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In today's increasingly digital and data-intensive environment, supply chain 

systems are challenged to process vast amounts of real-time data generated by the Internet 

of Things (IoT) devices. Traditional cloud-based architectures often struggle with high 

latency and bandwidth constraints, hindering timely decision-making in critical supply 

chain applications. The research aims to develop and evaluate a dynamic, priority-based 

task allocation framework that leverages Edge/Fog computing to address these limitations. 

The core framework is a Priority Equation that integrates principles from Queuing Theory 

(Willig, 1999) and dynamic thresholding, enabling the efficient distribution of tasks 

processing load across Edge/Fog and Cloud layers. 

The research adopts a quantitative approach to analyze the impact of the Priority 

Equation on latency, resource allocation, and task prioritization in a simulated IoT supply 

chain environment. Key metrics include task processing time and system scalability under 

varying data loads by dynamically adjusting task priorities according to real-time demands. 

The Equation was designed to ensure that critical tasks are processed with minimal delay 

while optimizing the distribution of non-critical tasks. The results demonstrate that the 
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priority-based framework reduces latency and improves operational efficiency compared 

to traditional cloud-centric models. Additionally, Edge/Fog computing integration shows 

improved system scalability, maintaining performance as data volume and task arrival rates 

increase. 

Research contributes to Supply Chain Management by introducing a scalable, 

adaptive framework that enhances real-time responsiveness and resilience in complex, 

data-driven environments. Priority Equation offers a practical solution for industries where 

timely high-frequency data processing is essential, such as logistics, healthcare, and 

manufacturing. This study lays the groundwork for a more efficient, agile, and customer-

centric supply chain model by optimizing task allocation and leveraging decentralized 

computing, positioning organizations to navigate the digital age's demands better. 
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CHAPTER I: INTRODUCTION 

 

1.1 Introduction 

In the dynamic landscape of today's digital era, Cloud computing has evolved into 

a fundamental asset for businesses, which can spur numerous benefits for organizations, 

such as capital investment savings, simplified operations, scalability, improved 

information visibility, sustainability, and faster deployment (Attaran and Woods, 2018). 

Renowned for its scalability, flexibility, and cost-effectiveness, the Cloud has become the 

preferred choice of most enterprises (Nai-meng et al., 2019). However, with the escalating 

adoption of Cloud technology, the issue of network latency has surfaced as a crucial 

challenge requiring proactive attention for optimal Cloud performance. Edge computing is 

considered, in most cases, the option for fast processing of vast amounts of data based on 

proximity or in-house capabilities. Edge computing is the practice of processing (Ferreira, 

2021) and computing client data closer to the data source rather than on a centralized server 

or a cloud-based location (Mohanan, 2022). In supply chain operations, real-time decision-

making is crucial, and the latency associated with cloud-centric models poses significant 

constraints on operational efficiency. 

Past research (Yousefpour et al., 2019) indicates that Edge computing effectively 

addresses privacy, latency, and connectivity issues, primarily attributable to its proximity 

to users. The meticulous design and implementation of a supply chain infrastructure 

necessitate careful consideration of critical factors, including processing speed and 

bandwidth. 

However, there is still a need for additional investigation into bandwidth savings 

through the utilization of Edge computing (Yousefpour et al., 2019). The study by 

(Yousefpour et al., 2019) highlights that as data velocity and volume increase, moving the 
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big data from the IoT devices to the Cloud might not be efficient or might even be infeasible 

in some cases due to bandwidth constraints. Based on the study observation, bringing Edge 

and Cloud computing closer to the user (Ahmed et al., 2017) will foster an environment of 

enhanced operational efficiency throughout the entire business process. 

Traditionally, Cloud computing has been the cornerstone for managing the vast 

array of geographically dispersed IoT devices and their associated applications (Tuli et al., 

2019). The physical separation between Cloud data centers and IoT devices often results 

in increased communication delays, affecting both data transmission and the delivery of 

services. Such latency is particularly problematic for critical healthcare and smart city 

infrastructure applications, which can significantly diminish Quality of Service (QoS) (Tuli 

et al., 2019). Moreover, the sheer volume of data generated by IoT devices in a short span 

can lead to substantial network congestion, primarily when numerous devices concurrently 

transmit data to Cloud data centers via the global internet (Tuli et al., 2019). Edge 

computing paradigms discussed by Bonomi et al. (2012) have been developed to address 

challenges inherent in a cloud-centric IoT model. These paradigms prioritize the use of 

local computing resources at the Edge of the network to execute real-time IoT applications, 

effectively reducing latency and network congestion; still, network planning and design of 

Edge/Fog networks is an important research topic, and yet not many studies have been 

performed in this area (Berenberg and Calder, 2022). 

Edge computing brings computation and data storage closer to the location where 

it is needed, minimizing the latency traditionally associated with Cloud computing. This 

enhancement in computational efficiency and the reduction in request-response times 

significantly improve the processing overhead, thereby streamlining supply chain 

operations (Perumal et al., 2022). 
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Integrating advanced technologies into Supply Chain Management practices 

addresses current limitations and sets the stage for a more resilient, agile, and customer-

centric supply chain ecosystem (Kaur et al., 2024). The evolution is decisive for industries 

to remain competitive in a rapidly changing economic landscape, where the efficiency of 

logistics and supply chain operations directly impacts business success and customer 

satisfaction.   

 

1.2 Research Problem 

In the contemporary, highly interconnected Supply Chain landscape, latency, task 

allocation, and resource efficiency management have become increasingly complex, 

particularly with the widespread integration of the Internet of Things (IoT), Edge/Fog, and 

Cloud computing (Nguyen et al., 2024). The continuous influx of data from sensors, Radio 

Frequency Identification (RFID) tags, barcodes, robotics, and other smart devices requires 

real-time processing to maintain operational efficiency (Nguyen et al., 2024). Developing 

a dynamic, priority-based task allocation equation is key to addressing these challenges. 

Such a model would facilitate low-latency processing for time-sensitive tasks, optimize 

computational resource distribution across Edge/Fog and Cloud layers, and enhance 

overall cost efficiency within Supply Chain operations. Based on these observations, the 

following question arises: 

 

"How can a dynamic, priority-based task allocation equation be developed to 

improve latency, manage task load, and enhance resource efficiency across Edge/Fog 

and Cloud computing layers in Internet of Things-driven Supply Chain Environments?" 
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The increased need for low-latency processing reveals that traditional cloud-centric 

supply chains struggle with latency, especially as IoT data sources multiply and demand 

near-instantaneous processing (Oliveira and Handfield, 2019) and that Real-Time Supply 

Chain applications, latency can significantly impact decision-making and, most notably the 

operational efficiency. 

Challenges of task allocation in multi-layered systems create a complex data flow 

across Edge and Cloud layers, and the question of how to prioritize tasks to ensure critical, 

time-sensitive data is processed immediately while less urgent data is handled in a way that 

does not overburden the system. The question led to exploring models beyond simple 

cloud-based architectures, where tasks could be allocated dynamically based on urgency. 

At this point, the role of Queuing Theory (Willig, 1999) directed attention to 

formalize the task prioritization process. Traditional queuing models provide insight into 

managing tasks in a multi-processor environment. However, they are limited in handling 

real-time prioritization needs, which led to integrating Queuing Theory with task 

thresholding to manage high-velocity data and demand peaks in supply chains and a 

dynamic prioritization that will adjust based on real-time load, prioritizing tasks by urgency 

thresholds and managing load across processors. The Equation aims to optimize task 

allocation across Edge layers, allowing the supply chain to function efficiently and highly 

responsive. 

 

1.3 Purpose of Research  

The research seeks to tie the gap between traditional cloud-based supply chain 

models and the emerging need for low-latency, proximity-based processing by developing 

a Priority Equation that enables responsive, prioritized data handling across Edge/Fog and 

Cloud layers. Through this framework, the study aims to contribute to upcoming supply 
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chains operating with enhanced agility, efficiency, and responsiveness, benefiting 

industries that depend on timely data processing and decision-making. 

 

1.4 Significance of the Study  

The study is significant since it addresses critical challenges in modern supply chain 

management, particularly latency and real-time decision-making in data-heavy IoT-driven 

environments. By introducing and validating a Priority Equation that integrates Edge/Fog 

computing with Queuing Theory and task thresholding, the research contributes to a 

scalable and adaptive framework for task prioritization that meets the evolving needs of 

global supply chains and also offers practical solutions for industries where responsiveness 

and operational efficiency are paramount. 

 

1.5 Research Purpose and Questions  

The research aims to develop and evaluate a priority-based task allocation 

framework using Edge computing guided by a dynamic Priority Equation. The framework 

aims to reduce latency, optimize resource allocation, and enhance real-time decision-

making within IoT-enabled supply chain systems by addressing key questions: 

• Research Question One: How does a priority-based task allocation equation affect 

latency and resource utilization in a multi-layered supply chain system? 

• Research Question Two: What role do dynamic thresholding and Queuing Theory 

play in optimizing task prioritization within Edge/Fog computing environments? 

• Research Question Three: How does integrating Edge/Fog and Cloud computing 

improve the scalability and responsiveness of supply chains in real-time, high-data 

environments? 
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Chapter II:  

REVIEW OF LITERATURE 

 

The increasing complexity of computational workloads in Edge, Fog, and Cloud 

environments has led to the development of various task scheduling and resource allocation 

methodologies. The literature reviewed in this section encompasses heuristic and 

mathematical evaluating contributions and limitations in comparison to the Priority 

Equation, which leverages Queuing Theory and real-time prioritization techniques. 

The study "A Method Based on the Combination of Laxity and Ant Colony System 

for Cloud-Fog Task Scheduling" by (Xu et al., 2019) introduces a hybrid algorithm, 

combining laxity-based prioritization with an ant colony optimization system (LBP-ACS) 

to address these challenges. This section examines the contributions of this approach and 

evaluates its strengths and limitations. The LBP-ACS algorithm focuses on two primary 

objectives: enhancing the sensitivity of task prioritization to delay requirements and 

minimizing energy consumption during task scheduling. The laxity-based priority 

algorithm computes task urgency by calculating the allowable delay before the task's 

deadline is breached. Tasks with shorter laxity are assigned a higher priority, prioritizing 

delay-sensitive operations. While this approach effectively handles interdependent tasks 

modeled as directed acyclic graphs (DAGs), its reliance on static laxity metrics limits its 

adaptability to dynamic workloads. In contrast, the Priority Equation incorporates real-time 

system metrics, enabling dynamic task prioritization and offloading decisions that adapt to 

fluctuating system conditions. 

The LBP-ACS algorithm's ant colony optimization component ensures global 

resource allocation optimization by iteratively improving task scheduling decisions. By 

incorporating energy consumption and task deadlines as key parameters, this approach 
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achieves a balance between energy efficiency and task completion time. However, the 

iterative nature of the ant colony optimization introduces computational overhead, which 

may limit its scalability in large-scale IIoT deployments. The Priority Equation, designed 

for Edge-Fog-Cloud architectures, provides a lightweight alternative by minimizing per-

task latency and dynamically distributing tasks between local and remote resources. It 

achieves this without requiring extensive heuristic optimization, leveraging real-time task 

prioritization to optimize system efficiency.  

The researchers (Xu et al., 2019) highlight the benefits of their approach in reducing 

task scheduling failure rates and optimizing energy consumption. Experimental results 

demonstrate that LBP-ACS outperforms traditional scheduling algorithms such as HEFT 

and Greedy for Energy (GfE) in scenarios with mixed task deadlines. However, the study 

primarily addresses energy consumption and deadline constraints without explicitly 

accounting for the impact of network latency in Edge-Fog-Cloud architectures. In contrast, 

the Priority Equation addresses this gap by integrating latency as a core parameter in task 

prioritization, ensuring that real-time tasks are processed locally whenever possible to 

minimize transmission delays. 

The study "Composition-Driven IoT Service Provisioning in Distributed Edges" by 

(Deng et al., 2018) presents an optimized service cache policy designed to enhance the 

performance of service provisioning in mobile edge computing (MEC) systems. This study 

highlights the importance of caching strategies that leverage the composability of services 

to reduce latency and improve resource utilization. By introducing a heuristic algorithm 

for average service response time (ASRT) minimization, the authors aim to improve the 

efficiency of MEC architectures. Deng et al. (2018) address the challenges of latency and 

resource constraints in IoT systems by proposing a cache optimization framework that 

classifies services as composite and atomic. They utilize service composition graphs 
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(SCGs) to model the hierarchical relationships between services and optimize caching 

decisions based on service popularity, resource consumption, and composition structures. 

The proposed heuristic algorithm effectively reduces the ASRT by prioritizing frequently 

invoked services while accounting for the dependencies within SCGs. However, the 

reliance on service popularity and static composition structures limits the adaptability of 

this approach in dynamic IIoT environments where task priorities and workloads fluctuate.  

A significant contribution of the "Composition-Driven" study by Deng et al. (2018) 

is its incorporation of composite services, which are constructed from atomic services, into 

the caching framework. This approach enhances resource reuse and minimizes redundant 

computations by prioritizing caching decisions that maximize service reusability. While 

effective in improving resource utilization, the method assumes that task execution times 

on Edge and Cloud servers are equivalent, disregarding the impact of varying resource 

capacities and network conditions on latency. The Priority Equation explicitly accounts for 

latency differences by prioritizing tasks with stringent timing requirements for local 

processing, ensuring compliance with IIoT latency constraints. 

The experimental results presented by Deng et al. (2018) demonstrate that their 

heuristic algorithm significantly reduces ASRT compared to enumeration and other 

evolutionary algorithms, such as genetic algorithms and particle swarm optimization. 

Despite these advancements, the heuristic approach does not incorporate dynamic 

offloading thresholds or account for real-time edge-cloud collaboration. The Priority 

Equation addresses these gaps by dynamically balancing local and Cloud processing based 

on system states and task priorities, achieving latency performance in real-time IIoT 

applications. 

The subsequent literature review is "Optimization of Task Scheduling in Fog-Based 

Regions and Cloud (FBRC)" by Hoang and Dang (2017), which introduces a novel concept 
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of fog-based regions combined with cloud computing to address task scheduling in latency-

sensitive environments. This framework, termed FBRC, focuses on reducing task 

completion times and optimizing resource utilization by efficiently distributing 

computational tasks between local Fog regions and Cloud servers. The contributions of this 

work are significant in their development of an area-specific architecture and a heuristic 

algorithm for task scheduling.  

In their work, Hoang and Dang (2017) conceptualize regions as dynamic clusters 

of Fog nodes that are geographically distributed and can exchange resources to handle 

computational tasks. The authors highlight the inherent trade-offs between using local 

resources in regions, which minimize data transmission latency, and relying on Cloud 

servers, which offer higher computational power at the cost of increased transmission 

delays. This duality forms the foundation of their FBRC framework, where tasks are 

dynamically allocated based on resource availability and location proximity. While the 

FBRC framework effectively leverages regional resource sharing to reduce task 

completion times, its reliance on heuristic algorithms introduces challenges in adapting to 

real-time workload fluctuations. The heuristic algorithm developed for FBRC employs a 

multi-step process to allocate tasks across regions and Cloud servers. This algorithm 

minimizes task completion time by iteratively assigning resources to tasks based on latency 

constraints and resource availability. Still, its computational complexity increases 

significantly with the number of regions and tasks, potentially limiting scalability in large-

scale IIoT deployments. The Priority Equation addresses this limitation by using 

lightweight, real-time computations that prioritize latency-sensitive tasks for local 

processing while offloading non-critical tasks to the Cloud, which ensures that the system 

remains efficient even under high task loads. At the same time, the researchers Hoang and 

Dang (2017) validate the FBRC framework through simulations that compare its 
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performance with cloud-only and region-only scheduling schemes. The results demonstrate 

that FBRC consistently outperforms these alternatives in minimizing task completion 

times, especially at higher task arrival rates. The study does not explicitly account for the 

dynamic nature of task priorities, which can vary significantly in IIoT environments. The 

Priority Equation builds on this gap by directly integrating task prioritization into its 

framework, ensuring critical tasks are processed on time while maintaining overall system 

efficiency. 

Another strength of the FBRC framework lies in its emphasis on optimizing 

resource allocation across heterogeneous Fog and Cloud environments by considering 

varying service rates and transmission latencies, and the framework provides a balanced 

approach to resource utilization. Nevertheless, its static configuration of task scheduling 

parameters may hinder its ability to adapt to sudden workload or resource availability 

changes. In this illustration, the Priority Equation enhances this adaptability by 

dynamically adjusting offloading thresholds (s) based on real-time system states, enabling 

more responsive and efficient resource allocation. 

For the following study done by  Sohani and Jain (2021), "A Predictive Priority-

Based Dynamic Resource Provisioning Scheme With Load Balancing in Heterogeneous 

Cloud Computing," presents a novel approach to improving cloud-based task scheduling 

and resource provisioning. The research introduces the Predictive Priority-based Modified 

Heterogeneous Earliest Finish Time (PMHEFT) algorithm, which enhances load balancing 

and scheduling efficiency in heterogeneous cloud environments. The core idea is to 

dynamically allocate computing resources based on predictive modeling to minimize 

makespan, reduce energy consumption, and optimize Quality of Service (QoS).  

Researchers Sohani and Jain focus on optimizing task scheduling by leveraging a 

priority queue that predicts resource demand and workload distribution. The PMHEFT 
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algorithm builds on existing task scheduling strategies such as HEFT (Heterogeneous 

Earliest Finish Time) and CPOP (Critical Path on a Processor), modifying them to account 

for dynamic workload fluctuations. Their approach significantly improves makespan 

minimization and enhances load balancing across virtual machines (VMs). However, while 

PMHEFT optimizes scheduling efficiency in Cloud environments, it does not explicitly 

address task offloading in multi-cloud and Edge computing. Still, their study introduces a 

predictive model for estimating future workloads and adjusting resource allocation 

accordingly, which ensures that Cloud resources are optimally provisioned to prevent 

Service Level Agreement Violation (SLA) violations and minimize resource wastage. 

However, the predictive approach relies on historical workload patterns, which may not 

always reflect real-time conditions.  

Another key contribution of the PMHEFT algorithm is its priority-based queuing 

mechanism, which ensures that high-priority tasks are executed first while balancing the 

load across multiple Cloud nodes. The approach enhances load balancing and reduces the 

probability of resource bottlenecks. However, PMHEFT does not explicitly consider 

geographical distance-based latency variations in multi-cloud environments. The Priority 

Equation does not currently integrate Critical Path Analysis. However, this could be a 

potential enhancement for dynamically assigning tasks to the fastest available Cloud 

provider, ensuring minimal transmission delay based on processing needs and latency 

requirements. The concept might present an optimal task execution path across multiple 

cloud regions, ensuring critical computations are processed with minimal transmission 

latency.  

The experimental evaluation of the PMHEFT algorithm demonstrates superior 

performance compared to traditional HEFT, MHEFT, and Dynamic HEFT algorithms, 

particularly in terms of makespan reduction and resource utilization. However, the study 
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primarily focuses on cloud-only architectures, whereas the Priority Equation is designed 

for Edge-Fog-Cloud hierarchies, making it more suitable for latency-sensitive IIoT/IoT 

applications.  

Another reference used is the study done by Chakraborty et al. (2022), "Intelligent 

Latency-Aware Tasks Prioritization and Offloading Strategy in Distributed Fog-Cloud of 

Things," which presents a multi-layered latency-aware offloading model for Fog-Cloud 

computing, incorporating fuzzy logic-based task prioritization and an Elitism-based 

Multipopulation Jaya (EMPJ) algorithm for task scheduling. The research highlights the 

importance of deadline constraints and priority-aware scheduling in distributed 

environments, focusing on minimizing offloading time and computational latency while 

ensuring efficient resource utilization. 

One of the primary contributions of this work is the classification of tasks based on 

priority levels and their deadline sensitivity. The proposed fuzzy logic-based task classifier 

categorizes tasks into high-priority, medium-priority, and low-priority groups, assigning 

them to different computational layers accordingly. This classification ensures that high-

priority and deadline-sensitive tasks are processed in the Cloud, while moderate-priority 

tasks are assigned to Fog nodes with mixed computational resources, and low-priority tasks 

are executed at local Fog nodes to prevent unnecessary transmission delays.  

The EMPJ algorithm proposed in their study extends traditional metaheuristic 

approaches by incorporating multi-population scheduling, which enhances exploration-

exploitation balance in computing resource allocation. The strategy effectively reduces 

waiting time and service latency by dynamically mapping tasks to heterogeneous 

computing nodes. However, the Priority Equation ensures that critical tasks are always 

prioritized without requiring computationally intensive metaheuristic optimization 

algorithms. 
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A key area of comparison lies in latency management and scheduling efficiency. 

The fuzzy-based offloading strategy in the Chakraborty et al. (2022) study ensures that 

tasks with hard deadlines are executed in the most resource-efficient nodes, whereas the 

Priority Equation ensures that local processing capacity is fully utilized before offloading 

occurs. Moreover, the Priority Equation is inherently adaptable, making it suitable for real-

time IIoT environments, whereas the EMPJ-based approach may introduce computational 

overhead due to its reliance on iterative metaheuristic optimization. 

The analysis performed by Bali et al. (2023), "An Effective Technique to Schedule 

Priority-Aware Tasks to Offload Data on Edge and Cloud Servers," proposes the Priority-

Aware Task Scheduling (PaTS) algorithm, which prioritizes tasks based on urgency and 

assigns them to Edge or Cloud servers accordingly. The PaTS approach formulates a multi-

objective optimization problem, integrating a four-queue model where very-urgent and 

urgent tasks are processed at the Edge to minimize latency, whereas moderate and non-

urgent tasks are offloaded to the Cloud, where computational resources are plentiful. The 

scheduling is further optimized using the NSGA-II genetic algorithm, improving average 

queue delay, computation time, and energy efficiency compared to benchmark models. 

Their approach shares similarities with the Priority Equation, particularly in task 

prioritization and offloading strategies. Both methods aim to enhance latency-sensitive task 

processing by ensuring critical tasks receive priority execution at the most suitable 

computational layer. The Priority Equation is distinct in its reliance on Queuing Theory 

and mathematical modeling, dynamically adjusting offloading thresholds based on real-

time system parameters, unlike PaTS, which classifies tasks into discrete priority groups 

and assigns them accordingly. 

Another key difference lies in the optimization methodology. The PaTS algorithm 

leverages bio-inspired genetic optimization (NSGA-II) to refine scheduling, which 
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introduces computational overhead due to iterative search and selection processes. On the 

other hand, the Priority Equation is lighter in computation, as it uses a closed-form 

mathematical expression to dynamically determine task priority, making it more suitable 

for real-time IIoT applications with high task arrival rates. Furthermore, while PaTS 

effectively categorizes tasks based on urgency, it does not explicitly model the queuing 

dynamics and processing delays in the same structured manner as the Priority Equation, 

which integrates latency estimations directly into task prioritization calculations. This 

difference gives the Priority Equation an advantage in real-time adaptability, as it accounts 

for dynamic fluctuations in workload and processing speed without requiring constant re-

evaluation through genetic algorithms. 

The examination conducted by You and Tang (2021), "Efficient Task Offloading 

Using Particle Swarm Optimization Algorithm in Edge Computing for Industrial Internet 

of Things," presents a Particle Swarm Optimization (PSO)-based task offloading strategy 

aimed at optimizing latency and energy consumption in Industrial IoT (IIoT) environments. 

The authors emphasize the need for an efficient task allocation strategy in mobile edge 

computing (MEC) systems, where limited processing capabilities and network constraints 

demand intelligent decision-making. The proposed multi-objective optimization problem 

considers time delay, energy consumption, and execution cost to achieve optimal task 

placement across heterogeneous Edge servers. 

The PSO-based offloading approach introduced in their research enables dynamic 

and adaptive task scheduling, improving system efficiency by balancing computational 

loads across multiple MEC servers. The fitness function of PSO determines the most cost-

effective task placement by evaluating total offloading costs under energy constraints. 

Through extensive simulations, the study demonstrates that PSO-based offloading 

outperforms traditional heuristic approaches, such as the Genetic Algorithm (GA) and 
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Simulated Annealing (SA), by reducing execution delay, optimizing energy consumption, 

and improving overall system throughput. However, the study acknowledges challenges in 

tuning PSO parameters, as optimal performance relies on selecting appropriate acceleration 

coefficients and penalty functions. 

Comparing You and Tang (2021) approach to the Priority Equation, both models 

aim to enhance task allocation efficiency and latency reduction in distributed computing 

architectures. The Priority Equation, however, relies on Queuing Theory and real-time 

prioritization metrics rather than heuristic optimization techniques, unlike the PSO-based 

approach, which relies on global search heuristics. While PSO excels at finding near-

optimal task placement solutions by exploring multiple execution paths, it introduces 

computational overhead due to its iterative nature. The Priority Equation offers a more 

lightweight and deterministic approach, ensuring that high-priority tasks are processed first 

based on system state conditions rather than evolutionary search techniques. Additionally, 

the PSO model does not explicitly incorporate priority-based queuing mechanisms, 

whereas the Priority Equation ensures task prioritization by dynamically allocating 

computing resources according to service demands. 

The research conducted by Bali et al. (2021), "Smart Architectural Framework for 

Symmetrical Data Offloading in IoT," introduces a structured approach to optimizing data 

offloading strategies in IoT networks. The work emphasizes the increasing burden of data 

traffic on cloud-based architectures and explores the integration of Edge and Fog 

computing as alternatives to mitigate network congestion and latency. The authors 

categorize offloading methodologies into data offloading, computation offloading, and task 

offloading, aiming to reduce system overload and improve real-time response efficiency. 

The proposed smart architectural framework ensures symmetrical data offloading, evenly 
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distributing computational and storage resources across Edge and Fog nodes to maintain 

balance and efficiency. 

Their approach aligns with the goals of the Priority Equation, which also seeks to 

reduce latency and optimize resource allocation in real-time environments. However, the 

two methodologies differ significantly in their implementation. The Priority Equation 

operates based on Queuing Theory and dynamic prioritization, where task arrival rates, 

service rates, and utilization factors govern the offloading decisions. In contrast, the study 

"Smart Architectural Framework" focuses on symmetry in data distribution rather than 

adaptive prioritization. The Priority Equation prioritizes tasks dynamically, ensuring low-

latency processing of critical tasks, while the "Smart Framework" seeks to balance 

computational loads across all available nodes, which may not always prioritize the most 

time-sensitive operations. Another key difference is that the "Smart Architectural 

Framework" relies on heuristic-based decision-making for offloading, reducing bandwidth 

consumption, and maintaining even distribution across resources. While this can be 

effective for long-term stability, it may not provide the real-time adaptability that latency-

sensitive applications require. 

Additionally, Bali et al. (2021) propose a workflow in which data filtering occurs 

at the Edge before offloading to the Cloud, preventing unnecessary transmissions and 

optimizing bandwidth utilization. This structured filtering process is helpful in managing 

congestion but lacks the dynamic prioritization inherent in the Priority Equation, which 

adjusts task allocation in real-time based on system conditions. The Priority Equation 

ensures that processing capacity is always utilized efficiently, offloading only when 

necessary to prevent saturation. 

The study by Bali et al. (2021) presents a well-structured offloading model that 

effectively balances data distribution and resource allocation; however, its reliance on 
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static heuristic-based methodologies may limit its adaptability to real-time fluctuations in 

network traffic. The Priority Equation, in contrast, is more adaptive and latency-focused, 

making it more suitable for high-priority industrial IoT applications where response times 

are critical. Future research could explore hybrid approaches that integrate dynamic 

prioritization with structured resource balancing, leveraging the strengths of both 

methodologies for optimal task scheduling in IoT networks. 

The work "An Efficient Algorithm for Data Transmission Certainty in IIoT Sensing 

Networks: A Priority-Based Approach" by Nalbant et al. (2024) presents a novel caching 

algorithm to optimize data transmission certainty in industrial IoT (IIoT) environments. 

The study introduces a periodic popularity prediction and size-based caching (PPPS) 

algorithm to enhance cache hit rates and minimize latency, particularly in industrial 

scenarios with strict timeliness requirements.  

The PPPS algorithm centers on caching strategies tailored for IIoT applications, 

emphasizing the prediction of content popularity based on recent request sequences. By 

integrating metrics such as content size, timeliness, and historical popularity, the algorithm 

dynamically evaluates the caching value of each item and determines optimal content 

replacement strategies. Unlike conventional caching methods like LRU and LFU, which 

often fail in dynamic industrial scenarios, the proposed algorithm achieves better cache hit 

rates and lower transmission delays. However, while effective for improving caching 

efficiency, the static prediction model employed by PPPS may struggle to adapt to real-

time workload fluctuations.  

One of the significant contributions of the study by Nalbant et al. (2024) is the 

introduction of a shot noise model (SNM) for user request prediction. This model captures 

temporal variations in content popularity, allowing the caching algorithm to anticipate 

future requests based on historical trends. However, the SNM model does not account for 
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the variability in real-time task priorities or the dynamic nature of IIoT workloads. The 

Priority Equation addresses this limitation by dynamically adjusting offloading thresholds 

(s) to optimize task distribution between local and remote resources, ensuring compliance 

with latency-sensitive IIoT requirements. 

The experimental results of the PPPS algorithm demonstrate substantial 

improvements over traditional caching strategies in terms of cache hit rates and latency 

reductions. For instance, under dynamic content scenarios, the proposed algorithm 

achieved a 15.3% higher hit rate compared to Greedy Dual-Size (GDS) and a 24.8% higher 

rate than Least Frequently Used (LFU). However, these improvements are contingent upon 

pre-defined popularity patterns of user patterns and content size distributions, which may 

not reflect the diverse and unpredictable workloads encountered in IIoT systems. The 

Priority Equation complements these advancements by incorporating real-time 

adaptability, making it more suitable for environments where workload characteristics 

change frequently. The PPPS algorithm's reliance on static thresholds for determining 

content popularity and caching decisions limits its scalability in large-scale IIoT 

deployments. Furthermore, the authors note the limitations of the algorithm's high data 

replacement rates and lack of synchronization for multi-dimensional feature analysis. In 

contrast, the Priority Equation employs lightweight computations and scalable dynamic 

metrics, ensuring efficient resource utilization and scalability across diverse IIoT 

applications. 

The research conducted by Tao et al. (2021), "Content Popularity Prediction in 

Fog-RANs: A Bayesian Learning Approach," suggests a novel strategy for predicting 

content popularity in Fog Radio Access Networks (F-RANs) using a Bayesian learning 

framework. This method addresses the challenges of limited caching capacity in Fog 

Access Points (F-APs) by developing a Gaussian process-based Poisson regression model 
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that leverages content features and request probabilities. The research introduces a 

hierarchical probabilistic model designed to predict content popularity while accounting 

for the nonlinear relationships between content features and request probabilities. The 

research model enables F-APs to optimize caching strategies by predicting the popularity 

of existing and newly added content using Bayesian learning. The approach is robust to 

overfitting, especially in scenarios with sparse data. However, its focus on caching 

efficiency is limited to static and semi-dynamic environments, where the request 

probabilities and features are assumed to follow relatively stable patterns. The Priority 

Equation, in contrast, offers a dynamic framework that adjusts task prioritization and 

offloading thresholds in real-time, ensuring adaptability to highly dynamic IIoT workloads. 

A key contribution of Tao et al. (2021) study is the integration of stochastic variance 

reduced gradient Hamiltonian Monte Carlo (SVRG-HMC) into the Bayesian learning 

model. This innovation improves the convergence rate of the model, allowing faster and 

more accurate predictions of content popularity. While this method demonstrates 

computational efficiency, it does not directly address latency-sensitive tasks or their 

prioritization in IIoT systems. The evaluation of the Bayesian model using the MovieLens 

dataset highlights its effectiveness in reducing root mean square error (RMSE) and 

improving cache hit rates compared to other methods. However, the experimental 

framework relies on historical data and pre-defined feature sets, which may not adequately 

reflect the dynamic requirements of real-time IIoT systems. In contrast, the Priority 

Equation prioritizes tasks based on current system states and dynamically allocates 

resources, ensuring optimal performance in latency-sensitive applications without 

dependence on historical trends. 

Another limitation of the study by Tao et al. (2021) is its focus on content popularity 

prediction rather than task-level prioritization or scheduling. The proposed model 
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optimizes caching decisions based on popularity but does not address the distribution of 

computational tasks across Edge and Cloud resources. The Priority Equation fills this gap 

by integrating dynamic offloading thresholds (s) to balance local and Cloud processing, 

ensuring that critical tasks are handled with minimal latency while optimizing resource use 

across the system. 

The research presented with the title "An MCDM Optimization-Based Dynamic 

Workflow Scheduling Used to Handle Priority Tasks for Fault Tolerance in IIoT" by Jamal 

and Muqeem (2023) introduces a multi-criteria decision-making (MCDM) approach to 

address these challenges. The MCDM approach proposed by Jamal and Muqeem integrates 

the Best-Worst Method (BWM) and the VIKOR technique for dynamic task prioritization 

and resource allocation in IIoT systems. This method emphasizes reducing the makespan, 

improving throughput, and ensuring fault tolerance by dynamically allocating resources 

based on task importance, deadlines, and system capacity. The authors demonstrate that 

their approach outperforms traditional algorithms, such as Min Connection and Latent 

Regression Topic Model (LRTM), in terms of resource utilization and fault tolerance. 

However, the reliance on centralized decision-making and increased computational 

complexity in the MCDM model poses limitations in highly dynamic environments where 

real-time adaptability is critical. The Priority Equation addresses these limitations by 

leveraging lightweight real-time parameters to ensure dynamic adaptability and efficient 

task prioritization without significant computational overhead. 

One of the key contributions of Jamal and Muqeem's (2023) study is its focus on 

fault tolerance for priority tasks in IIoT systems. Their methodology incorporates 

redundant systems and robust fault-detection mechanisms to enhance system reliability. 

While this aligns with the goals of the Priority Equation, their approach does not explicitly 

address latency-sensitive task prioritization in Edge computing environments. The Priority 



 

 

 

21 

Equation distinguishes itself by integrating dynamic offloading thresholds (s) and real-time 

metrics to optimize task distribution between Edge and Cloud resources, ensuring lower 

latency for critical tasks and better resource scalability. 

The use of the VIKOR technique in the MCDM model highlights the importance 

of multi-criteria optimization in IIoT task scheduling. By balancing trade-offs among 

multiple objectives, such as cost, time, and resource utilization, the proposed method offers 

a comprehensive framework for decision-making; however, the VIKOR model's 

dependency on pre-defined criteria, which limits adaptability to sudden workload changes. 

In contrast, the Priority Equation dynamically adjusts task prioritization and offloading 

decisions based on current system states, providing a more flexible and responsive solution 

for IIoT environments. 

Another significant aspect of the MCDM approach is its emphasis on reducing 

makespan and improving throughput by utilizing optimization techniques such as parallel 

computing. While these improvements are notable, the approach does not fully explore the 

potential of decentralized task scheduling in Edge computing architectures. The Priority 

Equation, explicitly designed for Edge-Fog-Cloud architectures, ensures efficient task 

allocation by prioritizing latency-critical tasks locally while offloading less critical tasks to 

the Cloud, thereby achieving a balance between system performance and resource 

utilization. 

The research "Dynamic Multi-Level Auto-Scaling Rules for Containerized 

Applications" by Taherizadeh and Stankovski (2019) presents a novel approach to 

managing resource allocation in cloud environments using dynamic multi-level (DM) auto-

scaling. The method introduces dynamic thresholds for container-based applications, 

integrating both infrastructure-level and application-level metrics to optimize resource 

utilization and performance. Researchers Taherizadeh and Stankovski focus on fine-
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grained resource scaling to adapt to dynamic workload fluctuations. Their method 

combines CPU, memory, and bandwidth monitoring with application-specific metrics such 

as response time and throughput. By introducing dynamic thresholds instead of static ones, 

the DM method ensures a more adaptive response to changing conditions, preventing both 

over-provisioning and under-provisioning of resources. However, while this method is 

effective for containerized applications, it does not explicitly address task prioritization, 

particularly for latency-sensitive tasks. The DM auto-scaling approach leverages a rule-

based algorithm that launches or terminates container instances based on real-time 

monitoring data. This algorithm balances response time requirements with resource 

availability, achieving significant improvements in resource utilization and system 

performance compared to static scaling methods. However, the rule-based nature of the 

DM method introduces limitations in highly dynamic environments where task arrival 

patterns and system loads change unpredictably.  

Experimental results from the DM method show superior performance compared 

to traditional scaling approaches. The authors report a reduction in response time violations 

and improved resource efficiency across diverse workload scenarios, including real-world 

use cases. However, these experiments focus primarily on container-level resource 

adjustments and do not explore the implications of task-level scheduling. Another strength 

of the DM method is its ability to integrate multi-level monitoring systems, such as the 

SWITCH monitoring system, which combines container-level and application-level 

metrics. This integration provides a holistic view of system performance, enabling precise 

scaling decisions. However, the approach relies heavily on pre-defined thresholds and 

static adaptation intervals, which may hinder its responsiveness in scenarios with rapid 

workload fluctuations.  
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The research conducted by Kafle and Al Muktadir (2020), "Intelligent and Agile 

Control of Edge Resources for Latency-Sensitive IoT Services," presents a resource 

adjustment scheme for virtualized Edge environments using machine learning (ML). This 

work addresses the dynamic allocation of computational resources for latency-sensitive 

virtual network functions (VNFs), employing multiple regression models for resource 

demand prediction and agile adjustments. Kafle and Muktadir focus on reducing resource 

utilization while maintaining service latency below specified thresholds. Their proposed 

system incorporates both offline training and online retraining of regression models, 

enabling continuous resource allocation optimization based on workload variations. The 

models dynamically predict resource demands by analyzing input metrics such as workload 

intensity, resource utilization, and system latency. While this method ensures efficient 

resource use and scalability, its reliance on periodic retraining introduces potential delays 

in highly dynamic environments. The Priority Equation addresses this limitation by 

utilizing lightweight computations that dynamically adjust task priorities and offload 

thresholds (s) in real time, achieving immediate adaptability without relying on retraining 

cycles. 

A key innovation of Kafle and Al Muktadir's (2020) work is the use of regression-

based models to predict CPU demand, allowing resource adjustments to occur at one-

second intervals. This scheme significantly improves resource utilization and reduces 

latency violations compared to conventional threshold-based algorithms. However, the 

approach prioritizes CPU-intensive tasks and does not extend to holistic resource 

management, such as bandwidth or memory allocation. The Priority Equation offers a 

broader perspective by optimizing task distribution across Edge, Fog, and Cloud layers, 

ensuring that latency-sensitive tasks are processed locally while non-critical tasks are 

offloaded to remote servers. The authors validate their approach through extensive 
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simulations using real-world workload patterns, such as proportional, step, and Poisson 

distributions. They report a 58.2% reduction in latency violations and a 21.9% decrease in 

CPU resource demand compared to baseline algorithms. These results highlight the 

efficacy of their regression models in resource optimization. However, the experimental 

framework is limited to pre-defined workloads and static latency thresholds, which may 

not fully capture the dynamic nature of IIoT environments. Another strength of their 

research lies in its agile resource control mechanism, which adapts resource allocation 

every second, and this aspect is particularly beneficial for latency-sensitive applications 

such as automated driving and telemedicine. However, relying on supervised learning for 

offline training requires extensive dataset preparation, which may limit scalability in 

environments with rapidly changing conditions. The Priority Equation mitigates this 

challenge by employing a simplified, heuristic approach to task prioritization and 

offloading, reducing dependency on historical data and enabling immediate deployment in 

dynamic IIoT scenarios. 

The research paper titled "Performance Interference-Aware Vertical Elasticity for 

Cloud-Hosted Latency-Sensitive Applications" by Shekhar et al. (2018) introduces a 

proactive vertical scaling framework designed to address the challenges of performance 

interference and workload variability in cloud-hosted latency-sensitive applications. This 

study optimizes resource allocation by leveraging Gaussian Processes (GP)-based machine 

learning to predict real-time workload and performance interference levels.  

 In their research, Shekhar et al. (2018) highlight the limitations of traditional 

horizontal elasticity methods, such as initialization delays and suboptimal resource 

utilization, and argue for the advantages of vertical elasticity in reducing latency and 

improving resource efficiency. By dynamically resizing application containers or virtual 

machines, their approach ensures better adherence to service-level objectives (SLOs) while 
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minimizing interference from co-located batch applications. However, while the 

framework effectively models performance interference and predicts resource 

requirements, it introduces computational overhead associated with online training and 

prediction using GP models. The GP-based predictive model developed by Shekhar et al. 

(2018) accounts for both workload variability and performance interference by clustering 

system-level metrics using K-Means and building separate GP models for each cluster. 

This aspect enables precise predictions of latency and resource needs for latency-sensitive 

applications. While this approach significantly reduces tail latency and resource 

contention, it assumes a static set of interference profiles and clustering thresholds, limiting 

its adaptability to dynamic IIoT environments. Experimental results (Shekhar et al., 2018) 

demonstrate that their proactive vertical scaling framework achieves a 39.46% reduction 

in tail latency compared to reactive approaches, even at the cost of higher resource 

utilization. By focusing on task-level optimization and dynamic offloading, the Priority 

Equation ensures lower latency without significant increases in resource consumption, 

achieving a more balanced trade-off between performance and efficiency. Furthermore, 

while the vertical elasticity approach excels in managing latency-sensitive applications in 

Cloud environments, its reliance on centralized resource control limits its scalability for 

distributed architectures such as Edge-Fog-Cloud systems, which are central to IIoT 

applications. Another key contribution of the Shekhar et al. (2018) framework is its use of 

predictive modeling to enable proactive scaling decisions, mitigating the limitations of 

reactive threshold-based approaches. However, this framework primarily targets CPU-

intensive applications and does not address the challenges associated with other resources, 

such as memory, bandwidth, or network latency. The Priority Equation extends these 

contributions by providing a comprehensive framework that dynamically distributes tasks 

across local and Cloud resources, optimizing CPU, network, and storage resources. 
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Last but not least, the study "Priority-Based Task Scheduling and Resource 

Allocation in Edge Computing for Health Monitoring Systems" by Sharif et al. (2023) 

presents a Priority-Based Task Scheduling and Resource Allocation (PTS-RA) system to 

optimize computational efficiency in mobile edge computing (MEC) for healthcare 

applications. The work focuses on task prioritization based on emergency levels derived 

from real-time patient monitoring data. The authors emphasize the importance of reducing 

task execution latency and minimizing bandwidth consumption, particularly in emergency 

healthcare scenarios, by assigning priority levels to different tasks. The PTS-RA model 

dynamically determines whether a task should be processed locally at hospital workstations 

(HWs) or offloaded to the Cloud, ensuring that critical healthcare tasks receive immediate 

computational resources. Comparing this approach to the Priority Equation, both models 

aim to reduce latency and improve task scheduling efficiency in computationally 

constrained environments; however, methodologies differ significantly. The PTS-RA 

system relies on heuristic-based task prioritization using urgency levels computed from 

patient health metrics, which operates primarily in a healthcare monitoring setting. In 

contrast, the Priority Equation is a more generalized framework applicable across diverse 

industrial IoT applications where real-time task prioritization is essential. 

A key distinction between these approaches is their task execution decision 

mechanisms. The PTS-RA system uses a pre-defined heuristic model, where tasks are 

classified based on emergency levels, and decisions are made according to available 

bandwidth and computational resources. In contrast, the Priority Equation employs a 

dynamic queuing-based approach, continuously updating task allocation thresholds based 

on system load and latency constraints. The Equation allows a more adaptive and real-time 

response to varying task loads, ensuring system resources are optimally allocated without 

pre-defined emergency classifications. Another fundamental difference lies in the resource 
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management strategy. The PTS-RA system distributes tasks between hospital workstations 

(acting as Edge servers) and the Cloud to prioritize critical tasks. The Priority Equation 

accounts for queue dynamics and processor availability, making it more robust for scalable 

and high-throughput environments, particularly in Supply Chain Management and 

industrial automation, where computational demand fluctuates dynamically. 

Both models contribute to the advancement of real-time task scheduling in MEC 

environments, but their applicability differs. The PTS-RA system is well-suited for 

structured healthcare applications, where emergency-driven prioritization is necessary for 

medical decision-making. However, it may struggle to generalize to broader Edge 

computing environments with diverse computational loads. The Priority Equation, in 

contrast, provides a more flexible and scalable solution, making it ideal for real-time 

industrial IoT deployments, where task prioritization and latency optimization are 

essential. 

Lastly, the study "AI-Based Sustainable and Intelligent Offloading Framework for 

IIoT in Collaborative Cloud-Fog Environments" by Kumar et al. (2023) introduces an 

artificial intelligence-driven framework for optimizing resource allocation in multi-layered 

Cloud-Fog architectures. The research emphasizes the significance of real-time offloading 

decisions to enhance Quality-of-Service (QoS) metrics such as execution time, energy 

consumption, and cost. The framework incorporates fuzzy-based offloading controllers 

and the Whale Optimization Algorithm (WOA) to intelligently assign tasks to the most 

suitable computational resources, minimizing latency and improving overall system 

efficiency. One of the primary contributions of this study is the introduction of an AI-

enabled decision-making system that dynamically determines whether tasks should be 

executed locally, in a Fog node, or in a Cloud data center. This hierarchical decision-

making model is particularly relevant for Industrial Internet of Things (IIoT) applications, 
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where real-time responsiveness is crucial. The authors demonstrate that their approach 

improves execution performance, reducing makespan by 37.17%, energy consumption by 

27.32%, and execution costs by 13.36% compared to traditional offloading techniques. 

However, the study does not explicitly address task prioritization mechanisms beyond 

QoS-driven optimization, leaving a gap where more refined dynamic prioritization 

techniques could be applied. 

Comparing Kumar et al. (2023) work with the Priority Equation, a key distinction 

is the method of task prioritization and resource allocation. While the AI-based offloading 

framework uses metaheuristic algorithms (near-optimal solutions within a reasonable 

timeframe) and fuzzy logic (a mathematical framework that enables reasoning with 

imprecise, uncertain, or vague data) to enhance decision-making, the Priority Equation 

employs mathematical modeling rooted in Queuing Theory to dynamically adjust task 

offloading thresholds (s) based on real-time system conditions. The Priority Equation 

ensures that high-priority tasks receive preferential processing while balancing local Fog 

and Cloud computing capacities. Another key distinction is decision granularity. The AI-

based framework primarily focuses on finding optimal resource allocations for individual 

task batches, making it effective for long-term system optimization. In contrast, the Priority 

Equation continuously adjusts offloading decisions in real time based on task arrival rates, 

service rates, and system utilization factors, ensuring dynamic adaptability in highly 

variable IIoT environments. The Priority Equation is more suitable for applications that 

require instantaneous decision-making and latency-sensitive operations, whereas the AI-

based method is better suited for periodic adjustments driven by metaheuristic optimization 

algorithms. 

While the Whale Optimization Algorithm (WOA) used in the AI framework 

significantly enhances task-to-resource mapping, it introduces computational overhead, 
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requiring continuous model updates and convergence cycles. The Priority Equation avoids 

this computational burden by relying on lightweight mathematical computations, making 

it more efficient for real-time IIoT applications. However, integrating machine learning-

based prediction models into the Priority Equation could allow for more adaptive threshold 

tuning, leveraging historical workload trends to anticipate system fluctuations. 

The literature reviewed in this study highlights various methodologies for task 

scheduling, resource allocation, and latency optimization in Edge, Fog, and Cloud 

computing environments. A wide range of approaches, including heuristic models, 

artificial intelligence-driven frameworks, multi-criteria decision-making (MCDM) 

techniques, and optimization algorithms, have been examined in comparison to the Priority 

Equation. While these studies offer substantial contributions to computational efficiency 

and task management, each approach has distinct advantages and limitations. Across all 

methodologies examined, a key differentiator of the Priority Equation is its reliance on 

Queuing Theory and real-time prioritization rather than static optimization models or 

computationally intensive AI-based approaches. The Priority Equation ensures optimal 

latency-sensitive decision-making without requiring heavy computation by dynamically 

recalibrating task scheduling thresholds based on task arrival rates, service rates, and 

system utilization factors. Furthermore, while heuristic and AI-driven methods provide 

enhanced predictive capabilities, the Priority Equation lightweight mathematical 

foundation makes it more suitable for real-time Industrial IoT and supply chain 

applications where immediate processing decisions are necessary. Future research could 

explore hybrid models that integrate machine learning for dynamic threshold tuning while 

maintaining the real-time adaptability of queuing-based prioritization and/or incorporating 

Critical Path Analysis for cloud-based task execution, which could further refine the 

Priority Equation ability to allocate tasks to the most efficient computational resources 
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across multi-cloud environments. By integrating queuing theory, real-time prioritization, 

and dynamic offloading thresholds, the Priority Equation provides a balanced solution that 

meets the needs of low-latency, high-throughput computing environments. 

 

2.1 Theoretical Framework  

Priority-based heuristics have been widely studied as effective strategies for task 

scheduling in latency-sensitive environments. According to Alatoun et al. (2022), in 

"Advancements in Heuristic Task Scheduling for IoT Applications in Fog-Cloud 

Computing: Challenges and Prospects," extensive research has been conducted on 

priority-based task allocation. Researchers such as Fahad et al. (2022) and Tang et al. 

(2023) have explored both static and dynamic priority scheduling models to enhance the 

efficiency of task execution. Static priority scheduling assigns fixed priorities based on 

predefined criteria such as deadlines or importance, ensuring simplicity but lacking 

adaptability in dynamic environments. In contrast, Shi et al. (2020) described that dynamic 

priority scheduling adjusts task priorities in real-time, responding to fluctuating workloads 

and system conditions, thus offering increased flexibility at the cost of computational 

complexity. Another conceptual similarity of the Priority Equation is that it intends to 

optimize task allocation in real-time and resource-constrained environments. However, it 

diverges in methodology by employing a queuing-theoretic approach rather than heuristic-

based task assignment. Unlike Multi-Queue Priority (MQP) scheduling proposed by Fahad 

et al. (2022), which dynamically adjusts preemption time slots to manage task starvation 

issues, the Priority Equation incorporates Queuing Theory principles to determine the 

likelihood of local versus offloaded task execution probabilistically. Task allocation is 

mathematically structured rather than relying on predefined heuristics or manually 

assigned priority levels. 
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A key difference between heuristic-based models and the Priority Equation lies in 

their treatment of task execution dependencies. Studies such as Madhura et al. (2021) 

introduced directed acyclic graphs (DAGs) to account for task precedence constraints, 

ensuring that dependent tasks are scheduled efficiently. Similarly, heuristic methods such 

as the Opposition-Based Chaotic Whale Optimization Algorithm (OppoCWOA) approach 

proposed by Movahedi et al. (2021) employ optimization techniques such as the Whale 

Optimization Algorithm to balance computational workloads across fog computing nodes. 

While effective, these approaches require extensive computational tuning and iterative 

adjustments to optimize performance. In contrast, the Priority Equation integrates Poisson-

based probability distributions and M/G/c queuing models, ensuring that latency-sensitive 

tasks are prioritized dynamically without requiring heuristic parameter fine-tuning. 

Many heuristic approaches, such as those proposed by Hoseiny et al. (2021) and 

Choudhari et al. (2018), rely on task categorization based on pre-assigned priority levels. 

While effective in structured environments, this method risks inefficiencies when faced 

with unpredictable task arrivals and varying processing delays. The Priority Equation 

mitigates these inefficiencies by integrating real-time computational load monitoring, 

dynamically adjusting the offloading threshold based on workload conditions rather than 

fixed classification levels. 

An enhancement introduced by the Priority Equation is its ability to integrate 

seamlessly into hybrid processing environments. Whereas heuristic models often operate 

within either Fog or Cloud computing paradigms, the Priority Equation dynamically shifts 

processing between Fog and Cloud nodes based on real-time latency constraints. This 

makes it particularly well-suited for applications such as Supply Chain Management, 

where fluctuating task loads necessitate an adaptive scheduling framework. 
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The Priority Equation derives from key Queuing Theory principles, probability 

distributions, and multi-server systems, building upon the mathematical framework 

established by foundational works such as Rényi (2007) and Willig (1999). The formula is 

designed to address real-time task prioritization and dynamic offloading in supply chain 

systems, particularly within Fog and Edge computing environments. Specifically, the 

M/G/c model accounts for multi-server systems with general service time distributions, 

while the task arrival process is modeled using Poisson processes (Last and Penrose, 2017), 

which provide a mathematically tractable representation of stochastic task arrivals. The 

integration of Poisson probability distributions into the Priority Equation ensures accurate 

modeling of task distributions in Fog and Cloud environments. The stationary and 

memoryless properties of the Poisson process enable efficient calculation of expected 

delays and prioritization logic in real-time decision-making. Furthermore, the integration 

of Campbell (1965) allows for precise computation of the expected number of tasks 

processed locally versus those offloaded, reinforcing the model's validity. 

 

       Figure 1: Three-Tier Architecture for M/G/c Queuing in Real-Time Supply Chain   

(Ibrahim et al., 2022) 



 

 

 

33 

Similar to the work of Alatoun et al. (2022) in "A Novel Low-Latency and Energy-

Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud 

System," the Equation shares foundational principles in system architecture. Both models 

utilize a three-layer structure, where the bottom layer consists of IoT sensors, the 

intermediate layer comprises Fog devices, and the top layer represents the Cloud. However, 

a key distinction lies in the prioritization mechanism. While Alatoun et al. (2022) classify 

tasks into "normal, moderate, and critical" based on medical parameters, the Priority 

Equation defines critical response times according to supply chain efficiency requirements. 

Supply chain operations require rapid data processing with optimal resource utilization, 

making real-time task prioritization essential. Alatoun et al. (2022) reference the earlier 

work of Cortés et al. (2015), which examined large-scale information flow in healthcare-

related IoT applications, reporting that such systems can reach a processing rate of 25,000 

records per second. While healthcare applications focus on patient monitoring and medical 

emergencies, Supply Chain Systems emphasize real-time logistics and operational 

efficiency. Both domains handle vast volumes of data where tasks must be efficiently 

distributed between local processing units and Cloud resources, ensuring time-sensitive 

computations are handled with minimal delay. 

The Priority Equation aligns with existing research on edge-focused task offloading 

in resource-constrained environments. The work of Deng et al. (2018) in "Optimal 

Application Deployment in Resource-Constrained Distributed Edge" highlights the 

necessity of dynamically offloading tasks based on the real-time availability of Edge 

resources. Unlike conventional task distribution models that rely on pre-configured 

thresholds, the Priority Equation leverages real-time system conditions, particularly the 

utilization factor, to adjust offloading probabilities dynamically. This enables a 
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probabilistic task distribution that prevents local node saturation while minimizing overall 

task response time. 

The approach presented in "Latency Minimization with Optimum Workload 

Distribution and Power Control for Fog Computing" by Atapattu et al. (2020) contrasts 

with the Priority Equation's more fluid offloading mechanism. While the three-layer IoT-

Fog-Cloud computing model assumes predefined computational capacities for each layer, 

the Equation adapts dynamically based on real-time task arrival rates, service rates, and 

utilization factors. 

Summarizing, the Equation provides a structured, mathematically grounded 

alternative to heuristic-based scheduling models by integrating Queuing Theory, Poisson 

probability distributions, and real-time workload assessment. Unlike heuristic methods that 

require frequent tuning and optimization, the Equation ensures real-time task execution 

while maintaining low computational overhead, positioning it as an alternative to 

traditional heuristic-based scheduling methods in dynamic, high-demand computing 

environments. Its application in Supply Chain Systems could demonstrate the synergy 

between theoretical mathematics and practical implementation, offering improved latency 

management and task prioritization in fog-enabled IoT environments. 

 

2.2 Key Benefits 

The Priority Equation reduces latency by processing critical tasks closer to the data 

source, minimizing response times, and enabling immediate action for high-priority events, 

thereby supporting real-time decision-making. It enhances resource efficiency by 

offloading non-urgent tasks to the Cloud, optimizing resource utilization at the Edge, 

preventing local systems from overloading, and ensuring efficient task processing. Its 

dynamic prioritization and thresholding mechanisms enable scalability, allowing the 
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system to adapt to growing data volumes and expand seamlessly within IoT-driven supply 

chain environments. 

 

2.3 Nomenclature: Priority Formula for Real-Time Supply Chain 

The following table defines the key parameters used in the Priority Equation, each 

playing a decisive role in optimizing task allocation and processing efficiency across 

Edge/Fog and Cloud computing layers. These parameters help determine whether tasks 

should be processed locally or offloaded, ensuring minimal latency, balanced workload 

distribution, and efficient resource utilization. 

 

Symbol Description 
Treal-time Real-time processing threshold identifies tasks that 

require immediate local processing (based on task 

urgency). 

T Task processing time. The time required to 

complete a given task determines if it should be 

processed locally or offloaded. 

s Offloading threshold for non-critical tasks. Tasks 

with T < s are processed locally, while tasks with 

T ≥ s are offloaded. 

λ Task arrival rate. Represents the frequency at 

which tasks arrive in the system. 

𝑬[𝒔𝟐] Second moment of service time distribution. 

Reflects the variability in service times, with 

higher values indicating more variability. 

c Number of processors - providing the capacity to 

handle tasks per millisecond. 

scaling_factor A factor optimizes resource allocation. It can be 

adjusted when dynamic resource scaling is 

implemented. 

ρ Utilization factor, defined as 𝛒=
𝝀

𝒄µ
 . Measures the 

load on local processors; values close to 1 (one) 

indicate high utilization. 

µ Local service rate. The rate at which tasks are 

processed locally by each processor. 

WR Expected remote response time. Accounts for the 

additional delay when tasks are offloaded to Cloud 

layers. 

B Batch size factor. Used in remote processing to 

handle larger batches of tasks efficiently. 
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2.4 The Priority Equation for Real-Time Supply Chain – Equation as per task 

 

The Priority Equation serves as the foundation for dynamic task allocation in an 

IoT-driven supply chain environment, ensuring real-time processing efficiency while 

balancing computational loads across Edge, Fog, and Cloud layers. It operates by assessing 

key system parameters – such as task urgency, processing time, and resource availability – 

to determine whether a task should be processed locally or offloaded to a remote server. 

The Equation optimizes resource allocation, reduces latency, and prevents system overload 

by integrating factors like task arrival rate, service rate, processor utilization, and 

offloading thresholds. The variables parameters influence task prioritization, 

computational efficiency, and decision-making for real-time and non-critical workloads, 

forming the mathematical basis for optimizing supply chain operations. 

 

 

 

 

 

 

 

𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚 = 𝑰𝑭(𝑻 < 𝑻𝒓𝒆𝒂𝒍_𝒕𝒊𝒎𝒆, (
𝜆𝐸[𝑠2]

2(𝑐 × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟)(1 − 𝜌)
+

1

µ
) , 𝑰𝑭 (𝑻 < 𝒔, (

𝜆𝐸[𝑠2]

2(𝑐 × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟)(1 − 𝜌)
+

1

µ
) , 𝜆 ×

𝑊𝑅

𝐵
) 
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2.5 Priority_Latency_Optimizer.py (Python) 

As implemented in the pseudocode, the Priority Equation establishes a systematic 

approach to task prioritization and distribution within real-time supply chain environments. 

The algorithm dynamically determines whether a task should be processed locally at the 

Edge/Fog layer or offloaded to the Cloud to minimize latency while optimizing resource 

utilization. At its core, the model relies on fundamental principles of Queuing Theory, real-

time thresholding, and dynamic workload distribution. 

The first step involves computing the system’s utilization factor, denoted as ρ, 

which represents the ratio of the task arrival rate to the total processing capacity of the 

available computational resources. This factor indicates system load, where higher values 

approaching one suggest that the system is nearing full capacity. If the system is not 

overloaded, the local processing latency, denoted as Llocal, is computed using an equation 

derived from the M/G/c queuing model. This formulation incorporates the task arrival rate, 

the second moment of service time, the number of available processors, and a scaling factor 

to estimate the expected waiting time for task execution. If the utilization factor reaches or 

exceeds one, it signifies an overloaded state where processing delays become excessive, 

necessitating the offloading of tasks to external computing resources. 

Following the computation of local processing latency, the algorithm determines 

whether a task should be retained within the local system or offloaded to the Cloud. This 

decision is based on a comparison between Llocal and the predefined real-time threshold, 

Treal-time. If the estimated local processing latency is below this threshold, the task is 

processed locally to ensure timely execution. Conversely, if the latency exceeds the 

threshold, the task is offloaded to the Cloud, where the latency is governed by the Cloud 

response time divided by the batch size (B). This formulation ensures that Cloud offloading 
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remains efficient, with larger batch sizes reducing per-task latency by distributing 

processing overhead across multiple tasks. 

The final output of the algorithm is the computed priority latency, which reflects 

the task’s expected processing time based on its assigned computational pathway. By 

dynamically adjusting processing decisions in response to system load conditions, the 

algorithm enhances overall system performance by maintaining a balance between local 

execution and Cloud offloading. This mechanism ensures that latency-sensitive tasks are 

given priority for immediate execution while non-critical workloads are efficiently 

managed to prevent system congestion. 

This particular approach is relevant mainly in high-velocity data environments like 

IoT-enabled supply chains, where RFID sensors, barcode readers, and robotic systems 

generate thousands of computational tasks per second. The adaptive decision-making 

process embedded within the Priority Equation ensures that these tasks are processed in an 

optimized manner, preventing bottlenecks while maintaining real-time responsiveness. The 

implications extend beyond supply chain management to domains such as Smart Cities, 

Healthcare, and Autonomous Systems, where efficient workload distribution plays a 

critical role in ensuring system reliability and performance. 

From a broader perspective, the Priority Equation introduces a structured 

methodology for balancing computational loads in distributed architectures, mitigating the 

limitations associated with cloud-dependent models. Intelligently leveraging Edge and Fog 

computing resources enables organizations to achieve lower latency, improved scalability, 

and reduced reliance on centralized infrastructures. Furthermore, future research should 

explore the integration of AI-driven predictive analytics into the equation to enhance its 

adaptability in complex and highly dynamic processing environments. 
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2.6 Summary 

The research explores the integration of Edge/Fog and Cloud computing to address 

challenges in IoT-driven supply chain systems. It highlights the limitations of traditional 

cloud-centric models, particularly concerning latency and resource efficiency, and 

proposes a Priority Equation for dynamic task allocation. Equation's primary purpose is to 

leverage Queuing Theory and task thresholding to optimize task prioritization, reduce 

latency, and improve scalability and resource utilization. The framework enhances real-

time decision-making and operational efficiency by processing critical tasks locally and 

offloading non-urgent ones to the Cloud, particularly in industries requiring timely data 

handling, such as logistics, healthcare, and manufacturing. The study lays a foundation for 

scalable, responsive supply chains that align with the demands of modern digital 

environments. 
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CHAPTER III:  

METHODOLOGY 

 

3. Overview of the Research Problem 

In the rapidly evolving landscape of IoT-driven supply chains, the increasing 

volume of data generated by connected devices presents significant challenges in task 

allocation, latency reduction, and resource management. Traditional task scheduling 

approaches struggle to balance computational loads efficiently across Edge/Fog and Cloud 

computing layers, often leading to processing bottlenecks and increased response times. In 

order to address these inefficiencies, it is essential to develop an adaptive mechanism that 

dynamically prioritizes and distributes tasks based on system conditions, workload 

demands, and real-time processing requirements, which leads to the central research 

problem: 

 

"How can a dynamic, priority-based task allocation equation be developed to 

improve latency, manage task load, and enhance resource efficiency across Edge/Fog and 

Cloud computing layers in the Internet of Things-driven supply chain environments?"  

 

3.1 System Architecture 

Based on recent research on integrating Edge/Fog and Cloud computing for 

optimized task allocation in IoT environments by Nguyen et al. (2024), a new proposed 

system architecture enhances task prioritization and offloading by dynamically balancing 

computational workloads across multiple layers. The proposed system architecture for task 

prioritization and offloading consists of three main layers: the IoT Devices or Data 

Sources, the Edge/Fog Layer, and the Cloud Layer. This architecture is designed to 
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dynamically prioritize and offload tasks based on urgency and processing requirements, 

optimizing latency reduction and resource utilization. The IoT Devices or Data Sources 

generate tasks in real-time, such as inventory tracking, fleet monitoring, or predictive 

maintenance alerts. These tasks vary in priority based on urgency (e.g., critical alerts versus 

non-urgent data). Each device is equipped to transmit data directly to the Edge/Fog layer 

for initial processing and prioritization. The Edge/Fog layer consists of multiple processing 

nodes (Fog nodes) positioned close to IoT devices to minimize latency. Fog nodes handle 

high-priority tasks requiring immediate processing, such as critical alerts. A local task 

queue is maintained at each Fog node, where tasks are initially evaluated based on 

predefined Real-Time Threshold (Treal-time) and Offloading Threshold (s) parameters. Tasks 

are processed locally at the Fog layer if their urgency and resource demands meet the local 

processing criteria; otherwise, they are offloaded to the Cloud. 

The Cloud layer is for non-urgent tasks, where more extensive computational 

resources are available. The Cloud processes tasks that do not require real-time responses, 

such as trend analyses or data aggregation. The Cloud layer also acts as a backup in cases 

where Fog nodes reach their processing capacity, ensuring that tasks are still handled 

without compromising the overall system's efficiency. 

 

3.2 Computational Model 

The computational model relies on a queuing-based priority system with 

parameters that guide task distribution and prioritization based on urgency, processing 

capacity, and latency requirements. 

A - The task arrival rate (λ-lambda)  

The task arrival rate, denoted as λ, is a fundamental parameter in Queuing Theory 

and is used to model the frequency at which tasks arrive for processing within a system. In 
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the context of fog-enabled IoT networks, the task arrival rate represents the number of tasks 

generated per unit of time by terminal devices (TDs), such as sensors, radio frequency 

identification (RFID), and embedded IoT devices. This rate is essential in determining 

system performance, as it directly affects latency, resource allocation, and overall 

efficiency of task processing within Fog and Cloud computing environments. 

A widely accepted assumption in modeling task arrival rates within IoT-based systems 

is that task generation follows a Poisson process (Ibrahim et al., 2022). The Poisson 

distribution is commonly employed because it models independent arrivals over time, 

which aligns well with the behavior of IoT devices that generate tasks randomly based on 

user interactions, environmental changes, or scheduled triggers. The Poisson-based 

characterization of task arrival rates has been validated in various simulation studies 

(Bukhari et al., 2022; Ibrahim et al., 2022), demonstrating that dynamic offloading 

mechanisms can optimize task scheduling and minimize latency. These findings emphasize 

the importance of selecting an appropriate arrival rate λ based on real-time monitoring of 

system load and computational capacity. Furthermore, in intelligent task offloading 

models, such as the logistic regression-based framework proposed by (Bukhari et al., 

2022), the arrival rate is dynamically adjusted based on historical data, ensuring that 

resource allocation remains optimal even under fluctuating workloads. 

Within the framework of the Priority Equation, λ plays a critical role in determining 

system load and influencing task prioritization. A higher arrival rate indicates a more 

frequent influx of tasks, necessitating rapid assessment and prioritization to ensure efficient 

processing. An increase in λ may also demand greater utilization of local processing 

resources or more aggressive task offloading strategies to prevent congestion and maintain 

low latency. Effectively managing λ is essential for optimizing computational resource 

allocation and sustaining real-time performance in IoT-driven environments. 



 

 

 

44 

B - Processing Rates (µedge, µcloud) 

Each computational layer in a fog-enabled IoT system is characterized by its own 

service rate, denoted as μ, which defines the rate at which tasks are processed and 

completed. The service rate is crucial in determining the efficiency of task execution and 

directly influences system latency, queuing times, and overall computational performance. 

The value of μ varies across different computational layers, with the Cloud layer typically 

exhibiting the highest processing rate due to its extensive computing resources, while Fog 

and Edge layers prioritize real-time task execution at lower but more immediate processing 

capacities (Ibrahim et al., 2022). 

Mathematically, the service rate μ is defined as the reciprocal of the average service 

time, expressed in tasks per second, which provides a quantitative measure of processing 

speed (Taha, 1998). A higher service rate corresponds to faster processing and lower 

queuing delays, making it a critical factor in performance optimization (Bukhari et al., 

2022). The processing rate at the Edge layer (μedge) is often optimized to handle latency-

sensitive tasks that require immediate responses, whereas the cloud processing rate (μcloud) 

is better suited for batch processing and computationally intensive tasks that do not have 

stringent real-time constraints. 

The impact of μ on system performance is significant, mainly when evaluated 

alongside the task arrival rate λ. When μ is high relative to λ, tasks are processed efficiently 

with minimal delays. Conversely, if μ is low compared to λ, the system may experience 

congestion, leading to increased queuing times and performance bottlenecks. As 

demonstrated in queuing models applied to Fog computing, such as M/G/c systems, an 

optimal balance between λ and μ is essential to maintaining system stability and preventing 

excessive task accumulation (Ibrahim et al., 2022). 
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Moreover, dynamic adaptation of μ through virtualization techniques, such as 

adjusting the number of processors or virtual machines (VMs) in Fog environments, 

enhances flexibility and resource utilization. Research has shown that incorporating 

speedup factors in Fog computing, where each VM can scale its processing rate 

dynamically, improves task allocation efficiency and mitigates latency concerns (Ibrahim 

et al., 2022). The ability to allocate resources dynamically ensures that system performance 

remains optimal even under fluctuating task loads. 

 

C - Processor count (c): 

The processor count, denoted as c, is a fundamental parameter in Queuing models 

used to characterize task response time in Fog-enabled IoT networks. In the context of Fog 

and Cloud computing, c represents the number of parallel processing units or virtual 

machines (VMs) available to handle incoming tasks. This parameter directly influences the 

system’s capacity to process tasks efficiently, reducing latency and mitigating congestion 

in high-load scenarios. 

The inclusion of c in priority-based task scheduling models aligns with the M/G/c 

queuing framework, where multiple servers operate in parallel to handle incoming tasks 

(Ibrahim et al., 2022). The performance of a fog-enabled system is significantly impacted 

by c, as increasing the number of processing units enhances system throughput and 

decreases waiting times. The mathematical relationship between the number of processors 

and task latency is evident in Queuing Theory (Willig, 1999), where the expected waiting 

time is inversely proportional to c. Specifically, in M/G/c systems, the expected delay for 

tasks depends on both the arrival rate λ and the processing rate μ, adjusted by c, ensuring 

that task allocation remains efficient under varying loads (Ibrahim et al., 2022). 
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In practical implementations, the choice of c depends on the computational 

demands of the system. For instance, in Fog environments where latency-sensitive 

applications require immediate responses, increasing c ensures that tasks are processed 

with minimal queuing delays. The study by (Bukhari et al., 2022) emphasizes the role of 

dynamic scaling, where the number of active processors is adjusted based on real-time 

system load, optimizing resource utilization while maintaining service quality. This 

dynamic adjustment prevents resource underutilization during low-load periods and 

ensures adequate processing power during peak loads. 

From a system optimization perspective, balancing c, λ, and μ is critical for 

maintaining an efficient computing environment. If c is too low relative to λ, task queues 

accumulate, leading to increased response times and potential system congestion. 

Conversely, an excessively high c can lead to underutilization of resources, reducing 

overall efficiency. Therefore, dynamic provisioning of processing units, guided by real-

time monitoring and predictive analytics, is essential in achieving an optimal balance in 

Fog and Cloud-integrated architectures. 

 

D - Utilization Factor (ρ-rho): 

The utilization factor, denoted as ρ, is a critical parameter in queuing models that 

determines the efficiency and stability of task processing in Fog-enabled IoT networks. It 

is defined as the ratio of the task arrival rate λ to the total service capacity, given by the 

product of the number of processors c and the service rate μ, expressed mathematically as: 

𝜌 =
𝜆

𝑐𝜇
 

This metric quantifies the fraction of time that processing resources are occupied. 

When ρ is low, the system experiences minimal congestion, leading to reduced queuing 

delays. However, as ρ approaches unity, the system reaches saturation, resulting in 
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increased waiting times and potential task loss if buffer capacities are exceeded (Ibrahim 

et al., 2022). 

In priority-based task scheduling, ρ plays a crucial role in determining the 

feasibility of real-time processing. A well-balanced system maintains ρ at an optimal level 

to prevent bottlenecks while ensuring efficient resource utilization. In M/G/c queuing 

models widely used in Fog computing architectures, a system is considered stable if ρ<1, 

meaning that the service rate is sufficient to handle incoming tasks without indefinite 

queuing (Willig, 1999). Furthermore, dynamic task offloading mechanisms utilize ρ as a 

decision metric to distribute workloads efficiently between local Fog nodes and Cloud 

resources. If ρ exceeds a predefined threshold, indicating high congestion, tasks are 

offloaded to Cloud servers to prevent excessive queuing delays. Conversely, when ρ is low, 

more tasks are processed locally to optimize real-time performance (Bukhari et al., 2022). 

The significance of ρ extends to latency optimization strategies in Fog computing. 

Research has demonstrated that adjusting c and μ in response to fluctuations in λ can 

enhance system adaptability, maintaining an optimal ρ range that minimizes queuing time 

while maximizing throughput (Ibrahim et al., 2022). By integrating ρ into Priority 

Equations, modern scheduling algorithms can dynamically adjust processing thresholds, 

ensuring efficient task allocation across computational layers. 

An example from the logistics network is parcels arriving at a distribution center, 

which needs sorting, labeling, and dispatching tasks. If parcels arrive frequently (λ is high), 

the distribution center's local processors (e.g., five handling stations with a rate μ) might 

struggle to keep up, resulting in a high utilization factor ρ. For instance, if ρ reaches close 

to 1 (indicating full utilization of resources), parcels may face delays in processing. In order 

to avoid an overload situation, the system may offload lower-priority tasks (e.g., handling 

non-urgent packages) to a remote processor (like cloud-based planning systems) or delay 
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them until resources become available. Conversely, if ρ is low (indicating under-

utilization), more parcels can be processed locally, allowing for faster turnaround and 

enhanced real-time decision-making. 

 

E - Threshold (s): 

The offloading threshold, denoted as s, is a fundamental parameter in fog-enabled 

IoT network priority-based task scheduling model. It defines the boundary between locally 

processed tasks and those offloaded to a remote processing unit, such as a Fog node or 

Cloud server. The threshold s is crucial for managing computational loads efficiently and 

minimizing latency by ensuring real-time and latency-sensitive tasks are processed closer 

to the source while less urgent tasks are offloaded for remote execution (Ibrahim et al., 

2022). 

Mathematically, the offloading decision is modeled using a Queueing-Theoretic 

approach, where tasks arrive following a Poisson process (Last and Penrose, 2017) and 

have service times that follow a generally distributed. The probability that a task is 

processed locally is given by: 

𝑎 = 1 − 𝑒−𝜆𝑠 

where λ represents the task arrival rate, the equation quantifies the proportion of tasks 

handled locally based on the defined threshold “s” (Ibrahim et al., 2022). If the execution 

time of a task exceeds s, it is offloaded to the Cloud, thereby balancing computational 

resources and avoiding excessive congestion at local processing units. 

The choice of s directly impacts system performance, as a higher threshold 

increases the number of locally processed tasks, reducing the overhead associated with task 

transmission. However, an excessively high s value can lead to local resource saturation, 

resulting in increased queuing delays. Conversely, a lower s value promotes task 
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offloading, alleviating local congestion but potentially increasing network transmission 

delays and cloud queuing times (Ibrahim et al., 2022). 

Empirical studies in Fog computing have demonstrated that an optimal s value must 

be dynamically adjusted based on real-time system conditions. It is particularly relevant 

for adaptive offloading mechanisms considering varying workload conditions, resource 

availability, and energy consumption constraints (Bukhari et al., 2022). Research has 

shown that dynamically optimizing s improves response times and enhances overall system 

efficiency by ensuring critical tasks are processed within latency constraints while 

optimizing resource utilization across Fog and Cloud layers (Bukhari et al., 2022). 

An example from the supply chain is the monitoring system of warehouse 

temperatures with IoT sensors. If the temperature spikes to a critical level (e.g., due to a 

cooling failure), an urgent alert needs immediate action to prevent spoilage. Here, the 

processing time Treal-time for the alert is short and falls below s, so it is processed locally at 

the Fog level for a quick response. In contrast, regular temperature readings, which are not 

as time-sensitive, are sent to the Cloud for analysis and storage since their processing time 

exceeds “s”. 

 

F - Priority Parameters: 

The parameter Treal-time represents the upper time limit within which tasks must be 

processed locally to meet real-time constraints. It plays a role in determining whether a 

task is retained for local execution or offloaded to a higher processing tier, such as the 

Cloud. The selection of Treal-time directly impacts system latency, ensuring that critical tasks 

receive immediate processing while balancing computational loads across different layers 

of the network (Ibrahim et al., 2022). 
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In fog-enabled IoT systems, task arrival follows a Poisson process (Last and 

Penrose, 2017), and service times are generally modeled using exponential or truncated 

exponential distributions. Tasks exceeding Treal-time are offloaded to avoid local congestion, 

whereas tasks within the Treal-time threshold are prioritized for local execution to minimize 

end-to-end latency. The decision to process a task locally or offload it is governed by a 

Queuing Theoretic approach, where real-time tasks are retained at the Edge while non-real-

time tasks are distributed across Fog and Cloud resources – the threshold Treal-time must be 

set dynamically to adapt to fluctuating workloads and varying system conditions. If the 

threshold is too high, excessive tasks remain in the local queue, potentially causing 

bottlenecks and increasing processing delays. Conversely, if it is set too low, tasks may be 

unnecessarily offloaded, incurring additional transmission delays and increasing reliance 

on Cloud resources. The study by (Ibrahim et al., 2022) emphasizes the importance of 

adaptive thresholding, where machine learning or predictive models are employed to adjust 

Treal-time based on system congestion and task urgency dynamically. 

 

G - Latency and Resource Allocation: 

The local latency component, Llocal, is crucial in optimizing resource allocation 

within Fog/Edge computing environments. Local latency represents the time required to 

process tasks within the local computational layer, significantly impacting real-time 

applications. Efficient resource allocation in Fog and Edge computing minimizes Llocal by 

dynamically distributing computational workloads between local servers and offloading 

mechanisms. According to research on Fog-based resource allocation, the efficient 

assignment of computing resources ensures that tasks with strict latency constraints remain 

within the local processing environment, while less urgent tasks can be offloaded to the 

Cloud (Rezaee et al., 2024). The allocation of processing capacity at the Edge requires an 
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optimal balance between task processing speed, energy consumption, and system 

throughput, which directly influences the efficiency of local latency management (Alenizi 

and Rana, 2021). 

 

H - Task Prioritization Mechanism: 

The prioritization of tasks is primarily governed by their urgency, execution 

requirements, and resource constraints, and it is implemented through structured queuing 

and scheduling strategies. In Fog and Cloud computing architectures, priority-based 

scheduling is a well-established method to manage latency-sensitive applications, ensuring 

that critical tasks receive processing priority over less urgent ones (Alatoun et al., 2022). 

One approach to task prioritization involves a hierarchical scheduling mechanism 

where tasks are categorized into different priority levels. High-priority tasks, such as real-

time monitoring applications in IoT systems, are processed at the Edge/Fog layer to 

minimize latency, while lower-priority tasks are deferred to Cloud computing resources, 

where processing power is superior but response times are typically longer (Jamal and 

Muqeem, 2023). The execution of tasks in such environments is often governed by a 

queueing model where tasks are dynamically assigned to available processors based on 

their priority rank and resource availability. 

A significant enhancement in task prioritization mechanisms is the integration of 

adaptive scheduling algorithms, which allow real-time adjustments based on system load, 

network congestion, and processing capability. These adaptive systems employ decision-

making algorithms that dynamically adjust the priority weight of tasks depending on 

network conditions and workload distribution (Ibrahim et al., 2022). Additionally, machine 

learning-based techniques, such as reinforcement learning, have been explored to optimize 
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task scheduling by predicting task execution times and adjusting priorities accordingly 

(Jamal and Muqeem, 2023). 

Furthermore, the effectiveness of task prioritization is also influenced by resource 

availability and utilization. Studies have shown that efficient resource mapping strategies, 

such as priority-based dynamic resource allocation, can significantly improve system 

performance by balancing workload distribution across Fog and Cloud nodes (Alatoun et 

al., 2022). By incorporating such mechanisms, the Priority Equation ensures that critical 

tasks are processed with minimal latency while optimizing computational efficiency for all 

other tasks. The core idea behind this approach is to prioritize tasks based on urgency and 

execution constraints. Tasks that must meet strict time constraints are processed locally, 

ensuring low latency, while tasks with more flexible deadlines are allocated to remote 

computing resources. The Equation provides a scalable and adaptive solution for modern 

IoT-based supply chain environments where fluctuating workloads require dynamic 

resource allocation. The model is particularly beneficial for latency-sensitive applications 

such as real-time inventory management, predictive maintenance, and automated logistics, 

where processing delays can significantly impact supply chain performance. Combining 

queuing models with adaptive prioritization ensures higher system responsiveness, 

improved efficiency, and balanced resource utilization across Fog and Cloud layers. 

 

3.3 Experimental Setup 

The latency associated with offloading IoT tasks to the Cloud is critical in Supply 

Chain Operations and real-time applications. In traditional cloud-based models, tasks 

generated by IoT devices are transmitted to the Cloud for processing, introducing 

significant transmission delays due to network congestion, bandwidth limitations, and 

cloud server response times. The transmission latency increases as more tasks are offloaded 
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to centralized cloud servers, which can negatively impact applications requiring real-time 

processing (Bukhari et al., 2022). 

The offloading processing time is given by: 

 

Poffload = Ttransmit + Tqueue + Texecute 

 

where Ttransmit represents the transmission delay from IoT devices to Cloud servers, Tqueue 

accounts for queuing delays in the Cloud environment, and Texecute is the actual task 

execution time on the Cloud server. Studies indicate that Cloud offloading results in higher 

latency due to network dependencies, as Cloud servers are often geographically distant 

from IoT devices, leading to increased transmission and queuing delays (Bukhari et al., 

2022; Malik et al., 2022). Transmission delays depend on factors such as network 

bandwidth, data packet size, and routing complexity (Almutairi and Aldossary, 2021). 

Furthermore, once offloaded, tasks experience queuing delays before execution, which are 

influenced by: 

• λ (task arrival rate) – the frequency at which new tasks arrive at Cloud processing 

units. 

• WR (expected remote response time) – the total delay from network transmission 

(Ttransmit) and Cloud execution delays. 

• B (batch size factor) – task are often processed in batches to optimize system 

throughput, reducing per-task latency. 

 

The batch-based queuing delay due to the Cloud processing effect is modeled as follows: 

 
𝝀𝑾𝑹

𝑩
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where dividing by B accounts for task parallelization benefits in bulk processing (Bukhari 

et al., 2022). Fog computing has emerged as a viable alternative to mitigate Cloud-induced 

delays, enabling proximity-based task execution that significantly reduces transmission 

time (Almutairi and Aldossary, 2021). Fog nodes allow the processing of time-sensitive 

tasks locally, minimizing dependency on remote Cloud infrastructures. The incorporation 

of dynamic offloading thresholds further optimizes latency-sensitive applications, ensuring 

real-time responsiveness in supply chain networks (Bukhari et al., 2022). 

In supply chain networks, a larger capacity processor (c) enables parallel task 

execution, reducing queuing congestion before offloading to the Cloud (Khinchin et al., 

2013). Maintaining an optimized processor-to-task ratio is essential in real-time 

applications, where delays must remain within strict operational constraints. 

The scaling_factor functions as an adaptive control mechanism in task scheduling 

models. In Fog and Cloud computing, computational resources experience fluctuations in 

demand, necessitating dynamic workload balancing. The inclusion of scaling_factor in the 

denominator of queuing-based models reflects its role in enhancing local service efficiency 

(Khinchin et al., 2013). Higher values of scaling_factor improve computational 

performance, aligning with workload-aware scheduling frameworks. 

Finally, the term (1−ρ) represents idle capacity in queuing systems. As ρ>1, the system 

experiences congestion, causing exponential increases in latency (Ibe, 2013). The impact 

of high utilization necessitates dynamic resource allocation strategies, such as scaling 

processor availability (c) to accommodate increased workloads and adaptive offloading 

thresholds to optimize task distribution between local, Fog, and Cloud layers. 

Little’s Law, which relates queue length to response time, underscores that high “ρ” 

leads to exponentially increasing waiting times, reinforcing the importance of balanced 

task scheduling (Ibe, 2013). 
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The Priority Equation for Real-Time Supply Chain offloads tasks to the Cloud only 

when tasks exceed the threshold “s”, which keeps non-critical tasks from adding latency to 

local critical tasks. Tasks are processed closer to the source, with critical tasks prioritized 

for real-time processing.  

 

𝑷𝒓𝒊𝒐𝒓𝒊𝒕𝒚 = (
𝛌𝐄[𝒔𝟐]

𝟐𝒄 × 𝒔𝒄𝒂𝒍𝒊𝒏𝒈_𝒇𝒂𝒄𝒕𝒐𝒓(𝟏 − 𝝆) 
+

𝟏

µ
) 

 

By introducing 
𝟏

𝝁
 in the Priority Equation, it ensures that real-time supply chain 

tasks are processed efficiently at the Fog/Edge layer, reducing unnecessary offloading to 

the Cloud. This term directly contributes to latency minimization, making it a key factor in 

balancing computational workloads between local and remote execution environments. 

The integration of 
𝟏

𝝁
 enhances the model's adaptability, improving supply chain efficiency 

while maintaining real-time task execution requirements (Khinchin et al., 2013). 

The differences between locally processed tasks and those sent to the Cloud affect 

latency. On the other hand, the Priority Equation calculates the priority level of tasks based 

on arrival rates and processing factors, which helps decide whether tasks should be handled 

locally or offloaded. It guides task prioritization to ensure that high-importance tasks 

receive processing attention when system resources are limited by including λ to scale the 

entire equation, emphasizing the role of arrival rates in determining its priority. High arrival 

rates inherently increase the calculated priority, which helps dynamically adjust the 

urgency of tasks based on the system load. 

The comparison components of latency and task handling capture the delay 

incurred by offloading tasks from IoT devices to the Cloud, a standard approach in 

traditional, cloud-centric supply chains. It represents the time data travels from the Edge to 

the Cloud, whereas the Priority Equation uses similar Queuing and processing components 
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but focuses on prioritizing tasks rather than directly calculating latency. The Equation does 

not focus on individual task delays but rather on dynamically prioritizing tasks based on 

load and processing conditions, adjusting priorities to avoid latency for high-priority tasks. 

 

3.3.1 Hardware and Software Environment 

The simulation experiments were conducted on a personal computing environment 

to evaluate task prioritization and latency optimization in an IoT-driven supply chain 

system. The specifications of the computing environment are as follows: 

Hardware Configuration 

• Operating System: Microsoft Windows 11 Home (Version 10.0.26100, 64-bit) 

• Processor: Intel Family 6 Model 158 (Intel Core, ~1700 MHz) 

• Cores & Threads: 1 Processor installed (limited to 1 core) 

• Total RAM: 12 GB DDR4 

• Available RAM: 4.45 GB at the time of testing 

• Storage: Not explicitly mentioned, but assumed to be an SSD/HDD setup 

• BIOS Version: AMI F.12 (06/24/2020) 

 

Networking Setup 

• Active Network Interface: Realtek RTL8821CE 802.11ac PCIe Adapter (Wi-Fi) 

• VPN Adapters: NordVPN TAP & OpenVPN interfaces (disabled during 

simulations) 

• Ethernet Adapter: Realtek PCI(e) (Media Disconnected) 

• IPv4 Address: 192.16x.x.xx (for internal networking) 

• DNS & DHCP: Managed by local router 



 

 

 

57 

The system runs on a 1-core processor at 1.7 GHz, which limits the ability to run highly 

parallelized simulations. However, it is sufficient for mid-scale task prioritization models. 

If larger datasets were used, computations may have been offloaded to an external server 

or cloud service. The available RAM of 4.45 GB at runtime means that simulations were 

optimized to avoid excessive memory usage. Large-scale experiments may require batch 

processing or cloud execution and the Wi-Fi connection was used for cloud-based 

simulations. 

 

3.4 Conditions of Applying The Equation for Real-Time Supply Chain 

The Priority Equation for Real-Time Supply Chain has the following conditions 

IF(T<Treal-time) and IF(T<s) play crucial roles in determining the urgency of tasks and 

whether they should be processed locally or offloaded to the Cloud computing resources.  

IF(T<Treal-time) means real-time processing thresholds, and it is a strict threshold, 

typically set to a low value, e.g., 50 milliseconds, based on research done by Nawaz et al. 

(2021), identifying tasks that require immediate, near-instantaneous processing. Tasks 

deemed high priority and time-sensitive require local processing (at the Edge/Fog level) to 

meet the stringent time requirement. When T<Treal-time meets the "True" criteria, the 

equation prioritizes immediate local processing, ensuring that critical, real-time tasks do 

not experience delays from offloading or queuing. This threshold is essential for tasks 

where any delay (such as transmission to the Cloud) could compromise system 

responsiveness or affect outcomes. 

IF(T<s) is a secondary threshold that identifies tasks suitable for local processing 

but less urgent than those needing real-time response. When a task's processing time T is 

less than s (but greater than Treal-time), the Formula directs the task to be processed locally 

rather than offloaded to the Cloud, as local processing minimizes latency. However, this 
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condition is less strict than the real-time condition, allowing for some flexibility. This 

threshold identifies tasks that are less time-sensitive than those under Treal-time conditions 

but where local processing is still advantageous. If T<s is "Within," tasks are processed 

locally unless resources are highly constrained. Otherwise, tasks that do not meet this 

threshold are offloaded to the Cloud, where they can be managed with higher latency but 

greater resource availability. 

 

3.5 Justification of Parameters 

The task arrival rate λ represents the frequency at which IoT devices generate tasks or 

signals that require processing (sensors, tracking devices, machine monitoring systems, 

etc.) It directly influences system utilization, latency, and task distribution. Lambda (λ) 

affects the system load by calculating the utilization factor 𝝆 =
𝝀

𝒄𝝁
, which indicates the 

proportion of the system capacity being used. In Lpriority a higher λ increases the system 

workload, potentially leading to a higher latency. A low λ means fewer tasks arrive, and 

the system operates under capacity, leading to lower latency. When λ is high, more tasks 

arrive and potentially can exceed processing capacity, causing higher queue delays and 

offloading to the Cloud. In the healthcare IoT, the usual rate is between 100 to 500 

tasks/second (Shukla et al., 2017) through wearable devices and patient monitoring systems 

(for the research, all seconds are transformed into milliseconds). In smart cities and 

pollution monitors, the rate is between 500 to 2,500 tasks/second (Shukla et al., 2017), 

whereas in the Industrial Internet of Things (IIoT), the rate increases to 5,000 to 10,000 

tasks/second (Shukla et al., 2017), usually seen in assembly line sensors, robotics, and 

predictive maintenance.  

The processor count c represents the number of processors available locally, such as at 

the Edge/Fog layer, that can handle tasks before they are offloaded to the Cloud. More 
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processors increase the system's ability to process multiple tasks in parallel, improving 

performance and reducing latency. Based on the utilization factor 𝝆 =
𝝀

𝒄𝝁
 a higher c 

(processor count) decreases ρ (utilization factor), reducing the likelihood of system 

overload and allowing the system to handle a greater task load without queuing or delays. 

With more processors, the system can handle more tasks per unit of time, which means an 

improved throughoutput of the system. Another aspect is a decrease in latency as tasks can 

be distributed among processors (c – number of processors increase), directly reducing wait 

times and queuing. Lastly, adding more processors c allows the system to scale (system 

scalability) by increasing task arrival rate λ. In large-scale Industrial Internet of Things 

(IIoT) systems, the number of processors must grow in proportion to task load to maintain 

performance.  

In the context of the Priority Equation, the number of processors (c) plays a crucial role 

in reducing queuing delays. However, diminishing returns occur as adding more 

processors provides lesser performance improvements beyond a certain point. If the task 

arrival rate (λ) is low or the system is under-utilized (ρ close to zero), increasing c 

(processor count) offers limited benefits. Since additional processors increase costs, the 

optimal value of c balances performance gains and cost efficiency. Scaling c becomes 

essential when the task arrival rate exceeds the system's processing capacity (μ⋅c), 

especially in high-throughput IIoT systems or environments handling large data volumes. 

The service rate μ represents the rate at which each processor can complete tasks.  

The second moment of service time is often denoted as 𝑬[𝒔𝟐] is a measure from 

Probability Theory (Rényi, 2007) and Queuing Theory (Ibrahim et al., 2022; Willig, 1999) 

that provides insight into the variability in service times. The service time s is the time 

required to process a task at a server (e.g., Edge/Fog nodes or Cloud). It captures both the 

average service time and its variability. A higher 𝑬[𝒔𝟐] indicates greather variability in 
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service time, leading to longer queues and higher latency whereas a lower 𝑬[𝒔𝟐] sugest 

consistent processing time, improving system predictability. The values chosen for the 

calculation are 0.1 and 1.0 since, in many practical applications (Willig, 1999), these values 

are used to simplify calculations and are reasonable for systems where tasks take longer to 

process or have more variability (network latency, hardware performance, resource 

contentions). For complex data tasks (data aggregation or analytics), service times are more 

variable, leading to larger 𝑬[𝒔𝟐] values. For low-variance workloads such as barcode 

scanning, RFID readings, and sensor data collection in IoT-based supply chain operations, 

using 𝑬[𝒔𝟐]  is a reasonable approximation due to their near-deterministic service times 

with minimal variance. However, for systems handling mixed workloads that include high-

variance tasks, a higher 𝑬[𝒔𝟐]  value may be necessary to capture processing variability 

accurately. Early Queuing Theory (Willig, 1999) often uses 𝑬[𝒔𝟐]=1.0 as default or 

baseline, reflecting systems with moderate variability.  

 

Table 2: Calculated 𝑬[𝒔𝟐] vs Approximated Values in Task Allocation Models: 

 

Scenario Use Calculated 𝑬[𝒔𝟐] Use Approximate 𝑬[𝒔𝟐] 
High-precision modeling  x 

Known consistent service times  x 

High-task variability x  

Lack of detailed service time data x  

Complex tasks with outliers x  

Early-stage system design x  

 

The offloading threshold “s” is a based threshold, typically measured in milliseconds, 

which governs the decision to offload a task. The offloading threshold s determines 

whether a task should be processed locally (e.g., at the Edge/Fog layer) or offloaded to a 

remote processing resource like the Cloud. It represents the maximum tolerable local 
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queuing and processing delay for tasks before they are considered for Cloud processing. 

The value of s for Process and Factory Automation is roughly 100ms (Ma et al., 2019), 

similar to telesurgery based on findings by Nankaku et al.( 2022).  

 

Table 3: Latency Requirements Across Different Industries 

 

Industries Milliseconds 
Smart cities 50-150 

Healthcare IoT 10-50 

Autonomous robots 10-25 

Drones 10-50 

Industrial IoT (IIoT) 20-100 

Smart agriculture 100-300 

 

When T<s tasks are processed locally on the Edge/Fog, and when T≥s are offloaded to 

the Cloud. This approach can use a fixed threshold of s=150 ms (Puleri et al., 2016) to 

determine task allocation. It ensures that tasks requiring shorter processing times are 

prioritized for local handling at the Edge/Fog, leveraging their proximity to the data source. 

Tasks exceeding this threshold are strategically offloaded to the Cloud, preventing 

overburdening local resources while maintaining availability. This fixed-threshold 

approach simplifies task distribution, optimizing system performance and effectively 

balancing the load across computing layers. 

In many real-time systems, Treal-time defines the maximum allowable delay for a task to 

be considered real-time. Setting Treal-time between 1ms to 150ms means any task that 

requires completion within  Treal-time threshold will be classified as real-time (Puleri et al., 

2016). This threshold is used in IoT industries like Supply Chains, Robotics, and 

Autonomous Systems. The Real-Time threshold (Treal-time) is a strict predefined time limit 

to identify tasks that require immediate processing to meet stringent latency requirements. 
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This threshold ensures that high-priority tasks critical to system performance or outcomes 

are processed locally (e.g., at the Edge or Fog layer) without delay. It means that tasks that 

meet the condition T < Treal-time are handled immediately and locally to avoid any latency 

introduced by offloading (e.g., transmission delay or remote queuing), and it prioritizes the 

allocation of local resources (processors) for tasks that cannot tolerate delays, ensuring 

high-priority tasks are not affected by non-critical workloads. While Treal-time  is stricter and 

targets the most urgent tasks, the offloading threshold s serves as a secondary condition to 

identify tasks suitable for local processing but less critical than real-time tasks. 

The remote response time, or WR, is the average time required for a task to be offloaded 

to a remote computing resource, such as the Cloud or a centralized server. It captures the 

delay incurred due to the queuing, processing, and communication involved in handling 

tasks at a remote location. A higher WR indicates longer delays for tasks offloaded to the 

Cloud, which can negatively impact time-sensitive operations. In contrast, a lower WR 

indicates more efficient processing at the remote resource, which is favorable for handling 

non-critical tasks without significantly affecting overall system performance. In the 

Priority Equation, WR is included in the remote delay, appearing in the second case of the 

Equation when task processing time exceeds the real-time threshold Treal-time. The 

offloading component 
𝑾𝑹

𝑩
 reflects the average response time per batch for tasks processed 

at the Cloud level. Lower WR (via faster Cloud services or reduced transmission delays) 

improves offloading performance. WR influences task distribution between local and Cloud 

processing, guiding the system to offload only when local processing is infeasible, which 

is optimal for dynamic adjustments. A higher WR can create bottlenecks in the system, 

making monitoring and minimizing this parameter for high-throughput environments 

critical.  
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 Transmission delay (Ttransmit) is the time taken to send data to the remote system 

(Cloud server), and it is influenced by bandwidth, latency, and distance.  

 

𝑻𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕 =
𝑫𝒂𝒕𝒂 𝒔𝒊𝒛𝒆 (𝒃𝒊𝒕𝒔)

𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝑩𝒂𝒏𝒅𝒘𝒊𝒕𝒉 (𝒃𝒊𝒕𝒔 𝒑𝒆𝒓 𝒔𝒆𝒄𝒐𝒏𝒅)
 

 

For this case, the Cloud or Remote response time (Tprocess) is the time taken for remote 

servers to process the task or batch, and it is modeled using Quesing Theory (Willig, 1999) 

Tprocess = 
𝟏

𝝁𝒄𝒍𝒐𝒖𝒅
; where μcloud is the service rate of the Cloud system.  

 

Table 4: Measured Cloud Response Times Across Major Service Providers 

 

Ping times Milliseconds 
Amazon Web Services 175 

Microsoft Azure 229 

Google Cloud 177 

Digital Ocean 174 

Linode 173 

Alibaba Cloud 376 
For the purpose of this research, Azure's ping time is utilized as a benchmark to calculate latency, providing a consistent 

reference point for analysis. 

 

The Batch Size (B) refers to the number of tasks processed together as a single group 

or batch at a remote location, such as the Cloud or Fog computing node. Batching is a 

common optimization technique used to improve the efficiency of processing non-critical 

tasks (Zhang et al., 2019) by reducing the overhead associated with individual task 

handling. The batch size B reduces the impact of remote queuing delays by dividing the 

remote response time WR across the number of tasks in the batch. Batch processing allows 

the system to handle multiple tasks simultaneously, improving efficiency in scenarios 

where individual task processing incurs significant delays or overhead. When tasks are 
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offloaded to the Cloud  
𝑾𝑹

𝑩
  represents the average latency per task in the batch. A larger B 

(batch) reduces the per-task latency because WR (the remote response time) is shared 

among tasks. Implementing batch processing improves efficiency by grouping tasks, which 

reduces the overhead of initiating multiple transmissions or processing requests. It helps 

with network optimization; fewer transmissions mean less network congestion, which is 

especially important in environments with limited bandwidth. Lastly, it reduces latency per 

task by dividing WR by B, ensuring that the average latency per task decreases as batch 

size increases.  

Selecting the appropriate batch size (B) involves optimizing system performance to 

meet the application's requirements. The decision is influenced by factors such as the task 

arrival rate, real-time constraints, and the system's throughput demands. For systems with 

strict real-time parameters, a smaller batch size is preferable to minimize delays associated 

with batch filling. Conversely, in scenarios where high throughput is prioritized, a larger 

batch size is advantageous as it enhances efficiency and reduces the overhead associated 

with processing individual tasks. In the context of the Priority Equation, the benchmark 

suite's stream workloads, derived from real-world IoT observations in Smart Cities, 

highlight task arrival rates ranging from 500 to 10,000 messages per second (Shukla et al., 

2017) and analysis based on data collected mean of 17,817 batch size. These varying rates 

and diverse frequency distributions underscore the need for dynamic prioritization and 

adaptive processing strategies to ensure efficient resource allocation and real-time 

response, particularly in high-throughput environments. 
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Table 5: Task Arrival Rates and Batch Size Considerations Across IoT Environments 

 

 
(Shukla et al., 2017) 

 

The scaling_factor was determined using Pairwise Comparison Principles and Priority 

Weighting Methods found in Saaty's (1977) work on hierarchical structures ("A Scaling 

Method for Priorities in Hierarchical Structures"). According to the Engineering 

Optimization journal by Zhang et al. (2023) on job priority heuristics ("A New Job Priority 

Rule for the NEH-Based Heuristic"), a scaling factor is introduced after matrix 

multiplication to prevent excessive variance when computing task priorities and the aspect 

is similar to Priority Equation, where scaling ensures that latency calculations remain 

within a feasible range. The scaling_factor in the Priority Equation serves as a dynamic 

multiplier that adjusts the system's processing efficiency in response to varying operational 

conditions and as a baseline for normalization rather than a direct indicator of system 

efficiency. This empirical parameter quantifies the system's ability to scale resources, such 

as processors, to accommodate fluctuating task loads. The scaling_factor plays a critical 

role in system optimization by adapting the processing capacity to current conditions – 

such as task arrival rates, resource availability, or processor utilization. In highly optimized 

Dataset Task Arrival Rate 

(tasks/ms) 

Batch Size (B)  

(ms) 

IoT Application Rationale for Batch 

Size 
FIT Dataset 500 50-250 Fitness tracker and 

health monitoring. 
Small batches minimize 
delays for real-time health 

alerts while maintaining 

system efficiency. 

NYC Taxi Dataset 4,000 1,000 – 2,000 Urban transportation 

and fleet tracking 

Moderate batch size balance 

latency and throughoutput 

for near real-time tracking. 

Sence Your City 
(CITY) 

5,000 500 – 2,500 Smart city monitoring 
(air quality, noise 

levels). 

Smaller batch sizes ensure 
real-time responsiveness 

while balancing 

throughoutput.  

GRID Dataset 10,000 5,000 – 10,000 Smart grid energy 

management 

Larger batches optimize 

throughoutput for high-

volume data streams while 
reducing per-task overhead.  
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systems equipped with advanced hardware, the scaling factor remains at 1.0, ensuring 

stable prioritization and minimal queuing overhead. In contrast, resource-constrained 

systems or those operating under significant load experience increased queuing delays and 

higher utilization (ρ), necessitating dynamic offloading and resource-aware task 

distribution to maintain efficiency. 

 

Table 6: Scaling Factor and Task Prioritization in IoT Systems 

 

Scaling_factor as resource 

Representation 

Scaling_factor as 

prioritization of all tasks 

Suitable for systems 

1.0 – single resource 

performance (e.g., one type of 

processor or uniform task 

distribution) 

1.0 – equal prioritization of all 

tasks 

1.0 - IoT sensors (uniform 

workloads), predictable 

workloads, all tasks treated 

equally.  

2.0 – double the capacity or 

efficiency, representing higher-

performing resources or 

optimized local processing. 

2.0 – higher emphasis on critical 

tasks, reflecting greater resource 

allocation.  

2.0 - Edge-Cloud Systems 

(moderate variability). Edge 

processing is faster, but Cloud 

offloading introduces variability.  

3.0 – triple the capacity or 

efficiency for sensors with 

significantly better resources 

(specialized Edge devices). 

3.0 – strong prioritization; 

modeling systems where critical 

tasks dominate.  

3.0 - Critical real-time systems, 

focused on prioritizing critical 

tasks, account for variability and 

real-time requirements.  

 

The utilization factor ρ(rho) is a key parameter in Queuing Theory (Ibrahim et al., 2022) 

that measures how heavily the system's processing resources are utilized. It represents the 

proportion of the system's capacity that is currently in use, providing insight into the 

system's load and efficiency. The ρ is defined by  
𝝀

𝒄µ
  λ-task arrival rate (tasks per second), 

c-number of processors available, μ service rate of each processor (tasks per second). The 

utilization factor can range from 0 (no load on the system) to 1 (full utilization of processing 

capacity), and values that exceed ρ>1 indicate an overloaded system (where the task arrival 

rate exceeds the system's total processing capacity). In cases where ρ increases, queuing 

delays grow because tasks spend more time waiting for resources, and in cases where ρ=1 
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or near 1, delays can increase exponentially as tasks compete for the limited remaining 

capacity. In order to keep ρ at a manageable level, resource allocation is needed by adding 

more processors to increase total processing capacity c, optimizing the service rate µ of 

each processor (e.g., faster hardware ), or by reducing task arrival rate λ by offloading non-

critical tasks.  

 

Table 7: Utilization Factor (ρ) Interpretation and Applications 

 

ρ value Interpretation Applications 
ρ=1.0 System is fully utilized but 

stable 

High-priority real-time systems 

ρ=0.7 to 0.8 Efficient operation with buffer 

space 

General IoT/IIoT systems with 

variability 

ρ<0.5 Underutilized system System with low task rate 

 

The local service rate (μ) in the Priority Equation represents the speed at which an 

individual processor handles tasks, measured in tasks per second. Higher μ decreases the 

utilization factor 𝝆 =
𝝀

𝒄𝝁
, reducing queuing delays and enhancing system stability. Stability 

is achieved when μ⋅c ≥ λ, ensuring ρ≤1. Conversely, if μ⋅c < λ, the system becomes 

unstable, with increasing queues and delays. Furthermore, higher μ reduces latency by 

shortening each task's time in service. Combined with the number of processors 

(c), μ determines the system's ability to scale with growing task arrival rates (λ) and 

supports efficient handling of increasing workloads. 

The value of μ is influenced by hardware capabilities such as processor speed, 

memory bandwidth, and task complexity. Simpler, repetitive tasks yield higher μ, while 

complex operations, such as Artificial Intelligence-based processing or image analysis, 

lower it. The system environment also plays a role, as Edge devices typically exhibit 
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lower μ due to resource limitations, whereas Cloud servers benefit from higher μ because 

of their advanced hardware. 

In the Priority Equation, μ is essential for accurate modeling of system latency, 

reflecting real-world processing behavior. By balancing local and Cloud processing, 

higher μ enables more tasks to be handled locally, reducing dependency on Cloud 

offloading and minimizing transmission delays. Additionally, μ is integral to Queuing 

Theory (Willig, 1999) models like M/G/c (Ibrahim et al., 2022), where it determines 

utilization (ρ), waiting times, and system capacity. In M/G/c models, μ influences queuing 

delays through the second moment of service time, 𝑬[𝒔𝟐], making it crucial for 

performance optimization. Overall, μ encapsulates the system's processing efficiency and 

is vital for optimizing performance, stability, and scalability. 

 

3.6 Data Sources and Acquisition Methods  

The datasets utilized in this research was downloaded from Kaggle.com. The Bot-IoT 

dataset is publicly available for academic research under a perpetual license for scholarly use by 

Koroniotis (2020), Koroniotis et al. (2020a, 2020b, 2019, 2018), Koroniotis and Moustafa (2020). 

However, any commercial application necessitates prior authorization from the dataset's creators. 

The authors have retained their rights under copyright law, and any utilization of the Bot-IoT 

dataset must include appropriate citations of the relevant publications that document its 

development and characteristics. 

The dataset used in the research is extensive, necessitating a strategic selection of 

parameters most relevant to developing and implementing the Priority Equation. Given the 

focus on real-time supply chain operations, it is essential to identify key factors that directly 

impact task prioritization, resource allocation, and the decision-making process for local 

https://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot?select=data_1.csv
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versus cloud processing. The selection of parameters was guided by their significance in 

determining system efficiency, latency, and adaptability to varying workload conditions. 

One of the most critical parameters chosen is the task arrival rate, denoted as 

lambda\λ. This value represents the rate at which tasks, such as temperature readings, RFID 

scans, and barcode processing, enter the system. Including this parameter is crucial for 

workload management, as it provides insight into how frequently the system must process 

incoming tasks. The service rate, denoted as mu\μ, is another fundamental component, as 

it defines the processing capability of local computational resources. By incorporating the 

utilization factor, rho\ρ, calculated as ρ=
𝜆

𝑐𝜇
, the formula ensures that system load is 

continuously monitored, preventing overload and dynamically adjusting the distribution of 

tasks between local processing and offloading to the cloud when necessary. The process 

also incorporates batch processing, represented as B, which determines how tasks are 

grouped for execution. This approach optimizes system performance by reducing the 

computational overhead associated with processing individual tasks separately. 

Furthermore, the cloud response time, WR, ensures that when offloading occurs, the latency 

associated with remote processing is accounted for, thus maintaining the efficiency and 

responsiveness of the system. 

These parameters were selected by the dataset's structure, which contains numerous 

attributes related to network traffic, packet transmission, and processing characteristics. 

Task arrival rate was derived from features such as stime (total tasks divided by average 

duration), which provide information on the number of tasks per second (λ). The batch size 

(B) was determined based on the bytes attribute (sum of bytes divided by total tasks) and 

local service (μ) derived from the duration (dur) column 𝜇 =
1

𝑚𝑒𝑎𝑛 (𝑑𝑢𝑟)
.  

The choice of these parameters is particularly advantageous, given the large size of 

the dataset. The Priority Equation extracts only the most impactful attributes rather than 
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processing all available columns, which would introduce unnecessary computational 

overhead. This selective approach enhances processing efficiency and ensures the system 

remains scalable as task volumes increase. Additionally, by dynamically adjusting task 

distribution based on real-time system conditions, the Priority Equation prevents 

bottlenecks and reduces latency. Through this structured selection of relevant parameters, 

the Priority Equation can balance computational workload, improve processing efficiency, 

and support the real-time decision-making requirements of Modern Supply Chain Systems. 

 



 

 

 

71 

 

 



 

 

 

72 

 



 

 

 

73 

3.7 Data Analysis (Observations and Performance for Priority Equation)  

In Queuing Theory (Willig, 1999) and performance analysis, calculating the task 

arrival rate λ and the utilization factor ρ is crucial for evaluating system efficiency. The 

following analysis demonstrates how these metrics are derived and interpreted using real-

world data collected from the above datasets. The context involves assessing task 

processing efficiency in a computational system with one processor. 

 

Figure 8: Task Rates with Standard Deviation Intervals 

 

 

Calculating Mean Task Rate (λ) by quantifying the number of tasks arriving in the 

system (stime): 

𝑀𝑒𝑎𝑛 𝑇𝑎𝑠𝑘 𝑅𝑎𝑡𝑒 (𝜆) = 7,832 𝑡𝑎𝑠𝑘𝑠/ sec = 7.832 𝑡𝑎𝑠𝑘𝑠/𝑚𝑠 

The calculated task rate indicates that, on average, 7.832 tasks arrive every 

millisecond, which serves as the basis for subsequent performance metrics. 
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Calculating Service Time and Service Rate μ represents the system's ability to 

process tasks per millisecond. It is derived from the average task duration (dur) provided 

in the 74 million dataset. 

 Mean Task Duration (dur): 23.89 milliseconds or 24milliseconds =μ 

 

The local service rate μ indicates that the probability for a single processor can 

handle approximately 24 simple tasks/inputs per millisecond, highlighting the system's 

processing capacity. 

Calculating Utilization Factor ρ measures the fraction of a processor's capacity 

being used, and it is calculated by using the task arrival rate λ, service rate μ, and the 

number of processors (c).  

• Task Arrival Rate (λ-lambda): 7.832 tasks/ms 

• Local Service Rate (µ-mu): 24 tasks/ms 

• Number of Processors (c): 1 

𝜌 =
𝜆

𝑐𝜇
=

7.832

1 ∗ 24
= 32.63% 

 

The utilization factor ρ of 32.63% indicates that the system is underutilized, and 

the calculations of λ, µ, and ρ provide a foundational analysis for evaluating system 

performance. The system's underutilized state highlights optimization opportunities, such 

as load balancing or task redistribution, to enhance efficiency in real-world scenarios. This 

methodology is critical for designing scalable and responsive computational systems in 

Supply Chain applications and beyond. Despite the underutilized state of the processor, 

tasks are offloaded to the Cloud when they exceed the predefined Treal-time or s threshold, 

ensuring that critical latency requirements are met. This approach balances local and Cloud 
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processing to optimize performance while maintaining compliance with stringent real-time 

criteria. 

Local latency (Llocal) is a critical metric in Queuing Theory, measuring the time 

taken to process a task locally, including the queuing and service times. This calculation is 

based on the Priority Equation, which incorporates key system parameters such as task 

arrival rate (λ), service rate (µ), utilization factor (ρ), and the second moment of the service 

time 𝐸[𝑠2]. 

 

The Formula for local latency is expressed as: 

 

Llocal = (
𝜆∗𝐸[𝑠2]

2(𝑐∗𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟 )(1−𝜌)
+

1

µ
) 

 

Where: 

• λ: task arrival rate (tasks per second) – 7.832 tasks/ms 

• 𝐸[𝑠2]: second moment of service time – 0.1 𝑚𝑠2 

• c: number of processors – 1 (single processor) 

• scaling_factor: adjustment factor for system dynamics – 1.0 (default adjustment 

factor) 

• ρ: utilization factor – 32.63%  

• µ: local service rate (tasks per second) – 24 tasks/ms 

 

The different scenario analysis of real-time task processing in a supply chain system 

involves evaluating the impact of various parameters, such as task arrival rates, processor 

counts, service rates, and real-time constraints, on system performance. Examining all five 

different scenarios (A, B, C, D, and E), each highlights how these parameters' variations 
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influence the decision to process tasks locally or offload them to the Cloud. The primary 

objective is to determine the optimal configuration that minimizes Cloud dependency while 

ensuring low latency and efficient task execution. 

 

Scenario A: Baseline Evaluation of Treal-time Thresholds and Processor Scaling 

Scenario A focuses on assessing the impact of increasing the real-time threshold (Treal-

time) while scaling the number of processors (c) from 1 to 8. The task arrival rate (λ = 

7.832 tasks/ms) and local service rate (μ = 24 ms) remain constant. At the lowest Treal-time 

(1 ms), the local system is unable to process incoming tasks efficiently, leading to Cloud 

offloading with a significant delay of 229.03 ms. As Treal-time increases, the system gains 

more time to process tasks locally, gradually reducing Cloud dependency. When Treal-time 

reaches 5 ms, local processing becomes fully sufficient, eliminating Cloud offloading. 

Increasing Treal-time to 100 ms significantly decreases system utilization (ρ=4.08%), 

indicating that the system can handle tasks efficiently with minimal congestion at this 

threshold. Beyond this point, adding more processors yields diminishing performance 

gains, as utilization remains low and local processing capacity is sufficient for the given 

workload. 

The second part of Scenario A explores the effect of increasing the local service 

rate (μ) by 10% to 100% while keeping Treal-time at 100 ms. The results show a steady decline 

in system utilization, further reinforcing that enhancing processing speed improves 

efficiency and reduces resource strain. However, beyond a 50% increase in μ, the additional 

gains become marginal, suggesting diminishing returns on performance improvements. 
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Scenario B: Alternative Configuration with Similar Scaling 

Scenario B replicates the conditions of Scenario A while evaluating alternative 

processor distributions. The results align closely with Scenario A, confirming that 

increasing Treal-time and c improves local processing capability while reducing Cloud 

dependency. The critical transition occurs at Treal-time = 5ms, where local processing 

becomes feasible, allowing a utilization factor below 10%. Similar to Scenario A, a 100% 

increase in μ yields a utilization factor as low as 2.72%, demonstrating efficient real-time 

task processing at optimal conditions. 
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Scenario C: Fine-Tuning Local Processing Parameters 

Scenario C further refines the evaluation of real-time task processing by testing 

additional increments in Treal-time. The results validate Scenarios A and B observations, 

reinforcing that Cloud offloading becomes unnecessary once Treal-time exceeds 5 ms. The 

study also highlights that increasing c beyond a certain threshold (approximately eight 

processors) diminishes performance, as system utilization remains low regardless of 

additional processing power. This Scenario solidifies the claim that balancing λ, μ, and c 

is crucial for achieving optimal efficiency without over-provisioning computational 

resources. 
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Scenario D: Introducing Cloud Dependence in Varied Workloads 

Unlike previous scenarios, Scenario D introduces conditions where Cloud 

processing remains partially necessary even as Treal-time increases. The results show that for 

certain configurations, even when c is increased, the local system remains unable to meet 

stringent real-time constraints, resulting in continued Cloud offloading. The utilization 

factor remains relatively high, suggesting that some real-world applications may require 

hybrid processing solutions. Additionally, due to the overwhelming demand on local 

processors, the Cloud remains a necessary component for Smart City and IIoT applications 

with higher task rates (e.g., 10,000 tasks/ms). 
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Scenario E: Adjusting Service Rate and Batch Size for Real-Time Processing 

Scenario E introduces an increased local service rate (μ= 50 ms) while evaluating 

its effect on batch processing efficiency. The findings indicate that while a higher μ 

improves overall performance, it does not entirely eliminate Cloud dependency when task 

arrival rates exceed a critical threshold. The system remains self-sufficient mainly in 

Wearable Devices and Smart City applications, but offloading is still required in IIoT 

applications with extreme task loads. This scenario emphasizes that while increasing μ 

improves performance, hybrid processing strategies remain necessary for high-intensity 

workloads. 
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In contrast, Scenario E/1 explores the impact of increasing the number of processors 

(c) while keeping the task rate stable at 24 tasks/ms. The results show that as c increases, 

system utilization (ρ) decreases significantly. Initially, with fewer processors, the system 

operates at a higher utilization rate, requiring efficient scheduling to meet real-time 

constraints. However, as additional processors are introduced, utilization drops, ensuring 

that local resources can accommodate the workload efficiently without exceeding real-time 

thresholds. 

At c = 8 or c = 9, the system achieves near-optimal local processing with a 

utilization factor of 4.08% to 4.63%, indicating that further processor increases yield 

minimal performance benefits. This comparison suggests that while increasing μ and c both 

contribute to performance gains, they serve different purposes: an increased μ enhances 

batch processing efficiency, whereas a higher c ensures scalability and resilience under 

high-demand conditions. 
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Scenario F: Bell Curve Simulation and Interpretation 

The simulation results based on the Bell Curve Analysis provide an analytical view 

of task distribution, system efficiency, and performance thresholds. The analysis evaluates 

task processing at different confidence levels (68.26%, 95.44%, and 99.72%) to determine 

how effectively the system maintains task prioritization and resource utilization. 

At the 68.26% confidence level, the system handles 11.72 tasks, employing eight 

processors within a total system capacity of 50. The utilization factor remains at 0.803, and 

the priority adjustment factor remains at 0.15, with a processing percentage of 2.93% and 

a threshold value of 0.095. The classification remains TRUE, confirming that the system 

is operating within expected limits and that all tasks are processed efficiently at the local 

level. 

At the 95.44% confidence level, the system processes 0.058 tasks using two 

processors, representing a minimal task load. The utilization factor (0.803) and service 

parameters remain unchanged, ensuring stable operations. The percentage of tasks 

processed at this level is 0.06%, with a priority threshold of 0.021, maintaining 

performance within acceptable bounds. This characteristic confirms the system’s ability to 

handle lower task loads effectively without significant deviations. 

At the 99.72% confidence level, the system manages 19.49 tasks across 13 

processors, reflecting an increased task influx. The utilization factor remains constant, with 
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a priority threshold of 0.097, and the percentage of tasks processed at this level is 3.00%. 

Unlike the previous dataset, the new results indicate that despite a high task rate, the system 

remains within operational boundaries, and the classification remains TRUE, signifying no 

critical overload. 

The value adjustments/tests demonstrate the model’s resilience under different 

workload conditions, ensuring that local processing remains efficient even under higher 

loads, and it further emphasizes the importance of dynamic scaling in real-time 

environments, allowing for adaptive task prioritization while preventing system saturation. 

 

 

Across all scenarios, a clear trend emerges: increasing Treal-time and c significantly 

reduces Cloud dependency, but only up to a certain threshold. Once c surpasses an optimal 

value (around 8-10 processors in most cases), additional computational resources yield 

minimal benefits. Increasing μ is effective but follows a pattern of diminishing returns 

beyond a 50% improvement. The most significant performance enhancements occur when 

Treal-time transitions from 1-5 ms, after which system utilization stabilizes. Local processing 

is highly effective when tuned appropriately for standard Supply Chain Applications with 

moderate task rates. However, Cloud dependency remains inevitable in large-scale 

environments such as IIoT and Smart Cities unless fundamental breakthroughs in local 

processing capabilities occur. The most practical approach is a balanced hybrid processing 

model, where critical tasks are handled locally while non-time-sensitive workloads are 

offloaded. 
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The analysis comprehensively evaluates real-time processing efficiency in a supply 

chain context. The findings suggest that real-time task prioritization, processor scaling, and 

service rate optimization collectively minimize latency and reduce Cloud reliance. 

However, cloud offloading remains necessary for extremely high-demand environments, 

reinforcing the need for dynamic resource allocation strategies. Future research should 

explore adaptive scheduling mechanisms that dynamically adjust c, μ, and Treal-time based 

on real-time workload fluctuations to enhance performance efficiency further. 

Additionally, integrating critical path analysis into task routing strategies can help identify 

the closest available Cloud resources, optimize offloading decisions, and further minimize 

latency. 

 

3.8 Research Design and Limitations  

The research employs a quantitative methodology to evaluate the impact of the 

proposed priority-based task allocation framework within an IoT-driven Supply Chain 

Environment. The methodology integrates computational modeling, simulation-based 

performance analysis, and empirical validation to assess the Priority Equation efficiency. 

The primary objective is to establish how dynamic task prioritization and task offloading 

thresholds influence latency, resource allocation, and overall operational efficiency. Given 

the complexity of multi-layered computing infrastructures, the research design 

incorporates a Queuing-Theoretic approach combined with performance metrics derived 

from real-time simulation models. 

The study follows a structured computational framework where task arrival rates, 

processing rates, and utilization factors are varied across Edge/Fog and Cloud layers. The 

experimental setup is based on real-world datasets and parameters, such as the FIT dataset 

for health monitoring, the NYC Taxi dataset for fleet tracking, and the GRID dataset for 



 

 

 

85 

Smart Grid Management. These datasets ensure that task prioritization models are tested 

under diverse operational conditions. Furthermore, the research employs multi-scenario 

evaluations, comparing different priority thresholds, processor scaling, and offloading 

strategies to validate the model's adaptability and effectiveness. By simulating multiple 

task execution environments, the study explores how adjustments in real-time processing 

thresholds influence task allocation efficiency and latency management. 

• The system utilization factor (ρ) – should be efficient but not overloaded (ideally 

between 0.5 and 0.8).  

• Local latency – should be minimized to keep real-time processing efficient.  

• Processing decision based on s – preferably more or all tasks to be processed locally 

to reduce Cloud dependency in order to avoid Cloud delays.  

• Real-Time – should be high enough to ensure local processing efficiency. 

Scenarios B, C, D, E, and E/1 illustrate a pattern where increasing processor count 

(c) and improving local service rate (μ) significantly reduce local latency. Local processing 

becomes dominant at higher processor counts (c ≥ 7), reducing Cloud dependency. The 

best balance seems to happen where ρ remains low (below 50%) while maximizing real-

time local task processing. A question arises from observation: Why “ρ” is so low?  

Could the system be inefficient due to a low ρ, and the answer is not necessarily. A 

low utilization factor can be beneficial if the goal is to ensure the system's real-time 

responsiveness since the system is not saturated, tasks are processed immediately without 

waiting in a queue, and local processing remains highly responsive, which is crucial for 

real-time supply chains. A low ρ creates a buffer zone preventing slowdowns during 

sudden spikes in demand as well as ensuring that critical and latency-sensitive tasks are 

always prioritized without experiencing congestion. Another question could be, “How 

about if ρ is too low (e.g. ≤ 10%)?” This situation might indicate an over-provisioning of 
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resources, meaning more processors than necessary are allocated, and an underutilization 

of computing power, which leads to potential inefficiencies like the cost-effectiveness of 

the system. The low ρ observation across different scenarios confirms that the system is 

designed for high responsiveness rather than high throughput utilization, and it ensures 

tasks are handled in real time without queuing delays, yet, fine-tuning of processor 

allocation could improve efficiency without sacrificing performance. 

The implementation is conducted within a controlled simulation environment, 

leveraging Queuing Models such as M/G/c to analyze task distribution dynamics. The core 

computational model evaluates the impact of key parameters, including the task arrival 

rate, service rate, processor count, and utilization factor. The experimental conditions 

simulate different workload intensities to examine system scalability, efficiency under 

peak loads, and the balance between local and cloud-based task processing. Including batch 

processing parameters ensures that Cloud task handling is realistically modeled, addressing 

the computational constraints of large-scale IoT distributions. 

The simulation results reveal refinements to the research design and highlight both 

the strengths and limitations of the Priority Equation in real-world supply chain 

applications. While the Equation demonstrates strong performance in balancing local and 

Cloud processing to optimize latency, task prioritization, and resource utilization, certain 

limitations persist, particularly under extreme real-time constraints. These limitations are 

aligned with relevant conditions of the complexity of Dynamic Supply Chain 

environments, where unpredictable task patterns, stringent real-time requirements, and 

network variability can pose challenges. 

The Equation's notable strength lies in its ability to efficiently handle predictable 

task arrival patterns and distribute workloads through processor scaling. The simulations 

demonstrate that the system effectively reduces queuing delays and local latency for 
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moderate task rates and appropriately scaled resources. It is particularly evident in 

operational scenarios such as inventory management, predictive maintenance, and dynamic 

routing, where localized processing enhances responsiveness while reducing dependency 

on Cloud infrastructure. The results underscore the Priority Equation's capacity to achieve 

real-time decision-making within acceptable latency ranges, ensuring optimal performance 

for tasks with moderate time constraints. 

Additionally, the Equation's sensitivity to real-time thresholds highlights its 

versatility across diverse supply chains. The equation consistently facilitates local 

processing with minimal delays in scenarios with relaxed thresholds – such as Smart 

Agriculture (100 – 300 ms) and Smart City systems (50 – 150 ms). Even in IIoT 

applications, where thresholds range between 20 – 100 ms, the Equation demonstrates 

robust performance when processor count and service rates are scaled to meet demand. 

This adaptability positions the Equation as a tool for optimizing latency-sensitive 

operations in the Supply Chain, mainly where local processing can reduce reliance on 

centralized cloud systems. 

However, while the Equation performs well in moderate real-time environments, 

the simulations highlight ongoing challenges under stringent latency requirements for 

extreme use cases such as autonomous robotics and high-speed industrial automation. 

These scenarios reveal that the system may require further optimization to meet such 

demanding constraints consistently. Potential improvements include increasing the number 

of processors, enhancing service rates, and reducing task variability to mitigate queuing 

delays and ensure tasks are processed within the stringent time frames. 

The Equation's reliance on predefined task priorities serves as a structured resource 

allocation approach while allowing for dynamic adjustments based on real-time system 

conditions. The predefined thresholds, such as Treal-time and s, enable the system to 
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categorize and process tasks efficiently, ensuring that time-sensitive tasks are handled at 

the Fog/Edge network while others are offloaded as needed. Although task prioritization 

follows a systematic framework, real-world supply chain operations involve shifting 

priorities due to unexpected disruptions and varying demand patterns. The Equation 

inherently adapts by continuously assessing task arrival rates, processor availability, and 

system utilization to determine optimal task distribution. However, further refinement 

could enhance its responsiveness by integrating adaptive mechanisms that adjust task 

priorities dynamically based on workload fluctuations and evolving operational needs. By 

incorporating such enhancements, the Equation can optimize real-time task allocation, 

ensuring critical processes consistently receive the necessary resources while maintaining 

system efficiency. 

Furthermore, while transmission delay remains a factor in Cloud offloading, the 

Priority Equation provides a structured framework for prioritizing tasks based on latency 

and real-time requirements. The simulations indicate that, under stable network conditions, 

the Equation effectively integrates Edge and Cloud processing to balance workload 

distribution while maintaining operational efficiency. Nevertheless, in supply chain 

environments characterized by network variability or geographically distributed 

infrastructure, the sensitivity of the Equation to transmission delays may require further 

consideration to optimize performance under less stable conditions. 

Finally, security and data privacy considerations remain outside the scope of this 

study. The focus on latency and efficiency does not incorporate security mechanisms for 

data protection, access control, or cyber threats, which are critical in Supply Chain 

Operations. Future research should explore how priority-based task allocation integrates 

with secure computing protocols to ensure resilience against cybersecurity threats. 
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In order to overcome these limitations, future work should focus on real-world 

implementation and empirical validation of the Priority Equation within live Supply Chain 

Networks. The testing and implementation would provide a deeper understanding of 

practical performance metrics, including real-time latency fluctuations and hardware 

constraints. Additionally, adaptive task prioritization models should incorporate machine 

learning techniques to predict workload variations dynamically, enabling more efficient 

task distribution without excessive recalibration overhead. 

Expanding the research to cover industry-specific adaptations of the Priority 

Equation will enhance its applicability across various domains. Additionally, integrating 

the framework with blockchain-based security models could strengthen data integrity and 

authentication mechanisms, ensuring secure and efficient task processing across 

decentralized IoT environments. Extending the model to multi-cloud architectures will 

provide insights into optimizing computational workloads across heterogeneous cloud 

service providers, enhancing scalability and cost-effectiveness for Enterprise-level Supply 

Chain Operations. 

 

3.9 Conclusion  

In conclusion, the Priority Equation effectively optimizes latency-sensitive Supply 

Chain operations by leveraging local processing for moderate task rates and dynamically 

offloading excess workloads to the Cloud under high demand. The results underscore the 

Equation's scalability, latency reduction, and task prioritization strengths across a range of 

real-world applications, including wearable devices, smart cities, and IIoT environments. 

While local processing consistently delivers superior performance with minimal latency, 

the equation's ability to integrate Cloud processing ensures system resilience and 

scalability under increased task loads. These findings highlight the Priority Equation as an 
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adaptable framework for improving real-time decision-making and operational efficiency 

in Modern Supply Chain Systems. Future enhancements, such as adaptive task 

reprioritization and further system optimization, can address challenges in extreme real-

time scenarios, further solidifying its practical applicability in dynamic and latency-

sensitive environments. 
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CHAPTER IV:  

RESULTS 

4.1 Research Question One 

How does a priority-based task allocation equation affect latency and resource 

utilization in a multi-layered supply chain system? 

The Priority Equation for Real-Time Supply Chain represents a structured, priority-

based task allocation mechanism that optimizes latency management and resource 

utilization within multi-layered supply chain environments. This equation dynamically 

distributes computational tasks across local processing layers (Edge/Fog) and remote 

processing layers (Cloud), ensuring that real-time, latency-sensitive tasks are prioritized 

for execution closer to the data source while non-urgent tasks are offloaded to higher-

capacity, centralized computing environments. By incorporating queuing models, 

threshold-based decision-making, and dynamic workload distribution, this approach 

mitigates network congestion, prevents resource bottlenecks, and enables supply chain 

systems to operate with greater efficiency, responsiveness, and adaptability to fluctuating 

task loads. 

The adaptive nature of this equation allows it to respond dynamically to changing 

system conditions, such as varying task arrival rates, processing capacities, and network 

bandwidth constraints. By leveraging real-time task prioritization, the Equation ensures 

that high-priority operations – such as order processing, inventory tracking, and logistics 

coordination – are executed with minimal latency while balancing system load to prevent 

resource exhaustion. The intelligent distribution mechanism enhances scalability, allowing 

Supply Chain infrastructures to accommodate growing data volumes and increasing task 

complexities without suffering from performance degradation. 
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From a resource utilization perspective, the Priority Equation optimally distributes 

computational workloads based on system utilization factors, ensuring that processors at 

the Edge/Fog layer operate within an optimal efficiency range before tasks are redirected 

to the Cloud. This targeted allocation prevents underutilization of local resources while 

also minimizing unnecessary Cloud processing costs, a critical factor for organizations 

aiming to reduce computational overhead and energy consumption. Additionally, the 

ability to balance processing loads across different computational layers ensures that 

available resources are leveraged in the most effective manner, enhancing overall system 

throughput and stability. 

The multi-layered nature of modern supply chain networks, driven by the 

conception of IoT devices, robotics, and AI-driven automation, requires real-time, data-

driven decision-making. The Priority Equation, by design, supports distributed processing 

frameworks that enable seamless interaction between sensor-driven edge devices, 

intermediate fog nodes, and high-capacity cloud infrastructures. It ensures that critical 

supply chain operations maintain low-latency execution, particularly in time-sensitive 

environments such as warehouse automation, fleet tracking, and demand forecasting. 

Furthermore, the equation’s scalability and resilience allow multi-layered supply 

chain systems to handle diverse workloads with predictable and optimized performance. 

Its dynamic allocation strategy facilitates faster decision-making, improved task execution 

efficiency, and better resource allocation, ultimately enhancing the overall operational 

intelligence of real-time supply chain ecosystems. As a result, businesses can achieve 

greater agility, reduced processing delays, and a more cost-effective computational 

framework, all of which contribute to improved efficiency in handling complex and rapidly 

evolving Supply Chain Operations. 
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4.2 Research Question Two 

What role do dynamic thresholding and queuing theory play in optimizing task 

prioritization within Edge/Fog computing environments? 

Dynamic thresholding and Queuing Theory (Ibrahim et al., 2022; Willig, 1999) 

serve as fundamental components in optimizing task prioritization within Edge and Fog 

computing environments, enabling intelligent workload distribution and efficient system 

operation. Dynamic thresholding refers to the real-time adjustment of task processing and 

offloading thresholds based on key system conditions such as task arrival rates, processor 

utilization levels, network latency, and system congestion levels. This adaptive mechanism 

ensures that computational resources are allocated dynamically, allowing Edge/Fog nodes 

to operate within optimal performance parameters while mitigating the risk of overloading 

or underutilizing processing nodes. 

By contrast, Queuing Theory provides the mathematical framework necessary to 

model, analyze, and optimize task-handling strategies within distributed computing 

systems. It enables precise estimations of waiting times, processing delays, and overall 

system utilization, thereby guiding the development of efficient task allocation policies. In 

Edge/Fog computing environments, where computational resources are fundamentally 

diverse and geographically distributed, Queuing Theory facilitates the optimization of 

scheduling mechanisms by determining the most effective allocation of tasks across local 

processing nodes (Edge/Fog) and remote high-performance computing infrastructures 

(Cloud). These queuing-based models allow for real-time assessment of service rates, 

response times, and queue length variations, ensuring that computational loads are 

effectively balanced across the system. 

The integration of dynamic thresholding and Queuing Theory-based workload 

management enables scalable, latency-efficient, and resource-aware computing. Dynamic 
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thresholding adjusts task allocation decisions based on real-time system constraints, 

preventing task queues from exceeding critical thresholds while ensuring that latency-

sensitive tasks remain within acceptable execution timeframes. In Edge/Fog environments, 

where computing nodes must process diverse workloads with varying degrees of urgency, 

this real-time adaptability ensures that high-priority tasks receive immediate processing 

while lower-priority tasks are scheduled efficiently to avoid bottlenecks. 

Queuing models, mainly M/M/1, M/M/c, and M/G/c (Mohamed et al., 2022), 

provide the necessary theoretical foundation for predicting and managing system 

congestion, allowing Edge/Fog systems to dynamically adjust task distribution policies 

based on queue length estimations, task service times, and expected computational loads. 

By integrating probabilistic queuing techniques with threshold-based dynamic scheduling, 

Edge/Fog computing environments benefit from enhanced workload predictability, 

reduced processing delays, and improved system responsiveness. 

Furthermore, the interchange between dynamic thresholding and queuing-based 

task management ensures high adaptability to fluctuating workload conditions, particularly 

in applications where task priorities shift dynamically, such as smart logistics, real-time 

sensor data analysis, and automated industrial workflows. By adjusting offloading 

decisions based on queue congestion levels and computing node availability, the system 

prevents unnecessary task transmission delays and optimizes end-to-end processing 

efficiency. 

The collaborative effect of these two mechanisms fosters scalability and resilience 

in Edge/Fog architectures, allowing systems to scale computational workloads across 

multiple layers while maintaining low-latency task execution as well as ensuring that real-

time computing environments, particularly those in Supply Chain Automation, Smart City 
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Infrastructures, and Autonomous Systems, remain responsive and efficient under variable 

load conditions. 

 

4.3 Research Question Three 

How does integrating Edge/Fog and Cloud computing improve the scalability and 

responsiveness of supply chains in real-time, high-data environments? 

Integrating Edge, Fog, and Cloud computing provides a scalable, efficient, and 

responsive framework for managing high-volume, real-time data processing within modern 

supply chains by strategically distributing computational tasks across different layers. This 

integration minimizes latency, enhances system agility, and ensures Supply Chains remain 

resilient despite variable demand fluctuations, network congestion, and evolving 

processing constraints. 

A key advantage of this hierarchical model is proximity to data sources, where Edge 

computing processes data directly at its origin. This localized processing capability is 

critical in Supply Chain operations, as it allows for immediate analysis and execution of 

time-sensitive tasks, such as inventory updates, sensor-triggered alerts, and automated 

quality control measures. By bypassing the need for centralized Cloud transmissions, Edge 

computing significantly reduces data transfer latency and allows mission-critical actions to 

be executed in real-time. This aspect is particularly beneficial in environments such as 

Automated Warehouses, Smart Logistics, and IIoT systems, where quick responsiveness 

is essential for maintaining operational continuity. 

Beyond localized execution, Fog computing serves as an intermediary processing 

layer, bridging the gap between Edge devices and Cloud infrastructure. By aggregating, 

filtering, and pre-processing data from multiple sources, Fog computing prevents Edge 

devices from becoming overwhelmed with computational loads while simultaneously 
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reducing unnecessary data transmissions to the Cloud. This distribution of computational 

tasks across Fog nodes enables real-time analytics for semi-complex operations, such as 

predictive maintenance, demand forecasting, and dynamic resource allocation, all of which 

contribute to better decision-making and improved supply chain efficiency. By 

dynamically adapting to increasing data volumes, Fog computing ensures that workloads 

are balanced across available processing nodes, reducing bottlenecks and enhancing the 

overall scalability of the system. 

At the highest level of this architecture, Cloud computing provides centralized 

analytics, large-scale data storage, and long-term operational intelligence. Unlike Edge and 

Fog computing, which handle time-sensitive, real-time data processing, the Cloud supports 

strategic, large-scale decision-making through advanced computational capabilities. 

Cloud-based AI-driven analytics, historical data modeling, and Global Supply Chain 

monitoring allow managers to synchronize operations, forecast demand, and optimize 

logistical workflows across geographically distributed networks. With virtually unlimited 

scalable resources, Cloud computing ensures supply chain decision-makers have access to 

comprehensive, high-resolution insights that inform immediate tactical adjustments and 

long-term strategic planning. 

This study confirms that integrating Edge, Fog, and Cloud computing is essential 

for ensuring modern supply chains' scalability, responsiveness, and efficiency. Future 

research should explore how AI-driven workload orchestration, blockchain-enhanced 

security, and federated learning models can further optimize the interactions between these 

computational layers, enabling next-generation supply chains to operate with even greater 

intelligence, efficiency, and adaptability in high-data environments. 
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4.4 Summary of Findings 

 The findings underscore the transformative impact of integrating advanced 

computational models and distributed architectures in supply chain management built on a 

priority task allocation that reduces latency and optimizes resource utilization. The 

Formula uses dynamic thresholding and queuing theory, enabling adaptive task 

prioritization and workload management in Edge/Fog environments. The interaction 

between Edge/Fog and Cloud computing enhances the scalability and responsiveness of 

supply chains, making them robust and efficient in real-time, high-data environments, and 

it provides a foundation for advanced supply chain technologies, ensuring they meet the 

demands of increasingly complex and dynamic global operations. 

 

4.5 Conclusion 

This research highlights the transformative role of advanced computational models, 

particularly the Priority Equation, in mitigating latency and optimizing real-time decision-

making within modern supply chain systems. The study demonstrates how adaptive 

workload distribution across Edge/Fog and Cloud computing layers significantly enhances 

system responsiveness and scalability by integrating Queuing Theory, dynamic 

thresholding, and task prioritization. 

The findings emphasize that while processor scaling and service rate optimization 

contribute to performance improvements, they reach a saturation point where additional 

computing resources yield diminishing returns. Particularly, increasing Treal-time to 100 ms 

resulted in a sharp drop in system utilization (ρ=4.08%), reinforcing the principle that 

additional processors contribute minimally to performance gains beyond a certain 

threshold. However, the research underscores that Cloud offloading remains essential in 

extremely high-load conditions, particularly in industrial IoT (IIoT) applications. The 
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balance between local and remote processing requires dynamic resource allocation 

strategies that adjust c (processor count), μ (service rate), and Treal-time (real-time task 

threshold) based on fluctuating workloads. 

A novel contribution of this study is the introduction of Critical Path Analysis 

(CPA) for Cloud selection, ensuring that tasks are allocated to the closest and fastest Cloud 

node to minimize transmission delays when offloading is necessary. This approach 

enhances the efficiency of hybrid supply chain architectures by integrating proximity-

based Edge processing with latency-aware Cloud selection mechanisms. 

From a practical standpoint, the study provides a scalable framework applicable to 

Smart Logistics, Healthcare, Manufacturing, and City, where latency-sensitive, high-

frequency data processing is crucial. By dynamically adapting task allocation, the Priority 

Equation ensures that supply chains remain agile, resilient, and capable of handling large-

scale, data-intensive operations. 

Future research should consider adaptive scheduling algorithms by developing 

machine-learning-driven models to dynamically tune Treal-time, ρ, and offloading thresholds 

based on historical workload patterns. Another consideration is multi-cloud optimization, 

which can be done by experimenting with the Critical Path selection to incorporate real-

time Cloud performance monitoring, ensuring optimal offloading decisions. Security and 

Blockchain Integration is another option for enhancing data integrity and transparency in 

distributed Edge-Fog-Cloud systems. 
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CHAPTER V:  

DISCUSSION 

5.1 Discussion of Results 

The results in this study highlight the impact of a priority-based task allocation 

framework on improving latency management, resource utilization, and overall system 

efficiency within a multi-layered Supply Chain computing environment. The results 

indicate that Edge/Fog computing significantly reduces latency by prioritizing local real-

time task execution while dynamically offloading non-urgent tasks to the Cloud. This 

approach enables adaptive workload balancing, preventing high-demand supply chain 

operations bottlenecks and ensuring efficient computational resource utilization. 

The Priority Equation, designed using Queuing Theory and dynamic thresholding, 

effectively optimizes task prioritization by ensuring that latency-sensitive processes remain 

within the Edge/Fog layers while less time-critical workloads are offloaded based on 

system congestion and real-time availability of computational resources. The experimental 

findings demonstrate that scalability and responsiveness improve when adjusting task 

allocation decisions. Increasing the real-time processing threshold to reduce system 

utilization significantly confirms that excessive provisioning of computational resources 

beyond a critical threshold does not necessarily lead to performance gains. 

From a latency perspective, the research confirms that the integration of proximity-

based processing through Edge/Fog computing achieves lower transmission delays and 

better real-time responsiveness than traditional cloud-centric Supply Chain models. 

Reducing network congestion and processing delays ensures that critical supply chain data 

– such as inventory tracking, fleet monitoring, and demand forecasting – is processed 

efficiently without experiencing major transmission bottlenecks. 
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Regarding resource utilization, the study underscores that a balanced hybrid 

approach between local and remote computing optimizes system performance. The system 

dynamically shifts computational workloads to the Cloud when the utilization factor 

surpasses a predefined threshold. However, maintaining a well-optimized Edge/Fog layer 

reduces dependency on centralized Cloud processing, leading to lower bandwidth 

consumption and improved energy efficiency. The findings further suggest that processor 

scaling and service rate adjustments significantly improve latency and throughput until 

reaching a saturation point, after which additional processing power yields diminishing 

returns. 

 

5.2 Discussion of Research Question One 

• How does a priority-based task allocation equation affect latency and resource 

utilization in a multi-layered supply chain system? 

The "Priority Equation for Real-Time Supply Chain" uses a dynamic approach to 

balance task load between local (Edge/Fog) and remote (Cloud) processing layers in a 

supply chain system. By prioritizing tasks based on their urgency and processing 

requirements, the Equation ensures that critical tasks are processed locally to minimize 

latency while less urgent tasks are offloaded to the Cloud to optimize resource utilization. 

This dynamic distribution helps maintain low latency for time-sensitive operations and 

efficiently uses available resources, demonstrating the equation's effectiveness in 

enhancing real-time processing capabilities in multi-layered supply chain systems. 

 

5.3 Discussion of Research Question Two 

What role do dynamic thresholding and Queuing Theory play in optimizing task 

prioritization within Edge/Fog computing environments? 
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Dynamic thresholding and Queuing Theory are pivotal in optimizing task prioritization 

within Edge/Fog computing by enabling real-time adjustments and efficient resource 

management. Dynamic thresholding allows the system to adapt quickly to changing 

conditions by adjusting task processing and offloading thresholds based on current 

demands. Queuing Theory provides a mathematical framework to analyze and predict task-

processing behaviors, ensuring that resources are allocated efficiently and effectively. 

 

5.4 Discussion of Research Question Three 

How can the integration of Edge, Fog, and Cloud computing improve the 

scalability and responsiveness of supply chains in real-time, high-data environments? 

The integration of Edge/Fog and Cloud computing enhances the scalability and 

responsiveness of Supply Chains by enabling distributed data processing, real-time 

decision-making, and seamless task allocation across computing layers. This synergy 

addresses the challenges of managing high volumes of data and meeting real-time 

requirements in dynamic, complex supply chain environments. Key takeaways are the 

proximity to data sources where Edge computing processes data close to its origin, 

minimizing latency and enabling rapid responses to critical events (e.g., sensor alerts, 

inventory updates). Low latency by bypassing the need to send data to centralized Cloud 

servers, Edge computing reduces transmission delays, ensuring real-time actions. Local 

decision-making for tasks that require immediate attention, such as quality control or real-

time routing adjustments, is handled at the Edge for faster execution. Fog computing acts 

as a bridge between Edge devices and the Cloud, aggregating and analyzing data from 

multiple sources for pre-processing and filtering, distributing the computational load by 

reducing the risk of bottlenecks and enabling the system to scale dynamically with 

increasing data volumes. Fog nodes can handle semi-complex tasks (e.g., predictive 
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maintenance and resource allocation) by improving responsiveness without overloading 

the cloud layer. Cloud computing is used for centralized analytics where scalable resources 

are virtually unlimited. It can process large datasets, run advanced analytics, store historical 

information, and act as a centralized monitoring and coordination system by providing 

supply chain managers with a comprehensive overview of operations. 
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CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

The research investigates the integration of Edge/Fog and Cloud computing within 

Supply Chain Management to address the challenges posed by latency, resource allocation, 

and real-time task prioritization. Traditional cloud-centric models, while scalable, often 

suffer from high latency due to data transmission overhead, making them inadequate for 

real-time supply chain operations. In contrast, Edge and Fog computing enables proximity-

based processing, reducing response times by executing tasks closer to data sources. 

However, effectively balancing local and remote processing remains a critical challenge. 

This research's core is the Priority Equation, a dynamic task allocation model that 

integrates Queuing Theory, real-time thresholding, and resource utilization metrics to 

optimize computational efficiency. The equation prioritizes tasks based on urgency and 

workload conditions, ensuring that latency-sensitive tasks are processed locally while 

lower-priority tasks are offloaded to the Cloud only when necessary. This approach 

improves operational efficiency, scalability, and system responsiveness by preventing local 

processor congestion while reducing unnecessary Cloud dependency. 

The study establishes a mathematically scalable Supply Chain framework that 

dynamically adjusts task distribution, prioritization, and processing thresholds based on 

real-time system conditions. Future research should explore machine learning-driven task 

scheduling, multi-cloud optimization, and energy-efficient Fog computing to enhance the 

adaptability and sustainability of real-time supply chain operations.  
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6.2 Implications 

The research has significant implications for theoretical advancements and 

practical applications in Supply Chain Management, particularly in optimizing real-time 

computational efficiency through Edge/Fog and Cloud computing. The development and 

application of the Priority Equation demonstrate how advanced computational models can 

revolutionize task prioritization and latency management, leading to more agile and 

scalable supply chain systems. 

One of the key implications of this study is the shift from traditional cloud-

dependent architectures to decentralized computing models that prioritize real-time data 

processing at the Edge/Fog layers. Organizations can mitigate network congestion, 

minimize latency, and improve overall system efficiency by reducing reliance on the 

Cloud. This shift is particularly beneficial for latency-sensitive applications in logistics, 

industrial IoT (IIoT), and real-time monitoring systems, where timely decision-making is 

crucial. 

The study also provides a scalable computational framework that can be applied 

across various industries. The integration of Queuing Theory, dynamic thresholding, and 

workload distribution ensures that the model remains adaptable under different workload 

conditions, making it applicable not only in supply chain management but also in Smart 

Cities, Healthcare, and Autonomous Systems. The Priority Equation facilitates proactive 

resource allocation, preventing computational bottlenecks and ensuring optimal utilization 

of processing power across Edge/Fog and Cloud layers. 

From a technological perspective, the findings underscore the importance of real-

time adaptive scheduling in distributed computing environments. The results indicate that 

processor scaling and service rate optimization significantly improve latency performance 

up to a certain threshold, beyond which additional computational resources yield 
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diminishing returns. This aspect directly impacts designing and deploying scalable supply 

chain architectures, where organizations must carefully evaluate resource allocation 

strategies to avoid over-provisioning or underutilization. 

Furthermore, the study highlights the interdisciplinary nature of Modern Supply 

Chain Optimization, bridging computational science, network engineering, and operations 

research. The findings suggest that future supply chain models will increasingly rely on 

mathematical optimization techniques, AI-driven scheduling mechanisms, and predictive 

analytics to adapt dynamically based on changing operational demands. 

From a business standpoint, the research presents evidence that investing in Edge 

and Fog computing infrastructure can yield long-term operational efficiencies. 

Organizations can achieve lower operational costs, reduced energy consumption, and 

improved real-time performance by reducing dependency on Cloud-based processing. 

Additionally, intelligent workload distribution can enhance Supply Chain resilience, 

ensuring that critical data remains accessible even during network failures or high-demand 

scenarios. 

 

6.3 Recommendations for Future Research 

The findings of this study underscore the transformative potential of real-time 

priority-based task allocation in Supply Chain Management. While the Priority Equation 

enhances efficiency in latency-sensitive environments by leveraging Edge/Fog and Cloud 

computing, several avenues remain open for further exploration. The following 

recommendations outline critical areas for future research: 

Adaptive Machine Learning Integration for Task Prioritization - The current model 

optimizes task allocation using Queuing Theory and predefined priority thresholds. Future 

research should explore machine learning (ML) and artificial intelligence (AI)-driven 
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models that dynamically adjust task priorities based on evolving workloads. Integrating 

reinforcement learning or deep learning algorithms could allow the system to self-optimize 

and predict task congestion points, making intelligent task distribution decisions without 

manual recalibration. 

Dynamic Offloading Strategies with Predictive Analytics - While the Priority 

Equation provides a structured framework for dynamic task offloading, predictive analytics 

can further improve efficiency. Future research should focus on proactive offloading 

models that anticipate workload surges based on historical data patterns. Another 

alternative is incorporating forecasting algorithms that dynamically adjust offloading 

thresholds (s) or exploring context-aware decision-making to factor in real-time network 

conditions, bandwidth availability, and computational capacity at the Edge/Fog and Cloud 

layers. 

Enhancing Real-Time Latency Models with Edge AI - As real-time supply chain 

operations increasingly depend on Edge AI, future research should explore deploying 

lightweight AI models within Edge nodes to enhance task prioritization. Additionally, 

studies should examine the impact of low-power AI accelerators on reducing local 

processing time while maintaining real-time responsiveness. Furthermore, investigating 

how Edge AI can minimize reliance on Cloud computing in high-data-velocity 

environments will be essential for optimizing efficiency and scalability. 

Multi-Cloud Optimization Using Critical Path Analysis - Given that cloud offloading 

remains essential in high-demand scenarios, Critical Path Analysis (CPA) should be 

integrated to determine the closest and fastest Cloud provider for task execution. Achieving 

this requires the development of algorithms that select the optimal Cloud node based on 

factors such as network latency, processor availability, and cost. Additionally, multi-cloud 

computing should be explored to enable seamless workload balancing across distributed 
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Cloud environments. Another crucial area of investigation is the use of blockchain-based 

smart contracts, which can automate Cloud selection processes and ensure transparency in 

processing times, further optimizing real-time supply chain operations. 

Energy Efficiency and Sustainability in Fog Computing - Fog computing offers real-

time processing benefits but also increases energy consumption. Future research should 

focus on developing energy-efficient scheduling algorithms that optimize processor 

utilization while maintaining system performance. Additionally, investigating the 

feasibility of renewable energy-powered Fog nodes could enhance sustainability in Supply 

Chain Operations, reducing dependency on traditional energy sources. Another important 

aspect is assessing the trade-offs between energy consumption, latency, and task 

throughput, which could lead to developing a Green Fog Computing Model that balances 

efficiency with environmental sustainability. 

Integration with 6G and Next-Generation Networks - The emergence of 6G 

networks and next-generation terahertz communication technologies will significantly 

impact task prioritization and offloading efficiency. Future studies should explore the role 

of ultra-low-latency 6G networks in enhancing real-time task execution, ensuring faster 

and more reliable processing in Supply Chain Operations. Additionally, research should 

examine the impact of network slicing on dynamic task allocation, allowing for more 

efficient resource distribution based on workload demands.  

While the Equation can enhance computational efficiency by leveraging Edge/Fog 

computing and adaptive task offloading, it also presents limitations that may affect its 

applicability across different industries. Improvements from the examples above can 

enhance equation adaptability. In contrast, specific industries pose challenges due to 

extreme latency constraints, computational complexity, or reliance on ultra-fast cloud 

interactions where autonomous vehicles and high-speed transportation require real-time 
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decision-making processing at sub-millisecond latency. High-frequency trading (HFT), 

particularly in algorithmic trading, demands nanosecond-level execution speeds, which 

Edge/Fog architectures may not support efficiently, and Financial Risk Analytics where 

the Equation queuing-based prioritization model may not align with the real-time risk 

assessment needs of financial institutions, where market conditions shift unpredictably and 

require instantaneous execution are a few examples.  

The Equation enhances latency-sensitive task allocation in controlled industrial 

environments such as smart healthcare, pharmaceutical logistics, industrial automation, 

and smart city infrastructure. Future advancements, including machine learning-driven 

adaptive prioritization, multi-cloud workload optimization, and energy-efficient 

scheduling algorithms, will expand the Equation's applicability across more complex, real-

time decision-making industries. 

 

6.4 Conclusion 

The Priority Equation, supported by Queuing Theory, real-time thresholding, and 

dynamic workload distribution, introduces a framework for balancing local and remote task 

processing within supply chain environments. Through computational modeling and 

empirical analysis, the study has established that decentralized computing model – 

particularly those integrating Edge and Fog computing – substantially mitigate network 

congestion, reduce latency, and diminish reliance on centralized Cloud architectures by 

distributing computational workloads across multiple layers. This approach enhances real-

time supply chain systems' agility, scalability, and operational efficiency. 

The findings highlight the effectiveness of the Priority Equation in optimizing task 

allocation across varied computing layers, ensuring that latency-sensitive tasks are 

processed locally, whereas non-critical workloads are offloaded in a way that prevents 
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bottlenecks and maximizes resource utilization. The ability of the framework to adapt 

dynamically to changing system conditions ensures that computational resources are 

allocated in real-time based on actual workload demands. This adaptability is essential in 

high-velocity data environments, where variations in task arrival rates and processing 

capacities necessitate a fluid and responsive prioritization strategy. 

Beyond the Supply Chain Management domain, the study's implications extend to 

broader fields, including Smart Cities, Healthcare, Autonomous Systems, and Logistics. 

Each sector relies heavily on real-time data processing and intelligent workload distribution 

to optimize operations, improve decision-making, and ensure system resilience. The results 

suggest that organizations within these domains should strategically invest in Edge and 

Fog computing infrastructure to enhance computational proximity, reduce operational 

costs, and improve real-time responsiveness. Further integrating a multi-cloud architecture 

is recommended to increase system flexibility and decrease idleness. 

The study also validates key theoretical insights presented in recent literature on 

fog-enabled IoT networks, such as Queuing Models with general service times and the 

impact of offloading thresholds on system performance (Ibrahim et al., 2022). The 

empirical findings align with the work of King Saud University researchers, who 

emphasize that a well-structured offloading mechanism, combined with an adaptive 

priority-based framework, is essential for sustaining performance in latency-sensitive 

applications. The Priority Equation’s ability to adjust to network conditions, distribute 

workloads efficiently, and maintain a low-latency environment reinforces its suitability for 

modern distributed computing systems. 

Strategically, organizations aiming to transition from cloud-dependent 

architectures to decentralized computing models should adopt real-time workload 

management principles. The study provides strong empirical support for shifting away 
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from traditional cloud-centric models, which often introduce prohibitive latency and 

bandwidth limitations, toward a more localized processing paradigm that prioritizes 

efficiency and real-time adaptability. Future research should explore the extension of the 

model into hybrid computational environments that leverage AI-driven task scheduling and 

predictive analytics to refine workload distribution further and enhance system resilience 

in dynamic, data-intensive applications. 
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