

INTEGRATING SUSTAINABILITY METRICS INTO DEVSECOPS: A RISK-BASED

FRAMEWORK FOR GREEN SOFTWARE DEVELOPMENT

by

ASHWINI KUMAR RATH, MSc.

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

FEBRUARY 2025

INTEGRATING SUSTAINABILITY METRICS INTO DEVSECOPS: A RISK-BASED

FRAMEWORK FOR GREEN SOFTWARE DEVELOPMENT

by

ASHWINI KUMAR RATH, MSc.

Supervised by

SAGAR BANSAL, DBA.

APPROVED BY:

 __

 Dissertation Chair: Anna L. Provodnikova, PhD.

RECEIVED/APPROVED BY:

Admissions Director

iii

Dedication

“To my beloved parents…”

iv

Acknowledgements

First of all, I would like to express my deep appreciation to my supervisor, Dr.

Sagar Bansal, for his guidance and encouragement throughout the whole process of

conducting this research. I am pleased to acknowledge his feedback and advice which have

been invaluable in the evolution and completion of this study.

I also thank the Swiss School of Business and Management Geneva faculty

members for their knowledge and resources that helped me develop the skills required to

finish this research.

I thank the industry professionals and organizations that participated in my

research. The cooperation of these organizations and their willingness to be part of this

study enhanced the quality of the findings.

I want to extend my gratitude to my colleagues at Batoi for their support throughout

this research. They helped me to stay strong and continue working even during the most

difficult times.

Finally, I would like to thank my family and friends for their support,

understanding, and love. It is my great happiness to have had their support and belief in

me, which has been a source of strength throughout the process. Thank you all.

v

ABSTRACT

INTEGRATING SUSTAINABILITY METRICS INTO DEVSECOPS: A RISK-BASED

FRAMEWORK FOR GREEN SOFTWARE DEVELOPMENT

ASHWINI KUMAR RATH

FEBRUARY 2025

Dissertation Chair: Anna L. Provodnikova, PhD.

Software development and IT operations often contribute to environmental impact

in ways that are frequently overlooked. As industries move toward sustainability,

integrating green computing into DevSecOps workflows becomes essential. However,

existing approaches lack structured methods to measure and mitigate environmental

effects within software development, deployment, and management.

This study introduces two structured frameworks that embed sustainability

metrics and risk evaluation within DevSecOps, helping organizations lower energy

consumption, improve resource efficiency, and maintain security without compromising

agility. A mixed-methods research design was employed, incorporating both qualitative

interviews and quantitative surveys to identify and assess sustainability indicators in

DevSecOps adoption.

vi

The findings indicate a widespread awareness of green computing, yet a lack of

standardized methodologies across software firms, including developer organizations and

system integrators. By addressing this gap, the study provides actionable strategies for

embedding sustainability into continuous integration, testing, and deployment processes.

By bridging theoretical research with industry applications, this work equips

organizations with measurable tools to align software engineering practices with

sustainability goals. Ultimately, it advances academic discourse while offering practical

insights for companies integrating environmental responsibility into DevSecOps.

Keywords: DevSecOps, Green Computing, Sustainability, Software Development,

Environmental Metrics, Framework Integration.

vii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

CHAPTER I: INTRODUCTION ... 1

1.1 Research Background ... 1
1.2 Problem Statement .. 7
1.3 Research Objectives .. 9
1.4 Research Questions ... 10
1.5 Significance of the Study .. 11

1.5.1 Academic Contributions .. 11
1.5.2 Practical Contributions... 12

1.6 Structure of the Thesis .. 13

CHAPTER II: REVIEW OF LITERATURE .. 15

2.1 Introduction ... 15
2.2 Green Computing .. 17
2.3 DevSecOps .. 26
2.4 Green Metrics.. 30
2.5 Case Studies and Frameworks .. 33
2.6 Gap Analysis ... 38
2.7 Summary of Findings .. 39
2.8 Implications for Our Research .. 40

CHAPTER III: METHODOLOGY ... 42

3.1 Research Design.. 42
3.2. Data Collection Methods ... 46

3.2.1 Qualitative Data Collection (Semi-Structured Interviews) 46
3.2.2 Quantitative Data Collection (Structured Surveys) 47
3.2.3 Integration of Qualitative and Quantitative Methods 49
3.2.4 Tools and Technologies Used .. 49

3.3 Data Analysis Techniques... 50
3.3.1 Qualitative Data Analysis .. 50
3.3.2 Quantitative Data Analysis .. 51
3.3.3 Integration of Qualitative and Quantitative Results 52

3.4 Ethical Considerations .. 54
3.4.1 Informed Consent... 55
3.4.2 Confidentiality and Anonymity ... 56
3.4.3 Data Security .. 56
3.4.4 Avoidance of Bias .. 56
3.4.5 Adherence to Institutional Guidelines ... 57

viii

3.4.6 Cultural and Contextual Sensitivity ... 57
3.4.7 Participant Well-Being... 57

3.5 Limitations of the Study.. 58

CHAPTER IV: RESULTS ... 60

4.1 Introduction ... 60
4.2 Findings from Research .. 60

4.2.1 Qualitative Insights .. 61
4.2.2 Quantitative Insights .. 65
4.2.3 Combined Inferences ... 70

4.3 Benchmarking and Evaluation .. 71
4.3.1 Benchmarking Methodology ... 71
4.3.2 Industry Performance vs. Research Findings................................... 74
4.3.3 Key Insights from Benchmarking .. 77
4.3.4 Summary of Benchmarking Insights ... 77

4.4 Case Study: Implementation of Green Metrics in DevSecOps 78
4.4.1 Case Study Overview ... 78
4.4.2 Implementation of Green Metrics Framework 78
4.4.3 Quantitative Impact of Implementation ... 81
4.4.4 Key Learnings from the Case Study .. 82
4.4.5 Summary of Case Study Findings.. 83

4.5 Summary of Findings .. 83
4.5.1 Key Takeaways from Research Findings .. 83
4.5.2 Case Study Insights: The Impact of Green Metrics

Integration ... 84
4.5.3 Opportunities for Improvement ... 85
4.5.4 Conclusion ... 87

CHAPTER V: DISCUSSION .. 88

5.1 Introduction ... 88
5.2. The Need for Structured Green Metrics... 89
5.3 The Green Metrics Framework (GMF)... 90
5.4 Core Green Metrics ... 91
5.5 The Risk-Maturity Assessment Framework ... 94

5.5.1 Core Components of RMAF .. 95
5.5.2 Alignment with DevSecOps .. 97
5.5.3 Application and Benefits of RMAF ... 97
5.5.4 Comparative Analysis: RMAF vs. Existing Models........................ 98
5.5.5 Challenges in Implementing RMAF .. 99

5.6 Comparison with Prior Work .. 100
5.6.1 Green Metrics Framework vs. Existing Green Computing

Models... 100

ix

5.6.2 Risk-Maturity Assessment Framework (RMAF) vs. Existing

Maturity Models.. 101
5.6.3 Novel Contributions of GMF and RMAF 102

5.7 Challenges and Opportunities ... 103
5.7.1 Challenges in Implementing Sustainability in DevSecOps 103
5.7.2 Opportunities for Advancing Sustainability in DevSecOps 104

CHAPTER VI: CONCLUSION AND RECOMMENDATIONS 107

6.1 Summary of Findings .. 107
6.1.1 Key Findings .. 107
6.1.2 Contributions to Research and Practice ... 108

6.2 Practical Recommendations .. 109
6.2.1 Recommendations for Organizations ... 109
6.2.2 Recommendations for Policymakers and Regulators 110
6.2.3 Recommendations for Practitioners and DevSecOps Teams......... 110

6.3 Future Research Directions ... 111
6.3.1 Expanding the Scope of Green Metrics in DevSecOps 112
6.3.2 AI and Automation for Sustainability Monitoring......................... 112
6.3.3 Economic Impact of Green DevSecOps Adoption 113
6.3.4 Policy and Regulatory Frameworks for Green DevSecOps 113
6.3.5 DevSecOps Culture in Sustainability Adoption 113

6.4 Closing Remarks ... 114

APPENDIX A: INITIAL INTERVIEW GUIDE .. 116

APPENDIX B: INITIAL SURVEY QUESTIONNAIRE TO UNDERSTAND

INTEGRATING OF GREEN METRICS INTO DEVSECOPS 119

APPENDIX C: SUSTAINABILITY AND DEVSECOPS MATURITY SURVEY 123

APPENDIX D: EXISTING METRICS AND MAPPING METRICS TO GOALS 128

APPENDIX E: SCORING MODEL FOR SUSTAINABILITY MATURITY AND

RISK IN DEVSECOPS .. 136

REFERENCES ... 145

x

LIST OF TABLES

Table 3.1a: The flow of our research .. 45

Table 3.2a: The data collection process .. 47

Table 3.2b: Sampling and distribution for the structured surveys 48

Table 4.2a: Synthesis of the coding process in Grounded Theory, showing how

particular concepts are categorized and then connected to form a cohesive theory. 63

Table 4.2b: The levels of adoption of sustainability into software processes in

organizations. .. 68

Table 4.3a: The benchmarking analysis compared industry leaders in

sustainability with the findings from our research. ... 75

Table 4.3b: Key Performance Indicators (KPI) Dashboard .. 76

Table 4.4a: Green Metrics Implementation Roadmap. ... 79

Table 4.4b: Quantitative Impact of Green Metrics Implementation. 81

Table 4.5a: The impact of green metrics integration in the case study. 85

Table 5.3a: The sustainability challenges in DevSecOps and solutions with the

GMF. ... 90

Table 5.4a: The three-phase implementation model of the GMF. 93

Table 5.5a: The maturity levels as defined in RMAF. .. 96

Table 5.5b: The RMAF maturity levels and DevSecOps principles. 97

Table 5.5c: A comparison of RMAF with other maturity models. 99

Table 5.6a: A comparison of GMF with existing sustainability models. 101

Table 5.6b: A comparison analysis of RMAF with other maturity models. 101

Table E.1: Example Weight Distribution.. 138

Table E.2: Structured Scoring Model with Sustainability. ... 144

xi

LIST OF FIGURES

Figure 1.1a: Components that drive Application Lifecycle Management (ALM) 2

Figure 1.1b: Different Metrics for DevSecOps... 5

Figure 1.2a: Green Computing and DevSecOps - Challenges .. 8

Figure 2.1a: Impact of the green metrics on the software development 15

Figure 2.2a: Dimension of sustainability .. 18

Figure 2.2b: Illustration of green computing and its scope within the sustainability

study. ... 26

Figure 2.3a: Illustrating Major Challenges for DevSecOps.. 28

Figure 2.4a: The Key Functions of the Green Metrics ... 31

Figure 2.5a: Approaches to develop and implement green metrics in IT 37

Figure 3.1a: Different phases of research ... 43

Figure 3.1b: Advantages of mixed-method design. .. 45

Figure 3.2a: The structured survey - the constituents and the quantifiable data to

be captured. ... 48

Figure 3.3a: Illustration of why the integrative analysis approach has been

employed. .. 54

Figure 3.4a: Various ethical considerations in our research. .. 55

Figure 4.2a: Critical themes for the integration of green computing practices into

DevSecOps workflows.. 64

Figure 4.2b: Size Distribution of Organizations ... 66

Figure 4.2c: Industry Sector Distribution ... 66

Figure 4.2d: Role Distribution of Respondents .. 67

Figure 4.2e: Challenges in Integrating Green Metrics .. 68

Figure 4.2f: Resources Needed to Overcome Challenges .. 69

Figure 4.2g: Observed Impacts from Green Metrics Integration 70

Figure 4.2h: Combined inferences from our qualitative and quantitative studies. 71

Figure 4.3a: Illustration for the benchmarking process in our study 72

Figure 4.3b: Comparison of environmental efficiency metrics. 76

Figure 4.4b: The impact of green metrics implementation, showing changes in

server utilization and carbon footprint. ... 82

Table 4.5b: Key Findings Matrix. ... 86

xii

Figure 4.5a: Sustainability Impact Assessment chart. .. 86

Figure 5.1a: The key challenges while integrating green computing practices into

DevSecOps workflows.. 89

1

CHAPTER I:

INTRODUCTION

1.1 Research Background

Rising concern about environmental sustainability on the one hand and increasing

dependence on digital systems on the other has led to efforts to investigate the impact of

digitalization on the environment and how to make it sustainable. The current pace of

digitalization and a firm reliance on IT infrastructure has led to considerable energy

consumption, thereby causing environmental degradation. For instance, data centers

worldwide currently contribute to around 1% of global electricity usage as per the

International Energy Agency (IEA), with estimates placing it between 1-1.5% of total

electricity consumption worldwide. (Spencer and Singh, 2024). Green computing has

emerged as a response, emphasizing energy efficiency, reduction in carbon emissions, and

e-waste management. While organizations have adopted green computing at the hardware

level - such as optimizing data centers - sustainable practices in software development,

particularly within the DevSecOps framework, remain underdeveloped.

Meanwhile, a significant development in software process management has

occurred when the security practices are shifted to the beginning and embedded throughout

the development process instead of being an activity after software deployment. Tortoriello

(2022) emphasizes the need to reexamine Application Lifecycle Management (ALM),

particularly its evolutionary aspects. The core parameters that regulate ALM are

governance, development, and operation, which include all software activities, as

illustrated in figure 1.1a.

2

Figure 1.1a: Components that drive Application Lifecycle Management (ALM)

Mann and Maurer (2015) have also highlighted the agile development process and

practices. Later, the evolution of software processes and methodologies gave rise to

DevOps and DevSecOps with 54 peer-reviewed studies published between 2011 and June

2020 (Rajapakse et al., 2022). Industrial acceptance increased with more focus on the speed

of software making and the complexities involved.

It is to be noted that the software sustainability is not limited to the development

phase but extends to maintenance and deployment. It includes strategies for reducing the

energy consumption of software running on servers and end-user devices and

implementing green IT policies in software maintenance and operational procedures.

Traditional security practices, often implemented late in the development process,

can hinder the agility of DevOps. Azad and Hyrynsalmi (2023) conducted a systematic

literature review to identify critical success factors (CSFs) for DevOps projects,

categorizing them into technical, organizational, and social and cultural dimensions.

Development

Governance

Operation

Application Lifecycle

Management (ALM)

3

DevOps evolves into DevSecOps by integrating security into each step of the

software development lifecycle. This is in contrast to the conventional practices where

security considerations were often addressed late in the development process. DevSecOps

includes security from the beginning and encourages collaboration between development,

operations, and security teams. It emphasizes collaboration, automation, and continuous

feedback across all stages of software development. This approach includes practices like

Continuous Integration and Continuous Deployment (CI/CD), enhances collaboration,

accelerates delivery times, and optimizes resource utilization (Koskinen, 2019; Ahmed,

2019; Rath, 2024).

Green Computing, or ecologically sustainable computing, is a set of practices and

methodologies designed to minimize the environmental or ecological impact of computing

technologies (Vikram, 2015). It encompasses various activities and strategies focused

primarily on energy efficiency, reducing carbon footprints, and managing e-waste

(electronic waste). Energy efficiency in green computing involves optimizing hardware

and software operations to consume the least energy possible while retaining performance.

Reducing the carbon footprint concerns lowering the overall greenhouse gas emissions

associated with computing activities - from data center operations to the end-user device.

E-waste management addresses the responsible disposal and recycling of electronic

components and devices, recognizing the harmful environmental effects of electronic waste

(Sagar and Pradhan, 2021).

In software development and IT operations, one of the primary challenges,

especially with respect to sustainable computing, is the need for standardized metrics and

benchmarks for sustainability. Measuring and comparing the environmental impact of

software products and IT practices is difficult. Furthermore, more comprehensive tools and

methodologies are needed to improve the sustainability of software systems. Of course,

4

quickly changing technology landscape and many disruptive innovations that are taking

place in the IT sector do offer considerable challenges too.

One a different note, there is a considerable dependence on energy resources with

an increasing demand for the large-scale use of data and cloud-based services. This has put

onus on adhering to sustainable practices, and need for greater awareness and education

about the importance of sustainable computing among all stakeholders.

Despite the recognition of the importance of the sustainable practices in software

processes, the adoption has yet to catch up. There can be several reasons for this, but the

primary reason is the lack of standardized metrics and frameworks measure and guide the

environmental impact of software development effectively.

Moreover, integrating sustainability into software development often needs

balancing performance with ecological considerations. It includes developing energy-

efficient algorithms, using sustainable software design principles, and implementing tools

that measure software's environmental impact throughout its lifecycle. For DevSecOps,

these practices must be integrated into the CI/CD pipelines without impacting operational

efficiency.

Recent studies show the possibility of incorporate energy-aware programming and

resource optimization tools in CI/CD pipelines (Sallou, Cruz and Durieux, 2023; Rajapakse

et al., 2022). Tools like EnergiBridge facilitate cross-platform energy measurements that

can be integrated into DevSecOps workflows; thus, we shall be able to to monitor and

minimize energy consumption during automated builds and deployments (Sriraman and

Raghunathan, 2023).

Metrics are important of for providing quantifiable insights into security,

performance, and operational efficiency. The key metrics of DevSecOps are illustrated in

Figure 1.1b.

5

Figure 1.1b: Different Metrics for DevSecOps

Deployment Frequency reflects an organization's agility. It measures how

frequently code is deployed to production or updates are released. For example, if an

application is deployed 25 times a month, the deployment frequency is 25

deployments/month.

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑃𝑒𝑟𝑖𝑜𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

Mean Time to Recover (MTTR) is the average time needed to restore services after

a security incident or failure. For example, if you had three incidents with recovery times

of 2, 2.5, and 1.5 hours, the MTTR would be 2 hours.

DevSecOps

Metrics

Deployment Frequency

The measure of the speed of

the development pipeline -

determines the agility of the

organization.

Change Lead Time

The measure of the time taken from code commit to

production deployment.

Mean Time to Recover

(MTTR)

The measure of the average time

needed for restoring services

after a security incident.

Vulnerability Detection

Rate

The measure of the number of

vulnerabilities identified

during the development and

testing phases.

6

𝑀𝑇𝑇𝑅 =
𝑆𝑢𝑚 𝑜𝑓 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑇𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝐴𝑙𝑙 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

Vulnerability Detection Rate is the number of vulnerabilities identified during the

development and testing phases. For example, if we find 50 vulnerabilities out of 1000

tests conducted, the rate would be 0.05. The value may also be expressed in percentage; in

this case, it is 5%.

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑠 𝑜𝑟 𝐶𝑜𝑑𝑒 𝑈𝑛𝑖𝑡𝑠 𝑆𝑐𝑎𝑛𝑛𝑒𝑑

Change Lead Time is the time spent between code commit and it’s successful

deployment in production. For example, if a commit is made at 10:00 AM and the code is

deployed at 2:00 PM, the Change Lead Time is four hours.

𝐶ℎ𝑎𝑛𝑔𝑒 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 = 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 − 𝐶𝑜𝑑𝑒 𝐶𝑜𝑚𝑚𝑖𝑡 𝑇𝑖𝑚𝑒

It is to be noted that there are other metrics in use; for example, Change Failure

Rate (Number of Failed Deployments / Total Deployments), Security Automation

Coverage (Automated Security Checks / Total Security Checks), Mean Time to Detect

(Sum of Detection Times / Number of Incidents Detected), and Compliance Score

(Compliant Processes / Total Processes.

Despite these advancements, the literature (as we shall see in detail in Chapter 2:

Literature Review) reveals a major gap in systematic integrations of green metrics into

DevSecOps workflows. Metrics like deployment frequency and Mean Time to Recover

(MTTR) are widely used to assess security and efficiency, but the comparable metrics for

7

environmental performance (e.g., carbon footprint per deployment, server utilization

efficiency, etc.) are rarely applied (Carlos-Eduardo et al., 2022; Bogdanović et al., 2023).

This oversight leads to failure of organizations fail achieving sustainability, and

consequently, hinders the development of standardized.

Studies also show that integrating sustainability into software engineering can lead

to cultural shifts within organizations, and require different stakeholders (e.g., developers,

operations teams, and sustainability officers) to collaborate (Ibrahim, Sallehudin and

Yahaya, 2023). In short, we must address the challenges such as resistance to change, the

lack of tools for green computing, and the absence of well-defined sustainability metrics.

Our research fills these gaps by proposing two frameworks that aligns DevSecOps

principles with green computing goals. It aims to enable organizations to balance security,

operational efficiency, and environmental impacts by appropriately integrating green

metrics into DevSecOps processes.

It must be noted that we use phrases like green metrics, environmental sustainability

metrics, ecological sustainability metrics, sustainability metrics interchangeably. It is the

same for green computing, environmentally sustainable computing, ecologically

sustainable computing, sustainable computing.

1.2 Problem Statement

DevSecOps has created a paradigm shift in how we do software development and

management while incorporating security in the process. It boosts agile and iterative

workflows with increased operational efficiency. On the other hand, the environmental

impact of IT operations, including software development, has come under scrutiny. Despite

integrating security and performance metrics within DevSecOps frameworks, we have

largely ignored environmental considerations or have done some ad hoc progress only.

8

Organizations have made progress in greening hardware and infrastructure, but software

development workflows (particularly where DevSecOps has been employed) have lagged

in incorporating sustainability metrics. Figure 1.2a illustrates the major hurdles when

efforts are made to integrate green metrics into DevSecOps.

Figure 1.2a: Green Computing and DevSecOps - Challenges

Discussing this further, the existing DevSecOps tools are not designed to track

environmental sustainability, making integration complex and resource-intensive; thus, it

adds to Technical Challenges. Also, there is a broad lack of commitment to green initiatives

in the software process, which follows from the prioritization of speed over sustainability

by organizations - a Cultural Resistance. This is compounded by the challenge that arises

from the lack the awareness or skills on the part of developers and operations teams who

are needed to implement green practices effectively within CI/CD pipelines and other

Green

Computing

and

DevSecOps -

Challenges

Technical Challenges

Lack of capability of

DevSecOps tools to track

environmental sustainability

Operational Complexity

Balancing sustainability with speed and

security needs of DevSecOps adds layers of

complexity

Cultural Resistance

Lack of commitment to green

initiatives

Knowledge Gaps

Developers and operations

teams lack the awareness or

skills

9

workflows - this is Knowledge Gaps. Lastly, the need for a balance between sustainability

efforts and the speed DevSecOps adds another layer of complexity, Operational

Complexity, to already fast-paced and iterative processes, as highlighted by Rajapakse et

al., 2022.

1.3 Research Objectives

Our research aims to integrate DevSecOps practices and green computing by

proposing two comprehensive frameworks with a set of metrics and quantification of

maturity and risk in the process. Our research objectives are as follows:

1. Investigate the Current State of Green Computing in Software Development:

We shall examine existing practices and tools for sustainability in software

process and identify the extent of adoption of green computing principles in

DevSecOps workflows.

2. Identify Key Sustainability Metrics Relevant to DevSecOps: We shall explore

and define measurable indicators (metrics) with a focus on aligning

environmental sustainability in DevSecOps processes.

3. Develop a Framework for Integrating Sustainability Metrics into DevSecOps:

We shall design an actionable framework that integrates green metrics with

DevSecOps workflows.

4. Evaluate the Effectiveness of the Proposed Frameworks: We shall assess the

impact of quantifying environmental footprint while maintaining software

security and operational efficiency in practical scenarios.

5. Promote Industry Adoption of Green Metrics: We shall furnish practical

guidelines and recommendations for industry professionals for Green

DevSecOps.

10

Our research aims to enhance the theoretical understanding and practical

application of sustainability in DevSecOps. It will also offer actionable insights for

organizations that aspire to balance environmental responsibility with the speed and

security of modern software processes.

1.4 Research Questions

The following research questions are presented to address the gaps in integrating

green computing into DevSecOps and to achieve the objectives of this research:

1. What are the current challenges in integrating green computing practices into

DevSecOps frameworks? This question seeks to identify technical, cultural, and

organizational barriers that hinder the adoption of sustainability metrics in

DevSecOps workflows.

2. Which sustainability metrics are most relevant for measuring environmental

impact within DevSecOps processes? This question aims to explore and define

key green metrics, such as energy consumption, carbon footprint, and e-waste

management, that align with the principles of green computing.

3. How can green metrics be systematically integrated into DevSecOps workflows

without compromising security or operational efficiency? This question focuses

on designing a framework that balances sustainability goals with the speed and

agility demanded by modern software development practices.

4. How does the integration of green metrics impact the overall efficiency,

security, and sustainability of software development processes? This question

evaluates the effectiveness of embedding sustainability metrics into

DevSecOps, examining the benefits and trade-offs through practical application

and case studies.

11

5. What strategies can facilitate the widespread adoption of green metrics in

DevSecOps across industries? This question discusses different practical

solutions and organizational best practices that can promote the integration of

sustainability into DevSecOps and expedite adoption.

1.5 Significance of the Study

It is an urgent necessity to integrate green computing practices into DevSecOps

processes. It will balance environmental sustainability with modern software development,

IT operation, and security demands. This study is meaningful for both academia and

industry, and offers valuable contributions in the following ways.

1.5.1 Academic Contributions

Advancing Theoretical Understanding: The study fills the gap in the literature and

expands the theoretical foundations of sustainable software development by systematically

examining the intersection of green computing and DevSecOps. Also, the research aims to

introduce new insights into how green metrics can be aligned with DevSecOps practices,

advancing the discourse on sustainability in IT workflows.

Development of Frameworks: The proposed frameworks aim to provide academic

benchmarks for integrating sustainability metrics into software development workflows.

Stimulating Future Research: Our research offers a foundation for future academic

inquiry, encourages researchers to investigate into the practical implementation of green

computing practices in other iterative and security-focused software methodologies and IT

processes.

12

1.5.2 Practical Contributions

Enabling Organizations to Meet Sustainability Goals: The research findings

provide actionable tools to organizations to reduce their carbon footprint, optimize resource

utilization, and manage electronic waste.

Facilitating Green Computing Adoption Industry-Wide: Our research offers a set

of guidelines and metrics that can be employed in various organizational and technological

scenarios. It will promote a widespread integration of sustainability practices into software

engineering.

Improving Cost Savings and Operational Efficiency: There will be greater

possibility for organizations adopting the framework to achieve energy efficiency, reduce

waste, and lower operational costs; and can create a compelling business case for green

computing.

Strengthening Regulatory and Social Responsibility Alignment: Our research aims

to help organizations mitigate compliance risks, enhance their corporate reputation, and

ensure that their social responsibility efforts are in line with prevailing regulatory

requirements.

Promoting Collaboration Between Teams: Our research emphasizes the importance

of cross-functional collaboration among development, security, operations, and

sustainability teams. It encourages shared responsibility for environmental stewardship

within organizations.

Our study contributes to broader global efforts to combat climate change by

addressing the environmental challenges of IT. Our findings support organizations in their

effort to align with sustainability objectives of the United Nations Sustainable

13

Development Goals (SDGs), such as Goal 12 (Responsible Consumption and Production)

and Goal 13 (Climate Action).

To summarize, our study help bridge the gap between theoretical investigation and

practical relevance. The structured approach for embedding green computing practices into

DevSecOps workflows delivers actionable insights to benefit academics, industry, and

society at large and facilitates a sustainable future for software engineering.

1.6 Structure of the Thesis

This thesis is organized into six chapters as below; offers a comprehensive

exploration of integrating green computing practices into DevSecOps frameworks:

Chapter 1: Introduction - This chapter gives an overview of our research, such as

its background, problem statement, objectives, research questions, and significance. It

establishes the foundation for understanding the gap between green computing and

DevSecOps and outlines the scope and purpose of the research.

Chapter 2: Literature Review - This chapter explores the existing literature on

DevSecOps, green computing, and sustainability metrics. It identifies current trends,

challenges, and gaps in integrating sustainability into software processes. It underscores

the need for green metrics for DevSecOps and paves the way for devising the proposed

framework.

Chapter 3: Research Methodology - In this Chapter, the mixed-methods approach

for the study is discussed. The methods of data collection, such as qualitative interviews,

quantitative surveys are elaborated along with the analysis techniques to synthesize results.

The ethical considerations and the limitations of the study are also discussed.

14

Chapter 4: Results - The key sustainability metrics are identified from the findings

and enunciated in the new framework. Case studies and benchmarking results that validate

the framework and demonstrate its practical applicability are included.

Chapter 5: Discussion - The results are interpreted in the context of the research

objectives and questions. The chapter discusses what the results imply for industries and

academics and highlights their potential to advance sustainable software development. The

challenges and opportunities of adopting green metrics in DevSecOps are also included.

Chapter 6: Conclusion and Recommendations - This chapter summarizes the results

of the study. It highlights the research contributions to theoretical understanding and

practical applications. It offers a set of actionable recommendations for organizations

pursuing the adoption of green metrics in DevSecOps. Finally, future research directions

are outlined to further the effort of maximizing operational efficiency and security through

automation and an integrated approach to sustainability practices in software engineering.

15

CHAPTER II:

REVIEW OF LITERATURE

2.1 Introduction

This research follows Garousi, Felderer and Mäntylä (2022) for conducting

Multivocal Literature Reviews (MLRs) in software engineering, integrating grey literature

(e.g., blogs, videos, and white papers) alongside traditional academic sources. In their

study, the authors outline the benefits of MLRs, including how this bridge the gap between

academic research and industry practice. Figure 2.1a illustrates the literature review

process and the flow followed iteratively to reach a comprehensive set of findings.

Figure 2.1a: Impact of the green metrics on the software development

 We have adopted a methodological approach to analyze the impact of green

metrics on software development. The primary data sources include scholarly databases

Google

Scholars

IEEE Computer

Library

Used keywords for

search: devsecops

sustainability,

devsecops metrics,

devsecops green

metrics, devops

sustainability,

devops metrics,

devops green

metrics, software

development

sustainability, cloud

computing

sustainability

Existing Case

Studies and

Frameworks

Existing Efforts

and Theoretical

Models

Green Metrics in Software

Development

Categorizing and Selecting Based on

Relevance:

Assessment of Environmental Impact

Guiding Sustainable Practices

Benchmarking and Improvement

Google Search

for Blogs,

Books and

Industry

Reports

16

such as Google Scholar and IEEE Computer Library and broader searches encompassing

blogs, books, and industry reports. For the literature review, we have used relevant

keywords such as DevSecOps sustainability, DevSecOps metrics, DevOps green metrics,

software development sustainability, and cloud computing sustainability, etc. as mentioned

in Figure 2.1a. This search identified the existing case studies, frameworks, theoretical

models, and specific metrics relevant to software development. We have also employed AI

tools like SciSpace (typeset.io) to look for more associated articles and Paperpile App

(paperpile.com) to archive and sort reviewed articles. We have then categorized the

findings based on their significance, particularly in three critical areas: assessing

environmental impact, guiding sustainable practices, and benchmarking improvements.

This systematic approach helps our review capture a balanced perspective,

emphasize the role of green metrics in sustainable software practices, and boost the

potential to address environmental challenges in the digital era. Moreover, the

categorization serves as a basis for exploring the integration of (ecological) sustainability

principles into software processes and for evaluating its practical implications.

In our review, we shall present the studies and their findings in a particular order.

First, we shall discuss studies relevant to substantiating green computing needs and then

examine how different studies look at sustainability in general and green computing in

particular. We shall then discuss DevSecOps advancements in software practices and

highlight the sustainability perspectives. Later, we shall present studies about green metrics

and DevSecOps before moving to gap analysis and our next step. It is to be noted that we

shall frequently move between the considerations strictly about green computing in

DevSecOps and the general scope of sustainability in software practices; again, it will help

us ascertain overlapping studies and consequent insights for our purpose.

17

2.2 Green Computing

We shall review the state of studies in green computing in the ICT industry in

general and software practices in particular. The reason for expanding our purview to the

large state of affairs is to capture the essence due to the coinciding nature of software and

other components of ICT activities. It is, in fact, more relevant due to the software-centric

approach to digital technologies with the prevailing role of cloud computing worldwide

(Rath, 2013).

Different studies have also discussed different characteristics of sustainability and

how the environmental aspect is considered. For example, Gerostathopoulos, Raibulet and

Lago (2022) propose an approach that leverages decision maps to systematically capture

sustainability-relevant concerns, categorized into technical, economic, environmental, and

social dimensions. Similarly, Garscha (2021) explores integrating sustainability

considerations into agile frameworks and emphasizes the five dimensions of sustainability

- environmental, economic, technical, social, and individual - and highlights the role of

requirements engineering in shaping sustainable software systems.

Chitchyan et al. (2016) emphasize the need for systemic thinking in software design

while investigating into sustainability in requirements engineering. They identify obstacles

like the lack of education on sustainability, inadequate organizational support, and

prioritization of immediate goals over long-term impact. Their study of sustainability

encompasses environmental, economic, social, individual, and technical dimensions.

Similarly, Chitchyan, Noppen and Groher (2015) examine the role of sustainability in

Software Product Line Engineering (SPLE), and also explore its alignment with economic,

technical, social, and environmental dimensions. They used a case study of the DiVA

project and grounded theory analysis to identify key sustainability-related concepts, such

as efficiency, productivity, adaptability, and tool support.

18

Thus, if we select the common components, we may represent sustainability with

four dimensions, as illustrated in Figure 2.2a.

Figure 2.2a: Dimension of sustainability

Essentially, green computing can be understood as environmental sustainability.

Wolfram, Lago and Osborne (2017) provide a systematic mapping study on the definition

and application of sustainability in software engineering. The study goes further and

categorizes sustainability concerns across the software lifecycle; it emphasizes areas such

as software requirements, design, and runtime, with a predominant focus on environmental

sustainability. The authors also propose the emerging need to embed sustainability into

software engineering practices.

Environmental

Social

Technical

Economic

Sustainability

19

Harmon and Auseklis (2009) state that the efficient use of computing resources to

enhance performance while minimizing environmental impact. They note that power

consumption by IT departments constitutes up to 50% of the organization's energy costs -

a major financial and ecological hurdle for adopting sustainable IT practices. They

advocate integrating green computing strategies - such as power management,

virtualization, improved cooling technologies, recycling, and electronic waste disposal -

into IT services to meet sustainability objectives. They also identify a gap in understanding

the strategic benefits of sustainable IT services, particularly in creating customer, business,

and societal value, and propose a set of principles to guide sustainable IT service design.

Gmach et al. (2012) explore the integration of demand-side and supply-side energy

management for sustainable data centers. Their approach involves a detailed energy

profiling method that models power demand using workload simulators and incorporates

dynamic supply sources like photovoltaic arrays and municipal solid waste facilities. The

study stresses using metrics such as CO2 emissions, water consumption, and operational

costs to assess sustainability.

Saha (2018) highlights the growing importance of green computing in mitigating

environmental challenges that arise due to rapid industrialization and technological

advancements. The study emphasizes designing, manufacturing, and using computing

resources in environmentally sustainable ways; also focuses on energy efficiency,

recyclability, and reducing hazardous materials and underscores the potential of green IT

practices to address global environmental concerns and the need for collaboration among

stakeholders. Even earlier literature focused on the direction - Schopf (2009) examines

sustainability within the National Science Foundation's Office of CyberInfrastructure

(OCI), emphasizing the importance of creating reusable, reliable, and long-lasting software

and services to support computational science.

20

Erdélyi (2013) examines the role of software in enhancing the eco-sustainability of

IT systems, and emphasizes that software behavior significantly influences hardware

energy consumption. The study identifies factors in green software development, including

energy-efficient algorithms, resource optimization, and sustainable coding practices.

Fakhar et al. (2012) explore energy conservation in software systems through green

computing strategies implemented at the software level.

Groher and Weinreich (2017) investigate sustainability in software development

through interviews with team leads from Austrian companies. They highlight a factor of

the narrow understanding of sustainability among practitioners, focusing mainly on

technical aspects like maintainability and extensibility.

In an earlier study, Albertao et al. (2010) propose a methodology to assess the

sustainability performance of software projects by introducing a comprehensive set of

sustainability metrics. These metrics include environmental, economic, and social aspects,

focusing on properties such as modifiability, reusability, portability, and supportability.

They emphasize iterative improvement by assessing metrics at the end of each release

cycle, which enables targeted sustainability goals.

Andrikopoulos et al. (2022) conducted a systematic mapping study to explore the

intersection of sustainability and software architecture. The study identifies gaps in the

coverage of sustainability dimensions (technical, environmental, economic, and social) and

architecture lifecycle activities. The technical dimension gets more importance, while

social and environmental dimensions remain underexplored. Furthermore, the study states

the need for comprehensive approaches integrating all sustainability dimensions across the

software lifecycle. This work contributes to the growing recognition of sustainability as a

critical software quality.

21

Condori-Fernandez and Lago (2018) examine the role of quality requirements in

contributing to software sustainability across technical, economic, social, and

environmental dimensions. Through a survey-based study involving software architects,

requirements engineers, and sustainability experts, they identify key quality attributes like

modifiability, recoverability, and satisfaction as significant contributors to sustainability.

Landauer (2006) introduces a framework, called Wrapping Architectures, to enhance the

long-term sustainability of complex systems.

Haron et al. (2015) highlight the role of software reusability in promoting green

computing within Malaysia's IT sector. Similarly, a study by Venters et al. (2018) evaluates

software sustainability from the point of view of software architecture. Lago (2019)

proposes Decision Maps, which frame architectural concerns across technical, economic,

social, and environmental sustainability dimensions, as a tool to embed sustainability in

software architecture design. Catolino (2020) employs mixed-method approach to examine

how code smells (the issues within software codebase while it gives correct output) evolve

over time and impact project sustainability.

Spencer and Singh (2024) opine that the increasing demand for AI services could

significantly escalate electricity consumption by data centers, which currently account for

about 1-1.5% of the global value. The authors emphasize the necessity for energy-efficient

technologies and sustainable practices to mitigate potential environmental impacts. Lange,

Pohl and Santarius (2020) recommend targeting energy-reducing effects while mitigating

energy-increasing mechanisms associated with digitalization.

Jayalath et al. (2019) review of green cloud computing, focusing on adopting green-

computing attributes and implementations by leading cloud service providers. The study

examines how cloud computing, as a more efficient alternative to traditional data centers,

contributes to environmental sustainability. In fact, there have been studies on cloud

22

adoption independent of sustainability perspective (Rath et al., 2012), but then points to

the importance of looking at the role of cloud computing that has brought large-scale

transformation in software-centric view and environmental outlook. However, the authors

note that the energy consumption of cloud data centers remains a significant concern due

to the reliance on non-renewable energy sources.

Moreover, green computing extends to developing green policies, and

implementing environmentally friendly IT practices, i.e., using renewable energy sources

for managing data centers and promoting energy-efficient hardware and software. This

approach considers the entire lifecycle of IT products and services with an aim to reduce

their environmental impact from production to disposal. Raja (2021) investigates the

significance of green computing within the IT sector, emphasizing the imperative of

enhancing energy efficiency in computing technologies. The study opines the swift

adoption of green information technology (IT) as a formal organizational policy, extending

beyond environmental strategies to encompass the holistic development of society. The

study of Singh (2015) on green computing strategies and challenges states the critical

importance of adopting eco-friendly practices in the production and utilization of advanced

technologies.

Harmon and Demirkan (2011) discuss the evolving concept of sustainable IT,

emphasizing its transition from product-focused Green IT initiatives aimed at cost and

energy efficiency to a broader alignment with corporate sustainability (CS) and corporate

social responsibility (CSR). They opine that sustainable IT holds potential beyond

ecological benefits; addresses economic, legal, and social dimensions of CSR. Ono, Iida

and Yamazaki (2017) suggest integrating digital technologies like cloud and AI into

corporate strategies to drive environmental transformation. This approach illustrates how

ICT can bridge industries and promote sustainable development across sectors.

23

Ibrahim, Sallehudin and Yahaya (2023) investigate the intersection of software

development waste reduction and environmental sustainability through the application of

Lean principles, referred to as Green Lean. Their study emphasizes that software

development, being a complex socio-technical activity, often involves activities that do not

add value to the customer or user, identified as waste. By adopting Lean methodologies,

which focus on waste reduction and efficiency enhancement, the authors propose that

software development processes can become more environmentally sustainable.

Anwar and Pfahl (2017) conducted a systematic mapping study to explore the role

of software analytics in fostering green software engineering. Their research highlights the

use of software analytics techniques, such as statistical analysis, text mining, and pattern

detection, to enhance energy efficiency in software development. Despite advancements,

only 11 out of 50 reviewed studies utilized software analytics for greener software

practices, emphasizing the need for automated tools and metrics to bridge the gap between

energy consumption and other quality attributes. The study identifies gaps in high-level

software design and energy-aware maintenance and proposes these as future directions for

green software engineering.

Tee, Abdullah and Abdullah (2015) conduct a systematic literature review on green

software development (GSD) within collaborative knowledge management (KM)

environments. The study identifies key focus areas, including energy efficiency and

sustainable software lifecycle practices, while emphasizing the role of KM in managing

and sharing GSD knowledge. Their findings highlight the limited scope of current GSD

research and the need for integrating KM techniques to enhance knowledge sharing and

environmental practices in software development. The study endorses development of

frameworks incorporating KM to bridge knowledge gaps and sustain best practices for

greener software.

24

Bambazek, Groher and Seyff (2022) investigate the integration of sustainability

considerations into agile software development, particularly within the Scrum framework.

Their survey study among practitioners reveals a high potential for addressing

sustainability impacts through agile processes despite a lack of shared understanding of

sustainable software. The study identifies opportunities for assessing sustainability during

key Scrum events (agile methods), such as product backlog refinement and sprint reviews.

It highlights the importance of team involvement and stakeholder collaboration.

As mentioned by Calero, Moraga and García (2022), two key perspectives in the

intersection of software and sustainability are increasingly recognized in the field such as

Sustainability IN Software (Software Sustainability - SOS) and Sustainability BY Software

(Software as Part of Sustainability - SAPOS). Sustainability IN Software focuses on

making the software itself sustainable by minimizing resource consumption during

development and management and maximizing its longevity. The emphasis is on the

sustainability of the software development process using energy-efficient coding practices,

minimizing resource usage, and considering how software can be maintained over time

without excessive energy costs. On the other hand, Sustainability BY Software views

software as a tool for achieving sustainability in other areas. In this view, software is

developed sustainably and contributes to the sustainability of different systems and

processes, i.e., software helps monitor and reduce energy consumption in smart grids or

optimize resource allocation in supply chains; they play a crucial role in promoting overall

sustainability. Bash et al. (2023) emphasize a fundamentals-based framework to address

sustainability through supply-demand principles, focusing on minimizing resource

consumption and optimizing operational efficiencies.

SOS focuses on making software itself sustainable; emphasizes efficient use of

resources, thereby minimizing negative environmental impacts, while SAPOS highlights

25

software’s role in addressing broader sustainability goals. The authors specify key

relationships by aligning these perspectives with the United Nations Sustainable

Development Goals (SDGs). They suggest that sustainability principles must be integrated

into software development practices, and there must be more awareness among developers

and users about the environmental and societal impacts of software. They also state the

importance of embedding sustainability into software engineering as both a process and a

product focus.

These perspectives highlight software's dual role in sustainability efforts, both as

an entity that needs to be made sustainable and as a powerful tool for enabling broader

sustainability goals. We shall use the term sustainable computing or green computing

interchangeably and shall take Sustainability IN Software into account for all our purposes.

The sole reason for this choice is to focus our energy on the aspects that impact the ecology

due to different computing processes and practices.

The review uncovers various ways contemporary studies use sustainability -

environmental, economic, technical, and social. Figure 2.2b illustrates the broad

understanding of sustainability from different perspectives and where the current research

focuses.

26

Figure 2.2b: Illustration of green computing and its scope within the sustainability study.

In the next section, we review DevSecOps from the standpoint of Application

Lifecycle Management, the evolution of DevOps into DevSecOps, and the metrics used in

DevSecOps.

2.3 DevSecOps

Chen and Suo (2022) explore the integration of security within the software

development lifecycle through DevSecOps, emphasizing its role in embedding security

measures at every stage - from initial design to deployment. The study introduces an

integrated DevSecOps platform to enhance enterprise research and development efficiency

and automating security protections. By making security a shared responsibility across

development, security, and operations teams, the platform seeks to streamline processes

and bolster the overall security posture of applications and infrastructure.

Environmental

Sustainability IN Software

Sustainability BY

Software

Sustainability

Economic

Technical

Social

Green Computing

27

The key principles of DevSecOps include automation, continuous integration (CI),

continuous deployment (CD), and proactive security measures. By combining automated

security checks, vulnerability scanning, and real-time monitoring, DevSecOps reduces the

likelihood of security breaches while maintaining the iterative nature of modern software

development (Rath, 2024). Bermon Angarita, Fernández Del Carpio and Osorio Londoño

(2022) underline collaboration and automation to streamline the software development

lifecycle, where metrics play a key role in the quality assurance of software. Roche (2013)

examines the integration of DevOps principles into quality assurance (QA) practices. The

study points out the evidence that DevOps removes traditional silos between teams of

developers, QA, and operations. This promotes a culture of collaboration and shared

responsibility. Key advancements include process standardization, automation of testing,

and the use of metrics for real-time decision-making.

Tortoriello (2022) advocates for automated security tools like SAST and DAST,

apart from cultural and organizational changes, to enhance collaboration among teams for

development, operations, and security. Mack (2023) emphasizes continuous security at

speed to meet modern software demands. Rahul, Kharvi and Manu (2019) highlight the

importance of incorporating static and dynamic security analyses into the development

cycle to address vulnerabilities without compromising the speed of DevOps processes.

Arseneault et al. (2022) highlight the critical role of Integration and Test teams in ensuring

product quality and stability amidst changing schedules and requirements.

Pakalapati, Venkatasubbu and Sistla (2023) highlight the potential of Artificial

Intelligence (AI) to revolutionize software development and to enhance security by

automating threat detection, predicting vulnerabilities, and streamlining workflows.

Guzman Camacho (2024) stresses automated threat detection, predictive analytics for

vulnerability management, and intelligent automation as key applications of AI/ML within

28

DevSecOps. The author demonstrates how AI/ML-driven DevSecOps can improve

organizational resilience, streamline processes, and mitigate evolving security threats.

Petrović (2023) investigates using generative AI like ChatGPT for runtime DevSecOps log

analysis, and compares it to traditional machine learning.

The growth and adoption of DevSecOps are not without challenges. As illustrated

in Figure 2.3a, the following can be considered major challenges.

Figure 2.3a: Illustrating Major Challenges for DevSecOps

 Tortoriello (2022) has discussed the resistance to change and the siloed

nature of teams in traditional organizations that hinder the seamless integration of

DevSecOps practices. The sheer number of tools required for DevSecOps, including CI/CD

platforms, security scanners, and monitoring systems, makes integration challenging,

particularly for small and medium-sized enterprises.

 Rajapakse et al. (2022) conducted a systematic review to identify challenges

and solutions associated with adopting DevSecOps. The study categorizes issues into four

Cultural Barriers

Complexity in Tool

Integration

Metrics and Measuring

Outcomes

Major Challenges for

DevSecOps

Scalability in Distributed

Systems

29

key themes: tools, practices, infrastructure, and people. Key challenges include tool

integration difficulties, limited automation of manual security practices, and inter-team

collaboration barriers. The authors propose solutions such as developer-centric tools,

automated vulnerability assessment practices, and frameworks for complex environments.

Emphasizing the need for hybrid tools like Interactive Application Security Testing

(IAST), the review highlights gaps in tool standardization and continuous security

assessment.

Gupta (2022) presents a structured framework for DevSecOps adoption,

emphasizing its significance in integrating security into the software development

lifecycle. The study highlights DevSecOps as a cultural and operational shift that addresses

security vulnerabilities by embedding security practices from the development phase

through deployment.

 The fourth factor is measuring the outcome of DevSecOps (with a set of

clearly defined metrics).

The metrics are used to monitor progress and gain insights into the performance of

the software delivery process, as per Bermon Angarita, Fernández Del Carpio and Osorio

Londoño (2022). The most significant contributions of DevOps in terms of metrics are

related to continuous integration, software design, and software testing, as outlined in

Orozco-Garcés, Pardo-Calvache and Suescún-Monsalve (2022). In the context of

DevSecOps, more than traditional metrics and evaluation methods are required to ensure

software security. New security metrics must be defined based on multiple measures to

increase reliability. The measurement of metrics in DevOps and DevSecOps can be done

manually, through surveys, or automatically (Carlos-Eduardo et al., 2022; Wissam,

Mallouli et al., 2020). The authors emphasize for an automatic and accurate measurement

of DevSecOps metrics as it would be of great value for practitioners in improving software

30

delivery performance. Prates et al. (2019) conducted a multivocal literature review to

identify key metrics for measuring the effectiveness of DevSecOps implementations; the

study describes nine metrics, including defect density, defect burn rate, critical risk

profiling, and top vulnerability types, which are essential for tracking vulnerabilities,

prioritizing risks, and improving development processes.

2.4 Green Metrics

As discussed in the previous section, the metrics determine the performance of

DevSecOps workflows. However, they largely ignore environmental considerations. As

sustainability becomes a critical global concern, expanding these metrics to include green

computing dimensions - such as energy consumption per deployment and carbon footprint

- represents an essential step forward (Li and Zhou, 2011). The authors propose dynamic

power management, application-aware energy policies, and low-power hardware designs

to address the challenges of implementing sustainable computing practices. Moreover, the

paper identifies the need for holistic approaches to integrate energy awareness into resource

management across computing systems, advocating for collaborative efforts between

hardware and software to achieve comprehensive energy efficiency. This work underscores

the necessity of continued research to develop unified energy metrics, improve energy

modeling, and optimize green networking protocols, paving the way for the next generation

of sustainable IT systems.

This section reviews the existing efforts to integrate sustainability into IT practices,

with a particular focus on software development and emphasizing sustainability in

software. This perspective is particularly relevant to integrating sustainable practices

within the DevSecOps framework.

31

First, let us discuss green metrics themselves. Green metrics in software

development refer to quantifiable measures to assess and manage the environmental

impacts of software systems. These are vital as the industry is increasingly scrutinized for

its ecological footprint. In the software development, the green metrics have three key

functions as illustrated in Figure 2.4a.

Figure 2.4a: The Key Functions of the Green Metrics

Assessment of environmental impact involves evaluating the energy efficiency,

carbon footprint, and overall ecological impact of software products, from development to

deployment and maintenance. We quantify the environmental aspects of software systems

- guiding organizations in making more informed, eco-friendly decisions - termed as

guiding sustainable practices. The third key function of green metrics is benchmarking and

improvement, which helps identify sustainability improvement areas when we benchmark

against industry standards or regulatory requirements.

The growing emphasis on sustainability in business and among consumers

magnifies the relevance of green metrics. As environmental issues become more

Assessment of Environmental

Impact

Guiding Sustainable Practices

Benchmarking and

Improvement

The Key Functions of

the Green Metrics

32

prominent, the demand for transparency and accountability in software development

practices increases. Welter and Benitti (2014) emphasize the significance of green

computing in promoting environmental sustainability, and the need for tools, practices,

processes, frameworks, and reference models. Similarly, Debbarma and Chandrasekaran

(2016) highlight the importance of energy efficiency and reduced environmental impact.

Mourão, Karita and Machado (2018) stress the need for standardized metrics and

methodologies to assess software sustainability. Mallouli et al. (2020) highlight the

integration of automated and continuous measurement processes within the software

development lifecycle. This approach prescribes structured metrics as defined by the SMM

(Structured Metrics Meta-model) standard; thus integrates tools for automated

vulnerability detection, secure coding, and anomaly detection. Moreover, the framework

introduces real-time data analysis with AI/ML to predict risks, optimize system

performance, and reduce energy consumption.

The current state of sustainable computing is characterized by growing awareness

and incremental adoption of green practices within the IT industry. Freitag et al. (2021)

highlight that while there has been progress, particularly in the hardware domain with

energy-efficient data centers, the software development aspect of sustainable computing

could be more advanced.

Bozzelli, Gu, and Lago (2019) identify and classify metrics for assessing software

"greenness" in software engineering based on their systematic literature review. Analyzing

960 publications, they choose 23 primary studies, extracting 96 distinct green metrics.

Their analysis shows that research on green software metrics has predominantly focused

on energy consumption and with limited attention to other sustainability aspects. It

emphasizes the need for comprehensive models to assess green software qualities beyond

33

mere energy efficiency, and also highlight a gap in the literature for evaluating the overall

sustainability of software systems.

2.5 Case Studies and Frameworks

Quite a few case studies and frameworks have been proposed towards the

integration of environmental considerations into IT processes and practices. There have

been many directions that these studied have taken. For example, Le et al. (2016)

investigate the relationship between architectural decay and the sustainability of software

systems, emphasizing the role of architectural smells such as unused interfaces and sloppy

delegation.

We cite a few region-centric case studies here. Riekstin et al. (2016) propose a

framework integrating real-time differentiated life-cycle assessment models to calculate

carbon emissions and energy consumption across distributed ICT networks worldwide. In

another effort, Ahmaro, Bin Mohd Yusoff and Abualkishik (2014) highlight a growing

commitment among Malaysian IT firms to enhance energy efficiency and reduce

environmental impact through sustainable computing strategies.

Tjoa and Tjoa (2016) emphasize the dual nature of ICT’s impact - enabling

sustainability through optimization (positive) and electronic waste (negative). Philipson

(2011) introduces a framework and emphasizes the importance of measurement and

benchmarking in driving effective Green ICT strategies. Agarwal, et al. (2015) highlight

the importance of adopting environmentally friendly computing practices to reduce energy

consumption and minimize environmental impact. The study identifies energy-efficient

hardware utilization, optimization of software algorithms for lower power usage, and the

implementation of virtualization techniques to enhance resource efficiency. The authors

advocate for more awareness and widespread adoption of green computing within the IT

34

industry. Muthu, Banuroopa and Arunadevi (2019) emphasize the importance of

sustainability in software engineering and propose a model to extend traditional lifecycle

frameworks incorporating metrics to evaluate ecological, economic, and social impacts.

The authors highlight the need for sustainable approaches in requirement study,

architecting, coding, testing, and implementation. Ruokolainen and Kutvonen (2012)

propose a holistic approach to service ecosystem engineering, incorporating analysis,

design, and governance to enhance stakeholder collaboration and system viability.

Jimenez, Calero and Moraga (2022) introduce a tool to assess the incorporation of

software sustainability actions in the CSR (Corporate Social Responsibility) initiatives of

software development companies and highlight gaps in the implementation of software

sustainability practices. Uddin and Rahman (2012) propose a comprehensive Green IT

framework to enhance energy in large-scale data centers. The framework applies green

metrics like Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and Carbon

Emission Calculator to assess and benchmark the performance of individual data center

components. Wang, Palanisamy and Xu (2020) present a sustainability-aware resource

provisioning framework to reduce the total carbon footprint of data centers.

Winters (2018) emphasizes the importance of sustainable software practices in

environments with extensive dependencies and long-term maintenance requirements.

Alharthi, Spichkova and Hamilton (2018) introduce a web-based tool to evaluate software

across five sustainability dimensions, such as individual, social, technical, economic, and

environmental. Ibrahim, Sallehudin and Yahaya (2023) underscore the idea of reducing

waste and enhancing sustainability in software processes.

Penzenstadler et al. (2021) address the need for sustainability impact assessments

in software development at various stages of a product's lifecycle. They highlight the

potential for regulatory integration of sustainability assessments in IT, akin to practices in

35

civil engineering, to ensure responsible development of digital solutions. Albertao et al.

(2010) highlight the feasibility of incorporating sustainability considerations into software

engineering processes. Ferri, de Barros and Brancher (2011) propose a sustainability

framework integrating IT governance, green computing principles, and virtualization

technologies to promote eco-sustainability in software development. Lami and Buglione

(2012) propose a process-centric approach to measure software sustainability and introduce

a new process group (Sustainability Management, Sustainability Engineering, and

Sustainability Qualification processes) under the ISO/IEC 12207 framework.

Wlodarczyk and Rong (2010) raise concerns about the sustainability impacts of the

integration of cloud computing and the cyber-physical space. Chang, Wills and De Roure

(2010) examine cloud business models and their impact on sustainability. Their work offers

practical tools for organizations adopting cloud computing along with sustainable growth.

Kipp and Jiang (2011) introduce a set of green metrics to identify energy

inefficiencies within applications and offer guidance for improving design and execution

to enhance energy efficiency. Kienzle, Strooper and Viller (2016) propose a comprehensive

framework for integrating sustainability into the software development lifecycle and

emphasize the importance of environmental, economic, and social impacts at each stage of

the software process. Their study highlights the need for embedding sustainability as a core

consideration. Jindal and Gupta (2012) state that adopting green computing strategies will

address ecological concerns apart from offering economic benefits. Haugsvær (2023)

introduces methodology to reduce the carbon footprint of web products by integrating

sustainability principles into every phase of the development lifecycle.

Bang et al. (2013) identify tools and methodologies that contribute to modern web

application development. Bogdanović et al. (2023) explore the role of DevOps in

sustainable enterprise development. They present case studies of DevOps practices that

36

successfully aligned with sustainability goals. Zohaib (2023) presents a decision-making

framework for sustainable DevOps. This framework acts as a conduit between rapid

development methodologies and environmental considerations.

Studies like those by Sriraman and Raghunathan (2023) have highlighted the

importance of sustainability in software engineering and DevOps practices. They propose

a framework to enhance sustainability practices across the software lifecycle. Sallou, Cruz

and Durieux (2023) provide practical tools and assessment criteria for implementing green

metrics in software development. Dahab et al. (2022) propose a framework for green

software measurement and use machine learning techniques to assess and refine green

software metrics continuously. This approach indicates a growing field of green software

engineering that is moving towards better measurement.

The review suggests that it is important to develop a comprehensive set of green

metrics that can be readily integrated into existing IT workflows, and these metrics must

provide measurement of energy consumption and carbon footprint apart from taking into

account factors like resource utilization, waste generation, and software product lifecycle

impacts. Figure 2.6 outlines different aspects (approaches) to develop and implement green

metrics in IT; so, also in DevSecOps.

37

Figure 2.5a: Approaches to develop and implement green metrics in IT

The Energy Consumption Metrics measure the software's energy consumption

during operation. It includes developing tools and methodologies for assessing the energy

efficiency of code, algorithms, and software architectures. The Lifecycle Assessment

evaluates the environmental impact of software from development to end-of-life. The

Carbon Footprint Metrics calculates carbon footprints of software products that involve

estimating the greenhouse gas emissions associated with the entire software lifecycle. The

Waste Reduction Metrics focus on reducing electronic waste through efficient coding

practices, extending the lifespan of software, and promoting recyclability and reuse in

software development. The Performance and Efficiency Balancing considers the balance

between software performance and environmental efficiency.

Energy Consumption

Metrics

Lifecycle Assessment

Carbon Footprint Metrics Waste Reduction Metrics

Performance and Efficiency

Balancing

Approaches to

Develop and

Implement

Green Metrics

in IT

38

2.6 Gap Analysis

Our review of the existing literature in the intersection of sustainable computing,

green metrics, and DevSecOps reveals critical gaps, and suggests the need for further

research. While awareness about green computing is increasing, integrating these practices

within the DevSecOps framework is still nascent. The reviewed literature indicates

advancements in green metrics related to energy consumption, carbon footprint, and waste

reduction. Still, these are generally not designed with the unique dynamics of DevSecOps

in mind. . It is to be noted that there are many existing approaches providing qualitative

assessments or broad guidelines without offering quantifiable metrics to systematically

integrate into DevSecOps processes. It limits the potential for targeted improvements in

sustainability practices within DevSecOps.

Moreover, there needs to be more clarity between the development of green metrics

and their practical implementation in the fast-paced, security-focused environment of

DevSecOps. The current green metrics predominantly focus on the the operational phase,

with less attention given to integrating these metrics throughout the CI/CD pipeline, which

is central to DevSecOps.

Our research addresses these gaps by developing and integrating quantitative green

metrics for DevSecOps. We focus on creating a comprehensive set of metrics in evaluating

environmental impacts that is practical and can be applicable within the rapid and security-

focused context of DevSecOps. These metrics can provide measurable parameters to assess

and manage the sustainability in the software processes, from coding and testing to

deployment and maintenance.

The introduction of quantitative green metrics in DevSecOps is vital for the

following reasons:

39

1. Environmental Accountability: Software developers, security experts and

operations teams can ascertain their environmental impact. It will lead to more

informed and responsible decision-making.

2. Balancing Speed, Security, and Sustainability: Appropriate integration without

impacting the existing DevSecOps performance parameters ensures that

pursuing sustainability will not compromise the speed and security.

3. Benchmarking and Continuous Improvement: The use of metrics allows

organizations to benchmark their software practices against industry standards

and regulatory requirements. It will help promote a culture of continuous

improvement while adopting green DevSecOps.

2.7 Summary of Findings

The literature review has provided several key findings:

• Emerging Field of Environmental Sustainability in DevSecOps: We recognize

the growing need to integrate environmental sustainability in software

processes, in general, and DevSecOps workflows, in particular.

• Green and Lean Software Development: The idea of reducing waste and

enhancing sustainability in software processes aligns well with DevSecOps

objectives and emphasizes the need for environmental consideration in

development frameworks.

• Frameworks for Green Software Design: Multiple studies show a focused

approach towards minimizing carbon emissions and energy consumption,

especially in cloud services, which can be integral to DevSecOps.

40

• Systematic Mapping of Green Metrics in Software Engineering: There is a

growing emphasis on quantifiable environmental impact measures in software

development.

• DevSecOps Frameworks with Sustainability: There is a great need to create

frameworks with defined green metrics for DevSecOps and with the abilities

for assessing the implementations and outcomes.

These findings emphasize a growing interest and feasibility in embedding

sustainability into software development processes, particularly within DevSecOps. On the

other hand, these also point to significant gaps in developing specific green metrics for

DevSecOps.

2.8 Implications for Our Research

This literature review shapes the objectives and sets the direction of the proposed

research. The insights acquired underscore the importance of developing green metrics for

the DevSecOps practices. These metrics will address a critical gap in current sustainability

practices by offering a quantifiable, practical toolset that can be integrated into the rapid,

security-focused DevSecOps cycle.

The research will leverage the findings on existing sustainability efforts and

frameworks in software development to create a set of metrics that are comprehensive in

assessing environmental impacts and pragmatic for implementation within DevSecOps

processes. The integration will allow software developers and IT operations teams to

quantitatively monitor and improve the environmental performance for software

applicatins without compromising on the speed and security.

Also, this research will contribute to the field by offering a novel approach to

balancing technological advancement with environmental responsibility. The research will

41

provide a pathway for sustainable development that can adapt to future technological

changes and environmental challenges.

42

CHAPTER III:

METHODOLOGY

3.1 Research Design

We use a mixed-methods research design in our study that combines qualitative

and quantitative approaches. As specified in Chapter 2, we address the gaps in integrating

green computing practices into DevSecOps frameworks. This dual approach enables us to

comprehensively understand the topic by leveraging the strengths of both methods:

qualitative insights for exploring nuanced challenges and solutions and quantitative data

for measuring prevalence, impacts, and trends. Designing and Conducting Mixed Methods

Research by Creswell and Clark (2017) offers a comprehensive guide to mixed methods

research. It integrates the latest developments in the field with practical, step-by-step

instructions.

A mixed-methods approach is particularly suited to our study due to the

multifaceted nature of the research problem. Chapter 2 highlighted significant gaps,

including the lack of standardized green metrics for DevSecOps and the limited adoption

of sustainability frameworks in CI/CD pipelines. These gaps point to both methods as

below:

Exploratory Insights: Qualitative methods, like semi-structured interviews, allow

identification of challenges and opportunities for integrating sustainability into

DevSecOps.

Confirmatory Analysis: Quantitative surveys allow measuring the prevalence and

impact of these practices. It validates the themes identified qualitatively and providing

cross-sectional insights across industries.

43

The literature review (Chapter 2) emphasized key frameworks and findings, such

as the need for green metrics tailored to DevSecOps workflows (e.g., Lifecycle Assessment

and Energy Consumption Metrics) and the gaps in integrating sustainability into fast-paced

CI/CD environments. Our research design incorporates these findings by:

Qualitative Interviews: We have designed the interview questions to explore

organizational awareness, barriers, and enablers of sustainability practices, drawing on

frameworks like EnergiBridge and the Sustainability Awareness Framework (SusAF).

Quantitative Surveys: We have structured the survey questions to assess the

adoption and impact of green metrics, guided by identified themes such as cultural

resistance, technical challenges, and tool availability.

Our research design directly addresses the objectives outlined in Chapter 1:

• Investigating the current state of green computing practices in software

development.

• Identifying key sustainability metrics that are relevant to DevSecOps.

• Developing a framework for integrating green metrics into DevSecOps.

• Evaluating the effectiveness of the proposed framework.

• Promoting industry adoption through actionable insights.

Now, let us discuss the flow of our study in detail. As illustrated in Figure 3.1, we

conducted the research in three distinct phases.

Figure 3.1a: Different phases of research

Exploratory Phase

(Qualitative)

Confirmatory Phase

(Quantitative)
Integration Phase

44

We have described the objective, method used, and outcome of each phase in Table

3.1a. The Exploratory Phase (Qualitative) aims to understand perceptions, challenges, and

potential solutions for integrating green metrics into DevSecOps through semi-structured

interviews with stakeholders like CTOs and sustainability officers. We have identified

recurring themes in this phase that will be used later in the survey design. The Confirmatory

Phase (Quantitative) measures sustainability practices' prevalence, challenges, and impacts

using structured surveys distributed across diverse industries. This provides statistically

reliable data to validate qualitative findings and establish benchmarks. Finally, the

Integration Phase synthesizes results from both methods through thematic and statistical

analysis to develop a validated framework for green metrics integration, addressing both

theoretical gaps and practical applications.

Phase Objective Method Outcome

Exploratory

Phase

(Qualitative)

Understand

perceptions,

challenges, and

potential solutions

for integrating green

metrics into

DevSecOps.

Semi-structured

interviews with key

stakeholders, such as

CTOs, DevSecOps

managers, and

sustainability officers.

Identification of recurring

themes and contextual

insights to inform survey

development.

Confirmatory

Phase

(Quantitative)

Measure the

prevalence,

challenges, and

impacts of

sustainability

practices within

DevSecOps

environments.

Structured surveys

distributed to software

professionals across

diverse industries and

organizational sizes.

Statistically reliable data for

validating qualitative

findings and benchmarking

practices.

Integration

Phase

Synthesize

qualitative and

quantitative results

to develop the

proposed green

metrics framework.

Thematic analysis of

interview data and

statistical analysis of

survey responses were

integrated to provide

actionable

A validated framework for

integrating green metrics

into DevSecOps -

addressing both theoretical

and practical dimensions.

45

recommendations.

Table 3.1a: The flow of our research

Our mixed-methods approach offers several key benefits, as illustrated in Figure

3.1b. Complementarity guarantees that qualitative insights enhance the interpretation of

quantitative data, so to provide a holistic understanding of the research problem. We

achieve validation by cross-referencing data from both methods and it strengthens the

study's validity and reliability. On another note, applicability creates a bridge between

academic theory and industry practices; and it enables the proposed framework to be

actionable and grounded in real-world challenges. Finally, Alignment with Gaps pertains

to the dual-method approach to address the gaps that we have identified in the reviewed

literature including the need for comprehensive sustainability metrics and practical

implementation strategies.

Figure 3.1b: Advantages of mixed-method design.

Complementarity

Alignment with Gaps

Applicability

Advantages of Mixed-

Method Design

Validation

46

3.2. Data Collection Methods

We have designed our data collection process to gather insights into integrating

green computing practices into DevSecOps. The process uses qualitative and quantitative

methods to address the research objectives and gaps identified in Chapter 2.

This dual-method approach ensures the data collection process is comprehensive

and aligned with the research objectives. Freundlieb and Teuteberg (2012) emphasize the

importance of incorporating stakeholder-specific criteria in the design of data collection

tools. Now, let us review each of the data collection methods.

3.2.1 Qualitative Data Collection (Semi-Structured Interviews)

Our key objective is to explore perceptions, challenges, and opportunities for

integrating green metrics into DevSecOps frameworks. We have engaged key

stakeholders from diverse roles in software development:

• Chief Technology Officers (CTOs),

• DevSecOps Managers,

• Sustainability Officers, and

• Software Development Team Leads.

As a sampling strategy, we have picked only participants with direct experience in

DevSecOps and sustainability initiatives. It enables us to include participants with

relevant expertise, enhancing the quality of the data collected.

We have organized the semi-structured interviews around the following themes

(refer Appendix A for the interview guide):

• Awareness of environmental impacts in software development.

• Current sustainability practices and their alignment with DevSecOps.

• Technical and cultural challenges in integrating green metrics.

47

• Perceived benefits and barriers to adopting sustainability frameworks.

Table 3.2a describes the data collection process with regard to method, duration,

recording and validation.

Method Interviews conducted virtually via video conferencing tools to accommodate

geographical diversity.

Duration Each interview for approximately 45-60 minutes.

Recording interviews recorded with participant consent - for transcription and analysis.

Validation Pilot interview conducted to refine the questions and ensure their clarity and

relevance.

Table 3.2a: The data collection process

3.2.2 Quantitative Data Collection (Structured Surveys)

We use structured surveys in the second phase to measure prevalence, challenges,

and perceived impacts of ecological sustainability practices in DevSecOps across

industries. We have designed the structured survey using insights from the qualitative

phase to capture quantifiable data on key aspects. It focuses on Adoption (awareness and

integration levels of green metrics), Challenges (technical, organizational, and cultural

barriers), and Impacts (benefits of sustainability practices). The survey uses multiple-

choice questions for categorical data, Likert-scale items to measure perceptions and

attitudes, and open-ended questions for additional qualitative insights. Figure 3.2a

illustrates our approach as described above.

48

Figure 3.2a: The structured survey - the constituents and the quantifiable data to be

captured.

The survey targeted software professionals from small, medium, and large

enterprises in the technology, healthcare, and manufacturing sectors. To ensure a diverse

respondent base, we used a convenience sampling method. To achieve statistical reliability,

we distributed surveys through email and professional networks, with a target sample size

of 100-150 responses. Table 3.2b describes the sampling and distribution.

Target Audience Software professionals from small, medium, and large enterprises in

technology, healthcare, and manufacturing.

Sampling Method Convenience sampling was employed to reach a diverse respondent

base.

Distribution Channels We distributed surveys via email and professional networks.

Target Sample Size 100-150 responses targeted for statistical reliability.

Table 3.2b: Sampling and distribution for the structured surveys

The survey underwent a pilot test with 10 participants to ensure clarity and

reliability. We incorporated feedback from the pilot phase into the final survey design.

Adoption

Levels of awareness and

integration of green metrics.

Multiple-choice

questions

Structured Survey

Challenges

Technical, organizational, and

cultural barriers.

Impacts

 Observed benefits of adopting

sustainability practices.

Likert-scale items

Open-ended questions

Data premise

49

3.2.3 Integration of Qualitative and Quantitative Methods

Integrating qualitative and quantitative methods provides a complementary

approach to data collection. The Qualitative Phase provides input for the structured survey

design by identifying key themes and challenges. Similarly, the Quantitative Phase

validates these findings with broader statistical insights; i.e., qualitative themes like

organizational resistance are quantified to measure their prevalence across industries, and

quantitative data on adoption rates provided context for exploring underlying challenges

qualitatively.

3.2.4 Tools and Technologies Used

We have used various tools and technologies in our study for rigor, efficiency, and

consistency. These tools enable seamless collection, organization, analysis, and

visualization of both qualitative and quantitative data.

Qualitative Data

1. Batoi Insight: For organizing and coding interview transcripts, enabling

efficient thematic coding and pattern identification.

2. Taguette: Supplemented the analysis with an open-source platform for

detailed qualitative data coding.

3. Google Workspace Apps: Utilized for collaboration, transcription review,

and annotation of qualitative insights.

Quantitative Data

1. Microsoft Excel: For initial data cleaning, organization, and also, basic

computation purposes.

50

2. Tableau: For advanced data visualization, helping precise and impactful

representation of quantitative findings.

3. Python Custom Code: For specific statistical computations and tailored data

visualization requirements.

4. Batoi Insight and Google Forms: For the design, distribution, and collection

of survey responses

We have integrated results by synthesizing the findings using Grounded Theory

and Descriptive Statistics. We used the former to derive patterns and insights from

qualitative data. We used the latter to summarize quantitative findings while maintaining

coherence between the two datasets.

3.3 Data Analysis Techniques

Our data analysis process blends qualitative and quantitative methods to examine

the research objectives. We leverage the strengths of both methodologies in this mixed-

methods approach that enables a nuanced understanding of integrating green computing

practices into DevSecOps.

3.3.1 Qualitative Data Analysis

We have used grounded theory to analyze the interview data systematically. This

approach allows for developing theories and insights based on patterns emerging from the

data. We have followed the steps below for the analysis:

• Open Coding: We have done the initial line-by-line coding to identify key

concepts related to sustainability in DevSecOps, such as awareness of

environmental impact and challenges in metric integration.

51

• Axial Coding: We have grouped the related codes into broader categories,

establishing connections and recurring themes, such as organizational

resistance and opportunities for green metrics.

• Selective Coding: We have identified a core category - Strategies for

Integrating Green Metrics in DevSecOps - to serve as the basis for our

theoretical framework.

We have used the tool, Taguette, for tagging and Google Sheets for organizing and

coding the qualitative data efficiently. We have adopted manual validation to ensure the

accuracy and alignment of emerging patterns with the research objectives. The qualitative

analysis provided insights into the following:

• Specific challenges encountered by organizations,

• Opportunities to incorporate sustainability practices into DevSecOps pipelines,

and

• Contextual themes to guide the quantitative analysis phase.

3.3.2 Quantitative Data Analysis

We have used descriptive and inferential statistical methods to analyze survey data

that provides both summary-level insights and identification of relationships between

variables. We have followed the steps below for the analysis:

• Descriptive Statistics: We have calculated the measures of central tendency

(like mean and median) and variability (standard deviation) for key survey

items. We also created data visualizations (e.g., bar charts, pie charts, etc.) to

present our findings.

• Cross-Tabulation Analysis: We have explored the relationships between

demographic factors (e.g., organization size) and sustainability practices. For

52

example, we have cross-tabulated awareness of environmental impact with the

integration of green metrics.

• Inferential Statistics: We have used Chi-Square tests to evaluate associations

between variables, such as organizational size and the extent of green metric

integration. We have also used regression analysis to assess predictors of

successful green metric implementation, such as leadership support and tool

availability.

We have used Python to write custom statistical computations and hypothesis-

testing scripts. We have employed Tableau for data visualization to enhance clarity and

presentation. We have also used Google Sheets to clean and organize the initial data. The

quantitative analysis has provided actionable insights into:

• The prevalence of green computing practices in DevSecOps workflows.

• Statistical relationships between organizational characteristics and

sustainability adoption.

• Factors influencing successful implementation of green metrics.

3.3.3 Integration of Qualitative and Quantitative Results

We have synthesized the results from the qualitative and quantitative analyses and

have provided a holistic understanding of the research problem. The integration helped us

align exploratory insights with statistical validation. We followed the following process:

• Theme Validation: We have validated the themes identified in the qualitative

phase (e.g., organizational resistance) and quantified them using survey data.

• Comparative Analysis: We have compared qualitative findings on challenges

with quantitative measures of their prevalence across industries and

organizational sizes.

53

• Framework Development: We have combined the insights from both methods

to develop the proposed green metrics framework, ensuring it addresses

practical challenges while being grounded in empirical data.

Our integrated analysis produced the following outcomes:

• An understanding of the barriers and enablers of green computing practices in

DevSecOps.

• Actionable recommendations for developing and implementing sustainability

metrics in DevSecOps workflows.

We would like to note that an integrative analysis approach is essential to achive a

thorough understanding, validate the framework, and generate actionable insights. We also

claim that combining the contextual depth of qualitative analysis with the generalizability

of quantitative data guarantees well-rounded findings. It also strengthens the reliability and

applicability of the proposed framework through cross-referencing results from both

methods. Moreover, the dual-method strategy confirms that the final recommendations are

evidence-driven, practical, and relevant to academic and industry contexts. Figure 3.3a

illustrates why this integrative analysis approach has been used.

54

Figure 3.3a: Illustration of why the integrative analysis approach has been employed.

Our chosen data analysis techniques enable a rigorous and comprehensive

examination of the research objectives, thus ensuring that the proposed green metrics

framework is theoretically robust and practically viable.

3.4 Ethical Considerations

Our research adheres to rigorous ethical standards to ensure the integrity of the

study and protect participants' rights and confidentiality. We have applied ethical

considerations throughout the data collection, analysis, and reporting phases and have

adhered to institutional ethical guidelines as illustrated in Figure 3.4a and described in

detail subsequently.

Holistic Understanding

Framework Validation

Actionable Insights

Why Integrative

Analysis

Approach?

55

Figure 3.4a: Various ethical considerations in our research.

3.4.1 Informed Consent

We have provided participants with clear information about the study's objectives,

methodology, and their role in the research. A structured consent process has ensured that

all participants voluntarily agreed to participate. We have provided the following

information:

• The purpose of the study and its potential benefits.

• The voluntary nature of participation, with the right to withdraw at any time

without penalty.

• Assurance of confidentiality and anonymity.

• The use of collected data solely for research purposes.

We have adopted a robust consent mechanism for implementing ethical compliance

and participant agreement across all data collection methods. For interviews, we have

shared written consent forms electronically with participants and have to get those signed

Informed Consent

Adherence to Institutional

Guidelines

Confidentiality and

Anonymity

Ethical

Considerations

Data Security

Cultural and Contextual

Sensitivity

Avoidance of Bias

Participant Well-Being

56

before the commencement of the sessions. In the case of surveys, we have embedded an

explicit consent option within the survey itself, requiring participants to agree to the terms

before providing their responses. It confirmed that all participants are fully informed and

voluntarily agree to contribute to the study.

3.4.2 Confidentiality and Anonymity

We have followed strict confidentiality and anonymity protocols to protect the

privacy of our participants. We also anonymized interview transcripts by removing

identifiable details such as names, organization names, and specific project information.

For surveys, we have collected responses without linking any personal identifiers unless

respondents explicitly provide them for follow-up. For European participants, we have

securely stored digital recordings and transcripts in a secure cloud environment like Google

Cloud that complies with data privacy regulations, like GDPR.

3.4.3 Data Security

We have followed strict data security protocols to prevent unauthorized access

during our study. We have stored all digital files in a secured cloud environment like

Google Cloud, to protect against data loss. As mentioned above, we have destroyed all

physical notes and printed materials so that no sensitive information remains scattered and

unsecured.

3.4.4 Avoidance of Bias

We have designed the study to minimize bias and ensure the objectivity of findings.

In the interview process, we have followed a semi-structured interview guide to reduce

interviewer bias while allowing for participant-driven discussions, conducting interviews

57

neutrally, and avoiding leading questions. For the survey design, we have structured our

questions carefully to prevent bias, providing balanced response options. We have done a

pilot testing to identify and address potential biases in the survey instrument. During data

analysis, we have used transparent coding and statistical methods to arrive at an unbiased

interpretation of the data.

3.4.5 Adherence to Institutional Guidelines

We have performed research in compliance with the ethical guidelines of the Swiss

School of Business and Management (SSBM) Geneva. We have obtained ethical approval

from the participants before data collection, confirming adherence to the institutional

standards.

3.4.6 Cultural and Contextual Sensitivity

Due to the diverse backgrounds of participants, we have prioritized cultural and

contextual considerations. We have used neutral language in interviews and surveys to

avoid any cultural bias. We also acknowledge variations in organizational contexts so that

our recommendations remain relevant across different industries and geographies.

3.4.7 Participant Well-Being

We have considered the well-being of our participants during the study. We have

made every effort to minimize any inconvenience during participation. Participation has

been entirely voluntary, with no pressure or coercion. We also offer follow-up support to

participants for a chance to withdraw their contributions.

58

3.5 Limitations of the Study

We recognize the limitations of this study to contextualize the findings and identify

areas for future research. In fact, these limitations pertain to a sample size of data,

methodological constraints, and the evolving nature of the research domain. We present

the list below:

Sample Size and Representation: For depth and relevance in the qualitative phase,

we chose semi-structured interviews with a purposive sample of stakeholders. However,

the limited number of interviews may not fully capture the diversity of practices and

challenges across all industries and regions. We also aimed for 100-150 survey respondents

for the quantitative phase to ensure statistical reliability. Despite this, the convenience

sampling method may introduce bias, thereby may limit the generalizability of the results

to a broader population.

Self-Reporting Bias: We have relied on self-reported data for both interviews and

surveys, which may be subject to inaccuracies or biases. Participants might overstate their

organization's commitment to sustainability or underestimate challenges due to social

desirability or personal perspectives.

Evolving Nature of DevSecOps and Green Computing: We recognize that

DevSecOps and green computing are rapidly changing fields, with new tools,

methodologies, and frameworks emerging regularly. As a result, some findings may

become outdated as technologies advance. Integrating sustainability metrics into

DevSecOps is still in its early stages, with limited availability of case studies or practical

implementations to analyze.

Limited Scope of Metrics: We focus primarily on key sustainability metrics such

as energy consumption, carbon footprint, and lifecycle assessment. While these metrics

59

provide a solid foundation, we may not fully address other environmental or social

dimensions of sustainability, such as electronic waste and social responsibility.

Contextual and Regional Variations: We have considered diverse industries and

geographies; however, cultural and organizational differences may impact the applicability

of our findings. It may also happen that practices in one region or sector may not align with

those in another, limiting the universal applicability of the proposed framework.

Time Constraints: We recognize that the study’s timeframe has constrained our

ability to conduct longitudinal analyses or extensive pilot testing of the proposed

framework. It limits the ability to assess the long-term impact of integrating sustainability

metrics into DevSecOps workflows.

Technology Adoption Challenges: We acknowledge that organizations may face

technological, financial, or operational barriers to adopting the proposed framework. These

challenges could limit the practical implementation of findings in resource-constrained

settings.

Before proceeding to the next chapter with results of our study, we would like to

note that these limitations do not diminish this study's significance in addressing a critical

gap at the intersection of sustainability and DevSecOps, though they may affect the breadth

and generalizability of the findings. In fact, they emphasize the need for further research

and iterative refinement of the proposed framework, paving the way for more robust and

comprehensive studies in the future.

60

CHAPTER IV:

RESULTS

4.1 Introduction

We build on the foundations laid in our previous chapters, and present the findings

of the study in this chapter; our focus is on qualitative and quantitative insights from

research participants, benchmarking against industry practices, and real-world case studies.

Our goal is to objectively report findings without interpretation, leaving discussions and

analysis for the next chapter.

Key areas covered in this chapter include:

• Findings from Research: A synthesis of interview and survey results

highlighting adoption levels, challenges, and opportunities for environmental

sustainability integration in DevSecOps workflows.

• Benchmarking and Evaluation: Comparison of our research results with

industry standards and best practices.

• Case Studies: Examination of real-world implementations of sustainability

frameworks in DevSecOps environments, capturing measurable impacts and

lessons learned.

These findings provide an empirical foundation for Chapter 5, where the Green

Metrics Framework and Risk-Maturity Assessment Framework will be introduced and

analyzed. While this chapter presents raw data and case study observations, the discussion

on their significance and implications follows in the next chapter.

4.2 Findings from Research

Our study focuses on data collection through interviews and surveys. 62

professionals have participated in interviews. To maintain high analytical quality and avoid

61

saturation of similar information, we have selected 45 of those interview transcripts for

detailed coding and analysis. The survey has received 150 responses, thus provides a robust

quantitative basis for analysis. In fact, researchers emphasize the importance of an adequate

sample size for statistical reliability in mixed method studies. Creswell and Plano Clark

(2017) opine that robust quantitative phases like surveys are needed to validate qualitative

insights. It basically points to the fact that we must go for a sufficiently large respondent

pool. Arguing in the same line, the practitioner survey by Bambazek, Groher and Seyff

(2022) indicates that targeting around 100-150 responses is a sound approach for

meaningful and generalizable data.

The respondents are demographically diverse in terms of professional role, industry

sector, and experience. All participants are above 35 years of age – from mid-career to

senior professionals. Approximately 40% of respondents are in the 35-45 age range, around

35% are between 46-55, and the remaining 25% are over 55 years old. The sample skews

towards leadership and management positions. Among them, 26% are Chief Technology

Officers (CTOs), 22% are DevSecOps managers and Chief Information Officers (CIOs)

each, and the remaining are sustainability officers, senior developers, and other IT

managers.

Let us present the qualitative and quantitative results, with a focus on the

sustainability integration in DevSecOps workflows. The findings highlight awareness

levels, adoption challenges, and opportunities for improvement, forming the basis for

benchmarking and case study analysis in subsequent sections.

4.2.1 Qualitative Insights

We analyze the results of qualitative interviews conducted with key stakeholders

in software development, including CTOs, DevSecOps managers, and sustainability

62

officers. The interviews explore awareness, challenges, and opportunities for integrating

green computing practices into DevSecOps workflows. The analysis uses Grounded

Theory to identify recurring themes and concepts.

The coding process involves three stages: open coding, axial coding, and

selective coding, as listed in Table 4.2a and described in detail subsequently.

Level of Coding Category/ Concept Summary of Findings

Open Coding Awareness of Environmental Impact: The

level of recognition companies have

regarding the environmental impact of

their software development and

operations.

20% of companies are not

aware of the need for green

computing.

Open Coding Integration of Green Practices: The extent

to which companies incorporate

sustainability practices into their software

development processes.

70% do not use green

computing in their practices.

Open Coding Attempted Integration: Efforts to include

green practices in their operations, even if

they are not fully integrated or

standardized.

30% try to incorporate green

practices (including the

discussed five).

Open Coding Lack of Integrated Approach in

DevSecOps: There is an absence of a

systematic, integrated approach to

embedding sustainability metrics within

DevSecOps frameworks.

No companies reported a

fully integrated approach in

DevSecOps

Open Coding Challenges to Integration: Obstacles

companies face in integrating

environmental sustainability metrics into

their software development practices.

Lack of standardized

metrics, tools, and cultural

resistance.

Open Coding Benefits and Impact of Green Integration:

Positive outcomes and potential impacts

of incorporating sustainability into

software development, as perceived by

companies.

Reduced environmental

impact, efficiency, and

sustainability alignment.

Axial Coding Environmental Awareness and Industry Gap between awareness and

63

Response: Connects the varying levels of

environmental awareness to the actions (or

lack thereof) taken by the industry to

integrate green computing practices.

action in adopting green

computing.

Axial Coding Integration Challenges and Opportunities:

Challenges in integrating green practices

and the opportunities that could arise from

overcoming these obstacles, such as

developing new tools and realizing

benefits from green integration.

Challenges include lack of

tools; opportunities include

potential impact.

Axial Coding Role of DevSecOps in Green Computing:
Examines the lack of green computing

integration within DevSecOps and its

potential role as a leverage point for

promoting sustainability in software

development.

Critical development area

for integrating sustainability.

Selective Coding Strategies for Bridging the Green

Computing Integration Gap in Software
Development: The core category that

emerged focuses on the need for

comprehensive strategies to promote the

integration of green computing practices

in software development, particularly

through standardized metrics, cultural

shifts, and leveraging DevSecOps.

Developing standardized

metrics, fostering

organizational cultural shifts.

Table 4.2a: Synthesis of the coding process in Grounded Theory, showing how particular

concepts are categorized and then connected to form a cohesive theory.

Open Coding: Key concepts are identified from the interview transcripts, such as

awareness of environmental impact, integration of green practices, and challenges to

adoption. Examples of findings are:

• 20% of companies display limited awareness of the environmental impact of

software operations.

• 30% report attempts to integrate green practices, though these efforts were not

standardized.

64

Axial Coding: The related codes are grouped into broader categories, and

connections between themes are established. The key categories are Environmental

Awareness and Industry Response (highlight the gap between awareness and action), and

Integration Challenges and Opportunities (explore barriers like the lack of standardized

tools and the potential for impactful benefits).

Selective Coding: A core theme, Strategies for Bridging the Green Computing

Integration Gap in Software Development, emerges that underscores the need for

standardized metrics, use of DevSecOps, and cultural shifts to boost ecological

sustainability.

The integration of green computing practices into DevSecOps workflows reveals

three critical themes, as illustrated in Figure 4.2a.

Figure 4.2a: Critical themes for the integration of green computing practices into

DevSecOps workflows.

First, an Awareness and Action Gap exists, where companies acknowledge the

importance of green computing but have taken limited steps to implement measurable

practices. Second, Challenges in Integration are prominent, with cultural resistance, lack

Awareness and Action Gap

Opportunities for Improvement

Challenges in Integration

Critical

themes

65

of tools, and the absence of standardized metrics cited as significant barriers. Despite the

challenges, there are Opportunities for Improvement, as stakeholders increasingly view

green computing as a pathway to achieving greater operational efficiency and aligning with

corporate social responsibility goals.

These themes emphasize the need for structured frameworks and plans to bridge

the gaps and capitalize on the opportunities offered by sustainable practices. Our qualitative

analysis reveals that while organizations acknowledge the value of green computing, few

have successfully embedded it within DevSecOps. The insights highlight the need for:

• Developing standardized green metrics tailored for DevSecOps workflows.

• Addressing cultural resistance through training and leadership initiatives.

• Building tools and frameworks that simplify the integration of green practices.

4.2.2 Quantitative Insights

Let us now present the results of a quantitative survey conducted among industry

professionals, and assess the adoption of green metrics in DevSecOps workflows. The

analysis highlights trends, challenges, and opportunities for improving sustainability

practices in software development.

The survey targets professionals from various sectors, including technology,

manufacturing, and finance, with roles such as CTOs, DevSecOps managers, and

sustainability officers. The participants represent organizations of varying sizes, with small

(1–50 employees) and large (1000+ employees) organizations, each accounting for

33.33%, while medium-sized organizations (51–1000 employees) made up the rest. This is

clearly apparent from the visualization of data in Figure 4.2b.

66

Figure 4.2b: Size Distribution of Organizations

Retail and manufacturing dominate industry representation at 22.22% each, with

smaller contributions from technology, healthcare, and finance, as illustrated in Figure

4.2c.

Figure 4.2c: Industry Sector Distribution

Respondent roles include 25.93% CTOs and 22.22% each for DevSecOps

managers and CIOs, as seen in Figure 4.2d.

67

Figure 4.2d: Role Distribution of Respondents

Sustainability is increasingly recognized as a significant consideration in software

development, and the respondents provide the ratings on a scale of 1 to 5. We find the

following insights:

• Mean Rating: 3.37

• Standard Deviation: 1.33

The responses varied from moderately important to extremely important, showing

broad recognition of sustainability’s relevance in the field.

The survey explored how organizations currently integrate sustainability into their

software development workflows. The findings indicate varied levels of adoption, as in

Table 4.2b below.

Practice Percentage

Actively incorporate sustainability practices 37.04%

Partial or ad hoc integration of green metrics 44.44%

No structured integration into DevSecOps 55.56%

68

Table 4.2b: The levels of adoption of sustainability into software processes in

organizations.

We find a significant number of organizations lacking structured approaches; this

highlights the need for more consistent practices across the industry. The survey identifies

the most common challenges:

• Lack of tools: Mentioned 17 times.

• Organizational resistance: Mentioned 15 times.

• Cost implications and technical difficulties were also noted as essential barriers.

The above observation is clearly illustrated with the data visualization, as in Figure

4.2e below.

Figure 4.2e: Challenges in Integrating Green Metrics

Respondents suggest the following resources to help overcome these challenges:

69

• Financial incentives.

• Leadership buy-in.

• External consultancy.

We discover that financial incentives are the most cited (23 mentions), followed by

leadership buy-in (20 mentions) and external consultancy (19 mentions), as shown in the

graph in Figure 4.2f.

Figure 4.2f: Resources Needed to Overcome Challenges

These results clearly establish the importance of organizational and financial

support to foster adoption. We also have some major outcomes arising from the survey.

Adopting green metrics in software development has shown tangible benefits.

These results demonstrate that green computing practices improve operational

efficiency and reduce costs; it makes a strong case for broader adoption - as illustrated by

the graph in Figure 4.2g.

70

Figure 4.2g: Observed Impacts from Green Metrics Integration

4.2.3 Combined Inferences

Based on findings from our qualitative and quantitative studies, several key insights

emerge, as illustrated in Figure 4.2h (compare Figure 4.2a for better clarity).

There is Moderate to High Awareness, as organizations widely recognize the

importance of green computing. However, we find that the structured implementation of

sustainability practices remains limited. Also, Key Barriers to Integration persist, with the

lack of standardized tools, cultural resistance, and financial constraints acting as constant

obstacles across industry verticals.

Despite these challenges, we see significant Opportunities for Improvement, with

organizations adopting green metrics report measurable benefits, energy savings, and

enhanced operational efficiency. We also find that the cross-functional collaboration and

knowledge sharing are identified as critical enablers for overcoming these barriers and

boosting successful sustainability integration.

71

Figure 4.2h: Combined inferences from our qualitative and quantitative studies.

4.3 Benchmarking and Evaluation

This section evaluates our research results vis à vis industry benchmarks and best

practices. We analyze how organizations approach sustainability in DevSecOps, and our

benchmarking process highlights gaps, strengths, and opportunities for improving

sustainability integration.

4.3.1 Benchmarking Methodology

The benchmarking process involved data collection, comparison framework, and

industry benchmarks, as illustrated in Figure 4.3a.

Moderate to High Awareness

Opportunities for Improvement

Key Barriers to Integration

Critical themes

72

Figure 4.3a: Illustration for the benchmarking process in our study

First, we have reviewed survey and interview results from participating

organizations, especially focusing on their adoption of green metrics and sustainability

practices - the Data Collection. Then, using the proposed Green Metrics Framework as a

reference (Comparison Framework), we have evaluated organizations on:

• Adoption of green metrics.

• Integration into DevSecOps workflows.

• Achievements in energy efficiency, carbon reduction, and resource

optimization.

Third, we have compared results to those of industry leaders and best practices for

environmental sustainability (Industry Benchmarks). Let us discuss each aspect one by one

below:

Energy Efficiency Deployment Index: We have recorded the deployment

frequency and energy consumption data over the past year. According to the Uptime

Institute’s data center survey, efficient data centers aim for a PUE (Power Usage

Effectiveness) of 1.5 or lower. The Uptime Institute provides annual surveys and

Benchmarking

Process

Data Collection Comparison Framework Industry Benchmarks

73

benchmarks for data center performance and efficiency. Their Global Data Center Survey

is one of the most comprehensive studies in the industry, highlighting the experiences and

strategies of data center operators in areas such as resiliency, sustainability, efficiency, and

more. We can find more details and access their reports on their official website,

https://uptimeinstitute.com.

Our historical data shows an index of 0.01 deployments/kWh, and industry leaders

achieve 0.02 deployments/kWh. Thus, we set a target to improve your index by 20-50%.

Carbon Impact Recovery Index: We have analyzed past incidents, MTTR, and

carbon footprint data. The Carbon Trust provides guidelines on reducing CO2 emissions

by 5-10% annually and case studies on reducing carbon footprints. Their resources provide

valuable insights into carbon management and strategies for improving sustainability. To

get more information, visit the Carbon Trust website at https://www.carbontrust.com.

As our index is 0.00089 hours/kg CO2e, and best practices suggest reducing

recovery time by 10%, we aim for an index improvement of 0.0008 hours/kg CO2e within

the next year.

Resource Optimization Efficiency Index: We have reviewed server utilization

and automated test coverage data over the past year. Leading organizations maintain server

utilization rates above 70% and test coverage above 90%. DORA publishes annual reports

on DevOps practices and performance metrics. These reports are well-regarded for

providing insights into software delivery performance and helping organizations improve

their DevOps practices. For more information, visit the DORA website: https://dora.dev.

Our current test coverage is 80%, and server utilization is 60%. We aim to increase

test coverage to 90% and server utilization to 70%, resulting in an index of 1.29.

Average Energy Consumption per Deployment: We gathered data on energy

consumption per deployment over the past year. The Green Grid recommends reducing

https://uptimeinstitute.com/
https://www.carbontrust.com/
https://dora.dev/

74

energy consumption by 10% annually. Their website, https://www.thegreengrid.org, has

more information.

As our average consumption is 75 kWh/deployment, set a target to reduce this to

67.5 kWh/deployment (10% reduction).

E-Waste Efficiency Index: We analyzed e-waste reduction efforts and server

utilization over the past year. The EPA suggests aiming for an annual 25% increase in e-

waste recycling rates. The EPA (Environmental Protection Agency) provides standards and

recommendations for e-waste management and recycling, among other environmental

guidelines. Their resources are essential for understanding and implementing best practices

in environmental protection. We can find detailed information on the EPA website:

https://www.epa.gov.

As our e-waste reduction rate is 80% and server utilization is 60%, we aim to

increase the reduction rate to 85% while maintaining or improving server utilization,

resulting in an index of 1.42.

4.3.2 Industry Performance vs. Research Findings

To assess the sustainability maturity of surveyed organizations, we have compared

key environmental performance indicators against industry benchmarks. The

benchmarking analysis evaluates the extent to which sustainability practices have been

integrated into DevSecOps workflows.

The benchmarking exercise involved measuring organizations across five key

sustainability parameters: energy efficiency, carbon footprint tracking, server utilization,

e-waste management, and software deployment efficiency. Table 4.3a provides a direct

comparison between industry leaders and the surveyed organizations.

https://www.thegreengrid.org/
https://www.thegreengrid.org/
https://www.epa.gov/

75

Category Industry Leaders Surveyed Organizations

Energy Efficiency in

Deployments

High (0.02 deployments/kWh) Moderate (0.01

deployments/kWh)

Carbon Footprint Reduction Best practices reduce emissions

by 10% annually

Few organizations track carbon

footprint systematically

Server Utilization and

Optimization

70%+ utilization with proactive

scaling

60% average utilization with

little optimization

E-Waste Management and

Recycling

25%+ increase in recycling

rates yearly

Most organizations lack formal

e-waste policies

Table 4.3a: The benchmarking analysis compared industry leaders in sustainability with

the findings from our research.

The results indicate that while awareness of sustainability practices is growing, the

adoption of structured sustainability metrics remains inconsistent across organizations. Our

results and their comparison with standard numbers lead us to make the following key

observations:

• Energy Efficiency Gap: Industry leaders achieve up to 50% better deployment

efficiency than the surveyed organizations.

• Carbon Footprint Tracking: Only a tiny set of organizations monitor CO₂

emissions, whereas leading firms set annual reduction targets.

• Resource Utilization: Many organizations fail to optimize server usage and

automated testing. It contributes to unnecessary energy consumption.

• E-Waste Management: Industry best practices emphasize recycling and

lifecycle management of hardware, which is largely absent in surveyed firms.

Figure 4.3b illustrates the differences in performance between surveyed

organizations and industry leaders across key sustainability metrics.

76

Figure 4.3b: Comparison of environmental efficiency metrics.

Additionally, the Progress Tracking Dashboard in Table 4.3b provides key

performance indicators (KPIs); these quantify the current status and targets for

sustainability improvements.

Metric Current Target Progress

PUE (Power Usage Effectiveness) 1.8 1.5 83%

Deployments/kWh 0.01 0.02 50%

Server Utilization 60% 70% 86%

E-waste Recycling 80% 85% 94%

Table 4.3b: Key Performance Indicators (KPI) Dashboard

77

4.3.3 Key Insights from Benchmarking

Lack of Standardization: While industry leaders follow structured sustainability

frameworks, most other organizations lack formal guidelines for DevSecOps

sustainability.

Technology and Tooling Gaps: Automation tools for monitoring green metrics exist

but are not widely adopted. It leads to inefficiencies in measuring energy consumption and

tracking emissions.

Opportunities for Improvement: Organizations which have integrated

environmental sustainability into DevSecOps workflows register better cost efficiency and

performance. It demonstrates the benefits of adopting structured green computing

frameworks.

4.3.4 Summary of Benchmarking Insights

The benchmarking analysis highlights the need for structured frameworks to bridge

the sustainability gap in DevSecOps. The next section presents real-world case studies

demonstrating the impact of integrating sustainability metrics into software workflows.

• Organizations lag behind industry best practices in tracking and optimizing

sustainability metrics.

• Energy efficiency and carbon footprint management remain underdeveloped

areas in DevSecOps workflows.

• E-waste policies and resource optimization strategies are not yet priorities in

most organizations.

78

4.4 Case Study: Implementation of Green Metrics in DevSecOps

We present a real-world case study, which demonstrates the implementation of

environmental sustainability in DevSecOps workflows. Our study highlights the practical

impact of integrating green metrics, and concentrates on energy efficiency, resource

utilization, and operational improvements.

4.4.1 Case Study Overview

Our case study examines a software development company implementing green

computing principles within its DevSecOps workflows. The company had an established

CI/CD pipeline but had not systematically integrated sustainability tracking before this

initiative. The implementation focused on:

• Integrating Green Metrics into CI/CD workflows to track energy efficiency.

• Optimizing server utilization to minimize resource waste.

• Monitoring carbon footprint reduction in deployment activities.

We have measured the following key metrics:

• Energy Efficiency Deployment Index (EEDI)

• Carbon Impact Recovery Index (CIRI)

• Server Utilization Efficiency Index (SUEI)

4.4.2 Implementation of Green Metrics Framework

The integration of green metrics into DevSecOps processes requires a structured

and phased approach for effective adoption without disrupting ongoing software

development and deployment processes. The implementation process focused on

systematically embedding sustainability tracking across CI/CD pipelines, infrastructure

management, and operational workflows.

79

We have devised a four-phase roadmap to achieve the desired sustainability goals

so that each stage is built upon the previous one. Table 4.4a outlines the sequential

implementation timeline.

Phase Activity Timeline

Phase 1: Baseline

Assessment

Energy consumption tracking setup Month 1

Phase 2: Infrastructure

Optimization

Server utilization monitoring Months 2-3

Auto-scaling implementation

Phase 3: Carbon Footprint

Tracking

CO2 emissions monitoring integration Months 4-5

Phase 4: Performance

Analysis

Results measurement and reporting Month 6

Table 4.4a: Green Metrics Implementation Roadmap.

Each of these phases play a critical role in gradually refining the sustainability

framework and delivering measurable efficiency improvements.

Phase 1: Baseline Assessment - A monitoring system is set up to understand

existing inefficiencies in energy usage and carbon footprint tracking. A detailed energy

audit is conducted to evaluate power consumption at different stages of software

development and deployment. It reveals key bottlenecks, such as:

• Over-provisioned infrastructure, leading to excess power consumption.

• Lack of real-time tracking tools, preventing immediate identification of

sustainability gaps.

To address these challenges, automated tracking mechanisms is deployed to

monitor power consumption across DevSecOps workflows, server infrastructure cooling

80

efficiency and resource wastage, and baseline energy usage per software deployment cycle.

It provides quantifiable benchmarks against which future improvements could be

measured.

Phase 2: Infrastructure Optimization - Following the baseline assessment, the

second phase prioritizes optimizing infrastructure utilization to reduce unnecessary energy

consumption. This phase introduces:

• Automated server utilization monitoring to assess idle resource percentages.

• Auto-scaling strategies to dynamically allocate computing resources based on

real-time workload demands.

• Software optimization techniques that minimized processing power

requirements.

• There is a significant reductions in power wastage is achieved with these

optimizations.

Phase 3: Carbon Footprint Tracking - Once infrastructure optimizations have

been in place, carbon footprint tracking is embedded into continuous integration and

deployment (CI/CD) pipelines.

Key actions in this phase include measuring CO₂ emissions per deployment and

tracking reductions over time, incorporating green metrics dashboards into DevOps

monitoring tools, and generating sustainability compliance reports to track ongoing

improvements. Developers become more aware of the environmental impact of their

workflows due to the integration of carbon footprint tracking at the code deployment level.

Phase 4: Performance Analysis - In the final phase, the effectiveness of the green

metrics framework is systematically evaluated. Key performance indicators (KPIs) is

assessed to measure changes in energy efficiency per deployment, reductions in server idle

times and resource wastage, and improvement in CO₂ emissions tracking and reporting. A

81

post-implementation audit is conducted, which shows that the organization achieved 15%

reduction in energy consumption per deployment, 20% increase in server utilization

efficiency, and 12% reduction in overall carbon footprint.

4.4.3 Quantitative Impact of Implementation

The successful integration of green metrics in DevSecOps workflows has resulted

in measurable improvements across key sustainability parameters. We present a data-

driven analysis of the impact achieved through optimized energy efficiency, infrastructure

utilization, and carbon footprint reduction.

To assess the effectiveness of the implemented framework, the following three core

sustainability metrics were analyzed before and after implementation:

• Energy Efficiency Deployment Index (EEDI): Measures energy

consumption per software deployment.

• Server Utilization Efficiency Index (SUEI): Evaluates resource

optimization by tracking server workload distribution.

• Carbon Impact Recovery Index (CIRI): Assesses reduction in carbon

emissions per deployment.

The quantitative impact of these improvements is presented in Table 4.4b, which

compares pre-implementation and post-implementation data.

Metric Before Implementation After Implementation

Energy Consumption per

Deployment

75 kWh 63.5 kWh (↓15%)

Server Utilization Efficiency 60% 72% (↑20%)

Carbon Footprint per

Deployment

1500 kg CO₂e 1320 kg CO₂e (↓12%)

Table 4.4b: Quantitative Impact of Green Metrics Implementation.

82

Our results indicate significant efficiency gains. Figure 4.4b visually illustrates the

improvements observed in performance after integrating sustainability metrics into

DevSecOps workflows.

Figure 4.4b: The impact of green metrics implementation, showing changes in server

utilization and carbon footprint.

4.4.4 Key Learnings from the Case Study

The implementation of green metrics in DevSecOps pipelines results in the

following key outcomes:

• Operational Efficiency Gains: 15% reduction in energy consumption, and

20% increase in server utilization.

83

• Environmental Benefits: 12% reduction in carbon footprint per deployment,

showcasing the potential of sustainability-focused DevSecOps.

• Automation and Scalability: Real-time monitoring of green metrics

streamlined sustainability tracking and enabled data-driven decision-making.

Challenges Overcome:

• Initial cultural resistance was addressed through leadership engagement and

training.

• Integrating sustainability metrics into DevSecOps workflows leads to

quantified energy involvement in the process.

4.4.5 Summary of Case Study Findings

This case study provides empirical validation of the benefits of integrating

sustainability metrics into DevSecOps workflows. The next chapter discusses structured

frameworks - Green Metrics Framework and Risk-Maturity Assessment Framework - that

organizations can adopt to scale sustainability integration effectively.

4.5 Summary of Findings

This section summarizes the key results from our research, benchmarking, and case

study analysis, highlighting the current state of environmental sustainability in DevSecOps

workflows, the challenges organizations face, and the opportunities for improvement.

These findings provide the empirical foundation for the structured frameworks discussed

in Chapter 5.

4.5.1 Key Takeaways from Research Findings

84

Awareness and Adoption of Sustainability Practices

• Organizations widely acknowledge the importance of green computing but

struggle with implementation.

• Only 37.04% of organizations have structured sustainability initiatives in

DevSecOps workflows.

• 55.56% of organizations have no structured sustainability tracking in place.

Challenges in Green Metrics Integration

• Lack of Standardized Tools: 70% of organizations lack appropriate tools to

track sustainability in CI/CD workflows.

• Cultural Resistance: Many organizations prioritize speed and performance,

give lower priority to sustainability.

• Financial Constraints: Over 40% of respondents cited cost as a key barrier

to adopting sustainability practices.

Benchmarking Insights

• The research confirms a significant gap between industry sustainability

benchmarks and DevSecOps practices in most organizations, as described

in Table 4.3a.

4.5.2 Case Study Insights: The Impact of Green Metrics Integration

The case study implementation demonstrates the measurable benefits of integrating

sustainability metrics into DevSecOps workflows, as detailed in Table 4.5a. We find that

the adoption of structured sustainability tracking results in measurable efficiency

improvements, reducing energy consumption and optimizing infrastructure utilization.

Metric Before Implementation After Implementation

85

Energy Consumption per Deployment 75 kWh 63.5 kWh (↓15%)

Server Utilization Efficiency 60% 72% (↑20%)

Carbon Footprint per Deployment 1500 kg CO₂e 1320 kg CO₂e (↓12%)

Table 4.5a: The impact of green metrics integration in the case study.

4.5.3 Opportunities for Improvement

The research findings highlight several areas where organizations can enhance

sustainability integration within DevSecOps. These opportunities span energy efficiency,

standardization of green metrics, and fostering a culture of sustainability through

leadership engagement:

Energy Efficiency and Carbon Reduction

• Organizations that track sustainability metrics see tangible benefits like

reduced energy costs and lower carbon emissions.

• Automation and AI-driven tracking can significantly improve sustainability

adoption.

Tooling and Standardization

• Standardized green metrics would facilitate easier integration into

DevSecOps pipelines.

• Organizations need better tools for real-time tracking of sustainability data.

Leadership and Cultural Adoption

• Companies with leadership buy-in and structured sustainability goals

achieve faster adoption.

• Cross-functional collaboration between developers, operations, and

sustainability teams is key to success.

86

A structured summary of critical success factors for Green DevSecOps is presented in

Table 4.5b.

Leadership Technology Process

Executive sponsorship Automated monitoring Standardized metrics

Cultural alignment Real-time tracking Integration with CI/CD

pipeline

Resource commitment AI-driven optimization Regular benchmarking

Table 4.5b: Key Findings Matrix.

Figure 4.5a shows the Sustainability Impact Assessment chart obtained through

data. It displays the relationship between ROI and implementation difficulty for different

green initiatives.

Figure 4.5a: Sustainability Impact Assessment chart.

87

4.5.4 Conclusion

While these findings provide valuable insights, organizations require structured

approaches to address these challenges. We introduce the Green Metrics Framework and

Risk-Maturity Assessment Framework in the next chapter offering a structured pathway

for sustainability integration in DevSecOps.

88

CHAPTER V:

DISCUSSION

5.1 Introduction

The results in Chapter 4 describe the current state of green computing adoption in

DevSecOps and highlight key challenges and opportunities and how organizations

recognize the importance of green computing. However, the results underscore that

structured implementation remains limited due to a lack of standardized metrics, financial

constraints, and cultural resistance. Benchmarking results demonstrate that industry leaders

achieve higher energy efficiency, improved carbon footprint management, and better

resource utilization. On the other hand, most surveyed organizations lack systematic

sustainability tracking.

This chapter addresses the challenges and introduces structured frameworks that

provide a scalable approach to integrating sustainability into DevSecOps. The Green

Metrics Framework (GMF) describes a standardized methodology for measuring and

optimizing sustainability performance. The second framework, the Risk-Maturity

Assessment Framework (RMAF), evaluates organizational readiness and offers a

structured path for continuous improvement. Our discussion explores the following key

areas:

• Understanding why organizations struggle with sustainability tracking.

• Establishing a framework to measure and integrate green computing in

DevSecOps.

• Connecting sustainability initiatives with measurable business and

environmental outcomes.

• Assessing the maturity of organizations in adopting sustainability practices.

89

• Analyzing the effectiveness of sustainability frameworks based on real-

world implementation.

• Positioning this study within the broader scope of green computing and

DevSecOps research.

• Identifying gaps present and areas for further exploration.

5.2. The Need for Structured Green Metrics

The results indicate that adoption remains fragmented and inconsistent. At the same

time, organizations recognize the importance of environmental sustainability, and this is

due to key challenges like the lack of standardized metrics, the absence of automated

tracking, and operational resistance (Refer Figure 5.1a).

Figure 5.1a: The key challenges while integrating green computing practices into

DevSecOps workflows.

Organizations find it difficult to quantify sustainability impact without standardized

metrics. Moreover, available DevSecOps tools do not have capabilities like real-time

Lack of Standardized Metrics Absence of Automated

Tracking

Operational Resistance

The Key

Challenges

90

monitoring for energy efficiency, carbon emissions, or resource optimization. It limits

visibility into sustainability performance. On the other hand, operational teams prioritize

speed, security, and cost-efficiency; they treat sustainability as a secondary concern and

not an integral part of the software process.

We address these challenges by introducing quantifiable environmental

sustainability indicators in the Green Metrics Framework (GMF); these can be seamlessly

integrated into CI/CD pipelines, embedding green computing tracking within DevSecOps

workflows.

5.3 The Green Metrics Framework (GMF)

Our proposed framework comes with a structured methodology for measuring

environmental sustainability and incorporates key performance indicators (KPIs). It helps

align with ecological goals and optimize energy efficiency for organizations. Table 5.3a

describes the sustainability challenges in DevSecOps and the corresponding solutions

provided by the GMF.

Challenge Existing Issue Solution Provided by GMF

Lack of Standardized

Metrics

No established benchmarks

for measuring software-

related sustainability

Defines energy efficiency, carbon

footprint, and resource utilization

metrics specific to DevSecOps

Absence of Automated

Tracking

No integration of

sustainability monitoring in

CI/CD pipelines

Embeds automated tracking tools

within DevOps workflows

Operational Resistance

and Cost

Organizations prioritize

security and speed over

sustainability

Aligns sustainability goals with

DevSecOps agility and security

Table 5.3a: The sustainability challenges in DevSecOps and solutions with the GMF.

91

The framework is built on four core components that would define, track and

benchmark sustainability efforts by an organization using DevSecOps workflows:

• Core Green Metrics: The GMF prescribes a set of quantifiable indicators for

measuring sustainability in DevSecOps (to be discussed in the next section).

• Integration with CI/CD Pipelines: Integration of green metrics into CI/CD

pipelines ensures real-time monitoring of sustainability efforts. In fact, studies

have established that integrating sustainability tracking into DevSecOps

reduces energy consumption by up to 40% (Gmach et al., 2012).

• Automated Monitoring and Feedback Loops: The framework emphasizes

automation by utilizing machine learning models and AI-driven analytics. By

integrating green metrics powered monitoring tools with DevSecOps

dashboards, it enables us making data-driven sustainability decisions.

• Benchmarking and Continuous Improvement: The framework recommends

assessing and benchmarking the sustainability performance. This iterative

approach also aligns with existing DevSecOps.

5.4 Core Green Metrics

Literature on green computing consistently points to energy, carbon, and resource

utilization as critical metrics. Li and Zhou (2011) argue that extending DevOps metrics to

include environmental dimensions like energy consumption per deployment and carbon

footprint, is an essential step forward. Bozzelli, Gu and Lago (2019) identify dozens of

green software metrics with a major focus on energy efficiency. Similarly, Debbarma and

Chandrasekaran (2016) emphasize energy efficiency and reduced environmental impact as

key measures of sustainable software. These works support the choice of our three core

92

Green Metrics after doing a mapping between the available metrics (refer to Appendix - D:

Existing Metrics and Mapping Metrics to Goals):

Energy Efficiency Deployment Index (EEDI): We define the Energy Efficiency

Deployment Index (EEDI) as our first metric. It measures energy consumption relative to

deployment frequency, and can be presented in a formula as below:

𝐸𝐸𝐷𝐼 =
𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ)

For example, the EEDI is 0.0133 deployments per kWh for an organization that

deploys 20 times per month using 1500 kWh.

Carbon Impact Recovery Index (CIRI): This metric assesses the carbon footprint

generated during system recovery and patching. It may be presented in the following

formula:

𝐶𝐼𝑅𝐼 =
𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 (𝑀𝑇𝑇𝑅)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 (𝑘𝑔 𝐶𝑂2𝑒)

For example, the CIRI is 0.00089 hours per kg CO2e for the organization where

MTTR is 1.33 hours and carbon footprint is 1500 kg CO2e.

Server Utilization Efficiency Index (SUEI): This metric tracks server efficiency to

minimize resource wastage. It may be presented with the following formula:

93

𝑆𝑈𝐸𝐼 =
𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%)

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ)

For example, the SUEI is 0.04% per kWh if server utilization is 60% and energy

consumption is 1500 kWh.

As we are now equipped with the set of green metrics, let us discuss their use in

DevSecOps workflows. The GMF proposes a three-phase implementation model:

Integration Phase: The GMF metrics must be embedded into the existing CI/CD

pipelines. We then configure tools for automated tracking and define baseline energy

efficiency levels.

Optimization Phase: Metrics values are continuously monitored, and adjustments

are made in real-time based on automated alerts and predictive analytics. Energy-efficient

deployment strategies and dynamic resource allocation are key focus areas (Lago, 2019).

Benchmarking: An assessment of sustainability performance may be done using

GMF metrics and results be compared with industry best practices. It supports continuous

refinement and long-term sustainability objectives (Bogdanović et al., 2023). Table 5.4a

presents the roadmap to implement the GMF in DevSecOps environments.

Implementation Phase Key Activities Expected Outcome

Integration Phase Embed GMF metrics in

CI/CD pipelines

Real-time tracking of energy, carbon

footprint, and resource utilization

Optimization Phase Automate sustainability

feedback loops

Reduced energy consumption and

improved server efficiency

Benchmarking Compare metrics with

industry standards

Continuous improvement in green

software engineering

Table 5.4a: The three-phase implementation model of the GMF.

94

Unlike conventional Green IT models, which primarily focus on hardware energy

consumption (Harmon and Demirkan, 2011), the GMF is specifically designed for

DevSecOps workflows. This approach enables organizations to track software-related

sustainability and integrate green computing into agile software methodologies (Calero,

Moraga and García, 2022).

Next, we present the Risk-Maturity Assessment Framework (RMAF) and its role

in assessing sustainability maturity levels in DevSecOps environments.

5.5 The Risk-Maturity Assessment Framework

 The literature shows that framing sustainability in terms of risk and maturity

adds strategic value. For example, Desai and Bhatia (2011) developed the G-Readiness

Model to assess an organization’s preparedness (or risk exposure) for green IT initiatives,

reflecting a risk-based approach to sustainability adoption. In the DevSecOps domain,

existing maturity models like the OWASP DevSecOps Maturity Model (OWASP, 2023)

evaluate process risks (e.g. security) but do not include environmental factors. Our Risk-

Maturity Assessment Framework (RMAF) builds on these models by integrating

ecological sustainability as a first-class risk dimension. Our approach is in line with recent

work (e.g., Sriraman and Raghunathan, 2023) that introduces capability maturity

frameworks to improve sustainability in software engineering. Using a risk-based

framework ensures that sustainability is treated as a vital consideration in decision-making,

alongside security and operational risks.

The RMAF provides a structured methodology to identify risks, assess

organizational readiness, and benchmark environmental sustainability efforts. The

framework aims to achieve the following objectives:

• Measure Maturity Levels: Assessing the adoption of green metric and

integration across organizational domains.

95

• Identify Gaps and Risks: Determining the risks, and scope for improvement

in achieving sustainability goals.

• Benchmark Performance: Comparing the maturity of the organization against

industry standards.

• Enable Continuous Improvement: Providing feedback to improve better

maturity levels over time.

The RMAF complements the GMF, and in fact, acts as its fourth component. It

provides a mechanism for assessing maturity levels in adopting green computing practices

in DevSecOps workflows. Moreover, Appendix E extends this framework by introducing

a quantitative scoring system. This scoring model allows organizations to numerically

assess sustainability maturity alongside security and automation.

5.5.1 Core Components of RMAF

The RMAF builds upon maturity models used in security and risk assessment, such

as the RIMS Risk Maturity Model (RMM) (RIMS, 2015) and OWASP DevSecOps

Maturity Model (DSOMM) (OWASP, 2023). However, unlike traditional security-focused

models, RMAF integrates sustainability dimensions into its assessment. The framework

evaluates organizations based on four key maturity dimensions:

Governance and Policy Alignment: Measures the extent of sustainability

governance in software development policies. Organizations with mature governance

models embed sustainability into compliance, risk management, and corporate IT strategies

(Calero, Moraga and García, 2022).

DevSecOps Process Integration: Assesses how well sustainability is embedded in

DevSecOps pipelines. This includes the automation of green computing metrics, adherence

96

to energy-efficient deployment strategies, and sustainability-aware security protocols

(Bozzelli, Gu and Lago, 2019).

Technology and Automation Readiness: Evaluates the use of automated monitoring

tools to track sustainability performance. This component aligns with the continuous

monitoring principles of DevSecOps, ensuring that green computing remains a measurable

and automated aspect of software workflows (Haugsvær, 2023).

Cultural and Organizational Adoption: Examines organizational attitudes toward

sustainability. Research suggests that cultural resistance is a major barrier to green

DevSecOps adoption, making change management and leadership involvement critical

factors in sustainability maturity (Lago, 2019). Table 5.5a presents the maturity levels

defined within RMAF.

Maturity Level Description Key Indicators

Level 1 – Ad Hoc

(Score: 1-2)

No structured sustainability

practices in DevSecOps

No policies, no automation,

lack of awareness

Level 2 – Reactive

(Score: 3-4)

Sustainability efforts are

reactive rather than proactive

Some energy monitoring tools,

occasional sustainability

discussions

Level 3 – Defined

(Score: 5-6)

Organizations have defined

sustainability metrics and basic

automation

Green metrics tracked,

sustainability integrated into

DevOps policies

Level 4 – Managed

(Score: 7-8)

Continuous monitoring and

refinement of sustainability

practices

Automated energy/resource

tracking, sustainability part of

DevSecOps compliance

Level 5 – Optimized

(Score: 9-10)

Sustainability is fully

embedded and continuously

improved

Predictive analytics for energy

efficiency, AI-driven

sustainability monitoring

Table 5.5a: The maturity levels as defined in RMAF.

97

To enhance RMAF’s applicability in risk assessment, we have introduced a

structured weighted scoring system in Appendix E as below:

• Carbon footprint tracking (weighted at 25%)

• Energy consumption impact (weighted at 30%)

• Operational resource optimization (weighted at 20%)

• Security and compliance factors (weighted at 25%)

By integrating these quantitative indicators, organizations can benchmark

sustainability risk maturity more precisely.

5.5.2 Alignment with DevSecOps

The RMAF underscores that sustainability is integrated without compromising

security or agility. Table 5.5b describes the alignment between RMAF maturity levels and

DevSecOps principles.

DevSecOps Principle How RMAF Supports It

Automation RMAF encourages automated tracking of sustainability metrics to

ensure real-time environmental monitoring

Continuous Monitoring Maturity levels emphasize sustainability integration into security

monitoring tools

Risk Management with

Quantitative Scoring

RMAF enhances risk assessment by integrating traditional risk

management with a quantitative risk-scoring methodology

(Appendix E). This enables organizations to apply numerical risk

indicators for sustainability alongside security and automation.

Collaboration and Culture RMAF assesses cultural adoption, ensuring that teams prioritize

green computing in DevSecOps

Table 5.5b: The RMAF maturity levels and DevSecOps principles.

5.5.3 Application and Benefits of RMAF

98

We present a structured assessment and improvement process within the scope of

the RMAF below:

• Self-Assessment: An organization conducts internal assessment using the five

maturity levels. This enables them to identify gaps and define next steps in

sustainability adoption (Dahab et al., 2022).

• Strategic Roadmap Development: Based on the assessment results, the

organization should create a roadmap for incremental improvements, aligning

sustainability goals with DevSecOps strategies (Bogdanović et al., 2023).

• Integration into Risk Management Frameworks: RMAF findings can be

embedded into corporate risk assessments, ensuring that sustainability risks

(such as energy inefficiency, high infrastructure emissions) are treated on par

with cybersecurity risks (RIMS, 2015).

The main benefits of implementing RMAF include:

• Improved tracking of green computing in DevSecOps environments.

• Better alignment between security, risk, and sustainability objectives.

• Higher DevSecOps maturity, ensuring organizations can automate and scale

sustainability efforts.

5.5.4 Comparative Analysis: RMAF vs. Existing Models

While other maturity models (such as OWASP DSOMM, RIMS RMM, and Green

IT maturity frameworks) focus on security, enterprise risk, or hardware sustainability,

RMAF uniquely combines these perspectives within DevSecOps workflows. Table 5.5c

compares RMAF with other maturity models.

99

Framework Primary Focus How RMAF Differs

OWASP DevSecOps Maturity

Model (DSOMM)

Security maturity in

DevSecOps

RMAF adds sustainability to

risk management

RIMS Risk Maturity Model

(RMM)

Enterprise risk assessment RMAF focuses on

sustainability within

DevSecOps

Green IT Maturity Models Hardware sustainability RMAF applies green

computing to software
development workflows

Table 5.5c: A comparison of RMAF with other maturity models.

In fact, RMAF connects security, risk, and sustainability, making it one of the

first maturity models to integrate green computing into DevSecOps.

5.5.5 Challenges in Implementing RMAF

Despite its advantages, RMAF faces several adoption challenges:

• Cultural Resistance: Many organizations prioritize speed and security over

sustainability, making it difficult to promote eco-friendly DevSecOps policies

(Lago, 2019).

• Lack of Awareness: It may happen that organizations do not recognize

sustainability as a risk factor. It will lead to low adoption rates (Calero, Moraga

and García, 2022).

• Cost of Implementation: Small and medium-sized enterprises (SMEs) usually

find it difficult to invest in sustainability tools or automated tracking systems

(Dahab et al., 2022).

Let us now proceed for a comparative analysis of this study’s proposed frameworks

against existing research, reinforcing their academic and practical contributions.

100

5.6 Comparison with Prior Work

We now compare the GMF and RMAF with existing green computing frameworks,

risk maturity models, and DevSecOps security methodologies. This comparative analysis

highlights the novel contributions of our research while acknowledging the foundational

concepts drawn from prior work.

5.6.1 Green Metrics Framework vs. Existing Green Computing Models

Existing models have traditionally focused on hardware efficiency, energy

optimization in data centers, and environmental impact assessments (Calero, Moraga and

Piattini, 2021). Few studies have explicitly and systematically addressed green computing

within DevSecOps workflows. Table 5.6a compares GMF with existing sustainability

models.

Framework Scope Limitations How GMF Differs

Green IT Balanced

Scorecard (Wati and

Koo, 2011)

Measures IT

sustainability using a

scorecard-based

approach

Focuses mainly on

enterprise-level IT, not

software development

GMF integrates

sustainability directly

into CI/CD pipelines

Sustainable

Computing

Framework (Philipson,

2011)

Evaluates

sustainability in

enterprise computing

and infrastructure

Lacks DevSecOps-

specific indicators

GMF applies green

metrics to software

delivery and security

workflows

G-Readiness Model

(Desai and Bhatia,

2011)

Assesses

organizational

readiness for green IT

Does not address

continuous monitoring

of sustainability in

software engineering

GMF introduces real-

time energy and

resource tracking in

DevSecOps

Software

Sustainability Metrics

(Bozzelli, Gu and

Lago, 2019)

Defines sustainability

indicators for software

design and

development

Limited application to

CI/CD workflows

GMF integrates real-

time DevSecOps

automation and

monitoring

101

Table 5.6a: A comparison of GMF with existing sustainability models.

The Green Metrics Framework (GMF) is different with its focus on DevSecOps,

ensuring that ecological sustainability tracking and optimization are automated within

CI/CD pipelines rather than being treated as a separate organizational responsibility. This

integration provides continuous feedback loops that enable real-time improvements in

software sustainability.

5.6.2 Risk-Maturity Assessment Framework (RMAF) vs. Existing Maturity Models

The Risk-Maturity Assessment Framework (RMAF) builds upon established

maturity models in security and risk management but uniquely integrates sustainability as

a core risk dimension in DevSecOps workflows. Table 5.6b presents a comparative

analysis.

Framework Focus Limitations How RMAF Differs

OWASP DevSecOps

Maturity Model

(DSOMM) (OWASP,

2023)

Evaluates security

maturity in

DevSecOps

Does not include

sustainability metrics

RMAF adds

environmental risk as a

DevSecOps

consideration

RIMS Risk Maturity

Model (RMM) (RIMS,

2015)

Enterprise risk

assessment framework

Not designed for

software development

workflows

RMAF applies risk

maturity principles to

DevSecOps

environments

Green IT Maturity

Models (Gmach et al.,

2012)

Hardware energy

efficiency and IT

sustainability

Focuses on

infrastructure, not

software pipelines

RMAF applies risk-

based sustainability

evaluation to CI/CD

Table 5.6b: A comparison analysis of RMAF with other maturity models.

Unlike existing maturity models that focus on security (OWASP DSOMM) or

enterprise-wide risk (RIMS RMM), RMAF introduces a new sustainability dimension

102

within risk assessment. This integration allows DevSecOps teams to quantify sustainability

risks, track progress, and prioritize continuous improvements in eco-efficient software

engineering.

5.6.3 Novel Contributions of GMF and RMAF

The combined application of GMF and RMAF introduces several unique

contributions to the fields of green computing, risk assessment, and DevSecOps:

• Integration of Sustainability into DevSecOps Pipelines: Unlike prior models,

which focus on data centers or general IT sustainability, GMF embeds real-time

sustainability tracking within CI/CD workflows. This allows DevSecOps teams

to automate green computing practices and reduce software-related

environmental impacts.

• Risk-Based Sustainability Assessment for DevSecOps: RMAF is the first

framework to introduce ecological sustainability as a risk factor in the maturity

evaluations of DevSecOps. It puts green computing in the same level as security

governance.

• Automation and Continuous Monitoring: Both frameworks emphasize

automated tracking, AI-driven analytics, and feedback loops to optimize

sustainability. Prior models rely on static assessments, but GMF and RMAF

incorporate automation and continuous monitoring as the core features.

• This comparative analysis confirms that the GMF and RMAF introduce novel

advancements. Our frameworks provide an actionable roadmap for embedding

green computing into software engineering.

Next, we explore the challenges and opportunities in adopting our two

frameworks.

103

5.7 Challenges and Opportunities

While the GMF and RMAF offer structured approaches to the integration of

sustainability into DevSecOps, their implementation presents several challenges and new

opportunities. This section discusses key barriers to adoption and potential strategic

opportunities for improving sustainability in DevSecOps.

5.7.1 Challenges in Implementing Sustainability in DevSecOps

Despite increasing awareness of sustainability, organizations face multiple barriers

when attempting to integrate green computing into software delivery workflows. The

following challenges have been identified based on the literature and research findings.

• Cultural Resistance and Organizational Priorities: Many organizations perceive

sustainability as a secondary concern, prioritizing security, agility, and cost-

efficiency over environmental considerations (Lago, 2019). In fast-paced

DevSecOps environments, teams are incentivized to focus on speed and

security rather than eco-efficient software engineering. Without executive buy-

in and leadership support, sustainability remains a low-priority goal (Harmon

and Demirkan, 2011).

• Lack of Standardized Sustainability Metrics: While the GMF introduces

DevSecOps-specific sustainability indicators, the broader IT industry lacks

standardized benchmarks for measuring software sustainability performance.

Existing sustainability models focus primarily on data centers, hardware

efficiency, and enterprise IT (Calero, Moraga and García, 2022). Without

universal green software metrics, organizations struggle to compare and

validate sustainability improvements.

104

• Integration Complexity in CI/CD Pipelines: DevSecOps pipelines are highly

automated and optimized for continuous delivery, making it challenging to

integrate real-time sustainability tracking. Existing CI/CD tools lack native

features for monitoring carbon footprint, energy efficiency, or resource

utilization (Dahab et al., 2022). Implementing sustainability tracking requires

custom configurations and additional infrastructure, which can increase

operational overhead.

• High Costs and Resource Constraints: SMEs (small and medium-sized

enterprises) face financial and technical constraints in adopting sustainability

frameworks. AI-powered monitoring tools, cloud-based sustainability

dashboards, and real-time energy tracking solutions often require additional

investments in infrastructure and workforce training (Bogdanović et al., 2023).

• Lack of Awareness in Risk Management: Many organizations do not recognize

energy inefficiency or high resource consumption as risk factors. Traditional

risk management models prioritize security, regulatory compliance, and

operational risks, with little emphasis on environmental sustainability (RIMS,

2015).

5.7.2 Opportunities for Advancing Sustainability in DevSecOps

Despite the challenges mentioned above, the adoption of green computing in

DevSecOps presents opportunities for organizations to align with global sustainability

goals and drive long-term innovation.

• Aligning Sustainability with Business and Regulatory Compliance: As

regulations on environmental sustainability are considered increasingly

important, organizations have an opportunity to leverage this for compliance

105

and competitive advantage. Government policies, such as the EU Green Deal

and the Corporate Sustainability Reporting Directive (CSRD), ask businesses

to track and report carbon emissions and environmental impact (European

Commission, 2023). By adopting GMF and RMAF, organizations can align

with sustainability policies while improving software efficiency.

• Development of Industry Standards for Green DevSecOps: The lack of

standardized green DevSecOps metrics presents an opportunity for industry and

regulatory bodies to develop universal benchmarks. Collaborations will lead to

establishing green computing standards similar to existing cybersecurity

compliance frameworks (Calero, Moraga and García, 2022).

• AI and Automation for Sustainability Tracking: AI-driven monitoring and

predictive analytics offer new possibilities for real-time sustainability tracking

in DevSecOps. Organizations can develop intelligent monitoring systems that

automatically assess eco-efficiency during software processes (Haugsvær,

2023).

• Cost Reduction Through Sustainable Software Engineering: Sustainability

initiatives in DevSecOps offers an economic opportunity. The energy-efficient

software development practices can reduce operational costs by optimizing

server utilization, workload allocation, and cloud resource consumption

(Gmach et al., 2012).

• Promoting Sustainability Awareness: One of the most effective ways to drive

green computing adoption is through training and capacity-building initiatives.

Organizations can integrate sustainability education into DevSecOps training

programs, and equip teams with tools and best practices for implementing eco-

friendly software development (Bozzelli, Gu and Lago, 2019).

106

To summarize, our two frameworks offer challenges such as cultural resistance,

metric standardization issues, and cost constraints, and also opportunities such as

leveraging AI-driven monitoring, regulatory compliance incentives, and sustainability

education to overcome these barriers. In the next chapter, we shall make concluding

remarks and recommendations, outline practical strategies for adopting GMF and propose

future research directions in green software engineering.

107

CHAPTER VI:

CONCLUSION AND RECOMMENDATIONS

6.1 Summary of Findings

Our research focusses on the integration of green computing and DevSecOps

without operational efficiency and security. We have developed two structured frameworks

by combining qualitative and quantitative research methods:

• The Green Metrics Framework (GMF): We define a set of metrics to measure

sustainability in CI/CD pipelines and then to benchmark and continually

improve.

• The Risk-Maturity Assessment Framework (RMAF): We formulate a

methodology for evaluating an organization's sustainability maturity within

DevSecOps environments.

• The research reveals the key challenges and opportunities in embedding

sustainability into DevSecOps workflows.

6.1.1 Key Findings

Organizations recognize the importance of sustainability but lack the necessary

tools and standardized metrics to implement it effectively (Calero, Moraga and García,

2022). Cultural resistance, perceived trade-offs between sustainability and performance,

and financial constraints remain barriers to successful adoption (Lago, 2019).

The GMF provides a structured approach for measuring sustainability in

DevSecOps workflows. It embeds real-time tracking tools into CI/CD pipelines and

introduces DevSecOps-specific environmental KPIs. The RMAF introduces sustainability

as a critical risk dimension and enables organizations to assess their maturity in green

computing integration.

108

While implementing sustainability in DevSecOps, we identify several challenges.

The absence of industry-wide benchmarks makes it difficult for organizations to compare

and validate sustainability improvements. Existing DevSecOps tools lack native features

for real-time sustainability monitoring and require custom configurations. SMEs face

financial and technical barriers for adopting sustainability frameworks as it requires

additional investments in infrastructure and training.

At the same time, we see opportunities to advance Green DevSecOps. Global

regulations, such as the EU Green Deal, present an opportunity to integrate sustainability

into compliance-driven software development (European Commission, 2023). AI and

automation can enhance real-time tracking of energy consumption, resource utilization,

and eco-efficiency. Optimizing server utilization, workload allocation, and cloud resource

consumption can reduce operational costs while enhancing sustainability.

6.1.2 Contributions to Research and Practice

We would like to point out that our research has contributed to green computing,

DevSecOps, and software engineering by:

• Introducing quantifiable sustainability metrics for software development.

• Aligning sustainability with DevSecOps security and risk frameworks.

• Providing a structured methodology (RMAF) for sustainability maturity

assessment.

• Demonstrating the economic and environmental benefits of integrating green

computing into DevSecOps workflows.

109

6.2 Practical Recommendations

Here, we provide practical recommendations for implementing GMF and RMAF.

Organizations must implement structured strategies to facilitate the adoption of

sustainability in DevSecOps. Based on the findings of this study, the following practical

recommendations are proposed for using the GMF and RMAF in software development

workflows.

6.2.1 Recommendations for Organizations

Organizations should prioritize sustainability as a core component of their software

delivery strategies. They should embed sustainability KPIs, such as the Energy Efficiency

Deployment Index (EEDI) and Carbon Impact Recovery Index (CIRI), into DevSecOps

monitoring tools. Real-time sustainability tracking may also be implemented using AI-

driven analytics and automated dashboards.

Organizations should evaluate their sustainability maturity levels using RMAF and

align their sustainability strategies with DevSecOps and other cybersecurity risk

frameworks. Sustainability should be integrated into corporate governance policies,

ensuring compliance with global environmental sustainability standards.

DevSecOps teams should be trained on best practices in eco-efficient software

engineering, including sustainable coding techniques and green computing policies.

Awareness campaigns should promote the economic and operational benefits of

sustainability; in fact, it will help reduce cultural resistance to green DevSecOps adoption.

Organizations should adopt cloud-based sustainability solutions to optimize

resource allocation and usage. AI should be used to automate sustainability decisions, and

to ensure energy-efficient deployments without manual intervention. On the side of people

management, organizations should also implement green performance indicators in

110

employee evaluation metrics. It will encourage DevSecOps teams to prioritize

sustainability.

6.2.2 Recommendations for Policymakers and Regulators

Regulatory bodies should develop standardized sustainability metrics tailored for

software engineering, similar to existing security and compliance frameworks. Industry-

wide benchmarks should be created to define sustainability maturity levels accompanied

by clear guidelines for green DevSecOps adoption.

Organizations should be required to report carbon emissions, energy efficiency, and

resource utilization in software engineering workflows. Policies should align green

DevSecOps reporting with global environmental initiatives, such as the EU's Corporate

Sustainability Reporting Directive (CSRD).

Governments should introduce tax incentives, grants, and subsidies for

organizations implementing sustainability monitoring in DevSecOps. Financial incentives

should support AI-driven sustainability solutions to encourage businesses to invest in green

technology without economic burden. Policymakers should facilitate collaborations

between technology companies, researchers, and regulatory agencies to advance green

DevSecOps implementation and enhancements. Sustainability-focused research initiatives

should receive government funding, encouraging the development of next-generation eco-

friendly DevSecOps tools.

6.2.3 Recommendations for Practitioners and DevSecOps Teams

Software developers, security professionals, and DevSecOps engineers must adopt

sustainable software engineering practices to drive eco-friendly digital transformation.

Teams should integrate real-time sustainability monitoring tools into their CI/CD

111

workflows. Existing DevOps security tools, such as the OWASP DevSecOps Maturity

Model (DSOMM), should be extended to include sustainability risk assessments.

Developers should use power-efficient algorithms and optimize code execution to

minimize energy consumption. Sustainable software engineering should be incorporated

into agile development methodologies. They should implement AI-powered predictive

analytics to optimize server usage and deployment energy consumption. Automated testing

should include sustainability impact assessments.

DevSecOps professionals should advocate a sustainability-first mindset in software

process. It involves advocating the inclusion of sustainability in project planning.

Sustainability considerations should also be integrated into security risk assessments.

Organizations must use the GMF and RMAF in their software development,

security governance, and corporate policies to achieve sustainable DevSecOps.

Policymakers should establish standardized regulations for environmental sustainability.

Practitioners must adopt eco-friendly development techniques to ensure long-term

sustainability.

6.3 Future Research Directions

Advancing the Green Metrics Framework (GMF) and Risk-Maturity Assessment

Framework (RMAF) requires further exploration regarding scalability, standardization,

automation, and industry adoption. The following key areas highlight promising directions

for future research in sustainable software engineering.

112

6.3.1 Expanding the Scope of Green Metrics in DevSecOps

The GMF proposed in this research focuses on key software sustainability

indicators, such as energy efficiency, carbon footprint, and resource utilization. However,

there is a need for further refinement to expand these metrics, and we shall discuss these

below:

Lifecycle-based Sustainability Metrics: Future research should explore

sustainability indicators across the entire software development lifecycle (SDLC), from

requirements engineering to maintenance and decommissioning.

Quantifying Social and Economic Sustainability: Current green computing models

focus on environmental impact. Additional research is needed to define socioeconomic

sustainability factors, such as ethical AI, workforce sustainability, and the long-term

impact of sustainable coding practices.

Standardization of Sustainability KPIs: Future studies should focus on establishing

industry-wide DevSecOps sustainability benchmarks, similar to existing cybersecurity and

software quality standards.

6.3.2 AI and Automation for Sustainability Monitoring

One of the key challenges identified in this study is the lack of automated

sustainability tracking within DevSecOps pipelines. Research on AI-driven sustainability

monitoring can focus on exploring how machine learning models can predict energy

consumption patterns, enabling proactive optimization of software deployment strategies.

Research can examine how AI-powered load balancing and resource allocation models can

dynamically adjust server workloads to minimize energy consumption. Further research

efforts must include how we incorporate sustainability tracking in AIOps (Artificial

Intelligence for IT Operations).

113

6.3.3 Economic Impact of Green DevSecOps Adoption

We have focussed into the environmental aspects of sustainability in our current

study. As we have seen in the Chapter 2 – Literature Review, there are other areas of

importance including economic. Further research is needed to quantify the economic

benefits of green DevSecOps adoption. Future research should conduct empirical studies

on the financial return of sustainability initiatives, including energy cost reductions, cloud

efficiency savings, and regulatory compliance benefits. New research can explore how

organizations can monetize sustainability initiatives using carbon credits and

sustainability-driven business incentives. Studies should analyze how cloud providers and

software vendors can optimize infrastructure to align with corporate ESG (Environmental,

Social, and Governance) goals.

6.3.4 Policy and Regulatory Frameworks for Green DevSecOps

As sustainability finds acceptance in corporate and governmental policies, further

research should explore the regulatory landscape for green software engineering. Future

research should evaluate how different countries regulate sustainability in software

development and identify best practices for harmonizing global. We should focus on

creating a standardized framework for integrating sustainability into corporate IT

compliance programs, similar to ISO 14001 environmental management. Empirical studies

should examine how government incentives, tax breaks, and regulatory mandates influence

corporate adoption of green DevSecOps principles.

6.3.5 DevSecOps Culture in Sustainability Adoption

A major barrier identified in this research is cultural resistance to sustainability

integration in software engineering teams. Future studies can investigate how developer

114

mindsets, team collaboration, and organizational culture impact sustainability initiatives.

We should assess how gamification strategies and sustainability reward systems influence

developer engagement in green software practices. Qualitative research should examine

organizations that have successfully embedded sustainability into DevSecOps.

6.4 Closing Remarks

Our research highlights the need for Green DevSecOps while bridging the gap

between operational performance, security, and environmental responsibility. We have

demonstrated that sustainability does not have to conflict with security and agility; rather,

it can be embedded within DevSecOps. The Green Metrics Framework and the Risk-

Maturity Assessment Framework offer structured, actionable models for organizations to:

• Measure and optimize sustainability in CI/CD pipelines.

• Integrate environmental risks into security and compliance frameworks.

• Align software engineering with corporate ESG goals.

While our frameworks provide a foundation, widespread adoption will require

cultural shifts, regulatory support, and advancements in AI-driven automation.

Overcoming standardization gaps, cost constraints, and organizational inertia will boost

long-term software development sustainability. Organizations, researchers, and

policymakers must collaborate to:

• Develop standardized sustainability benchmarks for DevSecOps.

• Leverage AI, automation, and cloud computing for real-time green computing

monitoring.

• Align industry sustainability goals with evolving regulatory frameworks.

By adopting Green DevSecOps, organizations would be in a position to ensure that

software engineering contributes to technological advancement and a sustainable digital

115

future. The findings of this study serve as a call to action for businesses, governments, and

researchers to work towards a harmonized approach to sustainable software development.

Our study is not the final realization but a step toward broader adoption of

sustainability in software engineering. Future advancements will shape a DevSecOps

landscape that is secure, efficient, and environmentally responsible, ensuring that

technological progress aligns with planetary well-being.

116

APPENDIX A:

INITIAL INTERVIEW GUIDE

Here's the initial set of questions meant for Chief Technology Officers (CTOs) or

Chief Information Officers (CIOs) and is aimed at understanding their perspectives,

experiences, and practices related to sustainability in software development:

1. General Information

a. Can you briefly describe your role and responsibilities within your

organization?

b. How would you describe your organization's commitment to environmental

sustainability?

2. Awareness and Importance

a. How aware are you and your organization of the environmental impact of

software development and operations?

b. In your opinion, how important is it for software development practices to

be environmentally sustainable?

3. Current Practices

a. Does your organization currently incorporate any sustainability practices or

metrics in software development? If yes, can you provide some examples?

b. How is sustainability measured and reported within your software

development lifecycle?

4. Integration of Green Metrics into DevSecOps

a. Are you familiar with the concept of integrating green metrics into

DevSecOps practices? If yes, what are your thoughts on it?

117

b. What challenges do you foresee in integrating environmental sustainability

metrics into DevSecOps practices?

c. Has your organization taken any steps toward integrating green metrics into

DevSecOps? If so, can you share some of the initiatives or metrics used?

5. Tools and Technologies

a. What tools or technologies do you currently use that support sustainability

in software development?

b. Are there any tools or technologies you wish were available to better

support sustainability efforts in DevSecOps?

6. Impact and Benefits

a. What impact could integrating green metrics into DevSecOps have on

software development practices?

b. Can you discuss any perceived benefits or drawbacks of incorporating

sustainability into DevSecOps?

7. Organizational Challenges and Solutions

a. What organizational barriers exist to adopting green metrics in DevSecOps,

and how might they be overcome?

b. What support or resources would be most beneficial to your organization in

integrating sustainability into DevSecOps?

8. Future Outlook

a. How do you see the future of sustainability in software development

evolving?

b. What steps should the tech industry take to promote environmental

sustainability in software development?

9. Advice and Recommendations

118

a. What advice would you give to other organizations looking to integrate

green metrics into their DevSecOps practices?

b. Are there any best practices or lessons you would like to share from your

experience or observation?

We have designed the questions incite thoughtful conversations and provide deep

insights into current practices, challenges, and the potential for integrating sustainability

into software development processes. The responses will inform our research and

contribute to broader knowledge sharing and development of best practices in sustainable

software development.

119

APPENDIX B:

INITIAL SURVEY QUESTIONNAIRE TO UNDERSTAND

INTEGRATING OF GREEN METRICS INTO DEVSECOPS

We have designed a structured questionnaire for collecting data about integrating

green metrics with DevSecOps from software companies and individuals with roles like

CTOs or CIOs.

A. Respondent Information

1. Role in the Organization:

i. CEO/President

ii. CTO

iii. CIO

iv. DevSecOps Manager

v. Other (Please specify): __________

2. Size of Organization:

i. 1-50 employees

ii. 51-200 employees

iii. 201-500 employees

iv. 501-1000 employees

120

v. 1001+ employees

3. Industry Sector:

i. Technology

ii. Finance

iii. Healthcare

iv. Manufacturing

v. Retail

vi. Other (Please specify): __________

B. Awareness and Importance

4. How aware are you of the environmental impact of software development?

i. Very aware

ii. Somewhat aware

iii. Not very aware

iv. Not aware at all

5. On a scale of 1 to 5, how important is it for software development practices to be

environmentally sustainable? (1 = Not important at all, 5 = Extremely important)

C. Current Practices

6. Does your organization currently incorporate sustainability practices in software

development?

i. Yes

ii. No

7. If yes, what percentage of your projects incorporate these practices?

i. 0-25%

ii. 26-50%

iii. 51-75%

121

iv. 76-100%

D. Integration of Green Metrics into DevSecOps

8. Are you familiar with the concept of integrating green metrics into DevSecOps

practices?

i. Yes

ii. No

9. Has your organization integrated green metrics into DevSecOps?

i. Yes

ii. No

10. If yes, to what extent have green metrics been integrated into your DevSecOps

practices?

i. Fully integrated

ii. Partially integrated

iii. Only in the initial stages

E. Challenges and Solutions

11. What challenges have you encountered in integrating green metrics into

DevSecOps? (Select all that apply)

i. Lack of awareness or understanding

ii. Technical difficulties

iii. Cost implications

iv. Lack of suitable tools or technologies

v. Organizational resistance

vi. Other (Please specify): __________

12. What resources would be most beneficial in overcoming these challenges? (Select

all that apply)

122

i. Training and education

ii. Better tools and technologies

iii. Financial incentives or support

iv. Leadership buy-in

v. External consultancy or expertise

vi. Other (Please specify): __________

F. Impact and Benefits

13. What impacts have you observed from integrating green metrics into DevSecOps?

(Select all that apply)

i. Reduced energy consumption

ii. Lower carbon footprint

iii. Improved efficiency

iv. Cost savings

v. None observed

vi. Other (Please specify): __________

14. On a scale of 1 to 5, how would you rate the overall benefit of integrating green

metrics into DevSecOps practices in your organization? (1 = No benefit, 5 =

Significant benefit)

This questionnaire facilitates statistical analysis of such integration's adoption,

challenges, and impacts.

123

APPENDIX C:

SUSTAINABILITY AND DEVSECOPS MATURITY SURVEY

We have organized the following survey by category (or domain), aligning each

question to the corresponding scoring category defined in Appendix E. Each question will

be answered on a 1–5 Likert scale (1 = lowest maturity/not at all, 5 = highest maturity/fully

implemented), allowing responses to feed directly into the scoring model.

124

1. Security

a. CI/CD Security Integration: Are automated security checks integrated into

your continuous integration/continuous delivery pipeline? Consider

practices like static code analysis, dependency vulnerability scanning, or

dynamic testing on each build/deployment. (1 = No automated security in

CI/CD pipeline, 5 = Security scans are fully integrated at every stage of

CI/CD, and failures can block a build/release if issues are found.)

b. Security Metrics Tracking: Does your team collect and monitor DevSecOps

security metrics regularly? Examples: number of vulnerabilities found per

release, mean time to remediate critical security issues, compliance score

from security scans. (1 = No security metrics are tracked or reported, 5 =

Comprehensive set of security metrics is tracked, reported to stakeholders,

and used to drive continuous security improvements.)

c. Security Standards Compliance: To what degree does your development

process adhere to established security standards or policies (e.g. OWASP

Top 10, organization-specific security guidelines) and undergo regular

compliance checks? (1 = No formal security standards followed in

development, 5 = Strict adherence to security standards with regular audits

or reviews to ensure compliance at each release.)

2. Automation

a. Build and Integration Automation (CI): How fully automated is your build

and integration process? (1 = Builds and integrations are run manually with

ad-hoc processes, 5 = Fully automated Continuous Integration – every code

commit triggers an automated build and integration test suite with no

manual intervention.)

125

b. Testing Automation: To what extent are tests automated and integrated into

the pipeline (including unit, integration, and other testing types)? (1 = Little

to no test automation – reliance on manual testing, 5 = Extensive automated

testing is in place covering most code, and tests run automatically on each

build with high coverage and reliability.)

c. Deployment Automation (CD): Are deployments to staging and production

environments automated? (1 = Deployments are performed manually with

custom scripts or human steps, 5 = Fully automated Continuous

Deployment – code changes are deployed to staging/production through an

automated pipeline, with no manual steps required and governed by pipeline

gates/policies.)

d. Infrastructure as Code and Environment Provisioning: Does the team utilize

Infrastructure as Code (IaC) and automated environment provisioning? (1

= Environments and configurations are set up manually for each

deployment, 5 = All infrastructure is defined and managed as code with one-

click or automated provisioning of environments, ensuring consistency

across development, test, and production.)

3. Risk Management

a. Risk Identification Process: Does your team follow a formal process or

framework to identify and assess risks (security, operational, compliance,

etc.) during the software lifecycle? (1 = No formal risk identification – risks

are addressed reactively, if at all, 5 = Formal risk management framework

in place – the team proactively identifies and assesses risks in planning

stages and continues to update risk assessments throughout the project.)

126

b. Risk Monitoring and Metrics: To what extent are risk metrics tracked and

reviewed regularly? For example, maintaining a risk register with risk

severity scores or tracking the number of high-risk items outstanding. (1 =

Risks are not documented or quantified, 5 = Clear risk metrics are defined,

tracked continuously, and reviewed in routine meetings to inform decision-

making.)

c. Mitigation and Response Planning: Does the team have documented risk

mitigation plans and incident response procedures, and are these tested or

updated on a regular basis? (1 = No documented mitigation or incident

response plans exist, 5 = Comprehensive risk mitigation strategies are

documented for major identified risks, and incident response plans are in

place and regularly tested/refined based on drills or past incidents.)

4. Sustainability

a. Carbon Footprint Tracking: To what extent does your team measure and

track the carbon footprint of its software development, deployment, and

operational processes? (1 = No tracking or measurement of carbon

footprint, 5 = Comprehensive tracking of carbon emissions with regular

monitoring and targets for reduction.)

b. Energy Efficiency Practices: How thoroughly are energy efficiency

considerations integrated into your development and deployment

workflows (e.g. using efficient algorithms, optimizing code for lower

CPU/memory use, utilizing energy-efficient hardware or cloud services)?

(1 = Not at all – energy efficiency is not considered, 5 = Energy efficiency

is a key criterion in design, coding, and operations, applied consistently

across projects.)

127

c. Resource Optimization: To what extent does your team optimize computing

resources to minimize waste (e.g. using auto-scaling to avoid idle servers,

rightsizing cloud instances, shutting down unused resources)? (1 = No

resource optimization – significant idle or wasted resources, 5 = Highly

optimized resource usage with minimal waste and continuous adjustments

to improve efficiency.)

128

APPENDIX D:

EXISTING METRICS AND MAPPING METRICS TO GOALS

The Existing Matrix

Based on the literature review, we find that the following metrics are used in the

domain of DevSecOps and green computing, respectively:

Metric Description Calculation Reference

DevSecOps Metrics

Deployment

Frequency

Measures how often

new code is

deployed to

production.

The number of deployments to

production per

day/week/month. For example,

if there were 20 deployments in

a month, the deployment

frequency is 20

deployments/month.

Forsgren,

Humble and Kim

(2018)

Change Lead

Time

Time taken from

code commit to

deployment in

production.

Track the timestamp for each

code commit and its

corresponding deployment.

Calculate the difference in time

for each pair and take the

average.

Example: If commit-to-deploy

times were 1 hour, 2 hours, and

3 hours, the average lead time

is (1+2+3)/3 = 2 hours.

Forsgren,

Humble and Kim

(2018)

Mean Time to

Recover (MTTR)

Measures the

average time taken

to recover from a

failure in

production.

Record the downtime for each

incident.

Sum the total downtime and

divide by the number of

incidents.

Example: If there were 3

incidents with downtimes of 1

hour, 2 hours, and 1 hour, the

MTTR is (1+2+1)/3 = 1.33

hours.

Forsgren,

Humble and Kim

(2018)

129

Vulnerability

Detection Rate

Number of

vulnerabilities

detected during a

specific period.

Count the number of

vulnerabilities detected over a

period.

Divide by the number of code

releases or commits in that

period.

Example: If 10 vulnerabilities

were detected in 5 releases, the

detection rate is 10/5 = 2

vulnerabilities per release.

Pluralsight Flow

Transformation

Team (2023)

Vulnerability

Patch Time

Measures the time

taken to fix detected

vulnerabilities.

Record the time taken to fix

each detected vulnerability.

Calculate the average patch

time.

Example: If vulnerabilities

were patched in 5 hours, 10

hours, and 15 hours, the

average patch time is

(5+10+15)/3 = 10 hours.

Pluralsight Flow

Transformation

Team (2023)

Automated Test

Coverage

Percentage of the

codebase covered

by automated tests.

Measure the number of lines of

code tested by automated tests.

Divide by the total lines of

code in the codebase.

Example: If 800 lines of code

are tested out of 1000 lines, the

coverage is 800/1000 = 80%.

Roche (2013)

Green Metrics for DevSecOps

Energy

Consumption

Measures the

amount of energy

consumed by IT

infrastructure.

Monitoring tools are used to

measure the total energy

consumption of IT

infrastructure.

Sum the energy usage (in kWh)

for servers, storage, and

networking equipment over

time.

Example: If servers consume

1000 kWh and networking

equipment 500 kWh, total

consumption is 1500 kWh.

Debbarma and

Chandrasekaran

(2016)

Carbon Footprint Total greenhouse

gas emissions

caused by IT

Calculate the total greenhouse

gas emissions (CO2

equivalents) from energy

Debbarma and

Chandrasekaran

(2016)

130

operations. consumption and other sources.

Sum the emissions from all IT

operations.

Example: If data centers emit

1000 kg CO2e and other

operations emit 500 kg CO2e,

total emissions are 1500 kg

CO2e.

Server Utilization Measures how

efficiently servers

are utilized.

Monitor CPU, memory, and

storage usage over a period.

Calculate the average

utilization percentage.

Example: If CPU usage is 60%,

memory usage is 70%, and

storage usage is 50%, the

average is (60+70+50)/3 =

60%.

Barroso and

Hölzle (2007)

E-Waste

Reduction

Tracks the

reduction of

electronic waste

through recycling

and proper disposal.

Track the amount of e-waste

recycled or properly disposed

of.

Divide by the total e-waste

generated.

Example: If 800 kg of e-waste

is recycled out of 1000 kg, the

reduction rate is 800/1000 =

80%.

Forti et al. (2020)

Renewable

Energy Usage

Percentage of IT

infrastructure

powered by

renewable energy

sources.

Measure the amount of energy

from renewable sources.

Divide by the total energy

consumption.

Example: If 400 kWh of the

1000 kWh total is from

renewables, the usage is

400/1000 = 40%.

International

Energy Agency

(2023)

Mapping Metrics to Goals

Let us now demonstrate how the metrics within the Green Metrics Framework align

with specific sustainability goals. We propose to design the framework to measure and

manage three key sustainability goals:

131

• Energy Efficiency: Optimize energy consumption across development and

operational processes.

• Carbon Reduction: Minimize the carbon footprint of deployments and

activities in system recovery.

• Resource Optimization: Efficient use of infrastructure and reduced electronic

waste.

Let us discuss each of these three aspects and demonstrate possible calculations that

can be incorporated.

Energy Efficiency

We aim to measure the energy efficiency of frequent deployments. The following

are the relevant ones to consider:

• Deployment Frequency: Number of deployments to production per unit time (e.g.,

daily, weekly).

• Change Lead Time: Time from code commit to deployment in production.

• Energy Consumption: Total energy consumed by IT infrastructure.

Now, we may map to create the following metrics:

1. Energy Efficiency Deployment Index:

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =
𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

For example, if there are 20 deployments per month and the total energy

consumption is 1500 kWh, the index is:

132

𝐼𝑛𝑑𝑒𝑥 =
20 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠/𝑚𝑜𝑛𝑡ℎ

1500 𝑘𝑊ℎ
 = 0.0133 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠/𝑘𝑊ℎ

2. Average Energy Consumption per Deployment:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

For example, for 20 deployments and 1500 kWh:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1500 𝑘𝑊ℎ

20 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠
 = 75 𝑘𝑊ℎ/𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

3. Energy Efficiency Change Lead Time Index:

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

For example, if the average lead time is 2 hours and the total energy consumption

is 1500 kWh:

𝐼𝑛𝑑𝑒𝑥 =
2 ℎ𝑜𝑢𝑟𝑠

1500 𝑘𝑊ℎ
 = 0.00133 ℎ𝑜𝑢𝑟𝑠/𝑘𝑊ℎ

Carbon Reduction

The goal is to understand the environmental impact of recovery and patch

processes. The following are the metrics that may be considered:

• Mean Time to Recover (MTTR): Average time taken to recover from a

failure in production.

133

• Vulnerability Patch Time: Time taken to fix detected vulnerabilities.

• Carbon Footprint: Total greenhouse gas emissions caused by IT operations.

Now, let us map these:

1. Carbon Impact Recovery Index:

𝐶𝑎𝑟𝑏𝑜𝑛 𝐼𝑚𝑝𝑎𝑐𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 =
𝑀𝑇𝑇𝑅

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

It should be noted that CO2e stands for carbon dioxide equivalent, a standard unit

to measure carbon footprints. It represents the impact of all greenhouse gases (GHGs) in

terms of the amount of CO2 that would have the same global warming potential (GWP).

CO2e allows us to express the total impact of various GHGs, including methane (CH4),

nitrous oxide (N2O), and others, in a single metric. Each gas has a different GWP, meaning

some gases are much more potent in trapping heat in the atmosphere than CO2. For

instance, methane has a GWP of about 28-36 times that of CO2 over 100 years. To

summarize, 1500 kg CO2e means that the combined impact of all the greenhouse gases

emitted is equivalent to the impact of emitting 1500 kg of CO2.

In our example, if MTTR is 1.33 hours and the carbon footprint is 1500 kg CO2e:

𝐼𝑛𝑑𝑒𝑥 =
1.33 ℎ𝑜𝑢𝑟𝑠

1500 𝑘𝑔 𝐶𝑂2𝑒
 = 0.00089 ℎ𝑜𝑢𝑟𝑠/𝑘𝑔 𝐶𝑂2𝑒

2. Carbon Impact Patch Index:

134

𝐶𝑎𝑟𝑏𝑜𝑛 𝐼𝑚𝑝𝑎𝑐𝑡 𝑃𝑎𝑡𝑐ℎ 𝐼𝑛𝑑𝑒𝑥 =
𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑎𝑡𝑐ℎ 𝑇𝑖𝑚𝑒

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

In our example, if the average patch time is 10 hours and the carbon footprint is

1500 kg CO2e:

𝐼𝑛𝑑𝑒𝑥 =
10 ℎ𝑜𝑢𝑟𝑠

1500 𝑘𝑔 𝐶𝑂2𝑒
 = 0.00667 ℎ𝑜𝑢𝑟𝑠/𝑘𝑔 𝐶𝑂2𝑒

Resource Optimization

The goal here is to ensure the efficient use of resources and minimize environmental

impact. The following are the metrics that may be considered:

• Server Utilization: Average utilization percentage of CPU, memory, and

storage.

• Automated Test Coverage: Percentage of the codebase covered by

automated tests.

• E-Waste Reduction: The amount of e-waste recycled or properly disposed

of is divided by the total e-waste generated.

Now, let us map these:

1. Server Utilization Efficiency Index:

𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 =
𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

In our example, if server utilization is 60% and energy consumption is 1500 kWh:

135

𝐼𝑛𝑑𝑒𝑥 =
60%

1500 𝑘𝑊ℎ
 = 0.04%/𝑘𝑊ℎ

2. Test Coverage Resource Optimization Index:

𝑇𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =
𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑇𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

In our example, if automated test coverage is 80% and server utilization is 60%:

𝐼𝑛𝑑𝑒𝑥 =
80%

60%
 = 1.33

3. E-Waste Efficiency Index:

𝐸 − 𝑊𝑎𝑠𝑡𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 =
𝐸 − 𝑊𝑎𝑠𝑡𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

In our example, if e-waste reduction is 80% and server utilization is 60%:

𝐼𝑛𝑑𝑒𝑥 =
80%

60%
 = 1.33

In perspective, the integrated framework combines DevSecOps metrics with

sustainability metrics to measure alignment with sustainability goals. We calculate the

indices for energy efficiency, carbon reduction, and resource optimization. Thus,

organizations can quantitatively assess performance and identify areas for improvement.

136

APPENDIX E:

SCORING MODEL FOR SUSTAINABILITY

 MATURITY AND RISK IN DEVSECOPS

We have proposed this scoring model to enhance the DevSecOps framework and

explicitly integrate sustainability maturity with traditional DevSecOps risk indicators. It

means evaluating how well development practices reduce environmental impact in parallel

with managing security, automation, and risk. The scoring model outlined here introduces

sustainability metrics (e.g., carbon footprint reduction, energy efficiency, resource

optimization) into the maturity assessment, with weighted scoring that balances eco-

conscious practices with security and automation goals. A Likert-scale (1–5) rating is used

for each area to quantify maturity levels, and statistical measures (weighted averages and

variance) help interpret overall performance. The result is a structured model with a

composite score reflecting DevSecOps excellence and environmental responsibility. It

defines how to quantify responses from Appendix C’s questionnaire into actionable

metrics.

Integrating Sustainability with DevSecOps Risk Indicators

Traditional DevSecOps scoring models consider code security, CI/CD automation,

compliance, incident response, and other risk indicators. This revised model augments

those areas with a sustainability dimension, treating it as a first-class risk and quality

management concern. When assessing DevSecOps maturity, we shall now evaluate teams

on sustainability practices alongside security and operational metrics.

• Holistic Categories: The scoring is divided into key categories, such as security,

automation, risk management, and sustainability. Sustainability is introduced

as a new category of evaluation rather than an afterthought. Each category has

137

specific criteria: Security might include vulnerability management and

compliance, Automation might cover continuous integration/deployment and

testing, Risk Management might consist of incident response and governance,

and Sustainability covers the metrics above (carbon, energy, resource use).

• Parallel Risk Indicators: Sustainability risks (like excessive energy use or non-

compliance with environmental standards) are considered parallel to other

DevSecOps risks (such as security vulnerabilities or operational downtime).

This integration acknowledges that poor sustainability practices can pose long-

term risks to the organization (e.g., regulatory, reputational, or cost risks) just

as security flaws or lack of automation can. For instance, a high carbon footprint

or energy-inefficient system might risk non-compliance with emerging green

regulations or incur higher operational costs. Thus, it’s included in the risk

scoring.

• Pipeline Integration: In practical terms, teams embed checks and measures for

sustainability in their DevSecOps pipeline. It could mean adding automated

sustainability audits (similar to security audits) that flag energy-inefficient code

or architectures and incorporating tools to measure carbon emissions per build

or deployment. GreenOps practices – such as CI/CD telemetry monitoring

power usage and carbon output – ensure sustainability is continuously

managed, just like security tests are. By integrating these into the pipeline,

organizations treat sustainability metrics as equally visible and actionable as

build quality or security scan results. (For example, a build pipeline might fail

a release if it exceeds a certain energy consumption threshold, analogous to

failing on too many security vulnerabilities.)

138

This integrated approach ensures the scoring model reflects a balanced DevSecOps

maturity: a mature team not only excels in shipping secure, reliable software fast but does

so in an energy-efficient, environmentally conscious way.

Weighted Scoring Model Balance

The model uses weighted scoring across the categories to incorporate sustainability

without overshadowing other critical DevSecOps aspects. Each category (Security,

Automation, Risk Management, Sustainability, etc.) is assigned a weight reflecting its

importance to the overall DevSecOps maturity score. Sustainability is given a meaningful

weight (e.g., 20–25% of the total score) to influence the overall score proportionately with

long-established domains like security or automation. This weighted approach prevents

any single area from dominating the score and encourages a balanced improvement across

all areas. Table E.1 provides an example of weight distribution.

Domain Weight

Security 30%

Automation 25%

Risk Management 20%

Sustainability 25%

Table E.1: Example Weight Distribution

In this scenario, sustainability is kept on par with the other major categories (each

roughly a quarter of the focus). Organizations can adjust weights based on strategic

priorities, but sustainability should carry a significant weight to ensure it is not neglected.

The goal is to balance eco-conscious practices with security and reliability rather than trade

one for the other.

139

The rationale behind it is that weighting underscores that sustainability is a core

component of DevSecOps excellence, not just a nice-to-have. By quantifying it, leaders

can make informed decisions: for instance, even if a team has strong security and

automation, a low sustainability score (with its assigned weight) will pull down the overall

score, highlighting a gap. Conversely, teams that are strong in sustainability but weak in

security would see that reflected. The weighted model states that true maturity means

performing well across all dimensions.

The next thing that we consider is Composite Scoring. With weights assigned,

each category’s raw score (on the Likert 1–5 scale) contributes to a composite DevSecOps

Sustainability Maturity Score. This composite is essentially a weighted average (details

on calculation in a later section). For example, if Security scored 4/5, Automation 3/5, Risk

4/5, and Sustainability 2/5, the overall score would be calculated from those values with

their respective weights. It provides a single concise benchmarking metric while allowing

drill-down into category-specific scores.

By introducing weighted scoring, the model balances sustainability considerations

with security, automation, and risk management priorities. It encourages teams to improve

sustainability without sacrificing other areas (and vice versa), promoting a well-rounded

DevSecOps practice.

Likert Scale Maturity Levels (1–5) for Sustainability

Each aspect of the scoring model, including sustainability, is assessed on a Likert

scale from 1 to 5, indicating maturity levels from low (immature practices) to high

(optimized practices). The scale is defined as follows for sustainability (similar scales apply

to other categories):

140

• Level 1 – Ad Hoc / Absent: Sustainability is not considered in the development

process. No specific practices or metrics are in place for carbon reduction or

energy efficiency. The team is likely unaware of the software’s environmental

impact. (Example: no resource usage monitoring beyond basic cost; servers run

24/7 regardless of need).

• Level 2 - Initial / Reactive: Some sustainability awareness exists, often driven

by external prompts or individual efforts. Practices are reactive and not

standardized. Isolated attempts to reduce waste might exist (e.g., occasional

cloud cost optimizations that incidentally reduce energy use). No formal

metrics are tracked yet, or tracking is infrequent.

• Level 3 - Defined / Managed: Sustainability practices are defined and

repeatable. The team has set measurable goals for carbon footprint reduction

and energy efficiency, and basic metrics are collected (e.g., tracking energy

consumption of builds using more efficient instances). Tools or processes (like

power usage monitoring in CI pipelines) are in place, though improvements

may be manual or early. Sustainability is part of risk assessments and is

considered in planning (for instance, choosing a data center region with lower-

carbon electricity for deployments).

• Level 4 – Proactive / Integrated: The team proactively optimizes for

sustainability. Clear metrics (carbon emissions, energy per transaction, etc.) are

tracked for each release, and the team regularly analyzes and acts on this data.

Automation supports sustainability by integrating automated shutdown of idle

resources, continuous carbon monitoring, green design patterns, etc.

Sustainability has dedicated ownership (by appointing a champion or team) and

141

is part of the organization’s performance reviews or objectives. The practices

are primarily standardized and consistently executed.

• Level 5 – Optimizing / Innovative: Sustainability is an ingrained, strategic

priority, and the team continuously innovates to improve it. The software

delivery process includes advanced optimizations like running tasks when and

where renewable energy is available (known as carbon-aware scheduling) and

extensive use of renewable-powered infrastructure. The organization meets

internal sustainability targets and contributes to industry best practices

(publishing metrics, open-sourcing green tools, etc.). At this level,

sustainability efforts are fully balanced with other DevSecOps goals.

Sustainability metrics show year-over-year improvement and efficient resource

usage (e.g., minimal carbon per user or build), reflecting leadership in

sustainable DevSecOps.

Each level on this Likert scale provides a quantitative score (1 through 5) that feeds

into the scoring model. Using a Likert scale enables straightforward quantification of

qualitative maturity traits. Teams can self-assess or be audited against descriptions for each

level to determine their score. This approach brings clarity and consistency to measuring

sustainability maturity, akin to how one might rate security or process maturity on a

numeric scale.

Statistical Interpretation: Weighted Averages and Variance

The model produces an overall maturity score after scoring each category

(including sustainability) on the 1–5 scale and applying weights. It is calculated as a

weighted average of all category scores - Weighted Average (Composite Score). Multiply

each category’s score by its weight (as a percentage or coefficient), sum these up, and

142

divide by the sum of weights (usually 100% if weights are percentages). For example, if

Security=4 (weight 0.30), Automation=3 (0.25), Risk=4 (0.20), and Sustainability=2

(0.25), the overall score = (40.30 + 30.25 + 40.20 + 20.25) = 3.25 out of 5 (or 65 out of

100). This weighted scoring reflects performance balanced across all areas – a low

sustainability score will pull down the average, even if other areas are strong, and vice

versa. Over time, improvements in any category will raise the composite score, allowing

teams to track holistic progress.

Besides the average, the model looks at the variance (or spread) of scores across

categories – mainly focusing on sustainability vs. other areas. A high variance indicates the

team excels in some areas but lags in others. For instance, if sustainability scored much

lower than all other categories, the variance would be high, highlighting an imbalance in

DevSecOps maturity. On the other hand, a low variance (scores are more uniform across

categories) suggests a well-rounded approach. Calculating the variance (or standard

deviation) of category scores helps identify whether sustainability is an outlier – far ahead

or far behind other indicators. This is important for interpretation: even if the overall

average is moderate, a high variance might signal uneven maturity that warrants attention

(e.g., strong security and automation, but poor sustainability practices could be a risk

regarding long-term viability and compliance).

Organizations can interpret their results more effectively using these statistics. The

weighted average gives a single DevSecOps Sustainability Maturity score to benchmark

against targets or industry standards. The variance provides insight into whether the team

should focus on leveling up a particular area. For example, an organization might find an

overall score of 3.5/5 with a significant variance – upon review, they see sustainability as

only 2/5 while all other areas are 4/5. It indicates a clear need to invest in sustainability

(tooling, training, process improvements) to balance the DevSecOps program. Conversely,

143

if sustainability is high but perhaps automation is low, resources might shift to improving

CI/CD without losing the sustainability gains.

By examining both the aggregated score and the score distribution, the model rates

performance and guides risk management and continuous improvement efforts. A

balanced, low-variance scorecard implies the organization is uniformly mature (an ideal

scenario), whereas any significant gaps pinpoint where additional effort is needed to

achieve overall DevSecOps excellence.

Structured Scoring Model Overview

Bringing it all together, below is a structured view of the DevSecOps scoring model

with sustainability integrated. Each category is assessed on a 1–5 scale and weighted; the

example weights and criteria can be adjusted to fit an organization’s needs, as in Table E.2

below.

Category Key Focus Risk Indicator Weight Maturity

Score (1–5)

Weighted

Score

Security Vulnerability

management, secure

coding, compliance

adherence.

Number of Open

Vulnerabilities,

Time to

Remediate

30% 4 1.20

Automation CI/CD pipeline

integration,

automated testing,

infrastructure as

code.

Deployment

Frequency, Lead

Time for Changes

25% 3 0.75

Risk Mgmt Threat modeling,

incident response,

governance

processes.

Incident

Frequency,

Meantime to

Recovery

20% 4 0.80

Sustainability Carbon reduction

initiatives, energy-

Carbon

Emissions per

25% 2 0.50

144

efficient architecture,

resource

optimization

practices.

Release, Energy

Use per

Transaction, % of

Resources

Optimized

Overall -

Weighted

average of the

above.

Composite

DevSecOps and

Sustainability Score

- 100% - 3.25 (out of

5)

Table E.2: Structured Scoring Model with Sustainability.

Each category is rated 1–5 (Likert-scale) on maturity, multiplied by weight to

contribute to the overall score. In the example above, the low Sustainability score (2)

significantly lowers the overall composite to 3.25 despite high Security and Risk scores,

indicating a gap. The model encourages a balanced improvement: teams should aim to raise

their sustainability maturity (e.g., from 2 → 4) while maintaining or improving other areas,

which would substantially increase the overall score (in the example, if Sustainability

became 4, the overall would jump to 4.0).

In summary, this scoring model embeds sustainability into DevSecOps evaluation

in a formal, quantifiable way. By integrating sustainability metrics (carbon footprint,

energy efficiency, resource usage) with existing risk indicators and weighted Likert-scale

scoring, organizations get a comprehensive view of their DevSecOps maturity. This model

assesses how well teams deliver secure and reliable software and how responsibly they do

so with respect to the planet.

145

REFERENCES

Ahmaro, I.Y.Y., Bin Mohd Yusoff, M.Z. and Abualkishik, A.M. (2014) ‘The current

practices of green computing approaches in Malaysia’, in Proceedings of the 6th

International Conference on Information Technology and Multimedia.

ieeexplore.ieee.org, pp. 341–345.

Ahmed, A.M.A.A. (2019) ‘DevSecOps: Enabling Security by Design in Rapid Software

Development’, in International Journal of Advanced Computer Science.

Agarwal, S. et al. (2015) ‘Green solutions: A pilot study on green technology and green

computing’, in International Journal, 5(10), pp. 680–686.

Albertao, F. et al. (2010) ‘Measuring the sustainability performance of software projects’,

in 2010 IEEE 7th International Conference on E-Business Engineering. 2010

IEEE 7th International Conference on e-Business Engineering (ICEBE), IEEE,

pp. 369–373.

Alharthi, A.D., Spichkova, M. and Hamilton, M. (2018) ‘SuSoftPro: Sustainability

Profiling for Software’, in 2018 IEEE 26th International Requirements

Engineering Conference (RE), pp. 500–501.

Andrikopoulos, V. et al. (2022) ‘Sustainability in Software Architecture: A Systematic

Mapping Study’, in 48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pp. 426–433.

Anwar, H. and Pfahl, D. (2017) ‘Towards Greener Software Engineering Using Software

Analytics: A Systematic Mapping’, in 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications (SEAA). IEEE, pp. 157–166.

Arseneault, E. et al. (2022) ‘Experience-Based Guidelines for Effective Planning &

Management of Software Integration & Test Activities in the Agile/DevSecOps

146

Environment’, in 2022 IEEE 29th Annual Software Technology Conference

(STC), pp. 155–155.

Azad, N. and Hyrynsalmi, S. (2023) ‘DevOps critical success factors - A systematic

literature review’, in Information and Software Technology, 157, p. 107150.

Bambazek, P., Groher, I. and Seyff, N. (2022) ‘Sustainability in Agile Software

Development: A Survey Study among Practitioners’, in 2022 International

Conference on ICT for Sustainability (ICT4S), pp. 13–23.

Bang, S.K. et al. (2013) ‘A grounded theory analysis of modern web applications:

knowledge, skills, and abilities for DevOps’, in Proceedings of the 2nd annual

conference on Research in information technology. New York, NY, USA:

Association for Computing Machinery (RIIT ’13), pp. 61–62.

Barroso, L.A. and Hölzle, U. (2007) ‘The case for energy-proportional computing’, in

IEEE Computer, 40(12), pp. 33–37. DOI: 10.1109/MC.2007.443.

Bash, C. et al. (2023) ‘Sustainability: Fundamentals-Based Approach to Paying It

Forward’, in Computer, 56(1), pp. 125–132.

Bermon Angarita, L., Fernández Del Carpio, A. and Osorio Londoño, A.A. (2022) ‘A

bibliometric analysis of DevOps metrics’, in DESIDOC Journal of Library &

Information Technology, 42(6), pp. 387-396. doi:10.14429/djlit.42.6.18365.

Bozzelli, P., Gu, Q., and Lago, P. (2019) ‘A systematic literature review on green

software metrics’, VU University Amsterdam, Available at:

https://core.ac.uk/display/43408497 (Accessed: 6 January 2025).

Bogdanović, Z. et al. (2023) “The Role of DevOps in Sustainable Enterprise

Development”, in Sustainability: Cases and Studies in Using Operations

Research and Management Science Methods, Cham: Springer International

Publishing, pp. 217–237.

147

Calero, C., Moraga, M.Á. and García, F. (2022) ‘Software, Sustainability, and UN

Sustainable Development Goals’, in IT Professional, 24(1), pp. 41-48. doi:

10.1109/MITP.2021.3117344.

Calero, C., Moraga, M.Á. and Piattini, M. (2021) ‘Introduction to Software

Sustainability’, in Software Sustainability. Cham: Springer International

Publishing, pp. 1–15.

Catolino, G. (2020) ‘A blessing in disguise? Assessing the Relationship between Code

Smells and Sustainability’, in 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 779–780.

Chang, V., Wills, G. and De Roure, D. (2010) ‘A Review of Cloud Business Models and

Sustainability’, in 2010 IEEE 3rd International Conference on Cloud Computing,

pp. 43–50.

Chitchyan, R. et al. (2016) ‘Sustainability design in requirements engineering: state of

practice’, in Proceedings of the 38th International Conference on Software

Engineering Companion. New York: Association for Computing Machinery

(ICSE ’16), pp. 533–542.

Chitchyan, R., Noppen, J. and Groher, I. (2015) ‘What Can Software Engineering Do for

Sustainability: Case of Software Product Lines’, in 2015 IEEE/ACM 5th

International Workshop on Product Line Approaches in Software Engineering,

pp. 11–14.

Condori-Fernandez, N. and Lago, P. (2018) ‘Characterizing the contribution of quality

requirements to software sustainability’, in The Journal of systems and software,

137, pp. 289–305.

Creswell, J.W., and Clark, V.L.P. (2017) Designing and Conducting Mixed Methods

Research. SAGE Publications.

148

Dahab, S. et al. (2022) ‘A learning-based approach for green software measurements’, in

Proceedings of ITEA3 Project Measure Conference.

Debbarma, T. and Chandrasekaran, K. (2016) ‘Green Measurement Metrics Towards a

Sustainable Software: A Systematic Literature Review’, in IEEE International

Conference on Recent Advances and Innovations in Engineering (ICRAIE-2016),

Jaipur, India, pp. 1–7.

Desai, A. and Bhatia, M. (2011) ‘The G-Readiness Model: Assessing organizational

readiness for green IT initiatives’, in Journal of Sustainable IT Practices, 4(2), pp.

98–112.

Erdélyi, K. (2013) ‘Special factors of development of green software supporting eco

sustainability’, in 2013 IEEE 11th International Symposium on Intelligent Systems

and Informatics (SISY). IEEE, pp. 337–340.

European Commission (2023) European Green Deal and Corporate Sustainability

Reporting Directive (CSRD). Brussels: European Commission. Available at

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-

green-deal_en (European Green Deal) and https://finance.ec.europa.eu/capital-

markets-union-and-financial-markets/company-reporting-and-auditing/company-

reporting/corporate-sustainability-reporting_en (CSRD) (Accessed: 9 February

2025).

Fakhar, F. et al. (2012) ‘Software level green computing for large scale systems’, in

Journal of Cloud Computing: Advances, Systems and Applications, 1(1), p. 4.

Ferri, J., de Barros, R.M. and Brancher, J.D. (2011) ‘Proposal for a Framework Focus on

Sustainability’, in 30th International Conference of the Chilean Computer Science

Society, pp. 127–134.

149

Forsgren, N., Humble, J. and Kim, G. (2018) Accelerate: The Science of Lean Software

and DevOps. Portland: IT Revolution Press.

Forti, V. et al. (2020) The Global E-waste Monitor 2020. Bonn/Geneva: United Nations

University/ITU.

Freitag, C. et al. (2021) ‘The real climate and transformative impact of ICT: A critique of

estimates, trends, and regulations’, in Patterns (New York, N.Y.), Vol. 2 No. 9, p.

100340.

Freundlieb, M. and Teuteberg, F. (2012) ‘Evaluating the Quality of Web Based

Sustainability Reports: A Multi-method Framework’, in 2012 45th Hawaii

International Conference on System Sciences, pp. 1177–1186.

Garousi, V., Felderer, M. and Mäntylä, M.V. (2019) ‘Guidelines for including grey

literature and conducting multivocal literature reviews in software engineering’,

in Information and Software Technology, 106, pp. 101–121.

Garscha, P. (2021) ‘From Sustainability in Requirements Engineering to a Sustainability-

Aware Scrum Framework’, in 2021 IEEE 29th International Requirements

Engineering Conference (RE), pp. 462–467.

Gerostathopoulos, I., Raibulet, C. and Lago, P. (2022) ‘Expressing the adaptation intent

as a sustainability goal’, in Proceedings of the ACM/IEEE 44th International

Conference on Software Engineering: New Ideas and Emerging Results. New

York: Association for Computing Machinery (ICSE-NIER ’22), pp. 36–40.

Gmach, D. et al. (2012) ‘Profiling Sustainability of Data Centers’, in Proceedings of the

IEEE International Conference on Sustainable Computing and Communications,

pp.1-6. DOI: http://dx.doi.org/10.1109/SusCom.2012 (Accessed: 6 January 2025).

150

Groher, I. and Weinreich, R. (2017) ‘An Interview Study on Sustainability Concerns in

Software Development Projects’, in 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), pp. 350–358.

Gupta, A. (2022) ‘An Integrated Framework for DevSecOps Adoption’, in International

journal of computer trends and technology, 70(6), pp. 19–23.

Guzman Camacho, N. (2024) ‘Unlocking the Potential of AI/ML in DevSecOps:

Effective Strategies and Optimal Practices’, in Journal of Artificial Intelligence

General Science (JAIGS), 3(1), pp.1-12.

Harmon, R.R. and Auseklis, N. (2009) ‘Sustainable IT services: Assessing the impact of

green computing practices’, in PICMET ’09 - 2009 Portland International

Conference on Management of Engineering & Technology. ieeexplore.ieee.org,

pp. 1707–1717.

Harmon, R.R. and Demirkan, H. (2011) ‘The Corporate Sustainability Dimensions of

Service-Oriented Information Technology’, in 2011 Annual SRII Global

Conference, pp. 601–614.

Haron, H. et al. (2015) ‘Software Reusability in Green Computing’, in Advanced science

letters, 21(10), pp. 3283–3287.

Haugsvær, S.B. (2023) ‘Sustainable BizDevOps: A novel methodology for reducing the

carbon footprint of web products’, in NTNU. Available at:

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3079159 (Accessed: 26

December 2023).

Ibrahim, S.R.A., Sallehudin, H. and Yahaya, J. (2023) ‘Exploring Software Development

Waste and Lean Approach in Green Perspective’, in 2023 International

Conference on Electrical Engineering and Informatics (ICEEI) (pp. 1-6).

151

International Energy Agency (2023) Electricity Market Report 2024 – Executive

Summary, IEA.

Jayalath, J.M.T.I. et al. (2019) ‘Green Cloud Computing: A Review on Adoption of

Green-Computing attributes and Vendor Specific Implementations’, in 2019

International Research Conference on Smart Computing and Systems

Engineering (SCSE). ieeexplore.ieee.org, pp. 158–164.

Jimenez, E., Calero, C., and Moraga, M.Á. (2022) CSRE4SOC (CSR evaluation for

software companies). arXiv preprint arXiv:2209.13372.

Jindal, G. and Gupta, M. (2012) ‘Green computing “future of computers”’, in

International Journal of Emerging Research in Management & Technology, 1(2),

pp. 14–18.

Kienzle, J., Strooper, P., and Viller, S. (2016) ‘Towards a sustainable software

development lifecycle’, in Computer Science - Research and Development, 31(1),

pp. 5-15.

Kipp, A. and Jiang, T. (2011) ‘Green Metrics for Energy-aware IT Systems’, in

Proceedings of the 2011 International Conference on Complex, Intelligent, and

Software Intensive Systems, pp. 381-386.

Koskinen, A. (2019) ‘DevSecOps: Building Security into the Core of DevOps’, in

Journal of DevOps Practices.

Lago, P. (2019) ‘Architecture Design Decision Maps for Software Sustainability’, in

2019 IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering in Society (ICSE-SEIS), pp. 61–64.

Lami, G. and Buglione, L. (2012) ‘Measuring Software Sustainability from a Process-

Centric Perspective’, in Proceedings of the Joint Conference of the 22nd

152

International Workshop on Software Measurement and the 7th International

Conference on Software Process and Product Measurement. IEEE.

Landauer, C. (2006) ‘Wrapping Architectures for Long-Term Sustainability’, in 2006

Second International IEEE Workshop on Software Evolvability (SE’06), pp. 44–

49.

Lange, S., Pohl, J. and Santarius, T. (2020) ‘Digitalization and energy consumption. Does

ICT reduce energy demand?’, in Ecological economics: the journal of the

International Society for Ecological Economics, 176, p. 106760.

Le, D.M. et al. (2016) ‘Relating Architectural Decay and Sustainability of Software

Systems’, in 2016 13th Working IEEE/IFIP Conference on Software Architecture

(WICSA), pp. 178–181.

Li, Q. and Zhou, M. (2011) ‘The survey and future evolution of green computing’, in

Proceedings of the IEEE International Conference on Green Computing and

Communications. IEEE.

Mack, S.D. (2023) The DevSecOps Playbook: Deliver Continuous Security at Speed.

New York: John Wiley & Sons.

Mallouli, W. et al. (2020) ‘Metrics-driven DevSecOps’, in Proceedings of the 15th

International Conference on Software Technologies. 15th International

Conference on Software Technologies, SCITEPRESS - Science and Technology

Publications. Available at: https://doi.org/10.5220/0009889602280233.

Mann, H., and Maurer, F. (2015) ‘A case study on the impact of scrum on overtime and

customer satisfaction in agile software development projects’, in Journal of

Systems and Software, 117, pp. 170-183.

Mourão, B.C., Karita, L., and Machado, I.C. (2018) ‘Green and Sustainable Software

Engineering: A Systematic Mapping Study’, in Proceedings of the 7th Brazilian

153

Symposium on Software Components, Architectures, and Reuse, pp. 121–130.

doi:10.1145/3275245.3275258.

Muthu, M., Banuroopa, K. and Arunadevi, S. (2019) ‘Green and Sustainability in

Software Development Lifecycle Process’, in Sustainability Assessment at the

21st Century, 27(63). Available at:

https://books.google.com/books?hl=en&lr=&id=yJj8DwAAQBAJ&oi=fnd&pg=P

A63&dq=software+development+green+computing&ots=4uFAQbWCZe&sig=Y

BEEuojkyLAuUSZS9NW5REX5DI0.

Ono, T., Iida, K. and Yamazaki, S. (2017) ‘Achieving sustainable development goals

(SDGs) through ICT services’, in Fujitsu Sci. Tech. J, 53(6), pp. 17–22.

Orozco-Garcés, C.-E., Pardo-Calvache, C.-J., and Suescún-Monsalve, E. (2022) 'Metrics

Model to Complement the Evaluation of DevOps in Software Companies', in

Revista Facultad de Ingeniería, 31(62), e14766.

doi:10.19053/01211129.v31.n62.2022.14766.

OWASP (2023) ‘OWASP DevSecOps Maturity Model (DSOMM)’, Open Web

Application Security Project (OWASP). Available at: https://owasp.org/www-

project-devsecops-maturity-model/ (Accessed: 9 February 2025).

Pakalapati, N., Venkatasubbu, S. and Sistla, S.M.K. (2023) ‘The Convergence of AI/ML

and DevSecOps: Revolutionizing Software Development’, in Journal of

Knowledge Learning and Science Technology, 2(2), pp.190-212. DOI:

https://doi.org/10.60087/jklst.vol2.n2.p212 (Accessed 6 January 2025).

Penzenstadler, B. et al. (2021) ‘Iterative Sustainability Impact Assessment: When to

propose?’, in 2021 IEEE/ACM International Workshop on Body of Knowledge for

Software Sustainability (BoKSS), pp. 5–6.

154

Petrović, N. (2023) ‘Machine Learning-Based Run-Time DevSecOps: ChatGPT Against

Traditional Approach’, preprint, pp. 1–5.

Philipson, G. (2011) ‘A Framework for Green Computing’, International Journal of

Green Computing (IJGC), 2(1), pp. 12–26.

Pluralsight Flow Transformation Team (2023) ‘26 DevOps KPIs and Metrics: Guide to

DORA Progress’, in Pluralsight Blog. Available at:

https://www.pluralsight.com/resources/blog/business-and-leadership/devops-

metrics (Accessed: 16 January 2025).

Prates, L. et al. (2019) ‘DevSecOps Metrics’, in Information Systems: Research,

Development, Applications, Education. Springer International Publishing, pp.

77–90.

Rahul, B.S., Kharvi, P. and Manu, M.N. (2019) 'Implementation of DevSecOps using

open-source tools', in International Journal of Advance Research, Ideas and

Innovations in Technology, 5(3), pp. 1050-1051.

Rajapakse, R.N. et al. (2022) ‘Challenges and solutions when adopting DevSecOps: A

systematic review’, in Information and Software Technology, Elsevier, Vol. 141,

p. 106700.

Riekstin, A.C. et al. (2016) ‘Monitoring and Measurement System for Green Operation of

Geographically Distributed ICT Services’, in Proceedings of the International

Conference on Energy-Efficient Computing and Networking. ACM.

Rath, A.K. (2013) Cloud Computing: Facing the Reality. Kindle edition. Available at:

https://www.amazon.in/Cloud-Computing-Reality-Ashwini-Rath-

ebook/dp/B00EYNGVH0 (Accessed: 16 January 2025).

Rath, A. et al. (2012) ‘Decision points for adoption of cloud computing in SMEs’, in

2012 International Conference for Internet Technology and Secured

155

Transactions. London, 10–12 December. IEEE. ISBN: [Provide the ISBN number

if available]. Available at: https://ieeexplore.ieee.org/document/6470904

(Accessed: 16 January 2025).

Rath, A. (2024) Concepts and Practices of DevSecOps: Crack the DevSecOps interviews.

New Delhi: BPB Publishers.

Raja, S.P. (2021) ‘Green Computing and Carbon Footprint Management in the IT

Sectors’, in IEEE Transactions on Computational Social Systems, 8(5), pp. 1172–

1177.

RIMS (2015) ‘RIMS Risk Maturity Model (RMM)’, Risk and Insurance Management

Society (RIMS). Available at: https://www.rims.org/Tools/risk-maturity-model

(Accessed: 9 February 2025).

Roche, J. (2013) ‘Adopting DevOps practices in quality assurance’, Communications of

the ACM, 56(11), pp. 38–43.

Ruokolainen, T. and Kutvonen, L. (2012) ‘An Architecture Framework for Facilitating

Sustainability in Open Service Ecosystems’, in 2012 IEEE 16th International

Enterprise Distributed Object Computing Conference Workshops, pp. 84–93.

Sagar, S. and Pradhan, N. (2021) ‘A Review: Recent Trends in Green Computing’, in B.

Balusamy, N. Chilamkurti, and S. Kadry (eds) Green Computing in Smart Cities:

Simulation and Techniques. Cham: Springer International Publishing, pp. 19–34.

Saha, B. (2018) ‘Green computing: current research trends’, in International Journal of

Computer Sciences and Engineering, 6(3), pp. 467–469.

Sallou, J., Cruz, L. and Durieux, T. (2023) ‘EnergiBridge: Empowering Software

Sustainability through Cross-Platform Energy Measurement’. arXiv preprint

arXiv:2312.13897.

156

Schopf, J.M. (2009) ‘Sustainability and the Office of CyberInfrastructure’, in 2009

Eighth IEEE International Symposium on Network Computing and Applications,

pp. 1–3.

Singh, S. (2015) ‘Green computing strategies & challenges’, in 2015 International

Conference on Green Computing and Internet of Things (ICGCIoT).

ieeexplore.ieee.org, pp. 758–760.

Spencer, T. and Singh, S. (2024) ‘What the data centre and AI boom could mean for the

energy sector’, in International Energy Agency. Available at:

https://www.iea.org/commentaries/what-the-data-centre-and-ai-boom-could-

mean-for-the-energy-sector [Accessed 2 January 2025].

Sriraman, G. and Raghunathan, S. (2023) 'A Systems Thinking Approach to Improve

Sustainability in Software Engineering - A Grounded Capability Maturity

Framework', in Sustainability, 15(11), p. 8766. Available at:

https://www.mdpi.com/2071-1050/15/11/8766 (Accessed: 6 January 2025).

Chen, T. and Suo, H. (2022) ‘Design and Practice of Security Architecture via

DevSecOps Technology’, in 2022 IEEE 13th International Conference on

Software Engineering and Service Science (ICSESS) (pp. 310-313). IEEE.

Tee, M., Abdullah, R. and Abdullah, S. (2015) ‘A systematic literature review of green

software development in collaborative knowledge management environment’, in

International Journal of Advanced Computer Technology, 4(1), pp. 63-72.

Tjoa, A.M. and Tjoa, S. (2016) ‘The Role of ICT to Achieve the UN Sustainable

Development Goals (SDG): 6th IFIP World Information Technology Forum,

WITFOR 2016, San José, Costa Rica, September 12-14, 2016, Proceedings’, in

F.J. Mata and A. Pont (eds) ICT for Promoting Human Development and

157

Protecting the Environment. Cham: Springer International Publishing (IFIP

Advances in Information and Communication Technology), pp. 3–13.

Tortoriello, V. (2022) Definition of a DevSecOps Operating Model for software

development in a large Enterprise (Doctoral dissertation, Politecnico di Torino).

Available at: https://webthesis.biblio.polito.it/23649/ (Accessed: 18 July 2023).

Uddin, M. and Rahman, A.A. (2012) ‘Energy efficiency and low carbon enabler green IT

framework for data centers considering green metrics’, in Renewable and

Sustainable Energy Reviews, 16(6), pp. 4078–4094.

Venters, C.C. et al. (2018) ‘Software sustainability: Research and practice from a

software architecture viewpoint’, in The Journal of Systems and Software, 138,

pp. 174–188.

Vikram (2015) ‘Green computing’, in 2015 International Conference on Green

Computing and Internet of Things (ICGCIoT), pp. 767–772.

Wang, J., Palanisamy, B. and Xu, J. (2020) ‘Sustainability-aware Resource Provisioning

in Data Centers’, in 2020 IEEE 6th International Conference on Collaboration

and Internet Computing (CIC), pp. 60–69.

Wati, Y. and Koo, C. (2011) ‘Green IT Balanced Scorecard: A comprehensive model for

sustainable IT management’, Sustainability, 3(3), pp. 349–366.

doi:10.3390/su3030349.

Welter, P. and Benitti, F.B.V. (2013) ‘Green metrics to software development: A

systematic literature review’, in Journal of Systems and Software, 103, pp.259–

281. Available at: https://www.semanticscholar.org/paper/Green-metrics-to-

software-development-A-systematic-Welter-

Benitti/ece18755f61c4ecad3ef09981e115b46f9bdad59 [Accessed 6 January

2025].

158

Winters, T. (2018) ‘Non-atomic refactoring and software sustainability’, in Proceedings

of the 2nd International Workshop on API Usage and Evolution. New York, NY,

USA: Association for Computing Machinery (WAPI ’18), pp. 2–5.

Wlodarczyk, T.W. and Rong, C. (2010) ‘On the Sustainability Impacts of Cloud-Enabled

Cyber Physical Space’, in 2010 IEEE Second International Conference on Cloud

Computing Technology and Science, pp. 597–602.

Wolfram, N., Lago, P. and Osborne, F. (2017) ‘Sustainability in software engineering’, in

2017 Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–7.

Zohaib, M. (2023) ‘Towards Sustainable DevOps: A Decision Making Framework’, in

Journal of DevOps and Sustainable Computing, Available at:

https://doi.org/10.48550/arXiv.2303.11121 [Accessed 6 January 2025].

