
i

ANALYSIS OF DIGITAL TRANSFORMATION OVER AGILE DELIVERY OF

COMPLEX PROJECT MANAGEMENT INCLUDING OF CLOUD, AI AND

BLOCKCHAIN TECHNOLOGIES

By

VIPUL TIWARI

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

in Partial Fulfillment

Of the Requirements

for the Degree

DOCTOR OF BUSINESS ADMINISTRATION

DBA

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

April 2025

ii

ANALYSIS OF DIGITAL TRANSFORMATION OVER AGILE DELIVERY OF COMPLEX

PROJECT MANAGEMENT INCLUDING OF CLOUD, AI AND BLOCKCHAIN

TECHNOLOGIES

By

VIPUL TIWARI

APPROVED BY

PhD (Member)

RECEIVED/APPROVED BY:

Admissions Director

iii

Candidate’s Declaration

I hereby certify that the work presented in this thesis, entitled:

ANALYSIS OF DIGITAL TRANSFORMATION OVER AGILE DELIVERY OF

COMPLEX PROJECT MANAGEMENT INCLUDING OF CLOUD, AI AND

BLOCKCHAIN TECHNOLOGIES

For the award of the degree of Doctor of Business Administration, submitted to the Swiss School

of Business and Management (Geneva), is an authentic record of my own work carried out under

the supervision of Prof. Dr. Tamara Gajić (PhD), Professor at the Swiss School of Business

Management (Geneva). The material presented in this thesis has not been submitted by me for

the award of any degree or diploma from this or any other university or institute.

Vipul Tiwari, April 2025

Signature

iv

Acknowledgments

This journey's end brings me immense gratitude for the help, advice, and encouragement that

have fueled my progress and motivated me to reach the finish line.

I am deeply indebted to my parents, my wife Sumitra Tiwari and my son Vihaan Tiwari whose

unwavering emotional support and encouragement from afar served as a beacon of strength,

motivating me to push through the difficulties of this academic pursuit.

My heartfelt thanks go to Prof. Dr. Tamara Gajic, whose outstanding supervision and expert

advice were essential in navigating the complexities of this research. Her mentorship provided

timely guidance and support, greatly enriching the quality and validity of this work.

I appreciate the valuable input and feedback provided by Kanchan Sharma throughout this

research, which helped refine the study and strengthen its conclusions.

My thanks also go to Shruti Gupta, Prachi Tripathi, Arpit Dubey and Ashutosh whose expert

feedback and discerning observations enriched the analysis and findings of this research.

This accomplishment would not have been possible without the help and support of countless

individuals - to each of you, I express my deepest gratitude and acknowledge that this success is

as much a reflection of your efforts as it is my own.

v

ABSTRACT

VIPUL TIWARI

April,2025

Dissertation Chair

Dr. Anna Provodnikova

Co-Chair

Dr. Tamara Gajic

Host

Dr. Apostolos Dasilas

Digital transformation has radically remodeled the landscape of complex project management,

particularly in Agile delivery frameworks. This research investigates the impact of Cloud

Computing, Artificial Intelligence (AI), and Blockchain technologies on Agile methodologies

used for management large-scale, high-complexity projects. By scrutinizing real-world

applications, the study highlights how digital transformation develops Agile delivery through

automation, real-time data handling, predictive analytics, and distributed security.

The paper discovers key factors manipulating Agile success in digitally converted environments,

including adaptive planning, continuous integration, and cross-functional collaboration.

Additionally, it recognizes challenges such as scalability, data privacy concerns, and

interoperability when combining these evolving technologies. By providing perceptions into best

practices and strategic frameworks, this research intends to assist organizations in augmenting

Agile methodologies for improved project effectiveness, risk alleviation, and innovation-driven

growth.

Keywords: Digital Transformation, Agile Project Management, Cloud Computing, Artificial

Intelligence (AI), Blockchain Technology, Complex Project Delivery, Continuous Integration,

Predictive Analytics, Automation in Agile, Risk Mitigation

vi

TABLE OF CONTENTS

CHAPTER - I

1.1 Introduction to project management .. 1

1.2 History of Software engineering revolution .. 3

1.2.1. Timeline: before software engineering… ... 4

1.2.2. 1945 to 1965: The roots .. 4

1.2.3. 1965 to 1985: The software catastrophe epoch ... 4

1.2.4. 1985 to 1989: Sustainable structure development .. 5

1.2.5. 1990 to 1999: Fame of the Internet .. 5

1.2.6. 2000 and beyond: Trivial practices.. 5

1.3 The History of digital transformation .. 6

1.3.1. Pre-Internet era (1950 – 1989) ... 6

1.3.2. Post-Internet era (1990 - 2006).. 6

1.3.3. Mobile era (2007 – 2019) .. 7

1.3.4. Post-pandemic era (2020 – 2022) ... 8

1.3.5. Generative AI era (2022 – Present) .. 8

1.4 Problem statement ... 11

1.5 Research Objective ... 13

1.6 Research gap with past and existing software deliveries ... 14

1.7. Plan of conducting research .. 15

1.7.1. Research design... 16

1.7.2. Research method .. 16

1.7.3. Sample size .. 17

CHAPTER - II

2.1 Traditional project management ... 18

2.2 Traditional project management method… .. 21

2.3 Limitations of the traditional project-management methodology ... 22

2.4 Introduction to agile software development ... 23

vi
i

2.5 Requirement engineering in agile software development .. 25

2.6 Aim of agile software development... 27

2.7 Agile software development life cycle.. 29

2.8 Software development lifecycle of popular agile delivery methods ... 35

2.9 Best practices for each agile stage ... 39

2.10 Best practices for successfully using the agile SDLC.. 41

2.11 Challenges in agile software deliveries method .. 42

2.12 Overcoming Challenges in Agile Environments .. 48

2.12.1. Managing distributed teams agilely… ... 48

2.12.2. Balancing speed with quality assurance .. 49

2.13 Comparison between agile models & traditional models .. 50

2.14 Major benefits of agile over the traditional approach ... 53

2.15 Chapter summary.. 54

CHAPTER - III

3.1 The waterfall method: a traditional approach to software development 56

3.1.1. Introduction… .. 56

3.1.2. Limitations of the waterfall method in project management… 57

3.1.3. Why the waterfall model is not suitable for modern project management… 59

3.1.4. When to use waterfall method… ... 59

3.1.5. Advantage of waterfall method… .. 60

3.1.6. Disadvantage of waterfall method .. 61

3.2 The spiral model in software development .. 62

3.2.1. Introduction to the spiral model… .. 62

3.2.2. Working principle of the spiral model… .. 64

3.2.3. Characteristics of the spiral model… ... 65

3.2.4. Advantages of the spiral model ... 66

3.2.5. Disadvantages of the spiral model… ... 66

3.2.6. Applicability to large projects ... 67

vi
ii

3.2.7. When to use spiral method… .. 67

3.2.8. Summary .. 68

3.3 The scrum agile method: a comprehensive overview… ... 68

3.3.1. Introduction… ... 68

3.3.2. Importance of scrum in agile methodology .. 70

3.3.3. Sprint planning in scrum… ... 71

3.3.4. Team size in scrum ... 74

3.3.5. Advantages of scrum over traditional methods ... 77

3.3.6. Disadvantages of scrum… .. 78

3.3.7. The future of scrum in project management… .. 78

3.3.8. Summary ... 80

3.4 Kanban method: a comprehensive overview… .. 90

3.4.1. Introduction to the kanban method… ... 80

3.4.2. Why the kanban method came into picture .. 81

3.4.3. Advantages of the kanban method… .. 82

3.4.4. Disadvantages of the kanban method… .. 83

3.4.5. Key principles of the kanban method… ... 83

3.4.6. Applications of the kanban method… ... 84

3.4.7. Summary ... 87

3.5 Extreme Programming (XP): a comprehensive overview… ... 88

3.5.1. Introduction to extreme programming (XP) ... 88

3.5.2. Characteristics of extreme programming (XP) ... 91

3.5.3. Values and principles of extreme programming (XP) ... 91

3.5.5. Extreme programming workflow .. 93

3.5.6. Extreme programming in large-scale projects .. 95

3.5.7. Advantages of extreme programming… ... 97

3.5.8. Disadvantages of extreme programming .. 97

3.5.9. Why XP remains relevant today .. 98

3.5.10. Summary ... 100

3.6 Summary of Chapter ... 101

ix

CHAPTER - IV

4.1 Introduction t o agile and devOps .. 103

4.1.1. Definition of agile methodology and devops practices ... 103

4.1.2. Evolution of agile and its integration with devops ... 104

4.2 Principles of agile and devOps .. 105

4.2.1. Continuous delivery and integration… ... 105

4.3 Collaboration between development and operations teams .. 106

4.4 Benefits of combining agile and devOps ... 107

4.4.1. Faster delivery cycles ... 107

4.4.2. Enhanced quality through continuous feedback ... 108

4.4.3. Improved customer satisfaction….. 109

4.5 Tools supporting agile and devops ..110

4.5.1. Popular tools like Jenkins, docker, and Kubernetes .. 110

4.6 Role of automation in agile and devops workflows.. 111

4.7 Challenges and best practices .. 112

4.7.1 Addressing cultural resistance .. 113

4.7.2. Implementing CI/CD pipelines effectively… .. 114

4.8 Growth of cloud computing… ... 116

4.8.1 Overview of cloud computing…... 116

4.8.2 Drivers of cloud computing growth... 117

4.8.3. Benefits of cloud computing….. 118

4.8.4. Cloud service providers and their impact…... 119

4.8.5. Challenges in cloud adoption….. 119

4.9 Growth of artificial intelligence ... 120

4.9.1. Introduction to artificial intelligence .. 120

4.9.2 Applications of AI across industries... 122

4.9.3 Recent advances in AI .. 122

4.9.4 Ethical and social implications of AI .. 123

4.10. Growth of blockchain technology ... 124

4.10.1 Understanding blockchain technology .. 124

4.10.2 Applications of blockchain beyond cryptocurrency .. 126

4.10.3 Advantages of blockchain… .. 127

x

4.10.4 Challenges in blockchain adoption….. 127

4.10.5. How blockchain is helpful with agile .. 128

4.10.6. Practical example: blockchain in agile supply chain solutions 130

CHAPTER-V

5.1 Analysis of technical software delivery and challenges ... 132

5.1.1. Fintech… ... 132

5.1.2 Benefits of fintech… .. 132

5.1.3. Challenges and limitations .. 132

5.1.4. Future of fintech… ... 133

5.1.5. Key players in fintech... 133

5.1.6. Career opportunities in fintech… .. 133

5.2 Coordination and communications Challenges .. 134

5.2.1 Coordination challenges... 134

5.2.2 Communication challenges ... 134

5.2.3 Strategies to overcome challenges ... 135

5.2.4 Tools and technologies ... 135

5.3 Specific functionalities approach implementation .. 136

5.3.1 Approach-based implementation… ... 136

5.3.2 Functionality-specific implementation… ... 137

5.4. Robust team structure.. 138

5.4.1. Team roles and responsibilities .. 138

5.4.2. Team communication and collaboration… .. 138

5.4.3. Decision-making and problem-solving… ... 139

5.4.4. Performance management and feedback .. 139

5.4.5. Professional development and growth. .. 139

5.4.6. Diversity, equity, and inclusion… ... 140

5.4.7. Conflict resolution and feedback .. 140

5.5 Product know how .. 141

5.5.1. Product development… .. 141

5.5.2. Product management….. 141

xi

5.5.3. Product marketing… ... 141

5.5.4. Product sales and support… ... 142

5.5.5. Product data and analytics ... 142

5.5.6. Product security and compliance ... 142

5.5.7. Product innovation and R&D….. 143

5.6 UI/UX challenges ... 143

5.6.1. Design challenges .. 143

5.6.2. User-centered challenges .. 144

5.6.3. Technical challenges ... 144

5.6.4. Business challenges ... 145

5.6.5. Best practices for overcoming ui/ux challenges ... 145

5.7 User access module implementations ... 146

5.7.1. Core components .. 146

5.7.2. Implementation strategies ... 146

5.7.3. Technologies and tools .. 147

5.7.4. Best practices ... 147

5.7.5. Common challenges... 147

5.7.6. Benefits of TAB whitelisting .. 148

5.7.7. How TAB whitelisting works ... 148

5.7.8. Best Practices for implementing Tab whitelisting… ... 149

5.7.9. Tools and technologies for tab whitelisting ... 149

5.7.10. Common challenges and limitations .. 150

5.8 Automation and Testing and Tools to Implement... 150

5.8.1. Automation… ... 150

5.8.2. Testing… .. 150

5.8.3. Automation and testing best practices.. 151

5.8.4. Challenges and limitations .. 151

5.8.5. Future of automation and testing….. 152

5.8.6. Automation tools ... 152

5.8.7. Testing frameworks .. 152

5.8.8. Continuous Integration/Continuous Deployment (CI/CD) Tools 153

5.8.9. Test management tools .. 153

xi
i

5.8.10. Performance testing tools ... 153

5.8.11. Security testing tools ... 154

5.9 IP logging and versioning… .. 154

5.9.1. IP logging… ... 155

5.9.2. Versioning ... 155

5.9.3. Best practices ... 155

5.9.4. Challenges and limitations .. 156

5.9.5. Future of IP logging and versioning…... 156

5.10 Software requirement specifications design ... 157

5.10.1. Functional requirements ... 157

5.10.2. Non-functional requirements .. 157

5.10.3. Software requirement specification document structure 157

5.10.4. Best practices for srs design… .. 158

5.10.5. Tools and techniques for srs design… .. 158

5.11 API integrations handling… .. 159

5.11.1. Types of API integrations ... 159

5.11.2. API integration challenges ..159

5.11.3. Best practices for API integrations .. 160

5.11.4. Tools for API Integrations .. 160

5.11.5. API integration patterns .. 161

5.12 Development planning and challenges ... 161

5.12.1. Development planning… ... 161

5.12.2. Challenges in development planning… .. 162

5.12.3. Best practices for development planning… ... 162

Research Annotations .. 164

Bibliography ... 168

References…………………………………………………………………………………………173

xiii

LIST OF TABLES

Table 1.1 Summary of evolution of generative AI ... 9

Table 2.1 Life Cycle of popular delivery method ... 36

Table 2.2 Challenges in agile software deliveries .. 42

Table 2.3 Comparison between traditional and agile model .. 51

Table 3.1 Comparison Between Kanban and Scrum Methodologies.. 86

Table 3.2 Comparison between the Extreme programming, scrum and kanban 99

1

CHAPTER - I

1.1 Introduction to project management

An organization of people and resources to accomplish a certain goal and purpose is called a

project (Lockett, Reyck, & Sloper, 2008). As stated by Gareis (2004), a project is distinguished

by having a definite deadline, a restricted spending plan, clearly defined and predetermined

goals, and a set of actions to accomplish those goals. Project management was defined by

Kerzner (2003), as the process of organizing, coordinating, leading, and managing an

organization's resources in order to precise objectives established for a certain project. As stated

by the Project Management Institute According to PMI (2013), project management entails using

skills, knowledge, tools, and procedures. To ensure project operations fulfill or surpass the

requirements and expectations of project stakeholders.

Project management is the approach and procedure that businesses use to achieve their goals and

achieve success since the accomplishment of projects is what allows a company to produce

business outcomes. According to a McKinsey & Co. survey, nearly 60% of senior executives

ranked establishing a solid project-management discipline as one of their organization's top three

priorities (PMI, 2010). Moreover, top-performing companies have used project management as a

tool to improve projects and organizational outcomes, control costs, and manage resources.

Executives came to understand that by meeting customer demands, using project-management

techniques and strategies lowers risks, saves money, and increases success rates (PMI, 2013). To

ensure project success and delivery, project management techniques must be used.

2

Project management software is essential these days for organizing, predicting, and managing

project evolutions. Project teams frequently encounter issues with the software and other

technological tools they've chosen to help them complete the project life cycle. Due to their

forced usage of subpar technology, they may have delays brought on by foiling, sluggish

communication, and the additional knowledge required to create solutions. A condition known as

insecurity occurs when those involved, even the squad's allies, are uneasy about any aspect of the

plan they're working on.

Software project management guarantees that a project makes use of the personnel, resources,

and time available to fulfill the predetermined goals. Essentially, the project team applies this

idea to maximize productivity while optimizing and minimizing expenditures. Good production

quality is the result of team conversations, requirements collecting, testing, and maintenance.

Preventing project failure is a difficult undertaking, made more so by the inability to identify

what constitutes a failed project. The fact that various people may perceive the same project as a

complete failure, a partial failure, or even a success makes it more difficult to achieve and assess

project success (PMI, 2010). The Standish Group's 2013 Chaos Report states that 39% of all

projects were successful because they were completed on schedule, within budget, and included

all necessary features and functions; 43% faced difficulties because they were delayed, went over

budget, or included fewer features or functions than necessary; and 18% were deemed

unsuccessful because work was completed but never used or canceled before it was completed.

Project cost overruns were 59% in 2012, while time overruns were 71%, according to the Chaos

Report (Standish Group, 2013).

3

The improvement of software development through a software methodology, the effectiveness

and efficiency of project activities like innovation, high technology, varying degrees of decision

uncertainty, product life cycles, and serious losses due to project delays can all be completed in

accordance with the planning, limited resources, and time given when developers and project

managers share the same vision for the completion of software projects. The waterfall model,

also referred to as the traditional methodology, is one of the oldest methodologies in use

1.2. History of software engineering evolution

The history of software engineering instigates roundabout 1960. Scripting software has evolved

into a business apprehensive with how preeminent it is to capitalize on the excellence of software

and of how to fashion it. How superlative to craft high value software is a distinct and debatable

problem wrapper software design doctrines, purported "best practices’ for inscription program,

as well as extensive management concerns such as ideal squad size, practice, how best to

distribute software on time and as swiftly as likely, workplace "ethos", hiring practices, and so

forth.

Eminence can talk about to how sustainable software is, to its permanency, swiftness, usability,

testability, readability, scope, charge, sanctuary, and digit of blemishes or "bugs", as well as to

fewer gauge able abilities like sophistication, succinctness, and client consummation, among

many other aspects.

4

1.2.1. Timeline: before software engineering:

Software was initially invented in 1948 by Tom Kilburn, a computer scientist. Kilburn's program

performed mathematical computations on the Manchester Small-Scale Experimental Machine

(SSEM), which he and his collaborator Freddie Williams constructed. It would take decades after

this historic occasion for computers to be programmed with anything other than punch cards, on

which each hole corresponded to a unique machine code command. Fortran, one of the first high-

level programming languages, was made available to the general public in 1957. The following

year, statistician John Tukey coined the term "software" in a magazine article.

1.2.2. 1945 to 1965: The roots

I fought to bring the software legitimacy so that it — and those building it — would be given its

due respect and thus I began to use the term 'software engineering' to distinguish it from

hardware and other kinds of engineering yet treat each type of engineering as part of the overall

systems engineering process (Mahoney ,1990). When I first started using this phrase, it was

considered to be quite amusing. It was an ongoing joke for a long time. They liked to kid me

about my radical ideas. Software eventually and necessarily gained the same respect as any other

discipline

(Margaret Hamilton, 2014 interview with El País)

1.2.3. 1965 to 1985: The software catastrophe epoch

Software engineering was goaded by the ostensible software predicament of the 1960s, 1970s,

and 1980s, which acknowledged countless of the snags of software progress. Voluminous

5

projects sprinted concluded budget and schedule. Certain projects triggered chattel mutilation. A

scarce project instigated forfeiture of life. The software catastrophe was formerly distinct in

terms of productivity but progressed to accentuate quality.

1.2.4. 1985 to 1989: Sustainable structure development

The charge of preserving and sustaining software in the 1980s was twofold as affluent as

emergent software. In the course of the 1990s, the cost of tenure and preservation amplified by

30% over the 1980s. In 1995, numbers showed that some of the surveyed development projects

were operational but were not considered successful. The typical software project overpasses its

agenda by half. Three-quarters of all large software products distributed to the client are disasters

that are either not used at all, or do not meet the customer's requests.

1.2.5. 1990 to 1999: Fame of the Internet

The augmentation of the Internet steered to very prompt evolution in the plea for global

information exhibition/email classifications on the World Wide Web. Computer scientists were

essential to lever plates, maps, snaps, and other phantasmagorias, and above simple animation, at

a proportion never before comprehended (Carter Timothy, 2021).

1.2.6. 2000 and beyond: Trivial practices

With the intensifying call for software in numerous smaller groups, the essential for economical

software elucidations led to the evolution of humbler, closer procedures that industrialized

running software, from requests to positioning, rapider & tranquil. The procedure of rapid-

prototyping advanced to all-inclusive trivial practices, such as Extreme Programming (XP),

which endeavored to abridge many capacities of software trade, including requests congregation

and consistency testing for the mounting, massive number of minor software structure (Fenton,

2022).

6

1.3 The History of digital transformation

In the history of digital transformation, there are five main eras that have compelled businesses

to modify the way they run and provide to their clientele. People who haven't been able to adjust

usually end up like dodo birds.

1.3.1 Pre-Internet era (1950 – 1989)

The fundamental elements of the digital revolution and digital transformation were developed

here. The development of semiconductors and microchips made it possible to transform manual

procedures into digital technology. The first significant digital revolution was sparked by this.

Businesses concentrated on converting antiquated procedures to digital data. This led to a need

for cultural and business transformation on a global scale.

 1958 The microchip and semiconductor were invented

 1960 Moore’s Law defined

1.3.2 Post-Internet era (1990 - 2006)

Massive transformation and new digital technology were brought about by the next digital era.

The transition from an isolated world to a global one was sparked by the internet. Through the

internet, connections, data sharing, and public data access established a more level playing field.

During this time, personal computers took off, allowing individuals to access the World Wide

Web from the comfort of their living rooms. Social networks also started to emerge. Due to the

development of the Internet and easier access to consumer data, this age brought about changes

in commercial operations and established procedures. More importantly, it made businesses

reevaluate how they dealt with customers because the internet fundamentally altered how people

communicated, searched, and made purchases.

7

1.3.2.1 1990, Internet becomes publicly available

1.3.2.2 1998, Google founded

1.3.2.3 2000, Half of US households have a personal computer

1.3.2.4 2004, Facebook founded

1.3.2.5 2005, Internet users reach $1 billion worldwide

1.3.2.6 2006, AWS created

1.3.3 Mobile era (2007 – 2019)

The advent of the iPhone and the move toward mobility occurred at a time when businesses were

starting to feel more at ease with the modern internet and its effects on their operations. A fresh

wave of opportunities, including new social and mobile platforms and business models, resulted

in an increase in the digital transformation. In ground-breaking work "Why Software is Eating

the World," Marc Andreesen outlined a clear vision of a scenario in which software will disrupt

every business on the planet and give rise to new, software centric players who would dominate

this new landscape. Remarkably, this coincides with the initial emergence of the term "Digital

Transformation." The constant state of change needed to maintain competitiveness now had a

name.

8

1.3.3.1 2007, iPhone released giving rise to the mobile revolution

1.3.3.2 2011, “Why Software is Eating the World” written

1.3.3.3 2013, The term “Digital Transformation” is coined

1.3.4 Post-pandemic era (2020 – 2022)

The post-pandemic era was the last significant period. The epidemic prompted businesses to

reconsider how they catered to clients in a remote and non-contact world, which sped up the

development of digital advances. As a result, business models changed, and organizations were

compelled to move their digital transformation projects from the boardroom to the front lines

with greater urgency. This quickening served as the catalyst for many businesses to adopt

improved customer experiences.

1.3.4.1 2020, Global Pandemic

1.3.4.2 2022, Digital Transformation spending at $1.6 trillion

1.3.5 Generative AI era (2022 – Present)

Generative Artificial Intelligence, or Gen AI, is the period that we are living in right now. The

epidemic prompted businesses to reconsider how they catered to clients in a remote and non-

contact world, which speed up the development of digital advances. Furthermore, the banking

9

industry has been quick to embrace new digital technologies to improve security and customer

service delivery, creating new digital channels between the company and its clients. Examples of

these technologies include AI-driven chatbots and sophisticated fraud detection systems.

Initiatives for digital transformation are heavily relying on new technology as well as

developments in AI and machine learning. While the history of AI deserves its own timeline, it is

certain that machine learning advancements and products like ChatGPT will bring about much

more change in the ways that people live, work, and interact. As a result, business models

changed, and organizations were compelled to move their digital transformation projects from

the boardroom to the front lines with greater urgency. This quickening served as the catalyst for

many businesses to adopt improved customer experiences. As a result, business models changed,

and organizations were compelled to move their digital transformation projects from the

boardroom to the front lines with greater urgency. This quickening served as the catalyst for

many businesses to adopt improved customer experiences.

Table1.1

Summary of evolution of generative AI

Month/Year Event

November 2022 Meta releases LLaMA (Large Language Model Meta AI), sparking

discussions on open-source AI development.

December 2022 ChatGPT reaches 1 million users in just five days, breaking the record

for the fastest-growing consumer app.

10

2023 (General) Generative AI gains industry attention, impacting business analytics

and content production. Ethical and regulatory debates rise,

emphasizing the need for responsible AI frameworks.

March 2023 Meta releases LLaMA (Large Language Model Meta AI), sparking

further discussions on open-source AI development.

April 2023 Amazon announces Bedrock, a large language model for code

production and comprehension.

May 2023 OpenAI releases an iOS app for ChatGPT with voice input and chat

history synchronization.

November 2023 OpenAI holds its inaugural developer day and unveils customized

GPT models for specific use cases.

December 2023 Midjourney, the AI-driven image creation tool, gains immense

popularity. Google unveils Gemini, its biggest and most powerful AI

model.

2024 (General) Predicted as generative AI's year of maturity, with advancements

boosting creativity and productivity across industries.

February 2024 OpenAI introduces Sora, an AI assistant focusing on work

accomplishment and conversation.

April 2024 Meta releases LLaMA 3, an enhanced large language model that is

open source.

11

Every digital age has forced companies to reevaluate their internal processes and client

expectations, opening doors for new competitors and changing or even retiring outdated business

models. Treating digital transformation as a limited work that can be finished is the main error

that many firms make. Rather, it ought to be perceived as an ongoing process of development

and enhancement, requiring the creation of digital transformation plans to direct the effective

execution of digital transformation initiatives.

In order to ensure that technology expenditures are in line with business objectives and that

innovation and digitization initiatives result in competitiveness and sustainable growth for

organizations operating in the rapidly changing digital landscape, a comprehensive plan for

digital transformation is essential. Effectively navigating digital transformation is still a difficult

task. It entails revamping outdated procedures and frameworks, which is a significant task

needing bravery and resiliency.

1.4 Problem statement

Software Development is crucial to every aspect of the current world, the process of developing

software is not flawless. Software development has not always been effective, despite efforts to

use software engineering approaches. As a result, software initiatives are frequently postponed,

rejected, or fail. Corrective releases and service packs, as well as costly ongoing maintenance,

may be required for even implemented software projects. Software development is not a flawless

process, despite the fact that software is crucial to every aspect of the modern world. Software

development has not proven to be consistently successful despite the use of software engineering

12

approaches; as a result, software projects are frequently delayed, unsuccessful, abandoned, or

rejected. It is possible that costly ongoing maintenance, service packs, and correction releases are

required for even implemented software projects.

Conventional project management techniques, including Waterfall, have long dominated the

project delivery environment. Although these methods have been effective in some situations,

they have inherent drawbacks that may prevent projects from succeeding. The strict and

sequential character of traditional project management is one of its main drawbacks. In

particular, the Waterfall model necessitates a linear progression through five separate phases:

planning, initiation, execution, monitoring, and closing. It may be challenging to adapt to

changes or unforeseen difficulties that may develop throughout the project lifespan with this

sequential method. Changes in requirements or problems found later in the process can result in

delays and expensive rework.

Stakeholder participation in traditional project management is frequently restricted, which is

another drawback. Stakeholders are frequently not involved in the project actively until the

finished product is delivered. This may lead to miscommunication, unfulfilled expectations, and

a lack of support from important parties. Furthermore, it may be challenging to make the

necessary changes or course corrections during the project due to the delayed feedback loop.

Another area where traditional project management may be inadequate is risk management.

When it comes to risk, the waterfall model frequently takes a reactive stance, recognizing and

resolving problems only after they arise. Significant interruptions and higher expenses may result

from this. Preventing or lessening the effect of possible problems requires proactive risk

management techniques including risk assessment and mitigation planning.

Traditional project management also has concerns about quality assurance. Sometimes quality is

compromised in an effort to achieve deadlines and stick to a budget. Since testing in the

13

Waterfall model is typically done towards the end of the project, it can be challenging to find and

fix problems early on. A more iterative strategy that incorporates quality from the start of the

project can help guarantee a higher-quality final result.

Last but not least, team morale may suffer as a result of traditional project management. These

approaches' inflexible framework and hierarchical structure may cause team members to lack

motivation and autonomy. Burnout and excessive stress can also be caused by the pressure to

create a flawless product and fulfill deadlines.

Agile approaches have become more popular as a more efficient and adaptable project

management technique in response to these constraints. Iterative development, teamwork, and

continual improvement are key components of agile approaches like Scrum and Kanban. Agile

can help to enhance project outcomes, increase team happiness, and lower the chance of project

failure by breaking down projects into smaller, more manageable increments and involving

stakeholders throughout the process.

1.5 Research Objective

The primary objective of this research is to investigate the application of Agile Project

Management (APM) methodologies in software and product development and analyze their

impact on project delivery and team performance. Specifically, this research aims to explore how

iterative methods and continuous feedback loops contribute to enhancing the quality of

deliverables and optimizing development processes. Agile methodologies focus on iterative

processes that divide the project lifecycle into manageable phases, ensuring adaptability and the

incorporation of feedback at every stage (Beck et al., 2001). This iterative approach allows teams

to address potential challenges and improve project outcomes progressively.

14

Another critical goal is to assess the role of communication and client collaboration within Agile

frameworks. Effective communication and ongoing feedback from stakeholders are pivotal in

ensuring the alignment of deliverables with client expectations, ultimately resulting in higher-

quality outcomes (Schwaber and Sutherland, 2020). The study will also investigate the efficiency

of Agile practices in facilitating rapid adjustments to changing requirements, an essential

characteristic in today’s dynamic business and technological environments.

Additionally, this research aims to evaluate Agile’s potential for fostering innovation and

improving team cohesion. By promoting collaboration, shared responsibilities, and adaptive

workflows, Agile methodologies enable teams to address complex problems efficiently while

maintaining flexibility (Highsmith, 2009).

Ultimately, the research seeks to provide actionable insights into how Agile Project Management

can be optimized for broader applications beyond software and product development, ensuring

sustained value delivery and enhanced team productivity. This will contribute to a deeper

understanding of Agile’s capabilities in fostering continuous improvement in contemporary

project management practices.

1.6 Research gap with past and existing software deliveries

Software delivery has undergone significant evolution since its inception in the 1950s,

progressing through numerous paradigms and methodologies. Traditionally, software delivery

processes relied heavily on sequential methodologies, such as the Waterfall model, which

emphasized rigid, linear phases of conceptualization, design, development, testing, and

deployment. While effective in structured environments, these methodologies often struggled to

15

address evolving client requirements and dynamic technological advancements (Birk, Dingsoyr,

and Stålhane, 2002). This limitation has created a gap in adaptability and responsiveness in past

and existing software delivery practices.

One key issue in past software delivery methods is the absence of iterative feedback

mechanisms. Conventional approaches often delivered the final product without engaging clients

during intermediate stages, resulting in a mismatch between client expectations and the final

output. This lack of iterative refinement limited the ability to make real-time adjustments to the

product (Royce, 1970). Additionally, legacy models often experienced delays due to extensive

documentation requirements and lengthy development cycles, failing to keep pace with the rapid

evolution of technology and market demands.

Existing delivery approaches, such as DevOps and Agile, have improved iterative feedback,

flexibility, and team collaboration (Beck et al., 2001). However, challenges remain in fully

integrating client collaboration and ensuring the seamless adoption of Agile principles across

diverse teams and industries. Moreover, a lack of consistent metrics to evaluate Agile’s

effectiveness in complex, large-scale projects create further research opportunities (Hoda et al.,

2017).

This research identifies the gap in how past delivery models failed to integrate adaptability and

client collaboration and how existing methodologies still face scalability and standardization

challenges. Addressing these gaps is essential for advancing software delivery processes and

aligning them with evolving market and client needs.

1.7 Plan of conducting research

16

1.7.1 Research design

This research adopts a qualitative design, focusing on exploring the meaning of lived experiences

in relation to cloud computing adoption. Cloud computing has become a pivotal technology for

both individuals and businesses due to its flexibility, cost-effectiveness, and accessibility. Trends

in cloud computing illustrate how public cloud service providers offer a wide array of software

and tools that are faster and more adaptable than internal alternatives (Zheng and Wen, 2021).

Over the past few years, organizations have increasingly incorporated cloud computing into their

strategic budgets, recognizing it as a key enabler of productivity and innovation. Since 2016, the

shift from developer-friendly to developer-driven cloud services has accelerated, with

application developers leveraging these tools to enhance efficiency. This qualitative design will

delve into the lived experiences of users and developers who have adopted cloud computing,

focusing on the opportunities and challenges they encounter in using these evolving services.

1.7.2 Research method

This study uses a mixed-methods approach, combining qualitative and quantitative

methodologies to gain a comprehensive understanding of the topic. Key methods include:

1. Statistical analysis (Quantitative): This method will analyze data collected from

experiments, surveys, and observations in a statistically meaningful way to identify

trends and correlations in cloud adoption.

2. Meta analysis (Quantitative): This will investigate findings from a wide range of studies

to synthesize statistically significant patterns in cloud computing research.

17

3. Thematic analysis (Qualitative): This approach will be used to identify themes in

qualitative data, such as interviews and focus groups, offering insights into user

experiences with cloud services.

4. Content analysis (Mixed): This will analyze textual and graphical data from literature

reviews and survey responses to uncover patterns, sentiments, and trends related to cloud

adoption. By leveraging these methods, the research will provide robust and actionable

insights.

1.7.3 Sample size

This study will focus on businesses and organizations actively adopting cloud computing, with

an emphasis on those integrating AI as part of their strategy. A recent Gartner survey (2023)

revealed that 55% of organizations deploying AI consider it for every new use case they

evaluate, demonstrating the technology’s widespread influence. Gartner predicts that by 2026,

companies operationalizing AI transparency, trust, and security will see a 50% improvement in

adoption and business outcomes. This research will use a sample size of 50 organizations,

including small, medium, and large enterprises, selected from diverse industries to ensure

representativeness. These organizations will provide a comprehensive view of how cloud

computing and AI integration are transforming business processes, user adoption rates, and

operational efficiency.

18

CHAPTER - II

2.1. Traditional project management

PMI (2013) defines traditional project management (TPM) as the process of applying tools,

techniques, knowledge, and skills to project activities in order to achieve project requirements.

Additionally, TPM entails completing the following five phases with the help and direction of

the project manager and the team: initiating, planning, executing, monitoring, and controlling,

and closing (PMI, 2013). Furthermore, project management applies ten knowledge domains to

satisfy the needs of scope, time, money, risk, and quality within the framework of predefined

stakeholder requirements: scope, cost, quality, risk, procurement, human resources, procurement,

communication, stakeholders, and integration management.

These knowledge areas deal with how the team and project manager apply different procedures

and functions in order to guarantee project delivery and success at each stage of the project. As

per PMI (2013), these processes are categorized into five distinct groups: the planning,

executing, monitoring and controlling, closure, and initiating process groups. Some elements of

TPM, such as task breakdown, task allocation, and compliance with milestones, as well as

predetermined stakeholder requirements and a command-and-control leadership style, are

described by these process groups (Atkinson, Crawford & War, 2006; Saladis & Kerzner, 2009;

Tomaszewski, Berander & Damm, 2008).

The PMBOK (PMI, 2013) states that TPM is composed of clearly defined process groups that

direct project management by utilizing the knowledge and expertise of each process group.

Process groupings for project management are connected via the results that each generates. One

process's output becomes another's input procedure. For example, as Figure 1 illustrates, the

19

planning process group offers the executing process group with the documentation of the project

plan.

Figure 2.1.

Traditional Project Management Process

The project's initial scope, financial resources, and stakeholders who have an impact on the

project's success are all included in the group responsible for launching procedures. The planning

process group is made up of procedures designed to determine, make clear, and specify the entire

project scope as well as the amount of work necessary. The whole set of project documentation

that will be utilized for project execution, oversight, and management is defined by this process

group.

20

Project budget, scope management plan, quality management plan, risk management plan,

change management plan, and timetable are all included in the documentation. In order to

achieve project specifications, the work outlined in the project management plan is completed by

the executing process group. This process group combines and carries out the project's

operations as specified in the project-management plan, manages stakeholder expectations, and

arranges for the allocation of people and resources. The process group responsible for monitoring

and controlling the project keeps tabs on its performance and advancement, identifies any areas

that require adjustments, and starts those changes. The project is formally completed when the

closure process group completes all tasks.

This process group confirms that all deliverables have been agreed and signed off by

stakeholders, that the project has been delivered, and that the specified processes have been

completed. Project scope, time, and cost—the iron triangle of TPM—are the primary drivers of

project success; however, new research indicates that these factors alone cannot determine

project success (Papke-Shields, 2009; Shenhar, 2004). When assessing a project's performance,

other factors including business outcomes and future planning should also be taken into account

(Saladis & Kerzner, 2009; Sauser, Reilly, & Shenhar, 2009). Planning and control techniques

used in TPM are methodical, structured, and well-organized (Hass, 2007; Thomsett, 2002).

TPM emerged as a result of the growing requirement to control major development projects

(Fitsilis, 2008) and add formality to project management (Cadle & Yeates, 2008). According to

TPM, the project should be completed in a specified, sequential order (Hass, 2007; Weinstein,

2009; Chin, 2004). In light of a dynamic project-management environment, this was viewed as a

severe failure even though it was initially considered a solution (Cadle & Yeates, 2008). (Cicmil

et al., 2006; Leybourne, 2009). The project manager and team use TPM's linear procedures and

21

practices to try to define and finish the project by doing all the upfront planning and detailed

work at once.

2.2. Traditional project management method

Traditional project management techniques, such as the Waterfall model, Spiral model, and

Critical Path Method (CPM), are widely recognized for their structured and sequential approach

to completing tasks. These methods emphasize systematic planning, task execution, and strict

adherence to predefined schedules and budgets. Traditional methods are commonly applied in

industries such as software development, construction, and manufacturing, where projects have

clear objectives and well-defined deliverables (Kerzner, 2017). Among the most important

conventional project management techniques are:

 Waterfall Method

 Spiral Model

 Critical Path Method

The Waterfall method is one of the earliest project management methodologies, following a

linear, step-by-step approach. Each phase, such as planning, design, implementation, testing, and

deployment, is completed before moving to the next stage (Royce, 1970). While effective for

well-structured projects, it often lacks flexibility in accommodating changing requirements.

The Spiral model, on the other hand, combines the Waterfall method's sequential process with

iterative development, allowing for risk analysis and adjustments after each iteration. This

method is particularly useful for projects with evolving requirements (Boehm, 1988).

22

The Critical Path Method (CPM) focuses on identifying the longest sequence of dependent

tasks, ensuring that delays are minimized by prioritizing critical tasks to meet project deadlines

(Kerzner, 2017).

Although traditional methods provide robust frameworks, their rigidity often limits adaptability

in d yna mic environments, paving t he way for more flexible approaches like Agile.

2.3. Limitations of the traditional project-management methodology

TPM's advantages come from outlining every phase and necessity of a project before it is carried

out. However, this approach may have drawbacks because projects rarely adhere to a sequential

flow, since most consumers find it challenging to finish, accurately, and initially specify the

project's requirements. Disciplined planning and control are the foundation of TPM. techniques

driven by the presumption that project specifications and activities are that the project's risks and

occurrences are both predictable and under control.

TPM is built upon linear procedures and methods that the team and project management use to

try to specify the project in full and finish it all at once through forward preparation;

Furthermore, it is anticipated in TPM that a phase won't be reopened after it is finished. This

presumption and method may be appropriate and consistent with the nature of some projects,

such as building projects, where the team must ascertain, specify, and organize for all the

building's requirements in order to comprehend and specify the entire scope of deliverables.

On the other hand, some project kinds—like software and IT projects—find it challenging to

adhere to TPM's rigid and rigorous guidelines.

Because the requirements for this kind of project are ambiguous, ethereal, changeable, and

unpredictable, TPM has been seen as rather ineffective (Chin, 2004). The search for an

23

alternative project management approach that is in line with the tenets, ideas, and characteristics

of software projects propelled the software and IT industries. As a result, APM has developed in

the software development industry to oversee IT and software-related initiatives. Because APM

has been so successful in the software and IT fields throughout the years, it has also gained

significant traction in other industries (Owen et al., 2006).

2.4. Introduction to agile software development

In software development (Ismail, Mugammad F. & Mansor, Zulkefli 2018), Agile project

management techniques have existed since the 1990s. Hundreds of thousands of certified agile

coaches and thousands of organizations are using them. Published in 2001, The Agile Manifesto

(also known as The Agile Alliance) marked a turning point in the software community's

acceptance that requirements are dynamic and cannot be completely predefined. The transition

from the old technique to agile project management has several benefits and positive effects on

the management of software development projects.

There's a stir within the software development community about the agile method. The "need for

an alternative to documentation driven, heavyweight software development processes" is

acknowledged by agile methodologies, which are responses to traditional software development

techniques. When using traditional methods, the process starts with gathering and recording a

"complete" set of requirements. Next comes high-level and architectural design, development,

and inspection. Some practitioners regarded these first stages of development to be challenging

and maybe unachievable starting in the 1990s. Technology and the industry are developing too

quickly, requirements are changing "at rates that swamp traditional methods", and customers are

24

becoming less and less able to articulate their demands clearly up front while simultaneously

demanding more from their software.

Because of this, numerous experts have individually created techniques and procedures to deal

with the unavoidable shift they were going through. In reality, these Agile methods are a

collection of various approaches (or practices) that are based on the same core beliefs and ideas.

Prioritizing “people and interaction over processes and tools, functional software over thorough

documentation, customer collaboration over contract negotiation, and responding to changes

over following a plan” as stated in the Agile Manifesto.

Initial software delivery simulations were generated in retort to unambiguous glitches that

ascended when ad-hoc code and fix software development was leaning against large-scale

software projects. Countless dynamics frolicked a part in the primary procedures, but underneath

the heavyweight phased classification of stages, documents, and panels there were already an

amount of decisive opinions that would stimulate the next age of lightweight approaches.

When lightweight techniques were presented in the 1990s, they were conferred as solving the

complications of existing prototypes. Furthermost of the complications weren’t characteristic in

the prototypes themselves but were familiarized in their solicitation. Certain disputes were

instigated by misapprehensions about the mock-ups and abundant of the “substantial” in

“heavyweight” came from commerce attaining necessities, certifications, and ripeness replicas.

Officialdoms were fabricating citations that required no useful tenacity other than to tick off a

checklist. However, they were indispensable to the sales progression as they were frequently a

prerequisite for government and innovativeness indentures. Lightweight approaches weren’t a

new inkling but characterized a re-discovery that slighter sets offered many profits.

Programmers were operational on their own out-and-out machine, rather than being owed time

on pooled machines. They could now accumulate cypher and route tests nearby. They were also

25

using ADEs (Application Development Environments) that collect vital developer gear like a

text editor and compiler in a single user interface. As a substitute of to come for collation to

happen out-of-band, the programmer circlet was providing wanton response.

An additional various array of establishments was generating software and organizing it to

overall persistence machines. Arrogances to software were shifting from deterministic styles

inspired by edifice descriptions to adaptive styles of thought. The haste of information was also

snowballing with together the World Wide Web and Wikis mooring in the 1990s.

Surveys conducted by VersionOne (2013), Scott Ambler (2012), Microsoft (Begel & Nagappan,

2006), and Dan Rico (2008) indicate that projects that use agile approaches yield higher-quality

software, deliver faster, and are more adaptable to change. Because of the enhanced flexibility,

better cooperation, and improved communication, the teams and stakeholders are more satisfied.

Additionally, agile initiatives have a higher benefit-to-cost ratio and produce business benefits

more quickly than transitional techniques. According to Dan Rico's analysis, agile approaches

outperformed traditional approaches in terms of benefits to costs. Therefore, it cannot be proven

beyond a reasonable doubt that agile initiatives yield a higher return on investment than

traditional programs. Nonetheless, compared to traditional projects, agile initiatives typically

report obtaining the anticipated business benefit more frequently.

2.5. Requirement engineering in agile software development

Requirements Engineering (RE) is the process of determining the services that a customer needs

from a system and the limitations that shape its development and operation is known as

engineering (RE). Creating a system requirements document (SRD) is the primary objective of a

RE process, but Agile Development (AD) approaches emphasize in-person contact between agile

teams and customers in order to achieve a comparable objective. The relationship between RE

26

and AD has been the subject of numerous research papers, including. These papers explain some

RE practices in agile methods, compare these practices between agile and traditional

development systems, and look at the issues that AD faces when managing large projects and

controlling critical requirements.

Finding, evaluating, defining, and recording the system's requirements are the main tasks of RE.

Because the issues introduced into the system during the RE phase are the most costly to fix, RE

activities should be handled with the utmost care. Studies have demonstrated, as Fig. 1

illustrates, that roughly 37% of the issues encountered throughout the development of complex

systems have their roots in the requirements stages .

Figure 2.2.

RE Process of Agile

The agile manifesto's focal values are applied to the RE process by agile RE. Depending on the

application area, the individuals engaged, and the organization creating the requirements, there

are considerable variations in the processes utilized for agile RE.

27

The primary distinction between agile and traditional development is not whether or not to use

RE, but rather when to do it. While agile requirements engineering (RE) allows changes to

requirements even at the end of the development lifecycle, traditional systems RE methods

concentrate on gathering all needs and creating the requirements specification document before

moving on to the design phase.

2.6. Aim of agile software development

Allowing a company to be agile is the aim of agile methodologies, but what exactly does being

agile mean? Agile, according to Jim Highsmith, is the ability to "Deliver quickly." Alter

frequently and swiftly. Agile methodologies adhere to the same ideas as the agile manifesto,

despite differences in procedures and emphasis.

 Functional software is released more often—weeks as opposed to months.

 Having functional software is the primary indicator of advancement.

 Why Delivering practical software quickly and consistently results in satisfied customers.

 We welcome even last-minute adjustments to the requirements.

 Close daily collaboration between developers and business professionals.

 In-person interactions are the most effective way to communicate.

 Trustworthy, driven personnel are the foundation of projects.

 Constant focus on strong design and technical proficiency.

 Simplicity.

 Teams that can self-organize.

 Consistently adjust to evolving situations.

28

Agile development methodologies were created to address the challenge of producing high-

quality software within a business environment and needs that are ever-changing and demanding

on time. The software and IT industries have a track record of success with agile approaches.

Agile techniques are being adopted by roughly 69% of firms for application in both

organizational development and general project management.

Agile development approaches are applied at companies that do not have requirement freezing,

where modeling is done incrementally and iteratively, and where team members actively

participate and value each other's opinions. The primary advantage of agile development

software is that it facilitates an adaptable process, whereby the development team responds to

and manages modifications in requirements and specifications, even at the end of the

development cycle. The application of agile approaches enables the production of high-quality,

functioning software with small teams and little resources through the usage of several working

iterations. The lightweight documentation and incapacity of agile approaches to collaborate

inside the conventional workflow is a point of criticism for the proponents of traditional

development methods.

Agile development techniques do not scale, meaning that it would be challenging to understand

the current project status due to the number of iterations involved. Additionally, an agile

approach requires highly motivated and skilled individuals, who may not always be available.

These are the main limitations of agile development. Agile works well for small to medium sized

teams. Lastly when the code is really implemented, knowledge is lost due to inadequate written

documentation in agile approaches. But when used correctly, agile approaches may enhance and

support traditional development techniques.

29

2.7. Agile software development life cycle

Throughout the previous ten years, the software industry has adopted and developed a number of

agile approaches. It has been noted that a large number of practitioners combine agile and

traditional methodologies in their work. Most people are unaware of the theoretical

underpinnings, practicality in large-scale development environments, and links to established

software engineering disciplines of the agile software development method. It has been stated

that the ordinary manager finds it challenging to integrate the agile methodology within the

company. Additionally, each agile approach has a unique development cycle that modifies

organizational environments, management styles, and technology.

To address the aforementioned problems with the agile software development process, a suitable

roadmap in the form of an agile software development life cycle can be created. Agile software

development life cycle, which explicitly outlines the phases involved in any agile process as well

as the artifacts of each step, is therefore desperately needed. The generalization of the agile

software development life cycle offers average developers’ guidelines for the appropriateness,

applicability, and usefulness of agile methodologies.

Modern software engineering revolves around the Agile Software Development Life Cycle. It

encourages client cooperation, ongoing feedback loops, and iterative development. It's time to

start peeling back the layers of the Agile SDLC. Let's examine its fundamental ideas,

recommended procedures, and priceless hints to improve your development workflows.

1. Unveiling the essence of agile software development:

Agile Software Development, with its emphasis on customer happiness, adaptability, and

teamwork, revolutionized the way many projects were carried out. It's a mentality or framework

30

with a more flexible and responsive software development process rather than a methodology

with strict standards. It highlights how crucial it is to complete tasks in tiny, doable chunks.

Furthermore, it is ideal for agile projects whose requirements are ambiguous or change quickly

because iterations are dependent on input.

2. From origins to current trends in agile practices:

Agile has its origins in the middle of the 20th century. That was the time when pioneers of the

industry, like Motorola and IBM, began experimenting with incremental development

techniques. However, these ideas weren't codified until 2001 when the Agile Manifesto emerged,

distilling these practices into a ground-breaking new methodology for software development.

Agile has spread to several corporate sectors outside of its roots in the software industry. It

adjusts to the quick-changing, market-driven trends.

Six major phases make up the Agile Software Development Life Cycle (SDLC). Each is

essential to producing software of the highest caliber. Let's dissect them:

Vision and project approval:

The vision or conception phase of the “Agile Software Development Life Cycle” begins with an

analysis of the present system's flaws in order to address the need for a new system. The users,

product manager, management, and other team members choose the parameters and extent of the

suggested system. At this point, the goals are clear, although it's possible that some features

won't fully achieve them. This phase's primary goals are to determine the system's critical

applications, degree of uncertainty, and overall estimation of the system's size and longevity

using either an algorithmic or non-algorithmic approach. In addition, a methodical analysis is

31

carried out to see whether the system is feasible from an operational and financial standpoint,

with well-defined needs.

This evaluation takes into account the kind of project, as well as organizational, personnel, and

other factors. To examine the key elements of business and technology, a business study of the

system is necessary. For example, a website used to file income taxes needs to have certain

technical requirements. A business study's primary goal is to identify the affected user class. This

impacted user group is a valuable source of data for the software development lifecycle. Early

estimating has been found to be helpful in project approval. This phase, which is non-iterative, is

usually finished in two to three weeks. Early estimates and a high-level description of the system

must be created as required documentation during this phase.

Determining the project's scope and assigning activities as a priority are part of this first phase.

Product owners talk with clients on needs, create documentation, project deadlines, and evaluate

viability.

Exploration:

The exploration phase is a gradual and iterative process that involves regular stakeholder

meetings in the form of brainstorming sessions and workshops to eliminate uncertainty and

ambiguities in the requirements. Although the suggested ASDLC advises the maximum amount

of communication between the team and the customer to resolve requirement-related difficulties

by using any preferred means of communication between the customer and the team, some AMs

prefer the customer as a team member.

The team begins with a few chosen, seasoned people that specialize in agile software

development. A few chosen team members begin interacting with clients to comprehend their

32

issues and specifications of the suggested system. In general, though less experienced team

members have received agile training, seasoned team members are working on requirements.

procedure and technology utilized to increase training methods and strategies to raise the caliber

of products being generated. Assembling the ideal team is essential once a notion has been

established. Product owners choose suitable coworkers, provide them with the tools they need,

and initiate the design process, making sure requirements are considered right away.

Iteration planning:

The most crucial stage of the Agile SDLC is iteration planning, which includes a number of

software development tasks necessary to plan the project's timeline. Reviewing the functional

software that was delivered in the previous iteration is the first step in this process. Participants

talk about the project's future plan and evaluate the work product's advancement. Prioritizing

requirements is done concurrently to maximize return on investment from functional software.

The list of needs in the stack is updated during iteration planning based on client feedback and

requirements. The requirements are ranked in order of priority on this list. Prioritization is

determined by a number of variables, including value, knowledge, and financial rewards.

For example, a feature that calls for the team to enhance their technical proficiency was

developed later, but a product with larger financial rewards needs to be given top priority. This

stack for prioritization helps to increase ROI and produce functional software more quickly. The

features that are clear and unambiguous have been given priority. The team, the project manager,

and the customer representative convene to determine the order of importance for each need.

Additionally, the iteration plan phase includes an iterative estimated activity to project the

33

project's size, cost, and time. Additionally, it recalculates efforts based on the velocity of the

team.

Distribution phase or ADCT phase:

Distribution phase is also known as the ADCT phase which means “Analysis, Designing, Coding

and Testing. In this phase the system's functionality is created and improved in new ways

throughout this period. A number of iterations are necessary before the product is released. The

timetable that is determined during iteration planning is broken down into many one- to four-

week iterations. By mandating the selection of the tales that make up the system, the first

iteration creates the architecture of the entire system. Testing, designing, and coding are done in

subsequent iterations. The final version of the product is prepared for customer site deployment.

It uses the idea of pair programming to combine designing and coding with unit testing. ASDP's

design is usually straightforward so that it can adapt to required changes. Following thorough

testing and bug fixes, the product is ready for distribution with the appropriate documentation

and training materials. Delivering a stable and functional version to end users is the main

priority.

34

Figure 2.3

Life Cycle of Agile Manifesto

Release and maintenance phase:

This phase can be divided into two subphases: pre-release and manufacturing. The pre-release

phase suggests conducting further testing, such as acceptance and integration testing, and

verifying that the system's functional and non-functional criteria are met before it is deployed. It

has been suggested that certain small adjustments that users have requested be included in the

release, with more significant changes to be included in the following iteration. However, the

release of the product for consumer usage is the responsibility of the production phase. For

simplicity of use, users of the system are now given training. After the system's initial release,

35

the team has been shown to handle two tasks. First and foremost, the team works to improve the

product's functionalities. Secondly, the team must assume accountability for the system's

operation and provide a customer support desk.

After a product is released, it goes through a maintenance period where regular bug patches,

updates, and support make sure the program stays current and working.

Retirement:

Software may eventually need to be updated or replaced. It is phased out as smoothly as possible

during the retirement phase, frequently entailing data movement or user training for a new

system.

2.8. Software development lifecycle of popular agile delivery methods

Popular Agile delivery approaches place a strong emphasis on flexibility, collaboration, and

iterative progress through the use of the Software Development Lifecycle (SDLC). Agile

techniques, such as Extreme Programming (XP), Scrum, and Kanban, emphasize on tiny,

incremental releases that swiftly give users functional value in contrast to more traditional

methods. The lifecycle starts with user stories to gather requirements. Next, sprints or iterations

are planned, with an emphasis on work prioritization based on feedback and value.

The development and testing processes run continuously during each iteration, guaranteeing

ongoing code validation and integration. Frequent iterations of requirements due to regular

feedback loops from stakeholders reduce the likelihood of developing the incorrect product.

Agile methodologies also place a strong emphasis on cooperative cooperation, promoting

transparency and ongoing improvement through the use of daily stand-ups, sprint reviews, and

36

retrospectives. Until the final product is complete, this iterative cycle is repeated. Agile's

flexibility enables teams to adjust to changes more quickly, ensuring that the finished software

product closely matches customer expectations and demands. Below is a table discussing the

lifecycle of some popular Agile methodologies. In the next chapter, we will explore each Agile

methodology in detail.

Table 2.1.

Lifecycle of popular delivery method

Method Key stages Description

Extreme

Programming (XP)

Exploration Setting goals specific iterative cycles and for the entire

project. Planning is done in collaboration with the

client, who develops user stories and creates a vision

for the product.

Iteration planning Stories prioritization, resources estimation.

Iteration to release Analysis, designing, Coding and testing.

Maintenance Provides Customer support

Retirement Phase No more Requirements

Scrum Creating a product

backlog

a user story-based prioritized list of development tasks.

Estimation for amount of effort needed for each story.

Sprint Planning assembling a sprint backlog, which is a portion of the

37

 product backlog scheduled for a particular sprint and

projected to fit within the sprint's given time frame.

Sprint Work creating functional software during the sprint. Every

day, the team has a stand-up meeting to discuss

progress and work through issues that arise.

Testing and

production

demonstration

As a sprint draws to a close, attention turns to

polishing and finishing features and verifying their

acceptability with customers and product owners.

Retrospective discussing and utilizing the takeaways from the

previous sprint to plan or modify the backlog for the

subsequent sprint at its conclusion.

Kanban Visualize Work Describe the steps the project team has taken to

complete the task (e.g., Not Started > Development >

Dev Testing > Acceptance Testing > Done).

Limit Work in

Progress (WiP)

One of the main tenets of lean manufacturing, Kanban

sets a cap on how many tasks the team can focus on at

once; typically, no more than two or three.

Pull Don’t Push After completing their current duty, each team member

"pulls" another assignment from the board. When one

team member has a higher throughput than another,

this avoids bottlenecks.

38

 Monitor and

improve

Visualizations such as the cumulative flow chart below

are useful for determining process bottlenecks and

understanding how work is moving along.

FDD (Feature

Driven development

)

Develop overall

model

Decided in various iterations

Build the feature

list

Feature list is prepared

Plan by feature Not specified

Design by feature Not specified

DSDM

(Dynamic

system driven

Development)

Feasibility study Feasibility of the system is assessed

Business study Essential business and technology

characters are analyzed

Functional model

iteration

Analysis, functionality prioritization,

nonfunctional requirements and risk

assessment.

Design and build Build and testing of system

39

 iteration

Implementation Actual production of the system

ASD (Adaptive

Software

Development)

Speculate Project initiation, adaptive cycle planning

Collaborate Concurrent component e.g.

Learn Review, F/A, Release

2.9. Best practices for each agile stage

1. Strategies for effective sprint planning

Discover the customized tactics that are essential for managing the life cycle of agile software

development. Effective techniques at each stage are highlighted in this handbook. to obtain

knowledge about how to improve your Agile development process. A successful Agile project is

largely dependent on effective sprint planning. To begin, schedule a meeting with the product

owner and the whole team to go over the backlog. Determine which features, user stories, and

bugs need to be fixed in the next sprint. Prioritize the tasks that will benefit the consumer the

most. Next, elaborate on the specifics of the user stories you have selected. Work together to

develop an intelligent workflow that has distinct task ownership and accurate estimates, both in

terms of time and story points.

40

2. Strategies for effortless and fruitful release administration

An Agile SDLC's release management process is an ongoing procedure for consistent and

frequent product delivery. The following strategies should be kept in mind for an easy and

successful release:

Automate deployment: To automate your development, testing, and deployment procedures, use

technologies like Jenkins or GitHub Actions. This increases release pipeline efficiency and

reduces human mistakes.

Feature flagging: Toggle features on and off without running additional code by implementing

feature toggles. This permits safe testing in real-world settings and offers prompt rollback in case

of emergency.

Environment consistency: Use infrastructure-as-code solutions like Terraform or Docker to make

sure your development, testing, and production environments are the same.

Branching approach: To efficiently manage your codebase for feature development, releases, and

maintenance, use a version control approach like Gitlow.

Release often: Adopt a regular release schedule to limit the extent of modifications, hence

lowering the risk and improving the manageability of each deployment.

41

Monitor after-release: Make use of monitoring tools to keep an eye on the performance of your

application after-release. This can aid in promptly identifying any unforeseen problems.

2.10. Best practices for successfully using the agile SDLC

This brief handbook contains all the necessary advice for implementing the Agile Software

Development Life Cycle (SDLC) successfully.

1. Adopt a flexible mindset and embrace change

Accepting change is essential to thriving in an Agile setting. Team's culture needs to

become ingrained with flexibility. Recognize that if new information becomes available, needs

may change. Things that were important yesterday might not be important today. Motivate your

group to be flexible and see possibilities for growth rather than roadblocks when things change.

A mindset that prioritizes client collaboration over contract negotiation is known as agile

mindset. and adapting to change rather than sticking to a set strategy. You may foster an

environment where the team can innovate and react quickly to market changes by placing a

strong emphasis on flexibility. This guarantees that the result not only fulfills but beyond the

expectations of the client. “Intelligence is the ability to adapt to change”. -Stephen Hawking,

Theoretical Physicist, Cosmologist, and Author.

2. Make sure agile frameworks promote team collaboration

42

The engines that drive cooperation and teamwork are agile frameworks like Scrum,

Kanban, and Scrumban. These frameworks offer the organization needed to manage challenging

projects and guarantee that all team members are working toward the same objective.

 Scrum relies heavily on roles, events, and artifacts to promote cross-functional

cooperation. Sprints, reviews, and daily stand-ups keep everyone on task. With its boards

and cards, Kanban provides greater visible coordination, improving transparency and

enabling just-in-time production.

 The harmonious fusion of Scrum and Kanban is known as Scrumban. It combines the

flexibility of Kanban with the disciplined methodology of Scrum. Because of its

structure, it's perfect for teams that want the flow-based efficiency of Kanban but also

want the supervision of sprints.

 Encouraging a cooperative atmosphere facilitates group problem-solving and shared

accountability. Collaborating within these frameworks allows team members to take

advantage of varied areas of knowledge, anticipate obstacles, and quickly develop

creative solutions.

2.11. Challenges in agile software deliveries method

Nevertheless, there are additional problems and difficulties with applying the agile methodology,

which are covered in this section (Sebastian, Nathan.2024)

43

Table 2.2

Challenges in agile software deliveries

Challenges Reason Description

Project forecasting Project Reliability Agile projects often involve a

high degree of unreliability

and complexity. Projects may

take longer than anticipated

forecasting because of scope

creep, technical debt, or

unanticipated difficulties. This

may complicate forecasting

and increase the probability of

errors.

 Team Dynamics The performance of an Agile

team can fluctuate due to

changes in team composition,

skill levels, motivation, and

other factors. If a team

member leaves or joins, or if

the team's velocity changes

significantly, this can impact

the accuracy of forecasts.

44

 Sprints Estimation Effort estimations required in

multiple sprints is thought

provoking task as achieving

sprint goals and sprint goals

under agreed budget is highly

dependent on accurate

estimations.

 Feature Prioritization In Agile, priorities can change

rapidly based on business

needs or customer feedback.

This can lead to changes in

the project scope, which can

make forecasting more

volatile.

Scope Creep Timeline Management Addition of requirement over

agreed scope increment

complexity in managing

timelines. Agile WoW

supports multiple changes

without much impact on

overall delivery timelines by

segregating entire delivery

45

 into multiple sprints which

gives management early

visibility over delays and to

plan mitigation to maintain

required velocity

 Quality Management The quality of deliverables

may be impacted with

constant change in scope as

the team may not have enough

time to thoroughly test new

features or functionalities,

leading to defects and issues.

 Budget Management The changes in project agreed

requirements will result in

rebasing the budget initially

allocated for the project. Agile

WoW expedites such

scenarios through time and

material approach where

budgets are divided into

multiple chunks and map to

sprint goals.

46

Stakeholder Management Communication Channel It is crucial that proper

communication channels be

in-place within every

stakeholder in the project to

maintain high motivation and

to cut-down confusion on

project requirements versus

deliverables because the

departing stakeholder might

have been a champion for the

project, actively promoting it

within the organization and

securing resources. Their

absence results in a

breakdown in communication

with other stakeholders, which

may cause

miscommunications, a decline

in team buy-in, and eventually

demotivation.

47

 Skill management In order to achieve timely

delivery within agreed budget

its vital right skills with

adequate knowledge and

experience must be mapped

against required roles to form

the project squad as It's

possible that the departing

stakeholder had in-depth

institutional knowledge or

specialized topic experience

that was essential for making

decisions. Their absence

leaves a knowledge void that

might impede progress as the

group tries to make sense of

past choices or the reasoning

behind particular features.

 Delay management It is possible that inadequate

requirement analysis,

communication gaps and

frequent change in resources

may lead to delay as per the

48

 timelines because the new

stakeholder may need time to

understand the project

backlog and its priorities. This

can lead to delays in decision-

making regarding new

features or backlog items,

impacting the overall project

timeline.

2.12. Overcoming challenges in agile environments

Successful project delivery in Agile contexts depends on navigating obstacles. This investigation

explores useful tactics and ideas for getting above obstacles that are frequently faced in Agile

environments.

2.12.1. Managing distributed teams agilely

49

Using tools and processes from agile software development is essential for managing remote

teams. In this manner, geographical divides can be filled, and a collaborative atmosphere can be

established.

Using reliable communication platforms for stand-up meetings, such Microsoft Teams, Zoom, or

Slack, is crucial. as well as utilizing real-time collaboration platforms like Jira, Trello, or

Confluence. This guarantees that everyone, regardless of where they are physically located, is in

sync and in line with the team's goals.

2.12.2. Balancing speed with quality assurance

In Agile, striking a balance between quality control and speed is crucial. Agile development and

releases are known for their rapidity, but skimping on testing can result in subpar user

experiences and damage your product's reputation. Include testing at every step of your Agile

process to strike a balance between these requirements. Adopt Test-Driven Development (TDD)

techniques to make sure quality is ingrained in your product from the beginning. TDD involves

writing tests before writing code. Reduce the amount of QA time required prior to a release by

automating testing and identifying problems early with Continuous Integration (CI) solutions.

Encourage a "whole team" approach to quality, in which the development team as well as the QA

team share accountability for the end product's quality.

This guarantees that excellence is not an isolated duty but rather a shared endeavor.

Agile Technologies that enhance development efficiency examine the ways that

transformational technologies and agile techniques can work together.

1. Instruments for enhanced project monitoring and awareness

Having the appropriate tools can greatly improve project tracking and visibility within the Agile

framework. Use project management software like Smartsheet or Wrike, which provides real-

50

time work visualization through dashboards, roll-up reports for a high-level perspective, and

Gantt charts for tracking deadlines.

Jira from Atlassian is another well-liked choice. Its robust Agile boards, thorough reporting, and

adaptable processes are designed to maintain team cohesion and communication. Combine

Confluence with it to create documentation. Together, they provide a complete transparency and

project tracking system.

2. Automation: the secret weapon in agile methodologies

Agile approaches rely heavily on automation, which increases consistency and efficiency. Teams

can concentrate on more strategic operations that require human interaction by automating

repetitive chores.

Agile methodologies rely heavily on automation, and continuous integration (CI) and continuous

deployment (CD) guarantee that code changes are automatically tested and deployed. As a result,

there are fewer integration problems and quicker release cycles.

Using test automation tools like Cypress or Selenium enables the team to provide high-quality

code faster by providing quick feedback on new features or issue fixes.

Additionally, to develop a simplified pipeline that automatically assembles, packages, and

deploys applications without human intervention, employ build automation technologies like

Maven or Gradle.

2.13. Comparison between agile models & traditional models

51

Stream of project management and each of them have different characteristics. According to

Boehm, the agile model's main objective is on rapid delivery of value while on the other hand

conventional approach is focused on high assurance. Heavyweight models behave that the

requirements are completely defined & predictable to develop an extensive detailed plan while

agile development focuses on an adaptive approach with high quality consisting of multi-skilled

small groups using the continuous improvement, rapid feedback & embrace changes. The

following table emphasizes the primary comparison between agile methodologies &

conventional methodologies.

Based on the reference provided (Soomro et al., 2016), the following table outlines the key

differences between Agile and Traditional project management models:

Table 2.3

Comparison between traditional and agile model

Aspect Traditional Models Agile Models

Approach Follows a linear and sequential

approach (e.g., Waterfall).

Follows an iterative and

incremental approach.

52

Flexibility Highly rigid; changes are difficult

to incorporate once the project

begins.

Highly flexible; accommodates

changes throughout the project

lifecycle.

Project Planning Entire project is planned upfront

with a fixed scope, time, and

budget.

Planning is adaptive and done

iteratively for each sprint or

iteration.

Team

Collaboration

Limited collaboration: work is

divided into individual silos.

Emphasizes cross-functional

teamwork and collaboration.

Customer

Involvement

Minimal customer involvement:

feedback is typically gathered at

the end of the project.

High customer involvement:

feedback is collected continuously

at each iteration.

Delivery The final product is delivered at the

end of the project.

Delivers working software or

incremental updates regularly.

Risk

Management

Risks are assessed during the initial

planning phase, making it less

adaptive to unforeseen risks.

Risks are managed iteratively,

with constant reassessment during

development.

Documentation Heavy documentation is required Minimal documentation, focusing

53

 throughout the project lifecycle. on working software over

exhaustive records.

Focus Focuses on processes, tools, and

achieving defined outcomes.

Focuses on individuals,

interactions, and responding to

change.

Testing Testing is conducted only after the

development phase is complete.

Testing is continuous and

conducted throughout the project's

lifecycle.

2.14. Major benefits of agile over the traditional approach

Every project management approach comes with its own merits and demerits, depending

on the domain of development and management. Traditional models have demonstrated

significant success in industries such as construction, oil and gas, where projects typically

require a structured and predictable workflow. However, Agile methodologies have gained

prominence due to their high success rate in the software development sector. Agile's

adaptability, iterative processes, and focus on collaboration make it particularly well-suited for

environments characterized by uncertainty and rapidly changing requirements.

The key benefits of Agile over traditional approaches include enhanced flexibility,

continuous customer involvement, iterative delivery of working software, and better risk

management. Agile promotes frequent feedback loops, allowing teams to adapt to changes and

54

deliver value incrementally. This contrasts with traditional methods, where feedback is often

delayed until the final stages of the project, increasing the risk of misaligned deliverables.

Additionally, Agile fosters cross-functional teamwork and minimizes the reliance on heavy

documentation, focusing instead on delivering practical and functional solutions throughout the

project lifecycle.

By emphasizing responsiveness and collaboration, Agile has become a preferred choice

for industries dealing with dynamic environments, providing a modern and efficient alternative

to traditional project management practices.

2.15. Chapter summary

In this chapter, I have provided an in-depth discussion on traditional project management

methods and Agile methodologies, highlighting their unique features, limitations, and

applicability in software development. Traditional methods, such as the Waterfall and Spiral

models, were explored to understand their rigid, sequential approach to project management.

While these methods have proven effective in industries like construction and oil and gas, their

limitations in handling changing requirements and fostering customer collaboration in dynamic

environments were discussed.

In contrast, Agile methods were examined in detail, focusing on their adaptability,

iterative approach, and emphasis on collaboration. Key topics included Requirement Engineering

in Agile Software Development, where I analyzed how Agile effectively manages evolving

requirements through continuous feedback. The Aim of Agile Software Development was

discussed, emphasizing its focus on delivering customer value through incremental delivery.

55

This chapter further explored the Agile Software Development Life Cycle (SDLC) and

discussed the Challenges associated with Agile, including communication barriers, stakeholder

alignment, and managing scalability, were also examined under Challenges in Agile Software

Deliveries Method. Strategies for Overcoming Challenges in Agile Environments were

discussed,

offering practical solutions to improve Agile practices.

Finally, a comparison Between Agile Models and Traditional Models was presented,

demonstrating Agile’s superiority in dynamic and customer-driven environments. This chapter

provided a comprehensive analysis of both methodologies, their applications, and their

effectiveness in different contexts.

56

CHAPTER – III

3.1. The Waterfall Method: a traditional approach to software development

3.1.1. Introduction

The waterfall technique is a software development approach that is predicated on

adhering to a step-by-step protocol, carrying out precise tasks and producing deliverables at each

turn. The steps of the waterfall approach include requirements, design, implementation/coding,

testing, and maintenance, and they are listed in that sequence. According to the traditional

waterfall method, a project must finish one stage and be concluded before moving on to the next.

The waterfall approach is also known as the linear sequential model because it places a strong

emphasis on the sequential aspect of the operation (Royce, 1970).

Figure. 3.1

Waterfall method Cycle

57

The waterfall technique adheres to the "big design up front" concept, which states that all design

and analytical work is finished at the outset and is not changed while the project is being worked

on. The waterfall approach is strict and lays out the steps that need to be taken in the order that

they must be taken. The waterfall approach is still in use today, having been used since the

1970s.

Additionally, there are modified waterfall techniques that alter some parts of the

fundamental waterfall structure. Royce's modified model, the sashimi model, and the incremental

waterfall model are three instances of this. The incremental waterfall approach modifies the

waterfall method's sequential structure and makes the assumption that some stages can go

forward on their own. It also permits requirements to be handled gradually and accommodates

for change. The sashimi approach is a waterfall technique in which some stages overlap and are

allowed to happen at the same time. Additionally, Royce offers a modified waterfall approach

that includes a looping cycle that starts with requirements and ends with testing and ends with

software design. This permits various adjustments and improvements to the original

specifications.

3.1.2. Limitations of the waterfall method in project management

1. Inflexibility to change:

The Waterfall model is highly rigid, making it difficult to incorporate changes once a

phase is completed. This lack of adaptability often results in products that fail to meet

customer expectations or market needs (Boehm, 1988).

2. Late feedback:

58

Feedback from stakeholders typically comes at the end of the development cycle, during

the testing or deployment phase. By this time, addressing issues may require significant

rework, leading to delays and increased costs (Pressman, 2005).

3. High risk in requirements gathering:

The model heavily relies on accurate and comprehensive requirements gathered at the

start of the project. However, customers may not fully understand their needs or articulate

them clearly at the outset, leading to gaps or misunderstandings (Larman and Basili,

2003).

4. Limited customer involvement:

Customer interaction is minimal after the initial requirements phase. This often results in

a disconnect between the final product and the customer’s actual needs (Hughes and

Cotterell, 2009).

5. Inefficient resource utilization:

Resources remain idle during certain phases. For example, developers may have to wait

until the design phase is complete before beginning implementation, which can lead to

inefficiencies (Schach, 2011).

59

3.1.3. Why the waterfall model is not suitable for modern project management

In the modern era of agile and iterative development, project requirements often evolve

rapidly due to market changes, customer feedback, and technological advancements. The

Waterfall model’s rigidity and inability to adapt make it unsuitable for such environments. It

lacks mechanisms for collaboration, iterative improvements, and continuous delivery—key

aspects that drive the success of contemporary project management methodologies.

By contrast, agile methods like Scrum, Kanban, and Extreme Programming address these

challenges by emphasizing flexibility, customer involvement, and iterative feedback loops,

ensuring t h a t p r o j e c t s are more adaptable and aligned with dynamic requirements.

3.1.4. When to use waterfall method

The projects where requirements can be stated and fixed from the outset and are not

expected to change, the waterfall method works well. The waterfall model and "Big Design Up

Front" in general are said to be more appropriate for software projects that are stable (particularly

those with fixed requirements, like "shrink wrap" software) and where it is both possible and

likely that designers will be able to fully anticipate system problem areas and produce a correct

design prior to the system's implementation. To guarantee a seamless system integration, the

waterfall model also mandates that implementers precisely adhere to the entire requirements

design.

60

Projects that are primarily focused on research and development are not a good fit for the

waterfall approach, which works best for highly traditional software development projects.

Because it gives a novice team a decent structure, the waterfall technique can be effective when

most team members—including the project manager—are inexperienced or lack strong technical

abilities. In a structured organization with official approvals and milestones that are easily linked

to the process's sequential steps, the waterfall method also functions effectively.

3.1.5. Advantage of waterfall method

 Comprehensive requirements: Spending more time in the design phase leads to well-

defined and detailed requirements, reducing ambiguity.

 Accurate time and cost estimates: Clear requirements upfront allow for more precise time

and cost predictions.

 Easy progress tracking: Each phase must be completed before moving to the next,

making it easier to track progress.

 Simplified resource management: Since tasks are sequential, it’s easier to manage

resources without overlap or multitasking.

 Thorough documentation: The emphasis on documentation ensures the project is well-

documented and up to date throughout the process.

 Strong control and management: The structured, phased approach gives the project team

a strong sense of control and discipline over the project’s progression.

 Reduced mid-project planning: All planning is done at the start, minimizing the need for

re-planning throughout the development cycle.

61

 Structured and predictable: The step-by-step nature makes the process predictable and

less prone to surprises.

3.1.6. Disadvantage of waterfall method

 Inflexibility to changes: Once a phase is completed, it's difficult to make changes to the

requirements, even if new insights are gained later in the project.

 Late testing and feedback: Testing occurs only after the development phase, leading to

the late discovery of issues, which can be costly to fix.

 Poor adaptability: The model is not well-suited for projects where requirements evolve or

are unclear at the outset, which is often the case in real-world projects.

 Risk of incomplete requirements: It is often impossible to fully understand all system

requirements at the beginning of a project, leading to scope changes during development.

 Wasted resources: Team members may remain idle between phases because no work can

begin on a new phase until the previous one is fully completed.

 Longer time to market: The sequential nature of the model means that the product may

take longer to launch, as each phase must be fully completed before the next one starts.

 High risk of delays: Any delay in one phase can cascade into delays in subsequent

phases, potentially pushing back the overall project timeline.

 Limited customer involvement: Clients usually only see the final product, which limits

opportunities for early feedback and adjustments during the development process.

The NASA review of the waterfall method describes a few more problems with it, which are as

follows:

 Issues are not identified until after system testing.

62

 Requirements must be addressed prior to system design. The development process

becomes unstable due to requirements evolution.

 Inconsistent specifications, missing system components, and unforeseen development

requirements are frequently discovered through design and coding work.

 It is not possible to verify system performance until the system is nearly coded; under

capacity may be challenging to fix.

(NASA, 2004) The waterfall method's strict compartmentalization of the job can also lead to

problems with teamwork and communication. As a result, there may be a knowledge gap among

team members, and the distinct responsibilities may hinder teamwork.

3.2. The spiral model in software development

3.2.1. Introduction to the spiral model

The idea behind the Spiral Method is that projects should be developed incrementally and

iteratively. A set of design-code-test cycles that are carried out repeatedly make up iterative

development. The software is designed and developed during these iterations, and the project

requirements are gradually improved upon until every requirement is met in full. When a portion

of the requirements has been thoroughly defined, tested, and designed, the cycle is considered

finished. Further incremental improvements are subsequently introduced in subsequent cycles,

which are designed, created, and tested. This continues until every project requirement has been

met. The spiral model's guiding principle is that by segmenting and carrying out huge projects

into smaller deliverables, businesses can lower the risk associated with their work.

63

This keeps the team focused on a more manageable and smaller work unit while allowing

for modifications as needed during the process. The spiral technique breaks down a project into

smaller pieces and allows for risk analysis throughout the development cycle. Its main goals are

to minimize project risk, support changes to the project, and enable manageable development of

larger projects.

Figure. 3.2

Spiral Model Iterative Cycle Model

The shortcomings of the waterfall approach led to the development of the spiral model in the

1980s. The modified spiral approach is also available in other versions. Barry Boehm, for

instance, defines a modified spiral in his piece "Anchoring the software procedure”. The

foundation of Boehm's model is avoiding spiral-related issues. approach that includes gold-

64

plating (the addition of price) and unfulfilled stakeholder expectations characteristics that are not

prerequisites), rigid solutions, and downstream risks capacities as a result of issues postponed

from the cycle's early stages, and uncontrolled developments.

Boehm's modified spiral approach is centered on a risk-based strategy that enables

personalized adjustments to the spiral process. According to Boehm, the emphasis should be on

the life-cycle objectives (LCO), life-cycle architecture (LCA), and initial operational capability

(IOC) crucial milestones. When the goals are accepted by all parties involved, the LCO

milestone is reached. When the architecture and system are established, the LCA milestone is

reached. When the system has the site and users ready, the IOC milestone is reached.

3.2.2. Working principle of the spiral model

The Spiral Model operates on a cyclical process, where each cycle consists of four main

quadrants:

1. Planning:

Objectives are determined, alternative solutions are identified, and constraints are

defined. Requirements are also gathered during this phase.

2. Risk Analysis:

Potential risks are identified, and strategies are devised to mitigate or eliminate them.

Prototypes may be developed to test critical features and address uncertainties.

3. Engineering:

The actual development of the product occurs in this phase. This includes coding, testing,

and implementation of the identified solutions.

65

4. Evaluation:

Stakeholders evaluate the progress and provide feedback. This phase helps determine

whether the project should continue to the next spiral, be revised, or be terminated.

The model repeats these cycles, with each iteration bringing the project closer to completion. The

number of cycles and their content depend on the size and complexity of the project.

3.2.3. Characteristics of the spiral model

 Risk-driven approach:

Risk analysis and mitigation are central to the model, ensuring potential issues are

addressed early in development.

 Iterative and incremental:

The model builds the software incrementally, with iterative refinement in each cycle.

 Customer involvement:

Regular stakeholder evaluations are conducted at the end of each cycle to ensure

alignment with requirements.

 Prototyping:

Prototypes are used to test and validate requirements, reducing uncertainties.

 Flexibility:

The model accommodates changes in requirements, making it suitable for projects with

evolving needs.

66

3.2.4. Advantages of the spiral model

1. Effective risk management:

By focusing on risk analysis at every cycle, the model minimizes potential issues,

ensuring smoother project execution (Boehm, 1988).

2. Customer satisfaction:

Frequent customer feedback ensures the final product meets user expectations.

3. Flexibility:

The model can adapt to changing requirements, making it suitable for projects with

dynamic goals.

4. Improved resource utilization:

The iterative nature ensures resources are used effectively, as unnecessary tasks are

avoided through continuous evaluation.

5. Prototyping:

Developing prototypes helps identify problems early and refine requirements, reducing

the likelihood of costly changes later.

3.2.5. Disadvantages of the spiral model

1. Complexity:

The model’s iterative and risk-focused nature makes it complex to manage and

implement, particularly for small projects.

2. High cost:

Continuous risk analysis and prototyping can be expensive and resource intensive.

67

3. Dependency on risk analysis:

The success of the model heavily depends on accurate risk identification and mitigation.

Poor risk analysis can lead to project failures.

4. Not suitable for small projects:

The overhead of the model makes it impractical for smaller, simpler projects.

5. Requires expertise:

The model requires skilled personnel to conduct risk analysis and manage iterative

processes effectively.

3.2.6. Applicability to large projects

The Spiral Model is particularly effective for large-scale projects due to its emphasis on risk

management and flexibility. Large projects often involve uncertainties, evolving requirements,

and multiple stakeholders. The model’s iterative nature allows teams to address these

complexities incrementally while managing risks. Prototyping and regular evaluations ensure

that the project remains aligned with stakeholder expectations.

However, the model’s high cost and complexity mean it is not ideal for all large projects.

It works best when the project involves significant risks, such as new technologies or unclear

requirements, and when sufficient resources and expertise are available. For well-defined

projects with minimal risks, simpler models like the Waterfall model may be more appropriate.

3.2.7. When to use spiral method

For software development projects where the project scope is not clearly defined at the

outset, the spiral model works best. These are frequently R&D-based projects or projects that

significantly rely on new technology or innovation. The spiral model is flexible and adaptable,

68

making it a good fit for projects requiring stakeholder input that could alter the needs. Since the

spiral model encourages progressive development, it also functions well with more expansive,

modular projects. But the spiral model may get rather complicated, therefore a capable and

seasoned project manager is definitely needed.

The spiral approach works best for high-risk, new technology projects where needs are not well

specified from the start or where changes to the requirements are likely due to input from internal

or external stakeholders. Additionally, spiral functions effectively in situations where

implementation takes precedence over functionality because it continuously integrates to provide

a fully functional solution for the duration of the project. Software development projects where

risk analysis and risk avoidance are not top priorities are not a good fit for the spiral model.

Additionally, spiral is not a suitable fit for projects that are challenging to develop incrementally;

this may be the case with larger projects.

3.2.8. Summary

The Spiral Model is a versatile and robust software development methodology designed

to address the challenges of high-risk and complex projects. By combining iterative refinement

with risk management, it offers a structured yet flexible approach to development. While it

excels in managing large and uncertain projects, its complexity and cost can limit its

applicability for smaller or straightforward projects. Understanding the model’s strengths and

limitations helps organizations determine when it is the best fit for their development needs.

3.3. The scrum agile method: a comprehensive overview

3.3.1. Introduction

69

The Scrum Agile method has emerged as a cornerstone in the realm of agile project

management, offering an iterative and incremental approach to delivering high-quality products.

Its popularity stems from its adaptability, team collaboration, and ability to address complex

projects effectively. Originally inspired by a rugby formation, where players work closely in a

unified position, Scrum emphasizes process management and improvement to maintain and

enhance existing systems or production prototypes (Takeuchi & Nonaka, 1986). Analysts have

noted that Scrum, which has shown significant success in top software development companies,

can also be beneficial for other organizations seeking to leverage object-oriented tools and

techniques (Aberdeen Group, 1995).

As an enhancement of iterative and incremental methodologies (Pittman, 1993; Booch,

1995), Scrum focuses on delivering value in cycles or sprints. Scrum release planning is guided

by several key variables:

 User requests: Identifying necessary improvements for the existing system.

 Time pressure: Determining the timeframe required to achieve a competitive edge.

 Competition: Anticipating competitor strategies and defining actions to efficiently

counter them.

 Quality: Ensuring the desired quality while addressing the above factors.

 Vision: Establishing changes needed in the current phase to meet the overall system

goals.

 Resources: Assessing the availability of human and financial resources.

These variables serve as the foundation for creating an initial plan to enhance an

Information System. However, they are not static; instead, they evolve throughout the project

70

lifecycle. A robust development methodology must account for this dynamic nature and adapt to

changes as they arise.

A primary distinction between traditional approaches (such as the waterfall, spiral, or

iterative models) and empirical approaches like Scrum lies in their assumptions about project

processes. Traditional methods follow a predictable, linear sequence for analysis, design, and

development. In contrast, Scrum acknowledges the unpredictability inherent in these processes

during the sprint phase. To manage this uncertainty and mitigate associated risks, Scrum

incorporates a control mechanism that ensures adaptability and effective risk management.

3.3.2. Importance of scrum in agile methodology

Scrum is a pivotal framework within Agile methodology, known for its emphasis on

collaboration, flexibility, and customer-centricity. While Agile is a broader philosophy

comprising various frameworks, Scrum provides a structured yet flexible approach to managing

projects. Central to Scrum are roles (Scrum Master, Product Owner, and Development Team),

ceremonies (Sprint Planning, Daily Stand-up, Sprint Review, and Retrospective), and artifacts

(Product Backlog, Sprint Backlog, and Increment) (Schwaber and Sutherland, 2020). Scrum's

iterative nature ensures continuous feedback and adaptation, which are critical for Agile's

success. The framework encourages breaking down complex projects into manageable sprints,

typically lasting two to four weeks. This incremental delivery aligns with Agile's principle of

delivering value early and often (Beck et al., 2001).

71

3.3.3. Sprint planning in scrum

3.3.3.1. Structured overview of sprint planning

Sprint planning is a critical element of the Scrum methodology, providing structure and

direction to development cycles. Each sprint is a short, fixed-length period, typically lasting

between 1 to 4 weeks, during which specific tasks are planned, executed, and reviewed. The

purpose of a sprint is to deliver an increment of value, either as a tangible product feature or as

progress on a larger deliverable. Sprint planning begins with a meeting involving the Scrum

team, including the Product Owner, Scrum Master, and developers. During this meeting:

 Objectives Are Defined: The team discusses the sprint's goal, derived from the product

backlog, and prioritizes tasks.

 Tasks Are Scoped: The team identifies and refines tasks they can realistically complete

within the sprint.

 Estimates Are Made: Each task is assessed for complexity and effort to ensure feasibility

within the sprint timeframe.

Once the sprint starts, the team focuses on the agreed-upon work, without introducing new

changes to the sprint scope unless necessary.

72

3.3.3.2. Improved explanation of sprints

A typical sprint in Scrum lasts between 1 to 4 weeks, with many experts recommending a

duration of approximately 30 days. This timeframe provides the team with sufficient opportunity

to manage all aspects of the increment, such as design, development, and testing. Shorter sprints

can sometimes pose challenges, as the limited duration may not allow enough time to complete

all planned tasks. However, excessively long sprints can lead to risks, such as technology

becoming outdated or changes in the environment that render the product less relevant (Control

Chaos, 2007).

One of the core advantages of sprints is their stability. Once a sprint begins, no changes

to its features should occur. The team conducts a pre-sprint planning meeting to decide the

activities for the sprint duration. This practice ensures clear objectives, minimizes rework, and

enhances productivity.

There are exceptions, however. If a client requests changes that cannot wait for the next

sprint, modifications may be made mid-sprint, although this is discouraged to preserve workflow

consistency. In most cases, the requested changes are deferred to subsequent sprints, which

might necessitate reworking portions of the earlier deliverables.

3.3.3.3. Advantages of sprints in scrum

 Early deliverables and client feedback:

After each sprint, the client can review a working increment of the product. This iterative

delivery allows the client to provide feedback, ensuring the product aligns more closely

with their needs. Traditional methodologies often delay client involvement until the final

product delivery, which may lead to misaligned expectations.

73

 Reduced cost of changes:

Sprints minimize the cost of changes by addressing issues early. By delivering

increments regularly, potential misalignments or defects are identified and resolved

before they escalate, saving time and resources (Highsmith & Cockburn, 2001).

 Flexibility to stop or adjust the project:

After each sprint, stakeholders have the option to continue, adjust, or halt the project.

This decision-making process depends on factors such as market conditions, product

performance, or evolving client needs, offering a significant advantage over traditional

linear approaches.

 Lower risk of wasted effort:

Since the client can experiment with the product after every sprint, there is a lower risk of

building something that does not meet their needs. Additionally, Scrum's iterative nature

ensures that changes can be incorporated earlier compared to traditional models.

3.3.3.4. Challenges of sprint planning

Despite its benefits, sprint planning has some trade-offs. If the client is unable to

introduce changes mid-sprint, they must wait until the next sprint to see their requirements

implemented. This delay could result in rework, increasing the project’s effort. However, this

trade-off is generally balanced by the broader benefits of stability and focus within each sprint.

In summary, sprints are an integral part of Scrum, fostering a collaborative, flexible, and iterative

approach to project management. By focusing on short, manageable cycles, sprints ensure

regular feedback, reduce costs associated with changes, and enhance overall project efficiency.

They stand as a powerful mechanism for delivering high-quality products in dynamic

environments.

74

3.3.4. Team size in scrum

The size of a Scrum team is a crucial factor that directly impacts the effectiveness and efficiency

of the project. Scrum recommends a specific team size to maintain a balance between effective

communication and productivity.

Optimal team size

According to the Scrum Guide by Schwaber and Sutherland (2020), the ideal Scrum team

consists of 10 or fewer members, including:

1. Scrum master: Facilitates the Scrum process and removes impediments to the team’s

progress.

2. Product owner: Represents the stakeholders and prioritizes the product backlog to

maximize value.

3. Developers: A cross-functional group responsible for delivering increments of value

during each sprint.

A commonly recommended team size for developers is between 3 to 9 members. This range

ensures the team is small enough to maintain close collaboration but large enough to handle the

complexity and workload of the sprint tasks.

75

3.3.4.1 Why team size matters

The size of the team significantly influences its performance in several ways:

1. Communication:

Smaller teams communicate more effectively, as fewer members mean fewer lines of

communication. In larger teams, coordination challenges arise, which can slow decision-

making and lead to miscommunication.

2. Productivity:

With smaller teams, individual contributions are more visible, fostering accountability

and encouraging active participation. Larger teams risk issues like reduced responsibility

sharing or "social loafing," where some members may contribute less.

3. Agility:

Smaller, cross-functional teams can adapt quickly to changes and make decisions more

efficiently. This agility is essential in Scrum, where flexibility and responsiveness are key

principles.

76

3.3.4.2. Balancing workload in scrum teams

The team size must also match the scope and complexity of the project. While a small team may

struggle to complete tasks for larger, more complex projects, a team that is too large may

experience inefficiencies due to coordination overhead. Scrum compensates for this by

emphasizing cross-functionality, ensuring all team members possess a variety of skills to manage

diverse tasks effectively.

3.3.4.3. Challenges with large teams

If a team exceeds the recommended size, several challenges can arise:

 Reduced collaboration: Larger groups can lead to the formation of sub-teams or silos,

which contradicts Scrum’s principle of collective ownership.

 Decision-making delays: With more members, reaching consensus becomes more time-

consuming.

 Increased risk of miscommunication: Important information may get lost or distorted as it

passes through multiple people.

3.3.4.4. Scaling teams in large projects

For large projects that require more resources, Scrum employs frameworks like Scrum of Scrums

or SAFe (Scaled Agile Framework) to scale team collaboration while maintaining the core

principles of Scrum. In these scenarios, multiple small Scrum teams work together, with

mechanisms in place to ensure alignment and coordination across teams.

77

3.3.5. Advantages of scrum over traditional methods

1. Flexibility and Adaptability

Unlike traditional waterfall methods, Scrum is highly adaptable to changing project

requirements. Traditional models follow a linear approach where changes mid-project

can lead to significant delays or cost overruns. Scrum, however, thrives on change and

encourages iterative improvements, making it ideal for dynamic environments (Rising

and Janoff, 2000).

2. Enhanced collaboration and communication

Scrum fosters a collaborative environment through daily stand-up meetings, where team

members discuss progress, challenges, and plans. This frequent communication contrasts

with traditional methods that often lack continuous interaction among stakeholders,

leading to potential misalignment (Schwaber and Sutherland, 2020).

3. Early identification of issues

By focusing on short sprints, Scrum enables teams to identify and address issues

promptly. This contrasts with traditional models, where problems often surface late in the

development cycle, causing delays and increased costs.

4. Increased customer satisfaction

Scrum prioritizes customer involvement through regular feedback loops. Customers can

review increments at the end of each sprint, ensuring the final product meets their

expectations. In traditional models, customer feedback typically occurs only after project

completion, limiting opportunities for course correction.

78

3.3.6. Disadvantages of scrum

While Scrum offers numerous benefits, it is not without its challenges:

1. Dependency on team dynamics

Scrum relies heavily on team collaboration and self-organization. If team members lack

the necessary skills or motivation, the framework may fail to deliver optimal results

(Moe, Dingsøyr, and Dybå, 2010).

2. Difficulty in scaling

Implementing Scrum in large organizations with multiple teams can be complex.

Coordination among teams and maintaining a unified vision becomes challenging as the

scale of the project increases (LeSS Framework, 2020).

3. Overemphasis on timeboxing

The strict timeboxing of sprints can lead to rushed work or burnout if deadlines are

unrealistic. This pressure contrasts with the more relaxed timelines in traditional

methods.

3.3.7. The future of scrum in project management

Scrum's principles align with the growing emphasis on agility and adaptability in modern

project management. As businesses face increasingly complex and fast-changing environments,

Scrum's ability to foster innovation and responsiveness makes it a valuable tool for the future.

1. Integration with emerging technologies

Scrum is well-suited for integrating emerging technologies such as artificial intelligence

(AI) and machine learning (ML) into project workflows. The iterative nature of Scrum

79

supports rapid prototyping and experimentation, essential for leveraging these

technologies (Digital.ai, 2023).

2. Remote and hybrid work environments

With the rise of remote and hybrid work models, Scrum's emphasis on communication

and collaboration tools like Zoom, Slack, and Jira has proven invaluable. This

adaptability ensures Scrum remains relevant in the evolving workplace.

3. Sustainability and agile scaling

Frameworks like SAFe (Scaled Agile Framework) are expanding Scrum's applicability to

large-scale enterprises. These adaptations address the challenges of scaling while

retaining Scrum's core principles, positioning it as a future-ready solution for enterprise

project management (Leffingwell, 2021).

80

3.3.8. Summary

Scrum stands as a robust framework within Agile methodology, offering significant

advantages over traditional project management methods, including flexibility, enhanced

collaboration, and early issue detection. Despite its challenges, such as dependency on team

dynamics and scalability issues, Scrum's potential for integrating emerging technologies and

thriving in remote work environments underscores its importance in the future of project

management. By fostering adaptability, continuous learning, and customer-centricity, Scrum is

well-equipped to meet the demands of modern project landscapes.

3.4. Kanban method: a comprehensive overview

3.4.1. Introduction to the kanban method

The Kanban method, originating from manufacturing and later adapted for knowledge

work, is a well-known agile approach designed to optimize efficiency and minimize waste in

processes. Initially developed in the late 1940s by Taiichi Ohno for Toyota's production system,

Kanban was implemented in the 1950s to manage inventory levels and ensure smooth

production. Over time, it has evolved into a powerful methodology for managing tasks and

workflows across various industries, including software development, IT, and project

management (Anderson, 2010).

Kanban, a Japanese term meaning "visual card" or "signboard," emphasizes core

practices such as visualizing workflows, limiting work-in-progress (WIP), and managing flow to

improve process efficiency. It aims to enhance day-to-day activities by reducing waste and

ensuring a sustainable workflow pace. Unlike frameworks like Scrum, which prescribe specific

81

roles and ceremonies, Kanban offers greater flexibility, focusing on adapting existing processes

for maximum efficiency.

While Kanban's core practices have been proven to improve efficiency, one of the key

challenges in implementation lies in setting effective WIP limits. Research highlights that

workflow sustainability depends not only on WIP limits but also on optimizing the relationship

among replenishment value, resource capacity, and WIP limits. Simulation-based approaches

have demonstrated that balancing these factors reduces work queue bottlenecks and minimizes

people's idleness, ensuring a steady workflow pace and maximizing productivity.

3.4.2. Why the kanban method came into picture

Kanban was introduced to address inefficiencies in traditional project and production

management methods, which often led to bottlenecks, uneven workloads, and wasted resources.

Key factors driving the development and adoption of Kanban include:

1. Eliminating overproduction:

Traditional production methods often resulted in excessive inventory, tying up resources

unnecessarily. Kanban introduced just-in-time (JIT) production, ensuring materials were

only replenished as needed (Ohno, 1988).

2. Improving workflow visibility:

In complex environments, teams struggled to track tasks and prioritize effectively. The

Kanban method provided a visual tool to monitor tasks, identify bottlenecks, and enhance

team collaboration (Ahmad, Markkula, and Oivo, 2013).

3. Flexibility in changing environments:

82

Unlike rigid methodologies, Kanban adapts to evolving requirements, making it

particularly suitable for industries like software development where priorities can shift

rapidly (Anderson, 2010).

3.4.3. Advantages of the kanban method

Kanban's strengths have contributed to its widespread adoption across industries:

1. Enhanced workflow visibility:

Kanban boards provide a clear visual representation of tasks, allowing teams to monitor

progress and identify issues in real time (Ahmad, Markkula, and Oivo, 2013).

2. Improved efficiency:

By limiting WIP, Kanban reduces multitasking and ensures that tasks are completed

before new ones are started. This leads to faster delivery times and improved quality

(Hiranabe, 2008).

3. Flexibility and adaptability:

Unlike methodologies with fixed iterations, Kanban allows tasks to flow continuously

through the pipeline, making it suitable for dynamic environments with changing

priorities (Anderson, 2010).

4. Continuous improvement:

Kanban emphasizes iterative improvements, encouraging teams to analyze workflow data

and make incremental changes for better performance (Ohno, 1988).

5. Ease of implementation:

83

Kanban can be seamlessly integrated into existing workflows without requiring

significant structural changes, making it a low-risk method for process improvement

(Hiranabe, 2008).

3.4.4. Disadvantages of the kanban method

Despite its benefits, Kanban has certain limitations:

1. Overemphasis on visualization:

Teams unfamiliar with visual tools may struggle to use Kanban effectively, leading to

confusion or underutilization of its features (Ahmad, Markkula, and Oivo, 2013).

2. Risk of overloading teams:

Without proper adherence to WIP limits, Kanban teams may inadvertently take on too

many tasks, negating the method's benefits (Anderson, 2010).

3. Dependency on team discipline:

Kanban's success hinges on team commitment to updating boards and adhering to

processes. Lack of discipline can compromise its effectiveness (Hiranabe, 2008).

4. Limited guidance for new teams:

Unlike methodologies like Scrum, Kanban does not prescribe specific roles or

ceremonies, which may make it challenging for inexperienced teams to adopt (Ohno,

1988).

3.4.5. Key principles of the kanban method

Kanban is grounded in several core principles and practices (Anderson, 2010):

1. Start with existing processes:

84

Kanban does not require organizations to overhaul their workflows. Instead, it builds on

current processes, making it easier to adopt.

2. Visualize workflow:

Tasks are represented on a Kanban board, divided into columns corresponding to stages

of the workflow (e.g., To Do, In Progress, Done).

3. Limit Work in Progress (WIP):

WIP limits ensure that teams focus on a manageable number of tasks, reducing

multitasking and bottlenecks.

4. Focus on flow:

The goal is to maintain a steady flow of tasks through the system, minimizing delays and

inefficiencies.

5. Implement feedback loops:

Regular feedback and review sessions help teams identify areas for improvement and

implement changes.

6. Pursue continuous improvement:

Teams analyze performance metrics (e.g., lead time, cycle time) to make incremental

adjustments for better outcomes.

3.4.6. Applications of the kanban method

Kanban has found applications in a variety of domains, including:

85

 Software development: Managing development tasks, debugging, and deployment

processes.

 IT operations: Streamlining incident management and change requests.

 Manufacturing: Enhancing production efficiency and inventory control.

 Marketing: Coordinating campaign tasks and content creation workflows.

Table 3.1
86

Comparison Between Kanban and Scrum Methodologies

Criterion Scrum Kanban

Teams Requires versatile specialists who can

interchange roles during the project.

Relies on highly specialized

professionals with clearly defined

roles.

Roles Involves specific roles: Product Owner

(PO), Scrum Master (SM), and

Development Team (DT).

Operates with a unified team

structure without predefined roles

since the process is linear and role

flexibility is inherent.

Planning Priorities are set by the Product Owner.

Sprints are planned for 1–4 weeks with

defined stages: planning, execution,

release, and retrospective. Changes

during sprints are discouraged.

Priorities are set collaboratively

by the project team. Tasks are

divided into stages, and new tasks

can be added during execution.

Time

Management

Work is divided into fixed-length

sprints (1–4 weeks), and time is

allocated for daily meetings. Sprints

follow a strict schedule with minimal

flexibility.

No time-boxed iterations; tasks

flow continuously. No mandatory

meetings, offering greater

flexibility to adjust priorities

dynamically.

87

Visualization Uses digital or analog boards divided

into columns representing task states.

The Scrum board is reset after each

sprint.

Similar visualization tools as

Scrum, but the Kanban board

remains filled and continuously

updated without being cleared.

Performance

Metrics

Measures the total weight of all tasks

completed during a sprint.

Measures the average time taken

to complete individual tasks,

focusing on optimizing flow.

Application Best suited for large-scale projects (3+

months) with specific requirements

defined before the project starts.

Ideal for small projects requiring

minimal upfront planning or long-

term projects with evolving

requirements formed during

development.

3.4.7. Summary

The Kanban method has evolved from its roots in manufacturing to become a versatile

and powerful tool for managing workflows across industries. Its focus on visualization, limiting

WIP, and continuous improvement makes it an effective approach for enhancing productivity

and efficiency. While it requires discipline and adaptability, its advantages far outweigh its

limitations, making it a valuable addition to the toolkit of modern organizations. Scrum and

Kanban are both agile methodologies but differ significantly in their approach to workflow

management and project planning. Scrum thrives in structured environments with fixed

88

iterations, making it suitable for projects with clear requirements. In contrast, Kanban offers

flexibility and continuous workflow, making it better suited for projects with dynamic and

evolving requirements. Both methodologies emphasize visualization and process optimization

but cater to different organizational needs and

team structures.

3.5. Extreme Programming (XP): a comprehensive overview

3.5.1. Introduction to extreme programming (xp)

Initially, the Waterfall model was the primary approach used in software development. In

this model, programmers would compile a complete list of customer requirements at the

beginning of the project and work towards delivering a product that matched those

specifications. However, this approach presented several challenges. Customers often changed

their requirements or were uncertain about their needs, leading to contradictions and misaligned

expectations. Programmers also faced significant difficulties; they would sometimes assume the

project was near completion, only to realize they had barely made significant progress. These

challenges highlighted the need for an iterative process with shorter development cycles to

accommodate evolving requirements effectively.

In 1996, Kent Beck, along with Ward Cunningham and Ron Jeffries, developed a new

methodology while working on Chrysler's comprehensive compensation system. Beck refined

this approach and later published the book Extreme Programming Explained in 1999. Although

he departed from the project in 2000, his work laid the foundation for the methodology known as

Extreme Programming (XP).

89

As technology advances and companies increasingly adopt web-based solutions,

traditional software development methods have proven inadequate for meeting the demands of

modern projects. Organizations now often outsource tasks to smaller, dynamic teams that

prioritize faster delivery. To address these needs, developers have turned to agile techniques such

as Extreme Programming (XP), Crystal, Scrum, and adaptive software development. These

methods aim to boost productivity while maintaining high-quality outcomes. Agile

methodologies share common characteristics, including iterative development, frequent customer

feedback, and regular small releases, enabling organizations to remain agile and responsive to

change. Among these approaches, XP is one of the most widely used and effective

methodologies.

Extreme Programming (XP) is an agile software development framework designed to

deliver high-quality software while simplifying the development process for teams. It is

particularly well-suited for small teams, typically with up to 20 members, and emphasizes a

collaborative approach where product delivery is a shared responsibility among all developers,

rather than being solely reliant on a manager or team leader. XP derives its name from taking

traditional programming practices to an extreme level of rigor and efficiency. The primary goal

of XP is to establish a lightweight, efficient process model that addresses evolving customer

needs effectively.

Among agile methodologies, XP stands out for its focus on precise engineering practices

that ensure the software aligns closely with customer requirements. The framework emphasizes

frequent releases within short timeframes, allowing for incremental improvements in software

quality. By fostering a highly collaborative environment, XP enables programmers and

customers to work closely throughout the development process. This collaboration allows

90

customers to suggest changes and updates as their understanding of the problem evolves over

time.

Extreme Programming encourages team members to work in close proximity, ideally in a

single location, to facilitate effective communication. By promoting an open environment, where

overhearing conversations is common, XP reduces hesitation and fosters a culture of

transparency. Additionally, XP emphasizes close customer interaction, encouraging a customer

representative to become an integral part of the development team to provide continuous

feedback and ensure alignment with user needs.

Many teams adopt XP because it minimizes time spent on documentation by prioritizing

face-to-face communication. This approach allows developers to focus on implementing ideas

rather than designing detailed plans or creating extensive documentation. For smaller teams, XP

proves particularly effective, as sharing ideas through direct conversation is faster and more

productive than relying on written documents. By prioritizing collaboration, adaptability, and

efficiency, XP enhances the overall development process and ensures timely delivery of high-

quality software.

3.5.2. Characteristics of extreme programming (xp)

 Minimal documentation:

XP requires minimal accompanying measures, reducing the need for creating extensive

documentation or detailed project requirements.

 Team-Oriented approach:

It emphasizes collaboration, making the successful completion of the project a shared

responsibility among all developers, rather than relying solely on the owner or manager.

91

 Small team size:

XP is most effective with small teams, typically consisting of 12–14 members.

 Early customer involvement:

Customers and users are involved from the very beginning of the development process,

helping to bridge communication gaps and reduce wasted time.

 Socially oriented:

XP promotes teamwork and interaction, fostering a collaborative and socially supportive

environment.

3.5.3. Values and principles of extreme programming (XP)

XP methodology is built on five core values that guide its practices and foster an effective

development environment:

1. Communication

Effective software development relies on understanding customer needs and

implementing them accurately. XP emphasizes strong interaction among team members to

ensure clarity and alignment. Visual tools like diagrams and charts are encouraged to enhance

communication within the team.

92

2. Simplicity

XP advocates for simplicity in all aspects of development, starting with thorough

planning to avoid unnecessary complexities. Developers are encouraged to focus on current

requirements rather than anticipating future needs, ensuring that efforts are directed efficiently.

System design is kept straightforward to facilitate easier maintenance and future improvements.

3. Feedback

Continuous feedback is a cornerstone of XP, allowing teams to reflect on past work to

identify areas for improvement. This iterative feedback process also helps in simplifying the

design and improving overall project quality.

4. Courage

Facing challenges or failures can be daunting, but XP values courage to address such

issues. Developers are encouraged to keep the other principles in mind, such as simplicity and

feedback, to navigate obstacles effectively without compromising the team's morale.

5. Respect

Mutual respect among all project participants, including customers and developers, is essential in

XP. This value ensures that feedback is welcomed and constructive, fostering a collaborative

environment aimed at achieving project success.

3.5.4. Why extreme programming came into picture

XP was introduced to address the challenges and inefficiencies of traditional software

development methodologies, such as:

93

1. Handling changing requirements:

Traditional models like Waterfall struggle to adapt to changing customer needs mid-

project. XP’s iterative approach allows for seamless incorporation of evolving

requirements, ensuring alignment with customer expectations.

2. Enhancing collaboration:

Lack of direct customer involvement in traditional methodologies often resulted in

mismatched deliverables. XP’s on-site customer practice bridges this gap, enabling real-

time clarification and prioritization.

3. Ensuring code quality:

Poor code maintainability and technical debt were persistent issues in traditional

approaches. XP's practices, such as TDD and refactoring, ensure cleaner and more

maintainable codebases (Beck and Andres, 2004).

4. Accelerating time-to-market:

With businesses demanding rapid delivery cycles, XP’s frequent releases allow

organizations to deploy functional increments faster than traditional methods.

3.5.5. Extreme programming workflow

The workflow of XP is iterative and centered on delivering high-quality, functional software in

small increments. The steps in XP’s workflow include:

94

1. Exploration:

The team collaborates with the customer to identify high-priority features. User stories

are written to describe desired functionalities.

2. Planning:

Based on user stories, the team estimates the effort required and creates a release plan.

Tasks are broken down into manageable units for short iterations (typically 1–2 weeks).

3. Iteration execution:

a. Test-Driven Development (TDD): Tests are written before the code, ensuring

functionality meets requirements.

b. Pair programming: Developers work in pairs, one writing code and the other

reviewing in real time.

c. Continuous integration: Code is integrated frequently to identify and resolve

issues early.

d. Refactoring: Code is continuously improved for readability and efficiency.

4. Feedback and retrospective:

The team reviews progress, gathers feedback, and identifies areas for improvement. This

step ensures continuous learning and adaptation.

5. Release:

A functional increment is delivered to the customer. Small releases ensure quicker

feedback and allow the team to adjust for future iterations.

95

3.5.6. Extreme programming in large-scale projects

The demand for fast-paced software development and the flexibility to implement

changes throughout the development lifecycle has driven the popularity of lightweight and agile

methodologies. These practices are highly effective for small and medium-sized projects with

compact teams. Advocates of Extreme Programming (XP) often claim that it offers advantages

over traditional methods, such as reduced management costs, enhanced team productivity, and

shorter delivery cycles. However, the effectiveness of agile methodologies, including XP,

depends on several factors, such as project size, the nature of the project, the skill level of team

members, and customer involvement.

For large and complex projects, directly adopting XP poses challenges due to the lack of

upfront design and extensive documentation. However, experts acknowledge that agile and

traditional methodologies can complement each other. For example, the SWCMM model

combines XP with structured processes to address the demands of large-scale projects.

Considerable efforts have been made to adapt XP practices to suit large, intricate systems,

though challenges remain.

3.5.6.1. Challenges faced in large-scale systems

 Limited application domain knowledge:

In large-scale projects, deep application knowledge is often distributed thinly across

several teams. Significant effort is required to maintain a shared understanding of the

application domain and the system's functionality and performance across all team

members.

96

 Evolving and conflicting requirements:

Developers may have incomplete knowledge of the application domain, and frequent

changes in business goals can lead to fluctuating and contradictory requirements. This

creates additional complexities in managing project scope and priorities.

 Breakdowns in communication and coordination:

Effective coordination among multiple teams is critical in large projects. While agile

methodologies rely on the implicit expertise of team members, this approach carries risks

when dealing with a large number of stakeholders and vast amounts of data. Informal

communication methods may not suffice, and the absence of structured documentation

and consistent evaluation processes can exacerbate the risks. Traditional practices, such

as formal documentation and regular assessments, are often necessary to mitigate these

challenges.

3.5.6.2. Adapting xp to large-scale project

Large-scale projects often face dynamic demands and the pressure to deliver products

quickly. To manage these challenges, XP has been adapted for use in larger contexts. While

some XP practices, such as frequent testing, small deliverables, and refactoring, have been

successfully applied to large projects, others, such as daily stand-up meetings and informal

techniques for system design, have proven less effective.

The mixed results from implementing XP in extensive projects highlight the need for a

tailored approach. Agile practices must be integrated with structured methodologies to address

the specific needs of complex systems while minimizing risks and ensuring alignment with

project goals.

97

3.5.7. Advantages of extreme programming

1. Improved Software Quality:

XP’s focus on TDD, pair programming, and continuous integration ensures a defect-free

and maintainable codebase (Beck, 1999).

2. Faster delivery:

Frequent releases enable businesses to bring products to market quickly and iteratively

refine them.

3. Enhanced customer collaboration:

With on-site customer involvement, XP ensures that deliverables align closely with user

expectations.

4. Flexibility to change:

XP is highly adaptable to changing requirements, making it suitable for dynamic project

environments.

5. Team productivity:

Practices like pair programming foster knowledge sharing, skill development, and team

cohesion.

3.5.8. Disadvantages of extreme programming

1. Resource intensive:

Practices such as pair programming require more resources and can increase initial

development costs (Beck and Andres, 2004).

2. High dependency on customers:

XP relies heavily on customer availability, which can be difficult to ensure in practice.

98

3. Limited scalability:

XP is most effective for small to medium-sized teams. Scaling its practices to larger

projects can be challenging.

4. Reduced documentation:

XP prioritizes working software over documentation, which may complicate future

maintenance.

3.5.9. Why XP remains relevant today

In today’s fast-paced and innovation-driven industries, XP offers significant advantages:

1. Agility in dynamic environments:

XP’s iterative approach allows teams to adapt quickly to changing requirements, ensuring

relevance in volatile markets.

2. High-quality code:

With practices like TDD and refactoring, XP ensures robust and maintainable code,

crucial for long-term software success.

3. Customer-centric approach:

Continuous customer involvement ensures alignment with business objectives and user

expectations.

4. Collaboration in remote work:

XP’s emphasis on teamwork and frequent communication is well-suited for remote and

hybrid work environments.

99

Table 3.2

Comparison between the Extreme programming, scrum and kanban

Criterion Extreme Programming

(XP)

Scrum Kanban

Focus Emphasizes code

quality and

engineering practices.

Focuses on iterative

delivery with well-

defined roles and

events.

Focuses on visualizing

workflow and limiting

WIP.

Team Size Small, co-located

teams.

Small to medium-

sized teams (7–10

members).

Flexible; team size varies.

Planning Iterative planning with

user stories and small

releases.

Sprint planning for 1–

4-week iterations.

Continuous planning with

tasks added as needed.

Roles No predefined roles;

emphasizes

collaboration.

Defined roles: Scrum

Master, Product

Owner, Development

Team.

No formal roles; flexible

responsibilities.

100

Workflow Iterative with frequent

testing and refactoring.

Iterative with fixed-

length sprints.

Continuous with no fixed

timeboxes.

Customer

Involvement

High; on-site

customers are integral

to the process.

Moderate; customer

feedback is collected

during reviews.

Flexible; feedback is

incorporated continuously.

Metrics Code quality, test

coverage, and team

velocity.

Sprint burndown

charts and velocity.

Lead time and cycle time.

Application Suitable for dynamic

projects needing high-

quality code.

Ideal for large-scale

projects with defined

requirements.

Best for small or long-term

projects with evolving

needs.

3.5.10. Summary

Extreme Programming (XP) is a highly time-efficient and lightweight software

development methodology rooted in the principles of simplicity, collaboration, feedback, and

resilience. It has gained significant popularity due to its ability to facilitate rapid software

development and accommodate evolving requirements effectively. Teams employing XP

consistently deliver software with low error rates, viewing technical challenges as opportunities

for skill enhancement rather than obstacles. Incorporating XP principles fosters a motivating and

collaborative environment within and across teams.

101

XP and similar agile methodologies are particularly effective for projects that depend on

factors such as project size, team skill levels, and active customer involvement. This approach

prioritizes individuals and adapts seamlessly to uncertain or rapidly changing requirements. It

emphasizes close collaboration among developers, programmers, and clients, making it highly

effective in dynamic and unpredictable scenarios.

3.6. Summary of Chapter

The evolution of software development methodologies has been shaped by the need to

address various challenges in project management, adaptability, and efficiency. Traditional

approaches like the Waterfall method provided a structured, linear framework for managing

projects, dividing them into sequential phases such as requirements gathering, design,

implementation, testing, and deployment. While effective for projects with well-defined and

unchanging requirements, the Waterfall model's rigidity, minimal customer involvement, and

inability to accommodate changes during the development cycle made it unsuitable for dynamic

and fast-paced environments.

In contrast, agile methodologies such as Scrum, Kanban, and Extreme Programming (XP)

emerged as flexible, iterative approaches designed to meet the needs of modern software

development. These methods emphasize collaboration, continuous feedback, and adaptability,

allowing teams to respond quickly to evolving requirements. Scrum utilizes fixed-length sprints

and defined roles to deliver iterative progress, Kanban focuses on visualizing workflows and

limiting work-in-progress to optimize efficiency, and XP prioritizes technical excellence and

customer collaboration through practices like test-driven development and pair programming.

Each methodology offers distinct advantages, making them well-suited for dynamic projects

requiring regular updates and active stakeholder engagement.

102

This chapter underscores the contrast between traditional and agile methods, highlighting

how agile frameworks address the limitations of conventional approaches. By promoting

iterative delivery, customer involvement, and adaptability, agile methodologies have

revolutionized software development, becoming the preferred choice for projects in complex and

rapidly changing environments. These methods collectively enable teams to deliver high-quality

software while maintaining flexibility and meeting customer needs effectively.

103

CHAPTER IV

4.1. Introduction to Agile and DevOps

4.1.1. Definition of agile methodology and devops practices

Agile methodology is a flexible and iterative approach to software development that

focuses on collaboration, customer satisfaction, and continuous delivery of value. Agile is based

on principles outlined in the Agile Manifesto (2001), which emphasizes individuals and

interactions over processes and tools, working software over comprehensive documentation,

customer collaboration over contract negotiation, and responding to change over following a

fixed plan (Beck et al., 2001). The methodology is widely used in software development to

address the limitations of traditional approaches like the Waterfall model, offering better

adaptability to changing requirements and fostering continuous feedback.

DevOps, on the other hand, is a cultural and technical practice that bridges the gap

between development (Dev) and operations (Ops) teams to improve collaboration, automate

workflows, and accelerate software delivery. DevOps emphasizes continuous integration (CI)

and continuous delivery (CD), enabling teams to release software faster, more frequently, and

with higher reliability (Kim et al., 2016). DevOps practices include automation, infrastructure as

code (IaC), monitoring, and feedback loops, which contribute to streamlined workflows and

reduced cycle times.

Together, Agile and DevOps provide a complementary approach to modern software

development by combining Agile's iterative planning and development processes with DevOps'

focus on automation, operational efficiency, and faster deployments.

104

4.1.2. Evolution of agile and its integration with devops

The Agile methodology emerged in 2001 as a response to the shortcomings of traditional

software development models, which were often rigid and unable to accommodate changing

customer requirements. Agile introduced a new mindset, encouraging iterative development

through short cycles known as sprints, collaboration between cross-functional teams, and

frequent stakeholder feedback (Beck et al., 2001). Over the years, Agile became widely adopted

across industries, transforming the way teams approach software development.

DevOps evolved in the mid-2000s as an extension of Agile principles, addressing the

operational bottlenecks that hindered the rapid delivery of software. While Agile focuses

primarily on development and team collaboration, DevOps extends these principles into the

deployment and maintenance phases of the software lifecycle. The integration of Agile and

DevOps became a natural progression, as organizations recognized the need to improve not only

development practices but also the delivery pipeline (Humble and Farley, 2010).

The synergy between Agile and DevOps is reflected in their shared goals of continuous

improvement, customer satisfaction, and adaptability to change. Agile provides the iterative

framework for planning and development, while DevOps ensures that the processes for building,

testing, and deploying software are automated and efficient. This integration enables

organizations to deliver software faster and with greater quality, aligning with the demands of

modern, dynamic markets.

105

4.2 Principles of agile and devops

4.2.1. Continuous Delivery and Integration

Continuous Delivery (CD) and Continuous Integration (CI) are fundamental principles in both

Agile and DevOps practices, aimed at ensuring seamless software development and delivery.

 Continuous integration (CI):

CI is the practice of merging code changes from multiple developers into a shared

repository multiple times a day. Automated tools and scripts are used to build and test the

software after every change to ensure that the new code integrates seamlessly with the

existing codebase (Duvall et al., 2007). The primary goal of CI is to identify and resolve

integration issues early in the development cycle, thus reducing the risk of defects in later

stages. This practice accelerates feedback loops by ensuring that errors are detected as

soon as they occur, allowing teams to maintain a stable and functional codebase

throughout the development process.

 Continuous delivery (CD):

CD extends the principles of CI by automating the deployment process. In a continuous

delivery pipeline, software is always in a deployable state, allowing teams to release new

features, updates, or fixes to production at any time. This approach minimizes manual

intervention by automating the build, test, and deployment stages, leading to faster and

more reliable releases (Humble and Farley, 2010). CD enables organizations to deliver

value to customers more frequently and reduces the time-to-market for new features,

which is critical in highly competitive industries.

106

By adopting CI/CD practices, Agile and DevOps enable teams to create a smooth and

automated workflow from development to deployment, ensuring faster feedback, reduced errors,

and enhanced customer satisfaction. These principles embody the shared goal of Agile and

DevOps: delivering high-quality software efficiently and reliably.

4.3. Collaboration between development and operations teams

A key principle of DevOps is fostering collaboration between development and operations

teams, breaking down the traditional silos that often exist in software development. In the past,

development teams were responsible for building new features, while operations teams focused

on maintaining system stability. This separation often led to delays, miscommunication, and

conflicting priorities. DevOps addresses this challenge by integrating the two functions into a

unified, collaborative workflow (Kim et al., 2016).

 Cross-functional teams:

DevOps emphasizes cross-functional teams where developers, testers, and operations

personnel work together throughout the software development lifecycle. This

collaboration ensures that everyone involved has a shared understanding of the project

goals and challenges, leading to better alignment and faster decision-making (Bass et al.,

2015).

 Shared responsibility:

Unlike traditional models where operations teams are solely responsible for system

reliability, DevOps promotes a culture of shared ownership. Developers are encouraged

to consider operational concerns such as deployment, scalability, and monitoring while

107

writing code. Similarly, operations teams are involved earlier in the development cycle to

provide feedback on infrastructure and performance requirements.

 Automation and communication tools:

Collaboration is further enhanced by the use of automation and communication tools such

as Jenkins, Docker, Kubernetes, Slack, and Jira. These tools allow teams to automate

repetitive tasks, track progress in real time, and streamline communication, ensuring that

everyone is on the same page.

This collaborative approach aligns with Agile principles, which emphasize close collaboration

between cross-functional teams and stakeholders. By bringing development and operations

together, Agile and DevOps help organizations build software more efficiently, respond to

changes quickly, and deliver reliable systems that meet customer expectations.

4.4. Benefits of combining agile and devops

The integration of Agile and DevOps offers significant benefits for software development by

combining Agile's iterative, customer-centric approach with DevOps' emphasis on automation

and operational efficiency. This synergy leads to faster delivery cycles, enhanced software

quality, and improved customer satisfaction, among other advantages.

4.4.1. Faster delivery cycles

One of the most significant benefits of combining Agile and DevOps is the ability to

deliver software faster. Agile focuses on iterative development with short sprints, while DevOps

accelerates delivery through continuous integration and delivery (CI/CD) pipelines. Together,

108

these practices streamline the development and deployment process, allowing teams to release

software updates more frequently and efficiently.

By automating repetitive tasks such as testing, integration, and deployment, DevOps

reduces bottlenecks in the development lifecycle. Continuous delivery ensures that software is

always in a deployable state, enabling rapid deployment of features, updates, and fixes (Humble

and Farley, 2010). Agile’s iterative planning further supports faster delivery by breaking projects

into manageable increments, ensuring progress without the delays typically associated with

traditional methodologies.

For example, Amazon has embraced Agile and DevOps practices to deploy updates to its

production environment every 11.7 seconds on average, demonstrating how this combination can

significantly accelerate delivery cycles (Kim et al., 2016). Faster delivery cycles also help

organizations respond to market demands and changing customer needs more effectively, giving

them a competitive edge.

4.4.2. Enhanced quality through continuous feedback

Agile and DevOps emphasize continuous feedback throughout the software development

lifecycle, ensuring that issues are identified and addressed early. Agile facilitates regular

customer involvement through sprint reviews and backlog refinement, while DevOps uses

monitoring and automated testing tools to provide real-time insights into system performance

and functionality (Bass et al., 2015).

Continuous integration ensures that new code changes are integrated and tested

frequently, reducing the likelihood of defects accumulating over time. Automated testing

frameworks allow teams to identify bugs quickly and ensure code quality with every iteration

109

(Duvall et al., 2007). This approach not only improves the overall quality of the software but also

minimizes the risks and costs associated with late-stage defects.

By combining Agile’s frequent feedback loops with DevOps’ monitoring and automation

capabilities, teams can maintain high standards of quality while delivering software faster. This

iterative feedback process fosters a culture of continuous improvement and ensures that the final

product aligns closely with customer expectations.

4.4.3. Improved customer satisfaction

Agile and DevOps place customer satisfaction at the center of software development.

Agile encourages close collaboration with customers throughout the project, ensuring that their

feedback directly influences the product's direction. This frequent interaction helps teams deliver

features that meet customer needs and resolve potential issues early (Beck et al., 2001).

DevOps complements this customer-focused approach by enabling faster and more

reliable deployments. Continuous delivery ensures that customers receive updates and new

features more frequently, while monitoring tools help teams address performance issues

proactively. This responsiveness not only improves customer experience but also builds trust and

loyalty.

Additionally, the flexibility offered by Agile and DevOps allows teams to adapt to

changing customer requirements quickly. Whether it’s a feature request or an issue with the

current system, teams can respond in near real-time, resulting in higher satisfaction levels.

Organizations that successfully combine Agile and DevOps often report greater customer

retention and competitive advantages in the marketplace (Kim et al., 2016).

110

4.5. Tools supporting agile and devops

The integration of Agile and DevOps practices is facilitated by a range of tools designed

to streamline workflows, enhance collaboration, and automate repetitive tasks. These tools play a

crucial role in implementing the principles of Agile and DevOps, such as continuous integration

(CI), continuous delivery (CD), and infrastructure automation. Among the most popular tools are

Jenkins, Docker, and Kubernetes, which have become foundational for Agile-DevOps

workflows. Additionally, automation tools drive efficiency and consistency, enabling teams to

deliver high-quality software faster.

4.5.1. Popular tools like Jenkins, Docker, and Kubernetes

1. Jenkins

Jenkins is an open-source automation server widely used in DevOps workflows to

implement CI/CD pipelines. It allows developers to automate tasks such as building,

testing, and deploying software. Jenkins supports a wide range of plugins, enabling

seamless integration with other tools and technologies (Smart et al., 2018). For Agile-

DevOps teams, Jenkins facilitates faster iterations by ensuring that new code is

automatically tested and integrated into the shared repository, reducing the risk of

integration issues.

2. Docker

Docker is a containerization platform that enables developers to package applications and

their dependencies into lightweight, portable containers. These containers ensure

consistency across development, testing, and production environments, a critical

requirement for Agile and DevOps practices (Turnbull, 2014). Docker simplifies the

111

deployment process, making it easier for teams to replicate production environments and

deploy updates with minimal disruptions.

3. Kubernetes

Kubernetes is an open-source container orchestration tool that manages, and scales

containerized applications. It automates tasks such as deployment, scaling, and load

balancing, allowing teams to efficiently manage complex distributed systems (Burns et

al., 2019). Kubernetes is particularly valuable for Agile-DevOps teams handling large-

scale applications, as it ensures high availability and resource optimization while

supporting rapid iteration and deployment.

4.6. Role of automation in agile and devops workflows

Automation is at the core of Agile and DevOps practices, enabling teams to deliver software

faster, with fewer errors and greater consistency. It reduces the manual effort involved in

repetitive tasks, such as code integration, testing, and deployment, allowing developers to focus

on higher-value activities.

1. Continuous integration and delivery (CI/CD):

Automation tools like Jenkins streamline CI/CD pipelines by automating the building,

testing, and deployment of software. This ensures that new code is integrated into the

shared repository multiple times a day, reducing the risk of integration issues and

enabling faster feedback loops (Humble and Farley, 2010).

2. Infrastructure as code (IaC):

Automation extends to infrastructure management through tools like Terraform and

Ansible, which allow teams to define and provision infrastructure using code. This

112

eliminates manual configuration errors and ensures consistency across environments, a

critical requirement for Agile and DevOps workflows (Kim et al., 2016).

3. Automated testing:

Automated testing frameworks such as Selenium and TestNG play a vital role in Agile

and DevOps by ensuring that new code is tested thoroughly and quickly. This reduces the

risk of defects making it to production and accelerates the development process (Duvall

et al., 2007).

4. Monitoring and feedback:

Tools like Prometheus and Grafana automate monitoring and provide real-time insights

into system performance. This continuous feedback helps teams identify and resolve

issues proactively, improving system reliability and user experience (Bass et al., 2015).

By integrating these automation tools into their workflows, Agile and DevOps teams can

achieve greater efficiency, faster delivery cycles, and enhanced software quality.

Automation not only reduces manual effort but also enforces consistency and

repeatability, which are critical for scaling Agile and DevOps practices.

4.7. Challenges and best practices

The adoption of Agile and DevOps practices brings transformative changes to organizations, but

it also presents unique challenges. Addressing these challenges requires not only a cultural shift

but also the effective implementation of technical practices such as continuous integration and

delivery (CI/CD). This section explores the key challenges of cultural resistance and CI/CD

implementation, along with the best practices to overcome them.

113

4.7.1 Addressing cultural resistance

One of the biggest obstacles in adopting Agile and DevOps practices is cultural

resistance. Transitioning from traditional methods to a collaborative, iterative approach requires

a shift in mindset, roles, and workflows, which can be met with skepticism or opposition from

team members and leadership (Kim et al., 2016).

 Challenges of cultural resistance:

o Fear of Change: Employees accustomed to traditional processes may resist Agile

and DevOps due to fears of job insecurity or uncertainty about their ability to

adapt to new practices.

o Siloed Teams: Traditional organizational structures often involve development,

operations, and testing teams working in silos. This separation leads to

communication gaps and resistance to the cross-functional collaboration required

in DevOps (Bass et al., 2015).

o Lack of Leadership Buy-In: Organizational leaders may be hesitant to invest in

the cultural and technical changes required for Agile and DevOps, especially if

the benefits are not immediately apparent.

 Best practices for overcoming cultural resistance:

o Promote a Collaborative Culture: Foster a culture of trust, transparency, and open

communication. Encourage cross-functional teams to work together and share

ownership of the software development lifecycle (Kim et al., 2016).

o Provide Training and Upskilling: Equip teams with the knowledge and skills

needed to adopt Agile and DevOps practices. Workshops, training sessions, and

114

certifications can help reduce fears and build confidence in new workflows

(Humble and Farley, 2010).

o Leadership Advocacy: Ensure that leadership actively supports the transition to

Agile and DevOps. Leaders should act as champions for change, emphasizing the

long-term benefits of faster delivery, higher quality, and improved customer

satisfaction.

o Start Small and Scale Gradually: Begin with pilot projects to demonstrate the

effectiveness of Agile and DevOps. Use these successes to build momentum and

gradually expand adoption across the organization.

4.7.2. Implementing CI/CD pipelines effectively

Continuous integration (CI) and continuous delivery (CD) pipelines are central to Agile and

DevOps but implementing them effectively comes with its own challenges. A CI/CD pipeline

automates the process of building, testing, and deploying software, enabling faster and more

reliable delivery. However, without proper implementation, these pipelines can introduce

bottlenecks and inefficiencies.

 Challenges in CI/CD implementation:

o Tooling Complexity: The wide variety of CI/CD tools available can overwhelm

teams, making it difficult to choose and integrate the right tools for their

workflow (Smart et al., 2018).

o Test automation challenges: Implementing automated testing across the entire

development lifecycle can be time-consuming and requires significant effort to

ensure robust test coverage (Humble and Farley, 2010).

115

o Pipeline bottlenecks: Inefficient pipelines, such as slow builds or inadequate

testing environments, can delay feedback and reduce the effectiveness of CI/CD.

o Security concerns: Automating deployment processes without incorporating

security measures can expose systems to vulnerabilities and compliance risks

(Bass et al., 2015).

 Best Practices for effective CI/CD implementation:

o Start with small pipelines: Begin with a simple pipeline that automates basic tasks

such as code integration and unit testing. Gradually expand the pipeline to include

more advanced stages like integration testing, deployment, and monitoring (Kim

et al., 2016).

o Choose the right tools: Select tools that align with the team's workflow and

integrate seamlessly with existing systems. Popular tools include Jenkins, Circle

CI, GitLab CI/CD, and Azure DevOps (Smart et al., 2018).

o Focus on test automation: Invest in robust test automation frameworks that cover

unit, integration, and performance testing. Ensure that tests are fast and reliable to

avoid bottlenecks in the pipeline (Humble and Farley, 2010).

o Incorporate security practices: Integrate security checks into the CI/CD pipeline to

address vulnerabilities early. Tools like SonarQube and OWASP Dependency-

Check can be used for static code analysis and dependency scanning.

o Monitor and optimize pipelines: Continuously monitor pipeline performance and

collect metrics to identify bottlenecks. Use these insights to optimize pipeline

efficiency and reduce build times.

116

4.8. Growth of cloud computing

Cloud computing has revolutionized the way organizations deliver, store, and manage

applications and data. It provides a flexible and scalable infrastructure that aligns perfectly with

Agile practices, enabling faster development cycles, better collaboration, and streamlined

workflows. This section delves into the definition, evolution, key drivers, benefits, and

challenges of cloud computing, as well as its impact on Agile development and DevOps

workflows.

4.8.1 Overview of cloud computing

 Definition and evolution of cloud computing

Cloud computing refers to the delivery of on-demand computing resources, such as

servers, storage, databases, networking, and software, over the internet. Instead of relying

on local servers or personal devices, organizations use shared resources hosted on data

centers managed by third-party cloud providers (Mell and Grance, 2011).

The concept of cloud computing emerged in the early 2000s, with Amazon

launching its Elastic Compute Cloud (EC2) service in 2006. Over the years, the

technology has evolved significantly, driven by advancements in virtualization, high-

speed networking, and distributed computing. Today, cloud computing underpins many

Agile workflows by enabling teams to deploy and scale applications faster and

collaborate more effectively in distributed environments (Armbrust et al., 2010).

 Key Models: SaaS, PaaS, and IaaS

o Software as a service (SaaS):

117

SaaS delivers software applications over the internet, eliminating the need for

users to install or manage software locally. Examples include Jira for Agile

project management and Slack for communication, which are widely used in

Agile teams (Marston et al., 2011).

o Platform as a service (PaaS):

PaaS provides a development platform that allows developers to build, test, and

deploy applications without managing the underlying infrastructure. Services like

Google App Engine and Microsoft Azure App Services support Agile and

DevOps practices by automating deployment pipelines.

o Infrastructure as a service (IaaS):

IaaS offers virtualized computing resources such as servers, storage, and

networking. Providers like Amazon EC2 and Google Compute Engine give

organizations the flexibility to create scalable infrastructures that adapt to Agile

iterations.

4.8.2 Drivers of cloud computing growth

 Increased demand for remote work solutions

The global shift to remote work, accelerated by the COVID-19 pandemic, has

significantly driven the adoption of cloud computing. Agile teams working remotely rely

on cloud-based tools for collaboration, project tracking, and code repositories. Platforms

such as GitHub, Trello, and Microsoft Teams have become essential for maintaining

Agile workflows across distributed teams (Andrikopoulos et al., 2013).

 Advancements in virtualization and networking

118

Virtualization technology has been a cornerstone of cloud computing, allowing multiple

virtual machines to run on a single physical server, thereby optimizing resource

utilization. Advances in high-speed networking, such as 5G and software-defined

networking (SDN), have further enhanced the performance and accessibility of cloud

services. These developments enable Agile teams to access cloud resources quickly and

deploy applications seamlessly, even in geographically distributed environments

(Armbrust et al., 2010).

4.8.3. Benefits of cloud computing

 Cost efficiency and scalability

Cloud computing eliminates the need for significant upfront investments in hardware and

infrastructure. Organizations pay only for the resources they use, making it highly cost-

efficient. The scalability of cloud platforms also allows Agile teams to adjust resources

dynamically based on workload demands, ensuring efficient management of iterative

development cycles (Buyya et al., 2013).

 Enhanced disaster recovery and data backup

Cloud platforms provide robust disaster recovery and backup solutions, ensuring minimal

disruption to Agile workflows. Automated backups and redundancy features protect data

from loss, enabling teams to recover quickly and continue their work. This reliability is

crucial for Agile methodologies, where continuous delivery and deployment are essential

(Marston et al., 2011).

119

4.8.4. Cloud service providers and their impact

 Overview of major providers: AWS, Microsoft Azure, Google Cloud

The cloud computing market is dominated by major providers such as:

o Amazon web services (aws): The first and most widely used cloud platform,

offering a comprehensive suite of services including computing, storage, and

machine learning tools.

o Microsoft azure: Known for its integration with enterprise tools like Office 365

and its strong hybrid cloud capabilities.

o Google cloud platform (GCP): Offers cutting-edge machine learning and data

analytics tools, making it popular for AI-driven projects.

 Each provider caters to Agile and DevOps teams with tools like AWS Code Pipeline,

Azure DevOps, and Google Kubernetes Engine, enabling automated workflows and rapid

deployments (Andrikopoulos et al., 2013).

 Impact of competition on innovation

Competition among cloud providers has driven innovation in pricing models, security

features, and service offerings. For example, AWS's serverless computing service, AWS

Lambda, allows developers to run code without provisioning servers, aligning with Agile

principles of flexibility and cost-efficiency. Similarly, Azure's AI-driven development

tools and GCP's data analytics capabilities enhance Agile workflows by providing teams

with powerful tools to accelerate development cycles (Armbrust et al., 2010).

4.8.5. Challenges in cloud adoption

 Data security concerns

120

Despite its benefits, cloud computing raises concerns about data security and privacy.

Sensitive data stored on third-party servers may be vulnerable to breaches or

unauthorized access. Agile teams must implement robust security measures such as

encryption, identity and access management (IAM), and regular audits to protect data

(Marston et al., 2011).

 Vendor lock-In and compliance issues

Many organizations face challenges when migrating workloads from one cloud provider

to another due to differences in proprietary APIs and tools. This vendor lock-in limits

flexibility and may hinder Agile teams that require adaptability to meet changing project

demands. Additionally, compliance with regulations such as GDPR and HIPAA adds

complexity to cloud adoption, especially for organizations operating in regulated

industries (Andrikopoulos et al., 2013).

4.9. Growth of artificial intelligence

Artificial Intelligence (AI) has become one of the most transformative technologies in the

modern era, revolutionizing industries and changing the way organizations operate. AI aligns

closely with Agile principles by offering tools and techniques to automate processes, derive

insights from data, and enhance collaboration and adaptability. This section explores the

definition and historical background of AI, key milestones in its development, applications

across industries, recent advancements, and its ethical and social implications, all in the context

of how it supports Agile practices.

4.9.1. Introduction to artificial intelligence

 Definition and historical background

121

Artificial Intelligence refers to the simulation of human intelligence by machines that are

programmed to think, learn, and make decisions. AI systems use algorithms, data, and

computing power to perform tasks such as problem-solving, pattern recognition, and

language understanding. The term "Artificial Intelligence" was first coined by John

McCarthy in 1956 during the Dartmouth Conference, which marked the beginning of AI

as a field of study (Russell and Norvig, 2020).

Over the decades, AI has evolved from rule-based systems to machine learning and deep

learning approaches. Early AI systems were limited to predefined rules and logic, but

modern AI leverages vast datasets and computational power to learn and improve over

time, making it highly adaptable and efficient in dynamic environments.

 Key milestones in AI development

1. 1956–1970: Emergence of symbolic AI, focused on rule-based systems.

2. 1980s: Introduction of expert systems designed to mimic human decision-making in

specific domains (Nilsson, 2010).

3. 1997: IBM’s Deep Blue defeated chess champion Garry Kasparov, demonstrating AI's

capabilities in complex strategy games.

4. 2012: Deep learning became prominent with breakthroughs in computer vision,

particularly the success of Alex Net in image recognition tasks (LeCun et al., 2015).

5. 2023: Large language models like OpenAI's GPT-4 have achieved human-like

proficiency in language processing, transforming fields like customer service, content

generation, and coding assistance (Goodfellow et al., 2016).

AI has become an enabler for Agile practices by supporting faster decision-making, automating

routine t a s k s , a n d providing predictive analytics to guide iterative development.

122

4.9.2 Applications of AI across industries

AI’s adaptability makes it applicable across various industries, where it helps Agile teams deliver

value faster and respond effectively to customer needs.

 Healthcare: AI supports diagnosis, treatment planning, and drug discovery by analyzing

patient data and medical records. For instance, AI-powered tools like IBM Watson assist

doctors in identifying diseases and recommending treatment options (Topol, 2019). In

Agile terms, such AI tools enhance team productivity and allow healthcare developers to

iterate and test medical solutions more quickly.

 Finance: AI is widely used for fraud detection, algorithmic trading, and customer credit

risk assessment. Machine learning algorithms analyze transaction patterns to detect

fraudulent activities in real time. In Agile development, AI-driven insights allow teams to

create financial applications iteratively and adapt features to evolving security needs

(Russell and Norvig, 2020).

 Retail: AI enhances personalized recommendations, demand forecasting, and inventory

management. For example, recommendation engines used by platforms like Amazon and

Netflix improve customer satisfaction by delivering tailored suggestions. Agile teams use

these AI capabilities to deliver frequent updates and test new features, improving user

experience over time (LeCun et al., 2015).

4.9.3 Recent advances in AI

AI continues to advance at a rapid pace, providing new opportunities for Agile teams to innovate

and accelerate delivery.

123

 Natural language processing (NLP):

NLP has seen significant progress with the development of large language models like

GPT (Generative Pre-trained Transformer). These models can generate human-like text,

translate languages, and answer questions, enabling Agile teams to automate customer

interactions, generate documentation, and facilitate team communication (Vaswani et al.,

2017).

 Computer vision and autonomous systems:

Advances in computer vision enable systems to analyze and interpret visual data,

powering applications like autonomous vehicles, facial recognition, and quality control in

manufacturing. Agile teams working on IoT or autonomous systems use AI to gather

real-time insights and adapt system designs iteratively (Goodfellow et al., 2016).

AI’s ability to learn and adapt aligns seamlessly with Agile methodologies by enabling data -

driven decisions, rapid prototyping, and improved collaboration across distributed teams.

4.9.4 Ethical and social implications of AI

As AI becomes more pervasive, it raises several ethical and social concerns, which Agile teams

must consider during development.

 Concerns about job displacement:

AI-driven automation has the potential to replace repetitive and manual jobs, leading to

workforce displacement in industries such as manufacturing and customer service. Agile

124

teams need to balance automation with creating human-centric systems that enhance

productivity rather than eliminate jobs (Brynjolfsson and McAfee, 2014).

 Ethical dilemmas in decision-making algorithms:

AI systems often face ethical challenges, such as biases in algorithms that can lead to

unfair decisions in areas like hiring, lending, or law enforcement. Agile teams must

ensure that ethical considerations are embedded in the iterative development process by

conducting regular audits and involving diverse stakeholders (Russell and Norvig, 2020).

By adopting an ethical and human-centric approach, Agile teams can leverage AI to deliver

value while addressing potential risks. Responsible AI practices, such as transparent algorithms

and explainable AI, help teams build trust with users and stakeholders.

4.10. Growth of blockchain technology

Blockchain technology has emerged as a transformative innovation, revolutionizing industries by

enabling secure, transparent, and decentralized systems. Originally associated with Bitcoin and

other cryptocurrencies, blockchain has since expanded its applications to various sectors,

offering solutions for data security, fraud prevention, and process optimization. When aligned

with Agile principles, blockchain enables enhanced collaboration, transparency, and adaptability,

making it a valuable tool for Agile teams working on distributed and trust-sensitive systems.

This section explores the definition, applications, advantages, and challenges of blockchain,

along with its integration into Agile practices.

4.10.1 Understanding blockchain technology

 Definition and key features

125

Blockchain is a distributed ledger technology (DLT) that records transactions across

multiple nodes in a decentralized network. Each block in the chain contains a set of data,

a timestamp, and a reference to the previous block, forming an immutable chain of

records. Key features of blockchain include:

o Decentralization: Data is stored across a peer-to-peer network, eliminating the

need for a central authority (Nakamoto, 2008).

o Immutability: Once data is recorded in a blockchain, it cannot be altered without

consensus from the network, ensuring data integrity.

o Transparency: Transactions are visible to all participants in the network,

promoting trust and accountability.

o Cryptographic security: Data is secured using advanced cryptographic techniques,

reducing the risk of unauthorized access or tampering (Pilkington, 2016).

 Origins of blockchain and its connection to bitcoin

Blockchain was first introduced in 2008 as the underlying technology for Bitcoin, a

decentralized digital currency created by an individual or group using the pseudonym

Satoshi Nakamoto. The purpose of blockchain in Bitcoin was to provide a trustless

system for peer-to-peer transactions without relying on intermediaries like banks

(Nakamoto, 2008). Since then, blockchain has evolved beyond cryptocurrency, becoming

a foundational technology for applications in supply chains, healthcare, real estate, and

more.

In Agile workflows, blockchain's features of transparency, decentralization, and immutability

can enhance team collaboration and ensure data security in distributed Agile teams working on

sensitive projects.

126

4.10.2 Applications of blockchain beyond cryptocurrency

Blockchain technology has extended its impact far beyond its initial application in

cryptocurrencies, providing innovative solutions across industries.

 Supply chain management:

Blockchain enhances supply chain transparency by creating an immutable record of the

movement of goods from production to delivery. For example, Walmart uses blockchain

to track food products, ensuring traceability and safety in case of contamination (Saberi et

al., 2019). Agile teams working in supply chain software development can leverage

blockchain to deliver solutions iteratively, ensuring real-time transparency and trust

among stakeholders.

 Healthcare:

Blockchain enables secure sharing of patient data across healthcare providers while

maintaining privacy and compliance with regulations like HIPAA. It also helps in

tracking pharmaceuticals to prevent counterfeit drugs. Agile teams can integrate

blockchain into healthcare systems to iteratively test and improve patient data-sharing

platforms (Kuo et al., 2017).

 Real Estate:

Blockchain simplifies property transactions by automating processes like title verification

and contract execution through smart contracts. This reduces fraud and speeds up

transactions. Agile teams in real estate software development can use blockchain to

deliver incremental updates, ensuring functionality aligns with user needs (Pilkington,

2016).

127

By embedding blockchain into Agile projects, teams can ensure transparency, security, and trust

in systems, providing continuous value to customers.

4.10.3 Advantages of blockchain

 Improved security and fraud prevention

Blockchain's cryptographic features and decentralized architecture make it highly secure.

Since data is stored across multiple nodes and requires consensus for changes, the system

is resilient to fraud and unauthorized alterations. Agile teams can utilize blockchain to

build secure applications that protect sensitive user data, reducing risks in sectors like

finance, healthcare, and e-commerce (Saberi et al., 2019).

 Decentralized systems reducing reliance on intermediaries

Blockchain eliminates the need for intermediaries in processes like financial transactions,

supply chain verification, and contract management. This reduces costs and improves

efficiency. For Agile teams, the decentralized nature of blockchain aligns with Agile's

emphasis on self-organizing teams and streamlined workflows. Teams can iteratively

design and test decentralized systems that meet customer requirements while reducing

operational bottlenecks (Kuo et al., 2017).

4.10.4 Challenges in blockchain adoption

While blockchain offers numerous benefits, its adoption comes with significant challenges that

Agile teams must address.

 High energy consumption of blockchain networks

128

Blockchain networks, especially those using proof-of-work (PoW) consensus

mechanisms, consume vast amounts of energy. For instance, Bitcoin's network energy

consumption is comparable to that of some small countries. Agile teams working on

blockchain projects should explore energy-efficient alternatives like proof-of-stake (PoS)

or hybrid consensus mechanisms (Pilkington, 2016).

 Scalability issues and regulatory hurdles

Blockchain networks often face scalability challenges due to slow transaction speeds and

high fees. Additionally, compliance with regulatory frameworks like GDPR can be

complex, especially for global applications. Agile teams can tackle these issues by

iteratively testing scalability solutions (e.g., layer-2 protocols) and ensuring compliance

through regular feedback loops and stakeholder involvement (Saberi et al., 2019).

By adopting Agile principles, teams can address these challenges iteratively, ensuring blockchain

systems are optimized for performance and compliance while delivering value to end-users.

4.10.5. How blockchain is helpful with agile

The integration of blockchain with Agile practices offers numerous benefits, enabling

organizations to deliver secure, transparent, and trustworthy solutions in an iterative and

customer-centric manner. Blockchain’s key features—decentralization, immutability, and

transparency—align closely with Agile principles such as collaboration, continuous delivery, and

adaptability. By combining the strengths of both, teams can address challenges in distributed

systems, improve accountability, and optimize workflows.

129

1. Enhancing collaboration and transparency

Blockchain’s decentralized and transparent nature fosters trust among all stakeholders,

including customers, developers, and external collaborators. Agile teams can use blockchain to

create a shared ledger of activities, ensuring that all team members have access to real-time

project updates. This transparency eliminates ambiguities, strengthens collaboration, and ensures

alignment across distributed teams working on complex projects (Kuo et al., 2017).

2. Securing agile workflows

Agile emphasizes flexibility and speed, but security is often an afterthought in traditional

workflows. Blockchain can enhance the security of Agile processes by encrypting and validating

critical transactions or data exchanges. For example, smart contracts can be used to automate and

secure agreements within the team or with external vendors, reducing vulnerabilities and

ensuring compliance with project requirements (Pilkington, 2016).

3. Improving accountability in iterative development

Agile promotes continuous feedback and iterative releases, but maintaining accountability

across iterations can be challenging. Blockchain provides an immutable record of all changes and

decisions made during the development process. Agile teams can use blockchain to track the

history of sprints, requirements, and feedback, ensuring that all iterations are auditable and well-

documented (Saberi et al., 2019).

4. Enhancing trust in distributed agile teams

Distributed Agile teams often face communication and trust issues, particularly when

team members are geographically dispersed. Blockchain can serve as a decentralized platform

130

Where all team members have equal access to information, fostering trust and eliminating the

need for a central authority. This is particularly useful in cross-border projects where Agile

teams collaborate with external stakeholders or clients.

5. Automating agile workflows with smart contracts

Smart contracts, which are self-executing agreements based on blockchain, can automate

several Agile processes, such as milestone payments, resource allocation, and compliance

checks. By embedding these agreements in blockchain, Agile teams can reduce manual overhead

and focus on delivering customer value.

4.10.6. Practical example: blockchain in agile supply chain solutions

A practical example of combining blockchain with Agile can be seen in supply chain

management. Agile teams working on blockchain-based supply chain solutions can use iterative

development to build features such as product traceability, supplier authentication, and inventory

tracking. Each sprint delivers functional increments, such as a module for tracking shipments or

a feature for verifying supplier credentials. The immutable and decentralized nature of

blockchain ensures that all stakeholders in the supply chain have access to accurate and real-time

data, while Agile ensures that the solution evolves based on feedback and business needs.

Combining blockchain with Agile practices creates a powerful synergy that enhances

transparency, trust, and accountability while enabling iterative and customer-focused

development. Blockchain’s decentralized and secure features align closely with Agile principles,

making it a valuable tool for teams working on projects that require high levels of trust and

adaptability. By leveraging blockchain in Agile workflows, organizations can achieve greater

efficiency, reduce risks, and deliver innovative solutions that meet the needs of modern, dynamic

market.

131

CHAPTER – V

5.1 Analysis of technical software delivery and challenges

5.1.1. Fintech

Fintech, a fusion of finance and technology, has revolutionized the way we interact with

financial services-

Types of Fintech

 Payment processing: Online payment systems, mobile wallets, and contactless payments.

 Digital banking: Online and mobile banking, neobanks, and challenger banks.

 Lending: Peer-to-peer lending, crowdfunding, and digital credit platforms.

 Investments: Robo-advisors, digital asset management, and social trading.

 Insurance: Insurtech, digital insurance platforms, and risk management solutions.

 Blockchain and cryptocurrencies: Distributed ledger technology, cryptocurrency

exchanges, and wallets.

 Regtech: Regulatory technology, compliance solutions, and risk management.

5.1.2 Benefits of fintech

 Increased efficiency: Automation and digitalization streamline processes.

 Improved accessibility: Financial services reach underserved populations.

 Enhanced security: Advanced technologies protect transactions and data.

 Personalized experience: Data analytics and AI drive tailored financial services.

 Reduced costs: Digital solutions minimize operational expenses.

5.1.3. Challenges and limitations

132

 Regulatory frameworks: Evolving regulations and compliance requirements.

 Security risks: Cyber threats and data breaches.

 Scalability: Balancing growth with infrastructure and regulatory demands.

 User adoption: Encouraging consumers to adopt new financial technologies.

 Interoperability: Ensuring seamless integration with existing financial systems.

5.1.4. Future of fintech

 Artificial intelligence: AI-powered financial services, such as chatbots and predictive

analytics.

 Blockchain and DLT: Widespread adoption of distributed ledger technology.

 Quantum computing: Enhanced security and optimization through quantum computing.

 Open banking: Standardized APIs and data sharing between financial institutions.

 Sustainable finance: Fintech solutions promoting environmental and social responsibility.

5.1.5. Key players in fintech

 Startups: Innovative companies like Stripe, Square, and Robinhood.

 Traditional banks: Incumbent financial institutions adapting to fintech disruption.

 Technology giants: Companies like Google, Amazon, and Facebook expanding into

fintech.

 Venture capitalists: Investors funding fintech startups and growth-stage companies.

133

5.1.6. Career opportunities in fintech

 Software Development: Building fintech applications and platforms.

 Data Science: Analyzing financial data to inform business decisions.

 Product Management: Developing and launching fintech products.

 Regulatory Compliance: Ensuring fintech companies meet regulatory requirements.

 Marketing and Sales: Promoting fintech solutions to consumers and businesses.

5.2. Coordination and communications Challenges

Coordination’s and communications challenges can arise in various contexts, including project

management, team collaboration, and organizational settings. Here are some common

challenges:

5.2.1. Coordination challenges

 Information Overload: Managing and processing large amounts of information from

multiple sources.

 Task Interdependencies: Coordinating tasks that rely on each other for completion.

 Resource Allocation: Managing shared resources, such as personnel, equipment, or

budget.

 Timeline Management: Coordinating multiple timelines, deadlines, and milestones.

 Stakeholder Management: Coordinating with diverse stakeholders, including team

members, customers, and vendors.

5.2.2. Communication challenges

 Language barriers: Overcoming differences in language, terminology, or dialect.

 Cultural differences: Adapting to diverse cultural backgrounds, norms, and expectations.

134

 Technical issues: Dealing with technology-related problems, such as connectivity or

software compatibility.

 Information silos: Breaking down barriers between departments, teams, or individuals.

 Miscommunication: Avoiding misunderstandings, misinterpretations, or incorrect

assumptions.

5.2.3. Strategies to overcome challenges

 Establish clear goals and objectives: Define project scope, timelines, and expectations.

 Implement effective communication channels: Use collaboration tools, such as Slack,

Trello, or Asana.

 Develop a coordination plan: Identify interdependencies, allocate resources, and establish

timelines.

 Foster a collaborative culture: Encourage open communication, transparency, and trust.

 Monitor progress and adjust Regularly review progress, identify challenges, and adapt

strategies as needed.

5.2.4. Tools and technologies

 Project management software: Asana, Trello, Basecamp, or MS Project.

 Collaboration tools: Slack, Microsoft Teams, or Google Workspace.

 Communication platforms: Email, phone, or video conferencing tools like Zoom or

Skype.

 Task automation: Zapier, IFTTT, or Automator.

 Data visualization: Tableau, Power BI, or D3.js.

135

5.3. Specific functionalities approach implementation

Here's an outline for implementing specific functionalities using an approach-based

methodology:

5.3.1. Approach-based implementation

1. Requirements gathering

 Identify stakeholders and their needs

 Collect and document functional and non-functional requirements

 Define project scope, goals, and deliverables

2. Analysis and design

 Analyze requirements and identify potential solutions

 Design the functionality, including user interface and user experience

 Create prototypes or mockups to visualize the solution

3. Implementation

 Develop the functionality using chosen technologies and tools

 Write clean, modular, and well-documented code

 Conduct unit testing and integration testing

4. Testing and quality assurance

 Conduct functional and non-functional testing

 Perform user acceptance testing (UAT) and gather feedback

136

 Identify and fix defects, and retest

5. Deployment and maintenance

 Deploy the functionality to production

 Monitor performance, usage, and feedback

 Perform regular maintenance, updates, and bug fixes

5.3.2. Functionality-specific implementation

1. User authentication

 Implement user registration and login functionality

 Integrate with identity providers (e.g., OAuth, OpenID)

 Ensure password hashing, salting, and secure storage

2. Data visualization

 Choose a data visualization library (e.g., D3.js, Chart.js)

 Design and implement interactive charts and graphs

 Ensure data accuracy, completeness, and timely updates

3. Payment gateway integration

 Research and choose a payment gateway (e.g., Stripe, PayPal)

 Implement payment processing, including transaction handling and error handling

 Ensure PCI-DSS compliance and secure payment data storage

137

4. Search functionality

 Choose a search library or framework (e.g., Elasticsearch, Algolia)

 Design and implement search functionality, including indexing and querying

 Ensure relevant and accurate search results, with proper filtering and ranking

5. Accessibility features

 Implement accessibility features, such as screen reader support and keyboard navigation

 Ensure compliance with accessibility standards (e.g., WCAG 2.1)

 Conduct accessibility testing and gather feedback from users with disabilities

5.4. Robust team structure

A robust team structure is essential for achieving success in any organization. Here's a

comprehensive outline of a robust team structure:

5.4.1. Team roles and responsibilities

 Team Lead/Manager: Oversees team operations, sets goals, and allocates resources.

 Project Manager: Coordinates projects, sets timelines, and ensures deliverables.

 Team Members: Execute tasks, contribute to projects, and collaborate with others.

 Subject Matter Experts (SMEs): Provide specialized knowledge and guidance.

5.4.2. Team communication and collaboration

138

 Regular meetings: Schedule recurring meetings for team updates, discussions, and

planning.

 Collaboration tools: Utilize tools like Slack, Trello, or Asana for communication, task

management, and knowledge sharing.

 Open communication: Foster an open-door policy, encouraging team members to share

ideas, concerns, and feedback.

5.4.3. Decision-making and problem-solving

 Clear decision-making processes: Establish a clear decision-making framework, defining

roles, responsibilities, and timelines.

 Collaborative problem-solving: Encourage team members to contribute to problem-

solving, sharing expertise and ideas.

 Continuous improvement: Regularly review and refine processes, incorporating lessons

learned and best practices.

5.4.4. Performance management and feedback

1. Clear Goals and Expectations: Set measurable goals, expectations, and key performance

indicators (KPIs) for each team member.

2. Regular Feedback and Coaching: Provide constructive feedback, coaching, and mentoring to

support team members' growth and development.

3. Performance Evaluations: Conduct regular performance evaluations, recognizing

achievements and addressing areas for improvement.

5.4.5. Professional development and growth

139

 Training and development programs: Offer training, workshops, and conferences to

enhance team members' skills and knowledge.

 Mentorship and coaching: Pair team members with mentors or coaches for guidance and

support.

 Career advancement opportunities: Provide opportunities for career advancement,

promotions, and role changes.

5.4.6. Diversity, equity, and inclusion

 Diverse and inclusive team culture: Foster a culture that values diversity, equity, and

inclusion.

 Unbiased hiring practices: Ensure hiring practices are fair, unbiased, and focused on

merit.

 Equal opportunities: Provide equal opportunities for growth, development, and

advancement.

5.4.7. Conflict resolution and feedback

 Conflict resolution process: Establish a clear conflict resolution process, ensuring timely

and fair resolution.

 Feedback mechanisms: Implement feedback mechanisms, allowing team members to

share concerns, ideas, and suggestions.

 Anonymous feedback: Provide channels for anonymous feedback, ensuring team

members feel comfortable sharing concerns.

140

By implementing these elements, we can build a robust team structure that promotes

collaboration, growth, and success.

5.5. Product know how

Product know-how refers to the expertise and knowledge required to design, develop, and deliver

a product or service. Here's a comprehensive outline:

5.5.1. Product development

 Product design: Understanding user needs, creating prototypes, and refining designs.

 Product engineering: Developing the product, including hardware and software

development.

 Testing and quality assurance: Ensuring the product meets quality, reliability, and

performance standards.

5.5.2. Product management

 Product vision and strategy: Defining the product's purpose, goals, and roadmap.

 Market research and analysis: Understanding customer needs, market trends, and

competitor analysis.

 Product road mapping: Prioritizing features, creating release plans, and tracking progress.

5.5.3. Product marketing

 Product positioning: Defining the product's unique value proposition and market

positioning.

 Product launch planning: Coordinating launch activities, including content creation,

advertising, and promotions.

 Product lifecycle management: Managing the product's lifecycle, including updates,

141

maintenance, and retirement.

5.5.4. Product sales and support

 Sales enablement: Providing sales teams with product knowledge, training, and support.

 Customer support: Delivering post-sales support, including troubleshooting, maintenance,

and repairs.

 Product training and education: Offering training and education programs for customers,

partners, and internal teams.

5.5.5. Product data and analytics

 Product data management: Collecting, storing, and analyzing product data, including

sales, customer, and performance data.

 Product analytics: Analyzing product data to inform product decisions, including market

trends, customer behavior, and product performance.

 Data-Driven decision making: Using product data and analytics to inform product

decisions, optimize product development, and drive business growth.

5.5.6. Product security and compliance

 Product security: Ensuring the product meets security standards, including data

encryption, access controls, and vulnerability management.

 Compliance and regulatory: Ensuring the product meet regulatory requirements,

including GDPR, HIPAA, and industry-specific standards.

 Product Risk management: Identifying and mitigating product-related risks, including

security, compliance, and reputational risks.

142

5.5.7. Product innovation and R&D

 Product innovation: Encouraging innovation, including ideation, prototyping, and

experimentation.

 Research and development: Conducting research and development activities, including

market research, customer research, and technology development.

 Product incubation: Incubating new product ideas, including proof-of-concept

development and testing.

By mastering these aspects of product know-how, organizations can design, develop, and deliver

successful products that meet customer needs and drive business growth.

5.6. UI/UX challenges

UI/UX (User Interface/User Experience) design is crucial for creating engaging and user-friendly

digital products. However, UI/UX designers often face various challenges. Here are some

common UI/UX challenges:

5.6.1. Design challenges

 Balancing aesthetics and functionality: Creating a visually appealing design that also

provides a seamless user experience.

 Designing for different screen sizes and devices: Ensuring a consistent user experience

across various devices, screen sizes, and orientations.

 Information architecture: Organizing complex information in a logical and intuitive

manner.

 Creating engaging interactions: Designing interactions that are both functional and

engaging.

5.6.2. User-centered challenges

 Understanding user needs and behaviors: Conducting effective user research to inform

design decisions.

143

 Designing for diverse user groups: Creating inclusive designs that cater to different user

needs, abilities, and preferences.

5.6.3. Technical challenges

 Staying up to date with emerging technologies: Keeping pace with the latest design tools,

technologies, and trends.

 Integrating with existing systems and infrastructure: Ensuring seamless integration with

existing systems, APIs, and infrastructure.

 Optimizing for performance and accessibility: Ensuring fast load times, responsiveness,

and accessibility for all users.

 Collaborating with cross-functional teams: Working effectively with developers, product

managers, and other stakeholders.

5.6.4. Business challenges

 Measuring the impact of ui/ux design: Quantifying the business value of UI/UX design

improvements.

 Justifying design decisions: Communicating the rationale behind design decisions to

stakeholders.

 Managing design resources and budgets: Allocating sufficient resources and budget for

UI/UX design initiatives.

 Balancing business goals with user needs: Finding a balance between business objectives

and user-centered design principles.

5.6.5. Best practices for overcoming ui/ux challenges

 Conduct thorough user research: Understand user needs, behaviors, and motivations.

 Collaborate with stakeholders: Work closely with developers, product managers, and

144

other stakeholders.

 Stay up to date with industry trends: Participate in design communities, attend

conferences, and read industry publications.

 Iterate and refine designs: Continuously test and refine designs based on user feedback

and performance metrics.

 Prioritize accessibility and inclusivity: Design for diverse user groups and ensure

accessibility compliance.

5.7. User access module implementations

Implementing a User Access Module (UAM) is crucial for managing user authentication,

authorization, and access control. Here's a comprehensive outline of UAM implementations:

5.7.1. Core components

 Authentication: Verify user identities using credentials, biometrics, or tokens.

 Authorization: Grant or deny access to resources based on user roles, permissions, and

attributes.

 Access Control: Enforce access policies, ensuring users can only access authorized

resources.

5.7.2. Implementation strategies

 Role-based access control (RBAC): Assign roles to users, defining their access levels and

permissions.

 Attribute-based access control (ABAC): Grant access based on user attributes, such as

department, job function, or security clearance.

145

 Multi-factor authentication (MFA): Require users to provide multiple authentication

factors, such as passwords, biometrics, or tokens.

 Single sign-on (SSO): Allow users to access multiple applications with a single set of

credentials.

5.7.3. Technologies and tools

 LDAP (Lightweight Directory Access Protocol): A directory service protocol for

managing user identities and access.

 OAuth 2.0: An authorization framework for securing API access.

 OpenID connect: An identity layer built on top of OAuth 2.0 for authentication.

 SAML (Security Assertion Markup Language): An XML-based standard for exchanging

authentication and authorization data.

5.7.4. Best practices

 Implement least privilege: Grant users the minimum access required to perform their

tasks.

 Use secure password storage: Store passwords securely using salted hashes and

encryption.

 Regularly review and update access: Periodically review user access and update

permissions as needed.

 Monitor and audit access: Monitor and audit user access to detect potential security

issues.

5.7.5. Common challenges

146

 1. Balancing Security and Usability: Finding a balance between security measures and

user convenience.

 2. Managing Complex Access Control Policies: Managing complex access control

policies across multiple systems and applications.

 3. Ensuring Compliance with Regulations: Ensuring UAM implementations comply with

relevant regulations and standards.

 4. Providing Seamless User Experience: Providing a seamless user experience across

multiple applications and systems.

5.7.6. Benefits of TAB Whitelisting

 Improved security: By only allowing trusted applications to access resources, you reduce

the risk of malware and unauthorized access.

 Reduced risk of data breaches: TAB whitelisting helps prevent data breaches by limiting

access to sensitive data.

 Simplified compliance: Implementing TAB whitelisting can help organizations meet

regulatory requirements and compliance standards.

5.7.7. How TAB Whitelisting works

 Application inventory: Create an inventory of all applications used within the

organization.

 Risk assessment: Assess the risk associated with each application.

 Whitelisting: Create a whitelist of trusted applications that are allowed to access specific

resources.

 Monitoring and enforcement: Continuously monitor and enforce the whitelist to prevent

unauthorized access.

147

5.7.8. Best Practices for implementing TAB Whitelisting

 Start with a baseline: Begin with a baseline of trusted applications and gradually add

more applications to the whitelist.

 Use a risk-based approach: Prioritize applications based on their risk profile and business

criticality.

 Continuously monitor and update: Regularly review and update the whitelist to ensure it

remains effective.

 Use automation: Leverage automation tools to streamline the whitelisting process and

reduce administrative burdens.

5.7.9. Tools and technologies for tab whitelisting

 Application control solutions: Use solutions like AppLocker, Bit9, or Carbon Black to

control application execution.

 Whitelisting software: Utilize software like Whitelist, Application Whitelisting, or

Trustwave to manage Whitelisting.

 Endpoint security solutions: Implement endpoint security solutions like Endpoint

Protection or Endpoint Detection and Response to enhance security.

5.7.10. Common challenges and limitations

 Application complexity: Managing complex applications with multiple dependencies can

be challenging.

 False positives: Whitelisting can sometimes result in false positives, where legitimate

applications are blocked.

 Maintenance and updates: Regularly updating and maintaining the whitelist can be time-

consuming and resource-intensive.

148

5.8. Automation and Testing and Tools to Implement

Automation and testing are crucial components of software development, ensuring that

applications are reliable, efficient, and meet user expectations. Here's a comprehensive overview:

5.8.1. Automation

 Types of automation: Functional automation, regression automation, smoke automation,

and acceptance automation.

 Automation frameworks: Selenium, Appium, Test Complete, and Robot Framework.

 Automation tools: Jenkins, Travis CI, Circle CI, and GitLab CI/CD.

 Benefits of automation: Increased efficiency, reduced testing time, improved accuracy,

and enhanced reliability.

5.8.2. Testing

 Types of testing: Unit testing, integration testing, system testing, acceptance testing, and

regression testing.

 Testing frameworks: JUnit, TestNG, PyUnit, Unittest, and NUnit.

 Testing tools: TestRail, TestLink, PractiTest, QTest, and Zephyr.

 Benefits of testing: Identification of defects, improved quality, reduced risk, and

increased customer satisfaction.

5.8.3. Automation and testing best practices

 Continuous Integration and continuous deployment (CI/CD): Automate testing and

deployment processes.

 Test-Driven Development (TDD): Write tests before writing code.

149

 Behavior-Driven Development (BDD): Define application behavior through examples.

 Automate regression testing: Automate regression testing to ensure application stability.

 Use page object model (POM): Organize test code using the page object model.

 Use Data-Driven Testing: Use data-driven testing to execute tests with multiple input

data.

 Use parallel testing: Use parallel testing to execute tests concurrently.

5.8.4. Challenges and limitations

 Test maintenance: Maintaining test scripts and test data.

 Test environment: Setting up and maintaining test environments.

 Test data management: Managing test data and ensuring data quality.

 Automation framework: Choosing the right automation framework.

 Skill set: Ensuring the team has the required skill set for automation and testing.

5.8.5. Future of automation and testing

 Artificial Intelligence (AI) and Machine Learning (ML): Using AI and ML to improve

testing and automation.

 DevOps and continuous testing: Integrating testing into the DevOps pipeline.

 Cloud-based testing: Using cloud-based testing platforms for scalability and flexibility.

 Mobile and IoT testing: Testing mobile and IoT applications for quality and reliability.

Effective automation and testing are crucial for ensuring the quality, reliability, and efficiency of

software applications. Here are some popular tools for automation and testing:

150

5.8.6. Automation tools

 Selenium: An open-source tool for automating web browsers.

 Appium: An open-source tool for automating mobile applications.

 TestComplete: A commercial tool for automating functional testing.

 Ranorex: A commercial tool for automating functional testing.

 Robot framework: An open-source tool for automating acceptance testing.

5.8.7. Testing frameworks

 JUnit: A popular testing framework for Java applications.

 TestNG: A testing framework for Java applications that supports advanced features.

 PyUnit: A testing framework for Python applications.

 Unittest: A built-in testing framework for Python applications.

 NUnit: A testing framework for .NET applications.

5.8.8. Continuous Integration/Continuous Deployment (CI/CD) Tools

 Jenkins: A popular open-source CI/CD tool.

 Travis CI: A cloud-based CI/CD tool for open-source projects.

 CircleCI: A cloud-based CI/CD tool for commercial projects.

 GitLab CI/CD: A CI/CD tool integrated with GitLab.

 Azure DevOps: A comprehensive CI/CD tool for Azure-based projects.

5.8.9. Test management tools

 TestRail: A commercial test management tool.

 TestLink: An open-source test management tool.

 PractiTest: A commercial test management tool.

151

 QTest: A commercial test management tool.

 Zephyr: A commercial test management tool.

5.8.10. Performance testing tools

 Apache JMeter: An open-source tool for performance testing.

 LoadRunner: A commercial tool for performance testing.

 NeoLoad: A commercial tool for performance testing.

 Gatling: An open-source tool for performance testing.

 Locust: An open-source tool for performance testing.

5.8.11. Security testing tools

 OWASP ZAP: An open-source tool for web application security testing.

 Burp Suite: A commercial tool for web application security testing.

 Nmap: An open-source tool for network security testing.

 Metasploit: An open-source tool for penetration testing.

 Veracode: A commercial tool for application security testing.

These are just a few examples of the many tools available for automation and testing. The choice

of tool often depends on the specific needs of the project, the technology stack, and the team's

expertise.

5.9. IP logging and versioning

IP logging and versioning are essential components of software development, ensuring that

changes to the codebase are tracked, managed, and reversible. Here's a comprehensive overview:

152

5.9.1. IP logging

 1. Definition: IP logging refers to the process of recording and tracking changes to

intellectual property (IP), such as software code, documentation, and other digital assets.

 2. Purpose: IP logging helps to identify changes, authors, and timestamps, enabling

auditing, versioning, and rollback capabilities.

 3. Benefits: Improved collaboration, reduced errors, enhanced security, and compliance

with regulatory requirements.

 4. Tools: Git, Subversion (SVN), Mercurial, and Perforce.

5.9.2. Versioning

 Definition: Versioning is the process of assigning unique identifiers to different versions

of software, allowing for tracking and management of changes.

 Types: Semantic Versioning (SemVer), Calendar Versioning, and Incremental

Versioning.

 Purpose: Versioning enables developers to track changes, identify dependencies, and

ensure compatibility between different versions.

 Benefits: Simplified maintenance, improved collaboration, and reduced errors.

 Tools: Git tags, GitHub Releases, and Versioning plugins for IDEs.

5.9.3. Best practices

 Use a version control system (VCS): Utilize a VCS like Git to track changes and manage

versions.

 Follow a versioning scheme: Adopt a consistent versioning scheme, such as SemVer.

153

 Log changes: Record changes, including author, timestamp, and description.

 Use branching and merging: Employ branching and merging strategies to manage

different versions and features.

 Automate versioning: Use automation tools to streamline versioning and reduce manual

errors.

5.9.4. Challenges and limitations

 Complexity: Managing multiple versions and branches can become complex.

 Collaboration: Ensuring collaboration and communication among team members can be

challenging.

 Scalability: Versioning and IP logging can become resource intensive as the codebase

grows.

 Security: Ensuring the security and integrity of IP logs and versioning data is crucial.

5.9.5. Future of IP logging and versioning

 Artificial Intelligence (AI) and Machine Learning (ML): AI and ML can enhance IP

logging and versioning by automating tasks and improving accuracy.

 Cloud-based solutions: Cloud-based solutions can provide scalable and secure IP logging

and versioning capabilities.

 Blockchain-based solutions: Blockchain-based solutions can offer secure and tamper-

proof IP logging and versioning capabilities.

154

 DevOps and continuous Integration/Continuous deployment (CI/CD): DevOps and

CI/CD practices can streamline IP logging and versioning by integrating them into the

development pipeline.

5.10. Software requirement specifications design

Software Requirement Specifications (SRS) design is a critical phase in software development

that outlines the functional and non-functional requirements of a software system. Here's a

comprehensive outline:

5.10.1. Functional requirements

 User management: Define user roles, authentication, and authorization.

 Data management: Specify data structures, storage, and retrieval mechanisms.

 Business logic: Describe the software's core functionality and workflows.

 Input/Output: Define user interfaces, input validation, and output formats.

 Error handling: Specify error detection, reporting, and recovery mechanisms.

5.10.2. Non-functional requirements

 Performance: Define response times, throughput, and resource utilization.

 Security: Specify authentication, authorization, encryption, and access control.

 Usability: Describe user experience, accessibility, and user interface guidelines.

 Reliability: Define fault tolerance, availability, and disaster recovery.

 Maintainability: Specify modification, updates, and troubleshooting requirements.

5.10.3. Software requirement specification document structure

155

 Introduction: Provide an overview of the software system and its objectives.

 Functional Requirements: Describe the software's functional requirements.

 Non-functional requirements: Specify the software's non-functional requirements.

 Use cases: Illustrate the software's usage scenarios and user interactions.

 Data models: Define the software's data structures and relationships.

 Interface specifications: Describe the software's interfaces, including user interfaces and

APIs.

 Security and access control: Specify the software's security and access control

mechanisms.

5.10.4. Best practices for SRS design

 Involve stakeholders: Engage with stakeholders to ensure requirements are accurate and

complete.

 Use clear and concise language: Avoid ambiguity and ensure requirements are easily

understandable.

 Prioritize requirements: Identify and prioritize critical requirements.

 Use visual aids: Incorporate diagrams, flowcharts, and use cases to illustrate

requirements.

 Review and refine: Regularly review and refine the SRS document to ensure it remains

accurate and relevant.

5.10.5. Tools and techniques for SRS design

 Use cases: Utilize use cases to capture functional requirements.

156

 User stories: Employ user stories to describe functional requirements.

 Business process modeling notation (BPMN): Use BPMN to model business processes.

 Unified modeling language (UML): Utilize UML to create diagrams and models.

 Requirements management tools: Leverage tools like IBM Rational DOORS or Jama

Connect to manage requirements.

5.11. API integrations handling

API integrations involve connecting different applications, services, or systems through

Application Programming Interfaces (APIs). Here's a comprehensive overview of handling API

integrations:

5.11.1. Types of API integrations

 RESTful APIs: Based on Representational State of Resource (REST) architecture, these

APIs use HTTP methods to interact with resources.

 SOAP APIs: Simple Object Access Protocol (SOAP) APIs use XML to define the format

of the data and rely on other protocols (like HTTP) for message negotiation and

transmission.

 GraphQL APIs: GraphQL is a query language for APIs that allows for more flexible and

efficient data retrieval.

5.11.2. API integration challenges

 Security: Ensuring the secure exchange of data between systems.

 Data mapping: Mapping data formats between different systems.

 Error handling: Handling errors and exceptions that may occur during API interactions.

157

 Scalability: Ensuring that API integrations can handle increased traffic and data volumes.

 Compatibility: Ensuring compatibility between different systems, protocols, and data

formats.

5.11.3. Best practices for API integrations

 API Documentation: Providing clear and concise documentation for APIs.

 API Testing: Thoroughly testing APIs to ensure they function as expected.

 Error Handling: Implementing robust error handling mechanisms to handle exceptions

and errors.

 Security: Implementing security measures, such as authentication and encryption, to

protect data.

 Monitoring and logging: Monitoring API performance and logging API interactions for

troubleshooting and debugging.

5.11.4. Tools for API Integrations

 API gateways: Tools like NGINX, Amazon API Gateway, and Google Cloud Endpoints

that act as entry points for API requests.

 Integration platforms: Tools like MuleSoft, Talend, and Jitterbit that provide a centralized

platform for integrating APIs.

 API testing tools: Tools like Postman, SoapUI, and Apigee that provide functionality for

testing and validating APIs.

 API security tools: Tools like OAuth, JWT, and API keys that provide security measures

for protecting APIs.

158

5.11.5. API integration patterns

 Request-response pattern: A pattern where a client sends a request to a server and

receives a response.

 Event-driven pattern: A pattern where a client sends an event to a server, triggering a

response or action.

 Streaming pattern: A pattern where a client receives a continuous stream of data from a

server.

5.12. Development planning and challenges

Development planning is a crucial phase in software development that outlines the project's

objectives, timelines, and resources. Here are some key aspects of development planning and

common challenges:

5.12.1. Development planning

 Project scope: Define the project's objectives, deliverables, and boundaries.

 Requirements gathering: Collect and document functional and non-functional

requirements.

 Technical planning: Choose the technology stack, architecture, and infrastructure.

 Resource allocation: Assign team members, estimate effort, and allocate resources.

 Timeline and milestones: Create a project schedule, including deadlines and milestones.

159

 Budgeting and cost estimation: Establish a budget and estimate costs for resources and

infrastructure.

5.12.2. Challenges in development planning

 Scope creep: Uncontrolled changes to the project's scope, leading to delays and cost

overruns.

 Requirements uncertainty: Unclear or incomplete requirements, causing

misunderstandings and rework.

 Technical debt: Insufficient technical planning, resulting in costly rework or

maintenance.

 Resource constraints: Inadequate resources, including team members, infrastructure, or

budget.

 Timeline and deadline pressure: Unrealistic timelines or deadlines, leading to rushed

development and potential quality issues.

 Stakeholder management: Managing expectations and communication with stakeholders,

including project sponsors, end-users, and team members.

 Risk management: Identifying and mitigating potential risks, such as technical,

operational, or external risks.

5.12.3. Best practices for development planning

 Agile methodologies: Adopt agile approaches, such as Scrum or Kanban, to facilitate

flexibility and iterative development.

 Continuous integration and delivery: Implement continuous integration and delivery

pipelines to automate testing, building, and deployment.

160

 Test-driven development: Use test-driven development to ensure quality and reduce

defects.

 Regular stakeholder communication: Maintain open communication with stakeholders to

manage expectations and address concerns.

 Risk management and mitigation: Identify and mitigate potential risks through proactive

planning and contingency strategies.

 Monitoring and adaptation: Continuously monitor the project's progress and adapt plans

as needed to ensure successful delivery.

164

RESEARCH ANNOTATIONS

 Role Distribution – A bar chart showing the distribution of roles.

1. Importance of Agile – A pie chart representing responses on agile importance.

2. Challenges Faced – A bar chart summarizing the key challenges.

3. Cloud Platform Usage – A bar chart for preferred cloud platforms.

4. AI Usage – A pie chart showing different AI applications.

5. Blockchain Experience – A bar chart for blockchain experience levels.
6. Agile Optimization Strategies – A bar chart summarizing common strategies.

Role Distribution:

Role Distribution in Organizations

120

100

80

60

40

20

0

Other (please
Specify)

Project Manager Developer Product Owner

Importance of Agile:

Importance of Agile in Cloud, AI and Blockchain Project

Not at All important

Not Very important

6.7% 6.7%

Some what important
20.0%

66.7%

165

Very important

Challenges Faced in Agile Software Delivery:

Biggest Challenge’s in Agile Software Delivery

Lack of clear goals and objectives

Technical debtand legacy code

Changing Requirments and Priorities

Other (please Specify)

Team collaboration and
Communication

Clou d Platform Usage:

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9

Cloud Platform Usage

0

other (please
specify)

Amazon Web

Services (AWS)

Google Cloud

Platform (GCP)

Microsoft Azure IBM Cloud

166

6.7%
6.7%

13.3%

40.0%

33.3 %

AI and ML Usage in Projects:

AI and Machine Learning Usage in Projects

Other (please specify)

Computer Vision

Natural Language Processing Automation and Optimization

Predictive Analytics

Blockchain Technology Experience Levels:

Blockchain Technology Experience Levels (Percentage)

45

40

35

30

25

20

15

10

5

0

Intermediate Beginner Advanced Expert

Pe
rc

en
ta

ge
 o

f
Re

sp
o

n
d

en
ts

(%
)

167

Agile Optimization Strategies pie chart:

Agile Optimization Strategies -Custom Distribution

CI/CD

15.4%

DevOps

Practice’s 15.5%

Agile Framework

56.8%

12.3%

Automated Quality Assurance

Forecasted Adoption Graph:

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Forecasted Adoption of Cloud, AI and Blockchain Technologies

2022 2023 2024 2025 2026 2027 2028 2029 2030

168

BIBLIOGRAPHY

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002) Agile software development methods:

Review and analysis. Espoo, Finland: Technical Research Centre of Finland, VTT Publications.

Andrikopoulos, V., Song, Z. and Leymann, F. (2013) ‘Supporting the migration of applications to the

cloud through a decision support system’, IEEE Transactions on Cloud Computing, 1(3), pp. 253–265.

Armbrust, M., Fox, A., Griffith, R. et al. (2010) ‘A view of cloud computing’, Communications of the

ACM, 53(4), pp. 50–58.

Aberdeen Group. (1995) Upgrading to ISV Methodology for Enterprise Application Development. Product

Viewpoint, pp. 8–17.

Ahmad, M.O., Markkula, J. and Oivo, M. (2013) ‘Kanban in software development: A systematic

literature review’, Software Engineering Conference (APSEC), pp. 9–18.

Anderson, D. (2010) Kanban: Successful evolutionary change for your technology business. Blue Hole

Press.

Andrikopoulos, V., Song, Z. and Leymann, F. (2013) ‘Supporting the migration of applications to the

cloud through a decision support system’, IEEE Transactions on Cloud Computing, 1(3), pp. 253–265.

Armbrust, M., Fox, A., Griffith, R. et al. (2010) ‘A view of cloud computing’, Communications of the

ACM, 53(4), pp. 50–58.

Bass, L., Weber, I. and Zhu, L. (2015) DevOps: A software architect’s perspective. Addison-Wesley.

Beck, K. (1999) Extreme programming explained: Embrace change. Addison-Wesley.

Beck, K. and Andres, C. (2004) Extreme programming explained: Embrace change. 2nd edn. Addison-

Wesley.

Beck, K. et al. (2001) Manifesto for agile software development. Available at: https://agilemanifesto.org/

(Accessed: 30 December 2024).

Bass, L., Weber, I. and Zhu, L. (2015) DevOps: A software architect’s perspective. Addison-Wesley.

Bhalerao, S., Puntambekar, D. and Ingle, M. (2009) ‘Generalizing agile software development life

cycle’, International Journal on Computer Science and Engineering, 1(3), pp. 222–226.

Buyya, R., Vecchiola, C. and Selvi, S.T. (2013) Mastering cloud computing: Foundations and

applications programming. Elsevier.

Bhalerao, S. and Ingle, M. (2009) ‘A comparative study of agile projects estimation using CAEA’,

Proceedings of International Conference on Computer Engineering and Application.

https://agilemanifesto.org/

169

Bhalerao, S., Puntambekar, D. and Ingle, M. (2009) ‘Generalizing agile software development life

cycle’, International Journal on Computer Science and Engineering, 1(3), pp. 222–226.

Boehm, B. (1988) ‘A spiral model of software development and enhancement’, ACM SIGSOFT Software

Engineering Notes, 11(4), pp. 14–24.

Boehm, B. (1996) ‘Anchoring the software process’, IEEE Software, pp. 73–82.

Booch, G. (1995) Object solutions: Managing the object-oriented project. Addison-Wesley.

Brynjolfsson, E. and McAfee, A. (2014) The second machine age: Work, progress, and prosperity in a

time of brilliant technologies. W.W. Norton & Company.

Buyya, R., Vecchiola, C. and Selvi, S.T. (2013) Mastering cloud computing: Foundations and

applications programming. Elsevier.

Charette, R.N. (2005) ‘Why software fails’, IEEE Spectrum, September.

Cockburn, A. and Highsmith, J. (2001) ‘Agile software development: The people factor’, Computer, pp.

131–133.

Cohn, M. and Ford, D. (2003) ‘Introducing an agile process to an organization’, IEEE Computer Society,

pp. 74–78.

Control Chaos. (2007) ‘SCRUM principle’. Available at: http://www.controlchaos.com (Accessed: 18 June

2007).

Cohn, M. and Ford, D. (2003) ‘Introducing an agile process to an organization’, IEEE Computer Society,

pp. 74–78.

Digital.ai. (2023) State of agile report. Available at: https://www.digital.ai/resources/report/state-of-agile

(Accessed: 30 December 2024).

Duvall, P.M., Matyas, S. and Glover, A. (2007) Continuous integration: Improving software quality and

reducing risk. Addison-Wesley.

Ernando Almeida, J., Simões, J. and Lopes, S. (2022) ‘Exploring the benefits of combining DevOps and

agile’, Software Engineering and Data Science, February.

Fojtik, R. (2011) ‘Extreme programming in development of specific software’, Procedia Computer

Science, 3, pp. 1464–1468.

Geddes, P. (1915) Cities in evolution: An introduction to the town planning movement and to the study of

civics. London: Williams & Norgate.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep learning. MIT Press.

Hansen, A.M., Kraemmergaard, P. and Mathiassen, L. (2011) ‘Rapid adaptation in digital

transformation: A participatory process for engaging IS and business leaders’, MIS Quarterly Executive,

10(4).

Hema, V., Thota, S., Padmaja, C. and Krishna, C.B. (2020) ‘Scrum: An effective software development

agile tool’.

http://www.controlchaos.com/

170

Hiranabe, K. (2008) ‘Kanban applied to software development: From agile to lean’, InfoQ. Available at:

https://www.infoq.com/articles/kanban-agile-to-lean/ (Accessed: 30 December 2024).

Hansen, A.M., Kraemmergaard, P. and Mathiassen, L. (2011) ‘Rapid adaptation in digital

transformation: A participatory process for engaging IS and business leaders’, MIS Quarterly Executive,

10(4).

Humble, J. and Farley, D. (2010) Continuous delivery: Reliable software releases through build, test, and

deployment automation. Addison-Wesley.

Hughes, B. and Cotterell, M. (2009) Software project management. 5th edn. McGraw-Hill.

Humble, J. and Farley, D. (2010) Continuous delivery: Reliable software releases through build, test, and

deployment automation. Addison-Wesley.

Iacovelli, A. and Souveyer, C. (2008) ‘Framework for agile method classification’, Proceedings of

MoDISE–EUS, pp. 91–102.

IEEE. (n.d.) ‘The past, present, future of software evolution’. Retrieved May 10, 2024.

Ismail, M.F. and Mansor, Z. (2018) ‘Agile project management: Review challenges and open issues’,

American Scientific Publishers, 24, pp. 463–466.

Kent, M. (2000) Software development with XP. Prentice Hall.

Kim, G., Humble, J., Debois, P. and Willis, J. (2016) The DevOps handbook: How to create world-class

agility, reliability, & security in technology organizations. IT Revolution Press.

Kuo, T.T., Kim, H.E. and Ohno-Machado, L. (2017) ‘Blockchain distributed ledger technologies for

biomedical and health care applications’, Journal of the American Medical Informatics Association, 24(6),

pp. 1211–1220.

Larman, C. and Basili, V.R. (2003) ‘Iterative and incremental development: A brief history’, IEEE

Computer, 36(6), pp. 47–56.

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436–444.

Leffingwell, D. (2021) SAFe® 5.0 reference guide: Scaled Agile Framework for Lean Enterprises. 5th edn.

Addison-Wesley.

Lwakatare, L.E., Kuvaja, P. and Oivo, M. (2016) ‘Relationship of DevOps to Agile, Lean and

Continuous Deployment’, Springer International Publishing, pp. 399–415.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. and Ghalsasi, A. (2011) ‘Cloud computing – The

business perspective’, Decision Support Systems, 51(1), pp. 176–189.

Martin, R. (2003) Agile software development: Principles, patterns, and practices. Prentice Hall.

Matt, P. (2024) ‘The evolution of digital transformation history: From pre-internet to generative AI’, May.

Mell, P. and Grance, T. (2011) The NIST definition of cloud computing. National Institute of Standards and

Technology.

171

Moe, N.B., Dingsøyr, T. and Dybå, T. (2010) ‘A teamwork model for understanding an agile team: A case

study of a Scrum project’, Information and Software Technology, 52(5), pp. 480–491.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. and Ghalsasi, A. (2011) ‘Cloud computing – the

business perspective’, Decision Support Systems, 51(1), pp. 176–189.

Matt, P. (2024) ‘The evolution of digital transformation history: From pre-internet to generative AI’, May.

Mell, P. and Grance, T. (2011) The NIST definition of cloud computing. National Institute of Standards and

Technology.

Nakamoto, S. (2008) ‘Bitcoin: A peer-to-peer electronic cash system’. Available at:

https://bitcoin.org/bitcoin.pdf (Accessed: 12 January 2025).

Nilsson, N.J. (2010) The quest for artificial intelligence: A history of ideas and achievements. Cambridge

University Press.

Ohno, T. (1988) Toyota production system: Beyond large-scale production. Productivity Press.

Pilkington, M. (2016) ‘Blockchain technology: Principles and applications’, in Olleros, F.X. and Zhegu, M.

(eds.) Research handbook on digital transformations. Edward Elgar Publishing, pp. 225–253.

Pressman, R.S. (2005) Software engineering: A practitioner’s approach. 6th edn. McGraw-Hill.

Rising, L. and Janoff, N.S. (2000) ‘The Scrum software development process for small teams’, IEEE

Software, 17(4), pp. 26–32.

Royce, W.W. (1970) ‘Managing the development of large software systems’, Proceedings of IEEE

WESCON.

Russell, S. and Norvig, P. (2020) Artificial intelligence: A modern approach. 4th edn. Pearson.

Saberi, S., Kouhizadeh, M., Sarkis, J. and Shen, L. (2019) ‘Blockchain technology and its relationships

to sustainable supply chain management’, International Journal of Production Research, 57(7), pp. 2117–

2135.

Schach, S.R. (2011) Object-oriented and classical software engineering. 8th edn. McGraw-Hill.

Schallmo, D., Williams, C.A. and Boardman, L. (2017) ‘History of digital transformation: Digital

transformation of business models – Best practice, enablers and roadmap’, December.

Smart, J.F., Ferguson, J. and Evans, M. (2018) Jenkins: The definitive guide. O’Reilly Media.

Schallmo, D., Williams, C.A. and Boardman, L. (2017) ‘History of digital transformation: Digital

transformation of business models – best practice, enablers and roadmap’, December.

Smart, J.F., Ferguson, J. and Evans, M. (2018) Jenkins: The definitive guide. O’Reilly Media.

Topol, E. (2019) Deep medicine: How artificial intelligence can make healthcare human again . Basic

Books.

https://bitcoin.org/bitcoin.pdf

172

Turnbull, J. (2014) The Docker book: Containerization is the new virtualization. James Turnbull

Publishing.

Vaswani, A., Shazeer, N., Parmar, N. et al. (2017) ‘Attention is all you need’, Advances in Neural

Information Processing Systems, 30, pp. 5998–6008.

Voas, J.M. and Whittaker, J.A. (2002) ‘50 years of software: Key principles for quality’, IT Professional,

pp. 28–35.

Wang, C. and Liu, C. (2008) ‘Adopting DevOps in Agile: Challenges and solutions’, June.

Wiedemann, A., Forsgren, N., Wiesche, M. and Krcmar, H. (2019) ‘Research for practice: The DevOps

phenomenon’, Communications of the ACM, pp. 44–49.

Williams, L. and Kessler, R. (2002) Pair programming illuminated. Addison-Wesley.

Wiedemann, A., Forsgren, N., Wiesche, M. and Krcmar, H. (2019) ‘Research for practice: The DevOps

phenomenon’, Communications of the ACM, pp. 44–49.

Yadav, K. and Yasvi, M.A. (2019) ‘Review on extreme programming–XP’, April.

Zaoui, F. and Souissi, N. (2020) ‘Roadmap for digital transformation: A literature review’, July, pp. 621–

628.

173

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002) Agile software development methods:

Review and analysis. VTT Publications.

Ahmad, M.O., Markkula, J. and Oivo, M. (2013) ‘Kanban in software development: A systematic

literature review’, Software Engineering Conference (APSEC), pp. 9–18.

Anderson, D. (2010) Kanban: Successful evolutionary change for your technology business. Blue Hole

Press.

Andrikopoulos, V., Song, Z. and Leymann, F. (2013) ‘Supporting the migration of applications to the

cloud through a decision support system’, IEEE Transactions on Cloud Computing, 1(3), pp. 253–265.

Armbrust, M., Fox, A., Griffith, R. et al. (2010) ‘A view of cloud computing’, Communications of the

ACM, 53(4), pp. 50–58.

Bass, L., Weber, I. and Zhu, L. (2015) DevOps: A software architect’s perspective. Addison-Wesley.

Beck, K. and Andres, C. (2004) Extreme programming explained: Embrace change. 2nd edn. Addison-

Wesley.

Beck, K. et al. (2001) Manifesto for agile software development. Available at: https://agilemanifesto.org/

(Accessed: 30 December 2024).

Bhalerao, S., Puntambekar, D. and Ingle, M. (2009) ‘Generalizing agile software development life

cycle’, International Journal on Computer Science and Engineering, 1(3), pp. 222–226.

Brynjolfsson, E. and McAfee, A. (2014) The second machine age: Work, progress, and prosperity in a

time of brilliant technologies. W.W. Norton & Company.

Burns, B. et al. (2019) Kubernetes: Up and running: Dive into the future of infrastructure. 2nd edn.

O’Reilly Media.

Buyya, R., Vecchiola, C. and Selvi, S.T. (2013) Mastering cloud computing: Foundations and

applications programming. Elsevier.

Cockburn, A. and Highsmith, J. (2001) ‘Agile software development: The people factor’, Computer, pp.

131–133.

Cohn, M. and Ford, D. (2003) ‘Introducing an agile process to an organization’, IEEE Computer Society,

pp. 74–78.

Duvall, P.M., Matyas, S. and Glover, A. (2007) Continuous integration: Improving software quality and

reducing risk. Addison-Wesley.

Ernando Almeida, J., Simoes, J. and Lopes, S. (2022) ‘Exploring the benefits of combining DevOps and

agile’, Software Engineering and Data Science, February.

https://agilemanifesto.org/

	1.1 Introduction to project management
	CHAPTER - II
	2.1. Traditional project management
	CHAPTER – III
	3.1. The Waterfall Method: a traditional approach to software development

	CHAPTER IV
	4.1. Introduction to Agile and DevOps

	CHAPTER – V
	5.1 Analysis of technical software delivery and challenges

	RESEARCH ANNOTATIONS
	Role Distribution in Organizations
	Cloud Platform Usage
	BIBLIOGRAPHY
	REFERENCES

