workload distribution can enhance Supply Chain resilience,

ensuring that critical data remains accessible even during network failures or high-demand

scenarios.

6.3 Recommendations for Future Research

The findings of this study underscore the transformative potential of real-time

priority-based task allocation in Supply Chain Management. While the Priority Equation

enhances efficiency in latency-sensitive environments by leveraging Edge/Fog and Cloud

computing, several avenues remain open for further exploration. The following

recommendations outline critical areas for future research:

Adaptive Machine Learning Integration for Task Prioritization - The current model

optimizes task allocation using Queuing Theory and predefined priority thresholds. Future

research should explore machine learning (ML) and artificial intelligence (AI)-driven

106

models that dynamically adjust task priorities based on evolving workloads. Integrating

reinforcement learning or deep learning algorithms could allow the system to self-optimize

and predict task congestion points, making intelligent task distribution decisions without

manual recalibration.

Dynamic Offloading Strategies with Predictive Analytics - While the Priority

Equation provides a structured framework for dynamic task offloading, predictive analytics

can further improve efficiency. Future research should focus on proactive offloading

models that anticipate workload surges based on historical data patterns. Another

alternative is incorporating forecasting algorithms that dynamically adjust offloading

thresholds (s) or exploring context-aware decision-making to factor in real-time network

conditions, bandwidth availability, and computational capacity at the Edge/Fog and Cloud

layers.

Enhancing Real-Time Latency Models with Edge AI - As real-time supply chain

operations increasingly depend on Edge AI, future research should explore deploying

lightweight AI models within Edge nodes to enhance task prioritization. Additionally,

studies should examine the impact of low-power AI accelerators on reducing local

processing time while maintaining real-time responsiveness. Furthermore, investigating

how Edge AI can minimize reliance on Cloud computing in high-data-velocity

environments will be essential for optimizing efficiency and scalability.

Multi-Cloud Optimization Using Critical Path Analysis - Given that cloud offloading

remains essential in high-demand scenarios, Critical Path Analysis (CPA) should be

integrated to determine the closest and fastest Cloud provider for task execution. Achieving

this requires the development of algorithms that select the optimal Cloud node based on

factors such as network latency, processor availability, and cost. Additionally, multi-cloud

computing should be explored to enable seamless workload balancing across distributed

107

Cloud environments. Another crucial area of investigation is the use of blockchain-based

smart contracts, which can automate Cloud selection processes and ensure transparency in

processing times, further optimizing real-time supply chain operations.

Energy Efficiency and Sustainability in Fog Computing - Fog computing offers real-

time processing benefits but also increases energy consumption. Future research should

focus on developing energy-efficient scheduling algorithms that optimize processor

utilization while maintaining system performance. Additionally, investigating the

feasibility of renewable energy-powered Fog nodes could enhance sustainability in Supply

Chain Operations, reducing dependency on traditional energy sources. Another important

aspect is assessing the trade-offs between energy consumption, latency, and task

throughput, which could lead to developing a Green Fog Computing Model that balances

efficiency with environmental sustainability.

Integration with 6G and Next-Generation Networks - The emergence of 6G

networks and next-generation terahertz communication technologies will significantly

impact task prioritization and offloading efficiency. Future studies should explore the role

of ultra-low-latency 6G networks in enhancing real-time task execution, ensuring faster

and more reliable processing in Supply Chain Operations. Additionally, research should

examine the impact of network slicing on dynamic task allocation, allowing for more

efficient resource distribution based on workload demands.

While the Equation can enhance computational efficiency by leveraging Edge/Fog

computing and adaptive task offloading, it also presents limitations that may affect its

applicability across different industries. Improvements from the examples above can

enhance equation adaptability. In contrast, specific industries pose challenges due to

extreme latency constraints, computational complexity, or reliance on ultra-fast cloud

interactions where autonomous vehicles and high-speed transportation require real-time

108

decision-making processing at sub-millisecond latency. High-frequency trading (HFT),

particularly in algorithmic trading, demands nanosecond-level execution speeds, which

Edge/Fog architectures may not support efficiently, and Financial Risk Analytics where

the Equation queuing-based prioritization model may not align with the real-time risk

assessment needs of financial institutions, where market conditions shift unpredictably and

require instantaneous execution are a few examples.

The Equation enhances latency-sensitive task allocation in controlled industrial

environments such as smart healthcare, pharmaceutical logistics, industrial automation,

and smart city infrastructure. Future advancements, including machine learning-driven

adaptive prioritization, multi-cloud workload optimization, and energy-efficient

scheduling algorithms, will expand the Equation's applicability across more complex, real-

time decision-making industries.

6.4 Conclusion

The Priority Equation, supported by Queuing Theory, real-time thresholding, and

dynamic workload distribution, introduces a framework for balancing local and remote task

processing within supply chain environments. Through computational modeling and

empirical analysis, the study has established that decentralized computing model –

particularly those integrating Edge and Fog computing – substantially mitigate network

congestion, reduce latency, and diminish reliance on centralized Cloud architectures by

distributing computational workloads across multiple layers. This approach enhances real-

time supply chain systems' agility, scalability, and operational efficiency.

The findings highlight the effectiveness of the Priority Equation in optimizing task

allocation across varied computing layers, ensuring that latency-sensitive tasks are

processed locally, whereas non-critical workloads are offloaded in a way that prevents

109

bottlenecks and maximizes resource utilization. The ability of the framework to adapt

dynamically to changing system conditions ensures that computational resources are

allocated in real-time based on actual workload demands. This adaptability is essential in

high-velocity data environments, where variations in task arrival rates and processing

capacities necessitate a fluid and responsive prioritization strategy.

Beyond the Supply Chain Management domain, the study's implications extend to

broader fields, including Smart Cities, Healthcare, Autonomous Systems, and Logistics.

Each sector relies heavily on real-time data processing and intelligent workload distribution

to optimize operations, improve decision-making, and ensure system resilience. The results

suggest that organizations within these domains should strategically invest in Edge and

Fog computing infrastructure to enhance computational proximity, reduce operational

costs, and improve real-time responsiveness. Further integrating a multi-cloud architecture

is recommended to increase system flexibility and decrease idleness.

The study also validates key theoretical insights presented in recent literature on

fog-enabled IoT networks, such as Queuing Models with general service times and the

impact of offloading thresholds on system performance (Ibrahim et al., 2022). The

empirical findings align with the work of King Saud University researchers, who

emphasize that a well-structured offloading mechanism, combined with an adaptive

priority-based framework, is essential for sustaining performance in latency-sensitive

applications. The Priority Equation’s ability to adjust to network conditions, distribute

workloads efficiently, and maintain a low-latency environment reinforces its suitability for

modern distributed computing systems.

Strategically, organizations aiming to transition from cloud-dependent

architectures to decentralized computing models should adopt real-time workload

management principles. The study provides strong empirical support for shifting away

110

from traditional cloud-centric models, which often introduce prohibitive latency and

bandwidth limitations, toward a more localized processing paradigm that prioritizes

efficiency and real-time adaptability. Future research should explore the extension of the

model into hybrid computational environments that leverage AI-driven task scheduling and

predictive analytics to refine workload distribution further and enhance system resilience

in dynamic, data-intensive applications.

111

References

Ahmed, E., Ahmed, A., Yaqoob, I., Shuja, J., Gani, A., Imran, M., Shoaib, M., 2017.

Bringing computation closer toward the user network: Is edge computing the

solution? IEEE Communications Magazine 55, 138–144.

Alatoun, K., Matrouk, K., Mohammed, M.A., Nedoma, J., Martinek, R., Zmij, P., 2022. A

novel low-latency and energy-efficient task scheduling framework for internet of

medical things in an edge fog cloud system. Sensors 22, 5327.

Alenizi, F., Rana, O., 2021. Dynamically controlling offloading thresholds in fog systems.

sensors 21, 2512.

Almutairi, J., Aldossary, M., 2021. A novel approach for IoT tasks offloading in edge-

cloud environments. Journal of cloud computing 10, 28.

Atapattu, S., Weeraddana, C., Ding, M., Inaltekin, H., Evans, J., 2020. Latency

minimization with optimum workload distribution and power control for fog

computing. Presented at the 2020 IEEE wireless communications and networking

conference (WCNC), IEEE, pp. 1–6.

Attaran, M., Woods, J., 2018. Cloud computing technology: improving small business

performance using the Interne. Journal of Small Business & Entrepreneurship 31,

495–519. https://doi.org/10.1080/08276331.2018.1466850.

Bali, M.S., Gupta, K., Gupta, D., Srivastava, G., Juneja, S., Nauman, A., 2023. An effective

technique to schedule priority aware tasks to offload data on edge and cloud servers.

Measurement: Sensors 26, 100670.

Bali, M.S., Gupta, K., Koundal, D., Zaguia, A., Mahajan, S., Pandit, A.K., 2021. Smart

architectural framework for symmetrical data offloading in IoT. Symmetry 13,

1889.

Berenberg, A., Calder, B., 2022. Deployment archetypes for cloud applications. ACM

Computing Surveys (CSUR) 55, 1–48.

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the

internet of things. Presented at the Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, pp. 13–16.

Bukhari, M.M., Ghazal, T.M., Abbas, S., Khan, M.A., Farooq, U., Wahbah, H., Ahmad,

M., Adnan, K.M., 2022. An Intelligent Proposed Model for Task Offloading in Fog‐

Cloud Collaboration Using Logistics Regression. Computational Intelligence and

Neuroscience 2022, 3606068.

Campbell, L.L., 1965. A coding theorem and Rényi’s entropy. Information and control 8,

423–429.

Chakraborty, C., Mishra, K., Majhi, S.K., Bhuyan, H.K., 2022. Intelligent Latency-aware

tasks prioritization and offloading strategy in Distributed Fog-Cloud of Things.

IEEE Transactions on Industrial Informatics 19, 2099–2106.

Choudhari, T., Moh, M., Moh, T.-S., 2018. Prioritized task scheduling in fog computing.

Presented at the Proceedings of the ACMSE 2018 Conference, pp. 1–8.

112

Cortés, R., Bonnaire, X., Marin, O., Sens, P., 2015. Stream processing of healthcare sensor

data: studying user traces to identify challenges from a big data perspective.

Procedia Computer Science 52, 1004–1009.

Deng, S., Xiang, Z., Yin, J., Taheri, J., Zomaya, A.Y., 2018. Composition-Driven IoT

Service Provisioning in Distributed Edges. IEEE Access 6, 54258–54269.

Fahad, M., Shojafar, M., Abbas, M., Ahmed, I., Ijaz, H., 2022. A multi‐queue priority‐

based task scheduling algorithm in fog computing environment. Concurrency and

Computation: Practice and Experience 34, e7376.

Ferreira, I., 2021. The 4 Trends of Edge Computing. URL

https://tarscloud.org/feeds/3927026597809349

Hoang, D., Dang, T.D., 2017. FBRC: Optimization of task scheduling in fog-based region

and cloud. Presented at the 2017 IEEE Trustcom/BigDataSE/ICESS, IEEE, pp.

1109–1114.

Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., Tafazolli, R., 2021. PGA: a priority-

aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing.

Presented at the IEEE INFOCOM 2021-IEEE conference on computer

communications workshops (INFOCOM WKSHPS), IEEE, pp. 1–6.

Ibe, O., 2013. Markov processes for stochastic modeling. Newnes.

Ibrahim, A.S., Al-Mahdi, H., Nassar, H., 2022. Characterization of task response time in a

fog-enabled IoT network using queueing models with general service times.

Journal of King Saud University-Computer and Information Sciences 34, 7089–

7100.

Jamal, M.K., Muqeem, M., 2023. An MCDM optimization based dynamic workflow

scheduling used to handle priority tasks for fault tolerance in IIOT. Measurement:

Sensors 27, 100742.

Kafle, V.P., Al Muktadir, A.H., 2020. Intelligent and agile control of edge resources for

latency-sensitive IoT services. IEEE Access 8, 207991–208002.

Kaur, G., Harnal, S., Goyal, A., Tiwari, R., Cheng, X., 2024. Applications and challenges

for sustainable development with cloud/fog/edge computing. Cloud and Fog

Optimization-based Solutions for Sustainable Developments 27–47.

Khinchin, A.Y., Andrews, D., Quenouille, M.H., 2013. Mathematical methods in the

theory of queuing. Courier Corporation.

Koroniotis, N., 2020. Designing an effective network forensic framework for the

investigation of botnets in the Internet of Things.

Koroniotis, N., Moustafa, N., 2020. Enhancing network forensics with particle swarm and

deep learning: The particle deep framework. arXiv preprint arXiv:2005.00722.

Koroniotis, N., Moustafa, N., Schiliro, F., Gauravaram, P., Janicke, H., 2020a. A holistic

review of cybersecurity and reliability perspectives in smart airports. IEEE Access

8, 209802–209834.

Koroniotis, N., Moustafa, N., Sitnikova, E., 2020b. A new network forensic framework

based on deep learning for Internet of Things networks: A particle deep framework.

Future Generation Computer Systems 110, 91–106.

Koroniotis, N., Moustafa, N., Sitnikova, E., Slay, J., 2018. Towards developing network

forensic mechanism for botnet activities in the IoT based on machine learning

113

techniques. Presented at the Mobile Networks and Management: 9th International

Conference, MONAMI 2017, Melbourne, Australia, December 13-15, 2017,

Proceedings 9, Springer, pp. 30–44.

Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B., 2019. Towards the development

of realistic botnet dataset in the internet of things for network forensic analytics:

Bot-iot dataset. Future Generation Computer Systems 100, 779–796.

Kumar, M., Walia, G.K., Shingare, H., Singh, S., Gill, S.S., 2023. Ai-based sustainable and

intelligent offloading framework for iiot in collaborative cloud-fog environments.

IEEE Transactions on Consumer Electronics.

Last, G., Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.

Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H.V., Vucetic, B., 2019. High-reliability and

low-latency wireless communication for internet of things: Challenges,

fundamentals, and enabling technologies. IEEE Internet of Things Journal 6, 7946–

7970.

Madhura, R., Elizabeth, B.L., Uthariaraj, V.R., 2021. An improved list-based task

scheduling algorithm for fog computing environment. Computing 103, 1353–1389.

Malik, U.M., Javed, M.A., Frnda, J., Rozhon, J., Khan, W.U., 2022. Efficient matching-

based parallel task offloading in iot networks. Sensors 22, 6906.

Mohamed, I., Al-Mahdi, H., Tahoun, M., Nassar, H., 2022. Characterization of task

response time in fog enabled networks using queueing theory under different

virtualization modes. Journal of Cloud Computing 11, 21.

Mohanan, R., 2022. What Is Edge Computing? Components, Examples, and Best Practices.

Movahedi, Z., Defude, B., Hosseininia, A.M., 2021. An efficient population-based multi-

objective task scheduling approach in fog computing systems. Journal of Cloud

Computing 10, 53.

Nai-meng, C., Xiao-yu, W., Wan-jun, Y., Zi-chen, W., Huai-lin, Z., Jia-lan, L., 2019. A

fire equipment enterprise performance game management system based on SaaS

cloud platform. Presented at the 2019 International Conference on Intelligent

Informatics and Biomedical Sciences (ICIIBMS), IEEE, pp. 99–104.

Nalbant, K.G., Almutairi, S., Alshehri, A.H., Kemal, H., Alsuhibany, S.A., Choi, B.J.,

2024. An efficient algorithm for data transmission certainty in IIoT sensing

network: A priority-based approach. PloS one 19, e0305092.

Nankaku, A., Tokunaga, M., Yonezawa, H., Kanno, T., Kawashima, K., Hakamada, K.,

Hirano, S., Oki, E., Mori, M., Kinugasa, Y., 2022. Maximum acceptable

communication delay for the realization of telesurgery. PloS one 17, e0274328.

Nawaz, S.J., Sharma, S.K., Patwary, M.N., Asaduzzaman, M., 2021. Next-generation

consumer electronics for 6G wireless era. IEEE Access 9, 143198–143211.

Nguyen, T., Nguyen, H., Gia, T.N., 2024. Exploring the integration of edge computing and

blockchain IoT: Principles, architectures, security, and applications. Journal of

Network and Computer Applications 103884.

Oliveira, M.P.V. de, Handfield, R., 2019. Analytical foundations for development of real-

time supply chain capabilities. International Journal of Production Research 57,

1571–1589.

114

Perumal, K., Chowdhary, C.L., Chella, L., 2022. Innovative Supply Chain Management

Via Digitalization and Artificial Intelligence. Springer.

Puleri, M., Sabella, R., Osseiran, A., 2016. Cloud robotics: 5G paves the way for mass-

market automation. Charting the Future of Innovation, 93.

Rényi, A., 2007. Probability theory. Courier Corporation.

Rezaee, M.R., Hamid, N.A.W.A., Hussin, M., Zukarnain, Z.A., 2024. Fog Offloading and

Task Management in IoT-Fog-Cloud Environment: Review of Algorithms,

Networks and SDN Application. IEEE Access.

Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. Journal of

mathematical psychology 15, 234–281.

Sharif, Z., Jung, L.T., Ayaz, M., Yahya, M., Pitafi, S., 2023. Priority-based task scheduling

and resource allocation in edge computing for health monitoring system. Journal of

King Saud University-Computer and Information Sciences 35, 544–559.

Shekhar, S., Abdel-Aziz, H., Bhattacharjee, A., Gokhale, A., Koutsoukos, X., 2018.

Performance interference-aware vertical elasticity for cloud-hosted latency-

sensitive applications. Presented at the 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), IEEE, pp. 82–89.

Shi, J., Du, J., Wang, Jingjing, Wang, Jian, Yuan, J., 2020. Priority-aware task offloading

in vehicular fog computing based on deep reinforcement learning. IEEE

Transactions on Vehicular Technology 69, 16067–16081.

Shukla, A., Chaturvedi, S., Simmhan, Y., 2017. Riotbench: An iot benchmark for

distributed stream processing systems. Concurrency and Computation: Practice and

Experience 29, e4257.

Sohani, M., Jain, S., 2021. A predictive priority-based dynamic resource provisioning

scheme with load balancing in heterogeneous cloud computing. IEEE access 9,

62653–62664.

Taha, H.A., 1998. Operations research: an introduction. Journal of Manufacturing Systems

1, 78.

Taherizadeh, S., Stankovski, V., 2019. Dynamic multi-level auto-scaling rules for

containerized applications. The Computer Journal 62, 174–197.

Tang, B., Luo, J., Obaidat, M.S., Vijayakumar, P., 2023. Container-based task scheduling

in cloud-edge collaborative environment using priority-aware greedy strategy.

Cluster Computing 26, 3689–3705.

Tao, Y., Jiang, Y., Zheng, F.-C., Bennis, M., You, X., 2021. Content popularity prediction

in fog-rans: A bayesian learning approach. Presented at the 2021 IEEE Global

Communications Conference (GLOBECOM), IEEE, pp. 1–6.

Tuli, Shreshth, Mahmud, R., Tuli, Shikhar, Buyya, R., 2019. Fogbus: A blockchain-based

lightweight framework for edge and fog computing. Journal of Systems and

Software 154, 22–36.

Willig, A., 1999. A Short Introduction to Queueing Theory. Telecommunication Networks

Group 2–41.

Xu, J., Hao, Z., Zhang, R., Sun, X., 2019. A method based on the combination of laxity

and ant colony system for cloud-fog task scheduling. IEEE access 7, 116218–

116226.

115

You, Q., Tang, B., 2021. Efficient task offloading using particle swarm optimization

algorithm in edge computing for industrial internet of things. Journal of Cloud

Computing 10, 1–11.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J.,

Jue, J.P., 2019. All one needs to know about fog computing and related edge

computing paradigms: A complete survey. Journal of Systems Architecture 98,

289–330. https://doi.org/10.1016/j.sysarc.2019.02.009

Zhang, D., Vance, N., Zhang, Y., Rashid, M.T., Wang, D., 2019. Edgebatch: Towards ai-

empowered optimal task batching in intelligent edge systems. Presented at the 2019

IEEE Real-Time Systems Symposium (RTSS), IEEE, pp. 366–379.

Zhang, J., Dao, S.D., Zhang, W., Goh, M., Yu, G., Jin, Y., Liu, W., 2023. A new job priority

rule for the NEH-based heuristic to minimize makespan in permutation flowshops.

Engineering Optimization 55, 1296–1315.

