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ABSTRACT 

NETWORK ANOMALY DETECTION THROUGH THE USE OF AI BASED 
TECHNOLOGIES 

  
  
  
  

Tathagata Nandy  
2025  

  
  
  

Dissertation Chair: Jaka Vadnjal  
Co-Chair: Aleksandar Erceg 

  
  

Networking is one of the most fundamental aspect of computer infrastructure along with 

Servers and Storage. The impact of Artificial Intelligence on Computer Networking has been 

profound from the early days (Mistry et al., 2024) of networking.  

Artificial intelligence is used to make the network more efficient (Umoga et al., 2024)and 

effective. Cloud computing-based analysis with AI for Edge computing (Umoga et al., 2024) 

is analysed with advanced AI and analytics methods.  The growth and importance of 

networking as a domain in the past decade has coincided with the explosion of AI technologies. 

This has led to building AI for networking as well as networking for AI as two separate 

adjacencies.  In this work AI for networking is examined with focus on classical and generative 

AI based technologies for network traffic classification and anomaly detection. The results are 

also compared with traditional methods like neural network based as well as classical statistical 

methods for anomaly detection methodologies.  The work aims to provide the benefit of AI 

based technologies for intrusion detection and prevention which can be used to build a secure 

and robust network. The work looks at different class of machine learning technologies with 

multiple class of traffic and provides valuable insights.  As part of this work close to twenty 

different machine learning algorithms along with Ten different publicly available dataset and 

provides the best combination for network traffic classification and anomaly detection. The 

research will provide notable insights to build a system for network anomaly detection as well 

as intrusion detection for the next generation of large scale and complex networks.  
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1. CHAPTER 1: 
INTRODUCTION 

 

1.1 Introduction  

The concepts of anomaly detection and network traffic classification have evolved hand-in-

hand with the broader development of computer networking and cybersecurity. Initially treated 

as distinct areas—one focusing on identifying unusual behaviour, the other on categorizing 

traffic flows—they have increasingly converged, particularly in the face of modern encrypted, 

multiprotocol, and high-volume network environments. 

Network Anomaly Detection is an advanced cybersecurity approach that continuously keeps 

track of, analyses results across datasets for the KDD Cup with Neural behavioral patterns. It 

operates under the basic assumption that malicious activities, system crashes, or performance 

degradations are reflected as quantifiable changes in the network's communication patterns. It 

creates detailed baseline models of normal network activity through statistical examination of 

older traffic activity, protocol usage habits, bandwidth utilization metrics, and temporal 

communication streams. These baselines serve as points of reference for all future network 

activity that is measured and analyzed for potential anomalies. 

Its operating structure supports real-time data aggregations that grab network packets, flow 

records, and metadata from various network levels. Sophisticated processing engines 

subsequently use advanced algorithms to examine the constant flow of network data, matching 

emerging patterns to predefined baselines to detect statistically significant changes. The system 

supports dynamic adaptation, repeatedly adjusting baseline models to reflect legitimate 

changes in network usage patterns while retaining sensitivity to actual security breaches. 

1.2 Network Traffic Classification 

 

In parallel with network evolution, the flow classification architecture has evolved over the last 

20 years. It has to be noted that the initial flow classification was port-based. It transitioned to 

payload-based inspection as the same application (e.g., YouTube) began using multiple ports. 

This made the simple port-based classification insufficient. The next came payload-based 

classification(Finsterbusch et al., 2014), which was effective, but started having issues as 

encrypted traffic started to increase.  The evolution continued with TLS certificate-based 



2 
 

classification and eventually progressed to machine learning-based classification.  ML-based 

classification also evolved with time. Simple statistical classification to advanced DL based 

classification to ensemble methods like XGS or Gradient Boost. The area is still evolving, with 

traditional and neural networks-based algorithms, and multiple new industrial and academic 

research papers are being published (Haque et al., 2022).  Figure 1 shows the history of network 

traffic classification. 

 

Figure 1: Network Traffic Classification evolution 

1.2.1 Reason for Network Traffic Classification  

 

Network Traffic Classification has many reasons. The primary reason is that it started with 

traffic visibility and telemetry. Then it evolved to differentiated Quality of Service (QOS) for 

different classes of traffic.  With the evolution of IOT and new devices, anomaly detection 

became another major reason for traffic classification. Lastly, application detection, 

application-based policies, as well as Intrusion Detection systems are some of the pressing 
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needs to do network traffic classification.  Figure 2 shows network traffic classification and 

why it is so valuable.  

 

Figure 2: Different Uses of Network Traffic Classification 

 

1.2.2 Historical Development of Network Anomaly Detection 

 

History of Network Anomaly Detection. The development of network anomaly detection has 

been through four separate stages, which demonstrate the sophistication and changes of the 

cybersecurity attacks over the last forty years. In the early 1980s through the 1990s, most 

systems in the field used rule-based systems and used hand-crafted signatures and static 

heuristics to detect anomalies concerning expected network behaviour, with early intrusion 

detection systems such as Snort and Bro (since renamed Zeek) setting the standard of packet 

header and payload examination with a set of predefined attack signatures. A major shift of 

statistical modeling and shallow machine learning methods occurred in the 2000s, as 

researchers realized the inadequacy of fixed rule sets and started considering Gaussian Mixture 

Models, Principal Component Analysis, Support Vector Machines, decision trees and k-means 

clustering models, and a groundbreaking paper released in 2008 by T.T.T. Nguyen and 

Grenville Armitage showed that metadata at the flow level could successfully classify 

applications without examining packet contents, and is now considered the standard 

methodology of applying flow-based features to traffic classification The 2010s saw the rise of 
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big data methods based on comprehensive datasets, e.g., CICIDS2017, UNSW-NB15, and 

BoT-IoT, that gave realistic, labeled traffic at new scales, making hybrid methods combining 

anomaly detection with traffic classification possible, and the growing popularity of encrypted 

communications and multiprotocol enterprise networks that made payload-based detection less 

effective and fastened the development of deep learning implementations like Autoencoders 

and Long Short-Term Memory networks to model temporal patterns and provide zero-day 

attacks that can be detected. The contemporary period, 2020-2027 marks the intersection of 

anomaly detectors and traffic classifiers, with AI-native designs using Transformers, 

Generative Adversarial Networks and Variational Autoencoders to replicate subtle variations 

in behavior in dynamic environments and payload inspection by protocols such as HTTPS and 

QUIC has rendered it impossible to inspect payloads, making it important that real-time 

classification and analysis is available at network edges using switches, gateways, and IoT hubs 

to support zero-trust security models and edge computing paradigms.  Simultaneously, edge 

computing and zero-trust security models demand that decisions be made close to the user or 

device. This requires traffic to be classified and analysed in real-time at switches, gateways, or 

IoT hubs, blurring the lines between routing, classification, and security. Multicast network 

traffic classification (Gombao, 2025), along with IDS, is gaining interest as not much work has 

been done on this area.  

1.3 Network Anomaly Detection  

Network anomaly detection refers to the process of identifying unusual patterns or deviations 

in network traffic that do not conform to expected behaviour. These anomalies often indicate 

security threats such as unauthorised access, malware propagation, data exfiltration, denial-of-

service (DoS) attacks, or performance degradation caused by misconfigurations or system 

faults. Let's take a close look at network anomaly detection methods over the years in Figure 3 
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Figure 3: Network Traffic classification and Anomaly detection 

 

Network anomaly detection has its origins in the broader field of network security and 

performance management, evolving alongside the growth of computer networks and the 

internet. As networks became more complex, with increasing numbers of connected devices 

and diverse applications, the need to monitor and protect these networks from unauthorized 

access, performance degradation, and security breaches became critical. This led to the 

development of network anomaly detection techniques.  There has always been a deep interest 

in network anomaly detection through AI-based methods. Early work done by (Kaur et al., 

2013) Focused on different methods for anomaly detection as a survey paper. Similar work has 

been done by (Bhattacharyya & Kalita, 2013). IOT devices and blockchain-based work 

(Golomb et al., 2018a) started gaining prominence as and when the related technologies 

evolved.  As neural networks became the state of the art for AI (Liu et al., 2019) (Klarák et al., 

2024)Proposed RNNs for anomaly detection of IP traffic. Finally, with GenAI and 

Reinforcement learning gaining popularity (Edozie et al., 2025) analyzed RL and GAN-based 

methods for anomaly detection for IP traffic. The next sections provide details of the trends 

across decades.  

A. Machine Learning and Data-Driven Approaches: Machine learning (ML) techniques, 

both supervised and unsupervised, were applied to anomaly detection. Popular methods 

included: 

• Clustering (e.g., K-Means, DBSCAN) for unsupervised anomaly detection. 

• Classification (e.g., Decision Trees, Random Forest) for supervised anomaly detection. 

• Deep learning models like Autoencoders, Recurrent Neural Networks (RNN), and Long 

Short-Term Memory (LSTM) networks for advanced sequence modelling. 

B. Advanced AI and Deep Learning Models: Deep learning models, such as Variational 

Autoencoders (VAE), Generative Adversarial Networks (GAN), and Transformer 

models, brought significant improvements in anomaly detection accuracy. These 

models can automatically learn complex patterns in high-dimensional network traffic 

data, identifying both known and unknown anomalies. Real-time anomaly detection 
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using these models has become feasible with the rise of high-performance computing 

and cloud-based solutions. 

C. Modern Network Anomaly Detection:  Today, network anomaly detection is an 

essential component of network security, powered by a combination of machine 

learning, deep learning, and big data analytics. It is used in various applications, 

including Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), 

Network Performance Monitoring (NPM) for identifying congestion and latency issues, 

Cloud and Data Centre Security for detecting malicious traffic, IoT Security for 

monitoring connected devices and identifying compromised endpoints. Unlike 

signature-based intrusion detection systems (IDS) that rely on known attack patterns, 

anomaly detection techniques focus on identifying unknown or evolving threats — 

making them especially valuable in zero-day attack scenarios and dynamic network 

environments. 

1.4 Need and Significance of Network Anomaly Detection  

 

With the exponential growth of cloud computing, IoT devices, and 5G networks, network 

anomaly detection has become more critical than ever. Organizations rely on it to maintain 

network security, optimize performance, and ensure reliable service delivery in an increasingly 

complex and dynamic network environment.  

i. State-of-the-Art Threat Detection Beyond Security 

 State-sponsored attacks, zero-day exploits, and advanced persistent threats are modern-day 

manifestations of cyber threats using advanced tricks to circumvent signature-based detection 

systems. These attacks tend to use valid network protocols and can sustain low-profile 

operations over long durations of time as they proceed with the rogue activities. Behavioural 

analysis capabilities are offered by network anomaly detection, whereby suspicious patterns 

are identified irrespective of the attack methodology, and can spot previously unknown threats 

that traditional security measures fail to identify. The capability of the system to understand 

the normal behaviour patterns of the network and raise alarms on abnormal behaviour makes 

it fundamental in detecting new attack vectors and new measures to exploit the network without 

the ordinary security measures.  

ii. Business Continuity and Financial Protection  
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The average expense of data breaches is greater than millions of dollars when you include the 

remediation cost, regulatory fines, legal expenses and damage to reputation. Network anomaly 

detection is a type of early warning system that allows detecting potential security incidents at 

the early stages, allowing quick containment and minimizing the scope of breaches and their 

costs by a significant margin. In addition to security advantages, the system eliminates the 

expensive business interruptions as the system detects network performance problems, 

infrastructure failures and capacity issues before negatively affecting the critical business 

operations. This is a proactive surveillance feature that facilitates continuity in operations and 

service quality, which is critical in satisfying customers and maintaining a competitive stance 

in online business scenarios. 

iii.  Regulatory Compliance and Regulatory Legal Requirements 

The modern regulatory frameworks, such as GDPR, PCI-DSS, HIPAA, and SOX, present a 

robust system of network surveillance as a core functionality in the list of requirements to 

comply with data protection. The organizations should prove they have regular observation of 

the network operations, detection of unauthorized access, and documentation of the incident to 

meet the requirements of the regulations and to avoid massive fines. Network anomaly 

detection offers the technical base needed to comply with it and also yields detailed audit trails 

needed by regulatory reporting. Risks of legal liability that come with poor security 

surveillance have posed a huge risk since courts continue to hold organizations responsible 

when security breaches that could have been averted by proper surveillance systems have been 

witnessed. 

iv. Resource Optimization and operational Efficiency 

Surveillance of the modern enterprise networks with thousands of devices and huge volumes 

of traffic is computationally infeasible and cost-prohibitive to security experts. Network 

anomaly detectors remove the need for human-operated threat identification and prioritization 

software, and allow security experts to apply expertise to investigating actual incidents and not 

to investigate standard network data. The more sophisticated systems offer contextual data and 

scoring of risks that simplify the incident response procedures and decrease mean time to threat 

containment. This automation feature enables organizations to have a full security coverage at 

minimal security personnel utilization, as well as to guarantee a uniform performance of 

monitoring in cresting network infrastructures. 
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1.5 Research Problem  

 

The rapid growth of modern networks, including enterprise networks, cloud environments, IoT 

ecosystems, and 5G infrastructures, has significantly increased the complexity and diversity of 

network traffic. As networks become more dynamic, they are increasingly exposed to a wide 

range of security threats, including malware, distributed denial-of-service (DDoS) attacks, data 

breaches, unauthorized access, and misconfigurations. Traditional network security measures, 

such as static rule-based detection and signature-based Intrusion Detection Systems (IDS), 

have proven inadequate in effectively detecting and preventing sophisticated and evolving 

network anomalies. Multicast networks, which are widely used in applications such as IPTV, 

video conferencing, financial data distribution, and content delivery networks, pose additional 

challenges for anomaly detection due to their dynamic group membership, traffic replication, 

and complex routing protocols. Detecting anomalies in multicast traffic requires specialized 

methods that can account for group-based communication, membership changes, and multicast 

traffic optimization. Existing network anomaly detection methods suffer from several 

Problems and Limitations, which are as follows:  

➢ Lack of Adaptability: Traditional anomaly detection models rely on predefined rules or 

static thresholds, making them ineffective in dynamically changing network 

environments. 

➢ High False Positive Rate: Static detection methods and even some machine learning 

models often generate high false positives due to their inability to differentiate between 

normal and anomalous traffic patterns accurately. 

➢ Inadequate Multicast Anomaly Detection: Existing solutions are primarily focused on 

unicast traffic, leaving multicast traffic, which is critical for many applications, poorly 

protected. 

➢ Limited Scalability: Many AI-based anomaly detection models require significant 

computational resources, making them impractical for real-time detection in high-speed 

networks (e.g., 5G, IoT, cloud). 

➢ Lack of Explainability: Advanced AI models (e.g., Deep Learning, Generative AI) 

often function as "black boxes," providing accurate anomaly detection but without 

explaining why an anomaly was detected, leading to trust and interpretability issues. 
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➢ Difficulty in Handling Diverse Traffic Types: Modern networks generate a wide variety 

of traffic types, including web traffic, video streams, VoIP, multicast, IoT device 

communication, and more. A single anomaly detection model may not effectively 

detect anomalies across all these traffic types. 

➢ Zero-Day Attack Detection Challenge: Many existing methods fail to detect zero-day 

attacks (previously unknown threats), leaving networks vulnerable to new and evolving 

attack techniques. 

          Key Aspects of the Research Problem are:  

a. How to develop an AI-based anomaly detection framework that can accurately identify 

anomalies in both unicast and multicast traffic? 

b. How to ensure that the framework is scalable for high-speed networks (e.g., 5G, IoT, 

cloud) without compromising detection accuracy? 

c. How to leverage advanced AI techniques (Generative AI, Deep Learning) while 

maintaining model explainability and trust? 

d. How to minimize false positives and false negatives, ensuring that the anomaly 

detection system is both accurate and reliable? 

e. How to design a flexible framework that can adapt to different network environments, 

including enterprise, cloud, IoT, and multicast networks? 

f. How to provide actionable insights for network administrators, including root cause 

analysis of detected anomalies? 

This research aims to address the critical problem of accurately detecting, classifying, and 

preventing network anomalies (including multicast anomalies) using advanced Artificial 

Intelligence (AI) techniques. The primary problem is the lack of a unified, adaptive, scalable, 

and explainable AI-based framework capable of detecting anomalies in both unicast and 

multicast network traffic, ensuring network security and performance across diverse network 

environments. 

1.6 Purpose of Research and Research Questions 

 



10 
 

The long-term objective of this research is to develop a comprehensive framework and 

methodology for network traffic classification, anomaly detection, intrusion detection, and 

prevention using advanced Artificial Intelligence (AI) techniques. Network traffic 

classification, anomaly detection, and specifically multicast anomaly detection is critical for 

securing modern networks, where the sheer diversity and heterogeneity of network traffic pose 

significant challenges. This research aims to explore and evaluate various AI techniques, 

identify their strengths and limitations, and propose an optimized framework that ensures 

secure and efficient network traffic management. 

Multicast networks, which are commonly used in IPTV, video conferencing, financial data 

distribution, and cloud services, present unique challenges in anomaly detection due to their 

dynamic membership, group-based communication, and complex traffic patterns. This research 

will specifically focus on developing methods for effective multicast anomaly detection, 

ensuring that multicast traffic is efficiently monitored, analyzed, and secured without affecting 

performance. 

This work will systematically investigate the application of multiple AI technologies, including 

traditional machine learning, deep learning, and Generative AI (Gen AI) methods, to determine 

the most effective approach for network security. Given the evolving nature of network 

environments, this research will focus on creating a flexible, scalable, and adaptive framework 

that can cater to a wide range of network types, including unicast, multicast, IoT, and 5G 

infrastructures. 

RQ1: Is there a generic algorithm that can be used for anomaly detection across all types of 
network traffic, including multicast traffic?  

RQ2: Are AI-ML-based methods the most suitable for network traffic classification, multicast 
anomaly detection, and intrusion prevention? 

RQ3: Are Generative AI (Gen AI)-based methods superior to traditional AI algorithms for 
network traffic classification, multicast anomaly detection, and anomaly detection in general? 

RQ4: How do these advanced models handle complex multicast traffic patterns and dynamic 

group memberships? 

RQ5: Is there scope for combining traditional algorithms with neural network-based algorithms 

and further integrating them with Generative AI to develop a robust anomaly detection 

framework for unicast and multicast traffic? 
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RQ6: How can the proposed multicast anomaly detection methods be effectively used to 
create a superior Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) for 
multicast and unicast traffic? 

 

1.6.1 Research Objectives  

 

o To construct a robust, adaptive, and scalable framework for network traffic 

classification, multicast anomaly detection, general anomaly detection, and 

intrusion prevention. 

o To perform a comparative analysis of various AI techniques (traditional ML, 

deep learning, Gen AI) for multicast and unicast anomaly detection. 

o To create an optimised hybrid model that combines the strengths of multiple AI 

approaches for superior anomaly detection. 

o To introduce a practical methodology for integrating the proposed framework 

into real-world IDS and IPS systems, specifically addressing the unique 

characteristics of multicast networks. 

o Building a comprehensive framework for Multicast Anomaly detection, which 

is missing in most of the industrial and academic research.  

This research aims to contribute to the field of network security and anomaly detection by 

providing a practical and theoretically sound approach to securing network traffic, including 

multicast, using state-of-the-art AI techniques. 

1.6.2    Impact on Futuristic Research and Innovation 

 

The proposed research on network traffic classification, anomaly detection, multicast anomaly 

detection, and intrusion prevention using AI-based techniques is expected to have a profound 

and far-reaching impact on futuristic research and innovation in multiple domains of 

networking and cybersecurity. The following are the key areas where this study will drive 

innovation and inspire future research: 

i.  Advanced AI Models for Network Security 
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The study will pave the way for the development of next-generation AI models that can 

efficiently detect anomalies in complex and dynamic network environments, including 

multicast networks, 5G networks, IoT ecosystems, and cloud infrastructures. 

Researchers will be encouraged to explore the application of advanced AI models such as 

Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), Transformers, 

and Hybrid AI models for network security. 

ii. Multicast Security and Performance Optimisation 

By focusing on multicast anomaly detection, this research will highlight the importance of 

securing multicast traffic in video streaming, IPTV, financial data distribution, and cloud 

services. Future research can build on the proposed methodologies to enhance multicast 

performance, minimise latency, and improve the reliability of multicast communications. 

iii.  Hybrid AI Models for Enhanced Anomaly Detection 

The study's emphasis on combining traditional algorithms, deep learning, and Generative AI 

models will inspire researchers to explore hybrid approaches for anomaly detection. This will 

drive innovation in designing models that can adapt to diverse network conditions, dynamically 

select the best algorithm, and achieve superior detection accuracy. 

iv. Real-Time Anomaly Detection Systems 

The research will contribute to the development of scalable, real-time anomaly detection 

systems capable of handling high-speed networks, including 5G, IoT, and edge computing. 

Researchers will be motivated to develop lightweight, optimised AI models for real-time 

detection without significant computational overhead. 

v.  Explainable AI in Network Security 

The study's focus on integrating Explainable AI (XAI) techniques will promote transparency 

in anomaly detection, allowing network administrators to understand why specific anomalies 

were detected. Future research may explore more sophisticated XAI techniques that provide 

intuitive visual explanations for detected anomalies. 

vi.  Adaptive and Self-Learning Security Systems 
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The research will lay the foundation for the development of adaptive AI models that 

continuously learn from network traffic, automatically adjusting their detection capabilities 

without manual retraining. This will inspire the creation of self-learning intrusion detection and 

prevention systems that can evolve with changing network behaviours. 

vii. Secure and Privacy-Preserving Anomaly Detection 

The study will encourage future research on designing anomaly detection systems that can 

operate in encrypted network environments without violating user privacy. This may lead to 

the development of privacy-preserving anomaly detection techniques using homomorphic 

encryption, federated learning, and zero-knowledge proofs. 

viii. Optimised IDS/IPS Systems for Diverse Network Environments 

The proposed framework can be directly applied to develop next-generation Intrusion 

Detection Systems (IDS) and Intrusion Prevention Systems (IPS) that support both unicast and 

multicast traffic. Researchers may focus on building IDS/IPS systems that are context-aware, 

protocol-independent, and capable of detecting both known and unknown threats. 

ix.  Enhanced Multicast Monitoring and Management Solutions 

By providing methods for detecting multicast anomalies, the research will drive innovation in 

multicast monitoring tools, traffic simulation platforms, and diagnostic systems. Future 

solutions may focus on advanced multicast traceability, dynamic group management, and 

intelligent multicast route optimization. 

x.  Cross-Disciplinary Research Opportunities 

The study will open up cross-disciplinary research opportunities, combining AI, networking, 

cybersecurity, and cloud computing. Researchers may explore the application of AI-driven 

anomaly detection in networked robotics, autonomous systems, smart cities, and secure IoT 

ecosystems. 

xi. Policy Formulation and Standardisation 

The insights gained from this research may influence the formulation of security policies, 

guidelines, and standards for network anomaly detection, especially in multicast and critical 
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network environments. Standardization bodies (e.g., IEEE, IETF) may adopt the proposed 

framework as a reference for secure multicast management. 

xii.  Real-World Adoption in Enterprise Networks 

The proposed framework will have a direct impact on the design and deployment of network 

security solutions in enterprise networks, including financial institutions, healthcare, cloud 

service providers, and telecom operators. Organizations may leverage the research outcomes 

to enhance their network security posture, protect critical infrastructure, and ensure regulatory 

compliance. 

1.7 Summary 

The research will drive significant advancements in network anomaly detection and security, 

fostering a new generation of intelligent, adaptive, and explainable network protection 

solutions. It will inspire future research on AI-driven network security, create new 

opportunities for cross-disciplinary innovation, and ensure that modern networks can be 

securely managed and monitored in an increasingly complex and connected world. The scope 

of this study is clearly defined to ensure a focused and practical approach to developing an AI-

based network anomaly detection and prevention framework. By identifying out-of-scope 

areas, this study maintains its focus on developing a scalable, adaptive, and high-performance 

anomaly detection solution for IP-based unicast and multicast networks. 

1.8  Organization of Thesis  

Chapter 1: Introduction  

This chapter introduces the fundamental concepts of network anomaly detection, emphasising 

its importance in securing modern network environments, including enterprise networks, cloud 

infrastructures, IoT ecosystems, and 5G networks. The introduction further explains the 

challenges associated with detecting anomalies in diverse network environments, including the 

complexity of multicast traffic, the need for real-time detection, and the difficulty of 

identifying zero-day attacks. It also defines the scope of the research, which focuses on 

developing an AI-driven framework capable of accurately detecting anomalies in both unicast 

and multicast traffic.  

Chapter 2: Literature Review  
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This chapter reviews existing literature on network anomaly detection, covering 

traditional methods like threshold-based and rule-based approaches, which are limited by static 

configurations and high false positive rates. It explores the evolution of machine learning 

techniques, including supervised methods (Decision Trees, SVM) and unsupervised methods 

(K-Means, Isolation Forest), as well as deep learning models (Autoencoders, RNN, LSTM, 

Transformer) that excel in detecting complex patterns in network traffic.  

Chapter 3: Research Methodology  

This chapter outlines the research methodology used to develop an AI-based 

framework for network traffic classification, anomaly detection, multicast anomaly detection, 

and intrusion prevention. It begins with data collection, including real-world and synthetic 

network datasets, followed by data preprocessing to enhance model accuracy. Various AI 

techniques, including traditional Machine Learning (ML), Deep Learning, and Generative AI 

(Gen AI), are explored, with a focus on model selection, training, and evaluation. Feature 

engineering techniques are applied to extract relevant network features, including specialized 

features for multicast traffic. Models are trained using a train-test split, and their performance 

is evaluated using standard metrics such as accuracy, precision, recall, F1-score, and AUC-

ROC.  

Chapter 4: Analysis  

 

In this chapter, a thorough analysis of the various datasets is conducted which are 

utilized in this Research , aiming to uncover inherent patterns, statistical properties, and 

behavioural trends that are critical to the design and evaluation of anomaly detection models. 

This includes an exploratory examination of network traffic attributes such as packet size, flow 

duration, byte count, and protocol usage across datasets like CICIDS2017, KDD Cup 1999, 

multicast flow data, and high-dimensional application-level chunks.  

Chapter 5: Results and Discussion  
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This chapter presents the results of the AI-based network anomaly detection framework 

developed in this study, focusing on its performance in detecting anomalies across both unicast 

and multicast traffic. The results are presented through detailed performance metrics, including 

accuracy, precision, recall, F1-score, and Area Under the Curve (AUC-ROC) for each model 

evaluated. Traditional machine learning models (Decision Trees, Isolation Forest, Random 

Forest, SVM), deep learning models (Autoencoders, LSTM, Transformer), and advanced 

Generative AI models (GAN, VAE) are compared, highlighting their strengths and 

weaknesses.  

 Chapter 6: Conclusion and Recommendations  

This chapter concludes the study, summarising the key findings and contributions of 

the research. The study successfully developed a comprehensive AI-based framework for 

network anomaly detection, capable of detecting anomalies in both unicast and multicast traffic 

using a combination of machine learning, deep learning, and Generative AI techniques. The 

hybrid model demonstrated superior performance, achieving high detection accuracy, low 

false positive rates, and effective multicast anomaly detection. Explainable AI (XAI) 

techniques enhanced model transparency, providing clear insights into anomaly detection 

decisions. The study addresses existing research gaps by providing a scalable, adaptive, and 

explainable solution suitable for diverse network environments, including enterprise, cloud, 

IoT, and 5G networks. 
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2. CHAPTER II:  
LITERATURE REVIEW 

 

2.1 Introduction 

Computer Networking has come a long way in the last few decades. Networks have 

grown, the types of traffic and volume have expanded and managing them has become a 

nightmare. The sheer variety and complexity of Network Traffic make it extremely interesting 

as well as a challenging vertical to manage.  Securing a network is one of the major challenges 

for the network operator. Identification of Traffic in the Network or Network Traffic 

Classification is the first step in designing a robust, scalable and scalable network. The need 

for analytics in IP networking(Bachechi et al., 2022) Starting from the early days of networks 

and anomaly detection and prediction are of great importance in building a solid and robust 

network.  More recent work in these areas has been done by (Klarák et al., 2024).  The study 

presents a method for detecting and classifying defects using a combination of autoencoders 

and clustering techniques. IoT network anomaly detection is surveyed in (Hussain Kalwar & 

Bhatti, n.d.) This explores the application of deep learning models for classifying IoT network 

traffic. It reviews various architectures, including CNNs and RNNs, for their ability to capture 

and classify traffic patterns. 

Network traffic classification and network anomaly detection are one of the topics 

where Artificial Intelligence (AI) based methods have become more popular over the years. 

One of the early works done in IP traffic classification was by (Zander et al., 2005a). The work 

looked at Unsupervised learning methods to classify traffic based on the Applications that are 

generating it. A general survey of encrypted traffic classification using deep learning methods    

(Wang et al., 2019b) is done, where the classification is done for intrusion detection and 

prevention and its application in the larger area of enterprise security.  Similar work for 

encrypted traffic classification was done by (Cao et al., 2014a) . As artificial intelligence has 

gained more prevalence in the last decade, the majority of work in Network Anomaly detection 

has happened in this using AI only.  As AI and ML world moves from Statistical to Deep 

Learning to Generative AI, the network traffic classification also follows the same path. The 

evaluation of statistical and deep learning methods for anomaly detection (Elmrabit et al., 
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2020) has been done.  The paper looked at the state-of-the-art ML algorithms and analysed 

their ability to detect anomalous behaviours in networking, using popular datasets. The 

Random Forest (RF) method demonstrated the highest performance by beating all other 

algorithms. This was consistent across all datasets evaluated.  

(Ahmed et al., n.d.-a)  looked at different approaches using Machine Learning for Network 

Anomaly detection. One-Class Neighbour Machine (OCNM) estimates minimum volume sets 

to detect anomalies. It uses sparsity measures (e.g., k-th nearest neighbour distance) to identify 

points in the minimum volume set. It also looks at Kernel-based Online Anomaly Detection 

(KOAD). Both OCNM and KOAD algorithms effectively detected anomalies in sequences of 

images from the camera network. The paper (Landauer et al., 2023)  analyzes the use of various 

neural network-based techniques in faster anomaly detection of log data, confirming the 

superiority of these methods over traditional machine learning in handling unstable data 

formats and detecting unexpected log events. 

Network Anomaly detection for IOT devices is a pretty important topic (Hwang et al., 

2020) proposed a model named D-PACK. This model is designed to detect malicious traffic 

in networks, particularly in the context of IoT traffic, where countless devices are constantly 

communicating with each other. D-PACK analyses CNN for profiling network traffic patterns. 

It also incorporates an unsupervised deep learning model known as an Autoencoder. CNN 

helps to identify the characteristics of the traffic. The Autoencoder then filters out any 

abnormal traffic effectively. The experimental results demonstrate that D-PACK is highly 

effective at detecting malicious network traffic. It achieves an accuracy rate close to 100%. 

Additionally, it maintains an exceptionally low false-positive rate of just 0.83%. (Eskandari et 

al., 2020a) proposes an anomaly-based intrusion detection system designed for IoT edge 

devices. It can be deployed on cost-effective IoT gateways, leveraging edge computing to 

detect cyber threats close to the data sources. It utilizes machine learning to model the normal 

behaviour of incoming traffic and detect deviations indicative of cyber threats. (Golomb et al., 

2018b) proposes a non-AI-based method that uses blockchain for network anomaly detection. 

They proposed a lightweight, scalable framework for network anomaly detection. It utilizes 

blockchain technology for distributed and collaborative anomaly detection, ensuring a trusted 
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and secure model.  (Ullah & Mahmoud, 2021a) Again proposes a model that uses CNN for 

anomaly detection in IoT networks. The model is validated through various datasets and 

showed high accuracy in every parameter in which models are evaluated (recall, F1 score, 

precision, etc). The proposed model includes 1D, 2D, and 3D CNNs for anomaly detection.  

The suggested CNN model achieves better results than conventional machine learning 

approaches, surpassing them in accuracy and various performance metrics. (Nguyen et al., 

2018) proposes a smart and controlled self-learning network anomaly detection system for 

different types of IoT traffic.  It proposes a model called DÏOT, which is an autonomous, self-

learning distributed system that uses device-type-specific communication profiles for anomaly 

detection, leveraging federated learning for aggregating behaviour profiles efficiently. 

 (Vaswani et al., 2017)   Changed the overall Gen AI landscape with the introduction 

of the Transformer Architecture. It utilizes self-attention mechanisms to draw global 

dependencies between input and output, allowing for parallelization and improved efficiency. 

Transformer Architecture led to the growth of GenAI, and every domain started using it in 

some form or another. Network anomaly detection using generative AI(Gen AI) has also 

gained a lot of attention in the last few years.  A few of the Gen AI works, including those that 

use transformers, are analyzed.  

Intrusion detection using a transformer-based model was evaluated in  (Nguyen et al., 

2023) for in-vehicle Intrusion Detection. The transformer-based attention network provides a 

robust solution for in-vehicle intrusion detection, which overcomes the shortcomings of the 

existing methods, thereby enhancing the detection of various cyberattacks on the CAN bus. 

The application of transfer learning further improves the model's adaptability and performance 

across different datasets. The model uses transfer learning to improve its performance on 

anomaly detection.  (Shin et al., 2023)  presents a unique framework for detecting and isolating 

various anomalies that are present in time series data using a Transformer-based Generative 

Adversarial Network (GAN) named AnoFormer. Further interesting work has been done by 

(Shao et al., 2025a) which leverages the unique properties of the transformer, which is the self-

attention mechanism.  It uses Tab Transformer to capture intricate patterns as well as 

dependencies within tabular data, making it well-suited for network intrusion detection. (Liu 
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et al. 2023) also proposes a transformer-based intrusion detection system. It introduces a novel 

under-sampling method which uses KNN over-sampling using the SMOTE method to balance 

the complete dataset and improve detection accuracy for overlapping classes. This model 

works on the NSL-KDD dataset to perform binary classification and achieved 88.7% accuracy 

and an F1-score of 88.2%. It also uses multi-class classification and achieved 84.1% accuracy 

and an F1-score of 83.8%. (Kim & Pak, 2023).  It is an academic paper that presents a unique 

and non-obvious method for detecting network and traffic intrusion. The authors propose a 

technique that transforms Network Intrusion Detection System (NIDS) datasets into 2D images 

using various image transformers, which can then be processed by various neural network-

based models. The work aims to enhance the performance of existing neural network-based 

network intrusion detection systems. 

The general trend of network anomaly detection-based studies is about clustering IP 

Flows and then detecting anomalies.  Major studies on this have been done using deep learning 

techniques.  (Fotiadou et al., 2021) uses pfSense software to monitor network traffic logs 

through different applications, like network application services.   Deep Learning model like 

LSTM is used to identify anomaly detection offline. The analysis is more on network logs and 

not the actual traffic flows. (Nassif et al., 2021) provides a survey paper on various network 

anomaly works. It actually has analysed two hundred and ninety papers with twenty-nine 

different models.  Unsupervised Models for IOT traffic classification are done by (Eskandari 

et al., 2020b) in their work for unlabeled traffic.  The majority of the analysis is done on 

unlabeled traffic. A common gap in past studies is the combination of traditional deep learning 

methods along with generative AI-based techniques to identify network anomalies.  The power 

of generative AI techniques can be used to generate synthetic data as well as to do proper IP 

flow classification.  Generative AI and transformer-based architecture are comparatively new, 

and their application for IP Flow Anomaly is not well researched.  
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2.2 Literature Review Theories 

 

The role of AI in networking has always been prominent, as it was studied by (Jaber, 

2022). The study details the use of AI to enhance network performance, improve operational 

efficiency, as well as optimise network management. AI techniques such as genetic algorithms, 

neural networks, and decision-making processes like Markov Decision Processes (MDP) are 

explored. The work specifically emphasises deep learning’s role in processing sequential data 

using recurrent neural networks (RNNs) and analysing image data through convolutional 

neural networks (CNNs). Finally, Deep reinforcement learning (DRL) is observed as an 

important and useful tool for network automation and bandwidth optimisation. Similar 

comparison work, but its impact on security is done by(Thesis et al., 2022) In their work.  The 

work concludes that AI-based technologies play a very significant role in modern network 

security by automating user processes, detecting threats early in the cycle, as well as improving 

overall network efficiency. There are ethical implications and potential biases in AI systems 

that must be carefully managed.  Lastly (Wu et al., n.d.)Proposes the integration of computer 

networks with neural networks to create an intelligent system capable of autonomously 

managing and optimising network operations. This modern and unique AI-based approach 

improves network performance, network security, and operational efficiency, thereby 

providing a robust solution for modern enterprise networks which are undergoing digital 

transformation. 

In this context of, the work and the impact of AI and ML technologies on network 

anomaly detection and prediction are analysed right from early statistical machine learning to 

deep learning to generative AI is investigated.  The analysis will help us in shaping the scope 

and direction of this research.  

2.1.1. Statistical AI methods for Network Anomaly Detection 

Research work on network anomaly detection and classification started with non-ML 

techniques to start with. They were mostly based on Port (indicating the Application/Protocol 

type) classification.  (Dainotti et al., 2012) In their very early study looked at various 
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algorithms for anomaly detection, starting from early port and the payload-based approaches 

to the new era of machine learning.  Network traffic anomaly detection through cascading    

K-Means clustering and C4.5-based decision trees (Muniyandi et al., 2012). The K-

Means + C4.5 combination showed much higher detection accuracy and a substantially lower 

false positive rate compared to individual algorithms like SVM, Naïve Bayes, and K-NN. The 

cascading method significantly improves anomaly detection by leveraging the strengths of 

both algorithms.  Combining multiple algorithms for creating a framework was proposed by 

(Shon et al., 2005a) that proposes the use of Genetic Algorithm (GA) for feature selection, and 

on top of that use of an Unsupervised method like Support Vector Machine (SVM) for further 

packet categorization and classification. The idea is to optimize the feature selection process 

using GA and then apply SVM for detecting anomalies in network traffic. A similar hybrid 

architecture was proposed by (Shon & Moon, 2007a) which combines supervised and 

unsupervised learning. This model provides the detection capabilities of a supervised model 

while handling novel attacks like an unsupervised model.  The paper highlights the importance 

of a hybrid model, which is followed by many researchers.  Another successful application of 

SVM for traffic classification and anomaly detection was done (Yuan et al., 2010a) which 

showed promising results with internet data. More recent work has been done by (Schummer 

et al., 2024) The paper explores the development and evaluation of a machine learning-based 

system for detecting network anomalies, specifically focusing on point anomalies within 

network traffic. Anomaly detection is critical for maintaining network integrity, detecting 

unauthorised access, network crashes, and unusual traffic patterns. The study aims to create a 

robust anomaly detection system using machine learning, capable of identifying and 

classifying network anomalies accurately. 

 

2.1.2. Deep Learning and Network Anomaly Detection 

  

 As neural networks started to gain prominence (Bouzida & Cuppens, n.d.) did the early 

investigation comparison between decision trees and neural networks for detecting network 

intrusions, with a focus on anomaly detection. The results show that neural networks excel at 
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generalization, and decision trees are more effective for detecting both known and new attack 

types. CNN-based analysis (Kwon et al., n.d.) was used for anomaly detection using popular 

datasets NSL-KDD, Kyoto Honeypot, and MAWILab. CNN models show competitive 

detection accuracy, but performance may vary based on the dataset and further optimizations. 

Similar studies using Recurrent Neural Networks (RNN) are done in (Radford et al., 2018), 

which proposes the use of Long-Short Term Memory (LSTM) for detecting and isolating 

network anomalies. The conclusion was that the LSTM-based anomaly detection model 

demonstrated the ability to detect previously unseen attack patterns. Another combination 

techniques are evaluated in  (Aneetha, 2012), where the paper proposes a hybrid approach that 

combines standard k-means clustering with a method called Self-Organizing Map (SOM) for 

network anomaly detection.  The work shows that combining the neural network and clustering 

approach improves anomaly detection accuracy, especially for detecting DDoS attacks. 

(Pradhan et al., 2012) proposes fully Connected Neural Networks (FCN) along with generative 

AI-based models like Variational Autoencoder (VAE), along with Sequence-to-Sequence 

models combined with LSTM (Seq2Seq-LSTM) to detect anomalies in network flows.  

Slowly, from deep learning models, the investigation moved to generative AI-based models, 

which are investigated in the next section.  

 

2.1.3. Generative AI and network anomaly detection  

 

Generative AI techniques are different from the traditional discriminative AI 

techniques as they are primarily used for data generation, data classification, with their efficacy 

much better than traditional models. (Vaswani et al., 2017) . Their revolutionary Transformer 

model indicated that self-attention mechanisms can replace traditional deep learning 

algorithms like recurrent neural networks and convolutional layers in sequence transduction 

tasks, thereby offering improved parallelisation and unmatched performance. Anomaly 

detection using Transformer architecture (Manocchio et al., 2024)  has been used to compare 

the performance of lightweight transformer-based models with much larger and complex 

architectures like GPT and BERT for Intrusion Detection, terming them as NIDS (Network 
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Intrusion Detection System). The general observation has been that while the large models 

could achieve a similar level of performance as the shallower models, the large size and 

comparatively much lower overall throughput make them less optimal for most NIDS tasks. 

Network anomaly using SDN (Software Defined Networking) controller (Ezeh & de Oliveira, 

2023) discusses the application of GAN-based ensemble methods for anomaly detection that 

happens in a modern network of today, which is managed by a software-based controller, also 

called Software-Defined Networking (SDN) environment. The authors propose a unique 

controller-based framework that incorporates several components across the detection chain. 

The authors also compare their GAN ensemble approach with other one-class anomaly-

detection algorithms. The authors conclude that GAN-based algorithms show sufficient 

promise in detecting network anomalies on different kinds of traffic in a network. This is done 

after training a very robust and large traffic dataset that forms the discriminator network. This 

is used to identify and detect network events and separate them from anomalous and unusual 

network events. They also suggest that future work should focus on creating more robust 

datasets that include more attack classes and testing a framework based on multiple controllers. 

Time Series-based anomaly detection (Shin et al., 2023) was proposed using a GAN-based 

network which internally also uses Transformer architecture. This internally uses a masking 

method which is two-step. This is a very powerful tool for time series anomaly detection. It 

outperforms traditional methods and other deep learning models, providing a robust solution 

for various applications. GAN-based imbalanced malicious (Cao et al., 2022)algorithm works 

by dividing the original sampled session traffic. This will look into the traffic and break it into 

three parts. Once it divides into three parts, it extracts the Markov matrix from them.  This is 

used to form an image, which is a three-channel one and has its own characteristics. This 

conversion reshapes the initial session data structure into a standardized-length matrix, 

offering an extensive depiction of network behaviour. It ensures consistent representation 

across all traffic flows. This uniformity enhances the analysis and understanding of traffic 

characteristics. (Tang et al., 2022) The proposed Markov-GAN method effectively balances 

and enhances datasets, improving the generalization and classification performance of models 

for malicious encrypted traffic. IOT traffic-based classification is done in  (Shahid et al., 2020), 



25 
 

which discusses the application of Generative Deep Learning in the context of Internet of 

Things (IoT) Network Traffic Generation. The researchers introduce an innovative approach 

for creating a series of packet sizes that replicate actual IoT device patterns. Their technique 

effectively models the traffic characteristics of real-world IoT systems. This method aims to 

closely simulate the authentic behaviours observed in IoT communication. This is achieved by 

integrating an autoencoder with a Generative Adversarial Network (GAN). Autoencoder-

based methods for network traffic anomaly detection and prevention are proposed in (Torabi 

et al., 2023). The paper introduces an innovative strategy for detecting anomalies within cloud 

computing networks by utilizing autoencoders. Instead of conventional approaches that 

summarize reconstruction errors into a single metric, this model evaluates the error as a 

multidimensional vector. Each component of the vector represents the error for a specific input 

feature, which serves as an indicator for anomaly identification or categorization. This 

approach is designed to enhance the accuracy and effectiveness of detecting and classifying 

anomalies. Other important work in this area is done by (Klarák et al., 2024), which presents 

a method for detecting and classifying defects using a combination of autoencoders and 

clustering techniques. The research work on network anomaly detection clearly shows a 

pattern of how it evolved across years. (Rao et al., 2024) proposes a novel approach for 

network anomaly detection using a Hybrid Convolutional Neural Network (CNN) and 

Generative Adversarial Network (GAN) model. This hybrid architecture combines the feature 

extraction capabilities of CNN with the generative and discriminative capabilities of GAN, 

making it highly effective in detecting complex network anomalies. The study addresses the 

limitations of traditional anomaly detection methods, which struggle with detecting 

sophisticated and evolving cyber threats. Figure 4 shows how AI evolved, and network 

anomaly detection also moved with it. In our approach, we will try and combine all the 

approaches and build the base network anomaly detection methodologies.  
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Figure 4: Evolution of Network Anomaly Detection over the Years 

 

2.1.4. Combining different methods 

There has been some work that has combined different methods to combine neural 

networks with Gen AI techniques (Rao et al., 2024)  introduces a hybrid framework that 

integrates Convolutional Neural Networks (CNN) with Generative Adversarial Networks 

(GAN) to detect anomalies in network traffic.  The CNN component is used for high-level 

feature extraction, while the GAN generates synthetic normal traffic to train the model and 

distinguish anomalies. The approach demonstrates superior performance in detecting 

anomalies with high detection rates and low false positives compared to traditional methods.   

Similarly, (Iliyasu & Deng, 2022) proposed novel GAN-based which they call NGAN for 

intrusion detection in networks.  The proposed approach includes a small number of malicious 

samples during the training phase. This technique aims to enhance detection accuracy and 

minimise the rate of false alarms. The proposed approach is to create a weakly supervised 

model, which helps in modelling both benign and malicious behaviour, improving robustness 
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against evolving cyber threats. The experimental results show that N-GAN outperforms 

traditional reconstruction-based anomaly detection methods. Other work like (Tang et al., 

2020) in which the authors introduce a neural network for anomaly detection, employing a 

dual auto-encoder GAN (DAGAN) architecture tailored for industrial uses like automated 

optical inspection (AOI). This DAGAN model tackles the problem of imbalanced samples by 

incorporating a dual auto-encoder with skip-connections, enhancing both reconstruction 

capabilities and training stability. The proposed approach is evaluated across various datasets. 

It shows superior performance compared to other GAN-based models for anomaly detection, 

particularly when working with limited training data. The model undergoes evaluation using 

several datasets. It consistently outperforms other GAN-based models designed for anomaly 

detection in the majority of categories. Its advantage becomes even more pronounced when 

there is a scarcity of training data. The results indicate the model's effectiveness in challenging 

scenarios with limited data availability. The proposed  (Fu et al., 2022)  GANAD method 

addresses the limitations of existing GAN-based anomaly detection approaches, which were 

designed primarily for data synthesis rather than detection. GANAD uses a WGAN-based 

architecture with gradient penalty and spectral normalization to stabilize training and enhance 

performance. This method emphasizes effectively capturing the distribution of minority 

abnormal data. It achieves higher detection accuracy compared to other advanced techniques 

while also lowering computational requirements.  LSTM based analysis is done in (Niu et al., 

2020)  presents a VAE-GAN model based on LSTMs for detecting anomalies in time-series 

data. The model trains an encoder, generator, and discriminator simultaneously to leverage 

both reconstruction error and discrimination ability. By efficiently mapping real-time data to 

latent spaces, the approach enhances both detection speed and accuracy. The results show that 

it outperforms traditional methods in identifying anomalies within industrial time-series 

datasets.  Lastly, (Li et al., 2019) introduce MAD-GAN, an unsupervised method aimed at 

identifying anomalies in multivariate time-series data. It employs LSTM architectures in both 

the generator and discriminator to effectively capture time-related patterns within the dataset. 

The innovative aspect of this model is the combination of reconstruction and discrimination 

losses to identify unusual behaviour. Evaluation on real-world datasets, such as SWaT and 
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WADI, demonstrates its superior performance in detecting anomalies in cyber-physical 

environments compared to conventional and other GAN-based techniques. 

In the next section, all of the major work in Network Anomaly detection in last few 

years using AI-ML methods has been summarized in a table. 

2.2.Previous work details  

A summary of all the previous work, along with their key areas and Research Gaps, is 

highlighted in Table 1 

Table 1: Related Research Comparison  

Year Paper Comments  
2025 (Ghajari et al., 

2025) 

Key Aspects: The paper introduces an HDC-

based method for IoT anomaly detection, 

encoding traffic features into hyper vectors for 

efficient classification. On the NSL-KDD 

dataset, it outperforms traditional ML models 

with up to 86.21% accuracy, showing 

scalability, resilience, and suitability for IoT 

devices. 

Missing Information: The study is limited to 

NSL-KDD, without tests on real-world or high-

throughput IoT traffic. It omits protocol-specific 

analysis and comparisons with deep learning or 

hybrid methods, reducing its generalizability. 

2025 (Edozie et al., 2025) Key Aspects: The paper provides a 

comprehensive review of AI-based anomaly 

detection in telecom networks, covering deep 

learning and hybrid models (CNNs, RNNs, 

LSTMs, Autoencoders, GANs, GNNs, 

Federated Learning, RL). It discusses telecom-

specific challenges such as real-time high-

volume traffic, distributed architectures, and 
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data privacy, while comparing supervised, 

unsupervised, and semi-supervised approaches, 

datasets, case studies, and performance metrics. 

Missing Information: Despite its breadth, the 

review is literature-focused with no 

experimental validation or benchmarking on 

standardized datasets. It lacks a unified 

performance framework, practical deployment 

architectures, and deeper treatment of feature 

engineering, protocol-level traffic 

categorization, and cross-domain transfer 

learning—limiting its guidance for real-world 

implementation. 

2025 (Yang et al., 2025) Key Aspects: The paper proposes an LLM-

based anomaly detection system for cloud 

traffic, combining Transformer self-attention 

with an anomaly detection layer and transfer 

learning for adaptability. Tested on CICIDS 

2017, it achieves higher accuracy, fewer false 

positives, and faster inference than several 

baseline models. 

Missing Information: The study is limited to 

one dataset, without testing in real-time, large-

scale, or encrypted/multicast cloud 

environments. It lacks detailed feature 

engineering, comparisons with advanced hybrid 

models, and analysis of deployment scalability 

in data centers. 

2025 (Ness et al., 2025) Key Aspects of the Study: This paper proposes 

a GAN-based semi-supervised anomaly 

detection method for software-defined networks 
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(SDNs). The GAN generates synthetic normal 

traffic to train a discriminator that can detect 

deviations as anomalies. Tested on the NSL-

KDD dataset, the method achieves higher 

detection rates and lower false positives 

compared to Random Forest, SVM, and KNN, 

while requiring fewer labelled samples. 

Missing Information: The approach is 

evaluated on a single dataset and lacks testing on 

modern, high-speed, or encrypted SDN traffic. It 

does not explore feature extraction, protocol-

level behavior, or deployment performance in 

real-time SDN controllers. Comparisons with 

recent deep hybrid or attention-based models are 

absent. 

2025 (Liu et al., 2025) Key Aspects of the Study: This paper 

introduces a privacy-preserving hybrid 

ensemble model for network anomaly detection, 

combining KNN, SVM, XGBoost, and ANN. 

Advanced preprocessing techniques address 

imbalanced and small datasets, while privacy is 

ensured through federated learning, SMPC, and 

differential privacy. The ensemble achieves 

94.3% accuracy, outperforming individual 

models on both binary and multi-class 

classification tasks. 

Missing Information: The evaluation is limited 

to a single dataset and does not assess 

performance on real-time, high-speed, or 

encrypted network traffic. The study omits 

detailed protocol-specific behavior analysis and 
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does not compare against recent deep hybrid or 

attention-based methods. Scalability and 

deployment considerations in production 

network environments are not explored. 

2025 (Gombao, 2025) Key Aspects: The paper proposes an intrusion 

detection system (IDS) tailored for multicast 

traffic, combining flow-based analysis with a 

lightweight edge-friendly classifier. Tested on 

simulated datasets, it detects multicast-specific 

attacks faster and with lower resource use than 

general-purpose IDS tools. 

Missing Information: The study is limited to 

synthetic multicast traffic, leaving performance 

in real-world large-scale networks uncertain. It 

does not address encrypted multicast, 

integration with IPsec, comparisons with deep 

learning IDS, or scalability to high-throughput 

environments. 

 

2025 (Prasad et al., 2025) Key Aspects: The paper presents a threat 

detection framework for SDN-based multicast 

systems, combining a hybrid CNN–LSTM 

model with explainable AI. CNNs extract spatial 

features, LSTMs capture temporal patterns, and 

LIME/SHAP provide transparency. Embedding 

the IDS in the SDN controller enables low-

latency responses, making it suitable for real-

time applications like live video streaming. 

Missing Information: The evaluation is limited 

to controlled multicast traffic, leaving real-
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world scalability, encrypted environments, and 

large-scale deployments untested. SHAP and 

LIME introduce overhead, raising concerns for 

high-volume use. The study also omits 

comparisons with newer transformer-based 

methods and does not address integration 

challenges in production-grade SDN controllers. 

2025 (JLiu et al., 2025) Key Aspects: The paper introduces a graph-

based anomaly detection method for IoT 

networks, representing devices and their traffic 

as graphs. Using a GCN, it detects subtle 

structural deviations and leverages sparse 

labeling to adapt to environments with limited 

attack data. Tests on public IoT datasets show 

improved detection, particularly for unseen 

attack types, compared to baseline ML models. 

Missing Information: The study is limited to 

one dataset and does not evaluate performance 

in real-time or high-speed IoT settings. It lacks 

discussion on encrypted traffic, comparisons 

with newer attention-based graph models, and 

scalability to large heterogeneous networks. 

Integration with real-world monitoring systems 

is also unexplored. 

2025 (Shao et al., 2025) Key Aspects: The paper proposes a federated 

learning framework for anomaly detection, 

where local models share parameters instead of 

raw traffic data. This preserves privacy, reduces 

bandwidth, and achieves accuracy close to 

centralized training while handling data 

heterogeneity. 
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Missing Information: The study is limited in 

scale, with few nodes tested and no validation in 

high-speed or encrypted traffic scenarios. It also 

overlooks risks like model poisoning, 

comparisons with advanced privacy-preserving 

methods, and real-world deployment challenges. 

2025 (Jin et al., 2025) Key Aspects: The paper proposes a CNN–

LSTM model for protocol classification, where 

CNNs capture spatial patterns and LSTMs 

handle temporal dependencies. Tested on 

Universidad Del Cauca’s network data, it 

achieves up to 98.1% accuracy, outperforming 

standalone CNNs and LSTMs. 

Missing Information: The study is limited to a 

single dataset and does not explore diverse, 

encrypted, or high-speed traffic scenarios. It also 

lacks analysis of real-time deployment, 

scalability, and comparisons with newer 

attention-based or transformer models. 

2025 (Park et al., 2025) Key Aspects: The paper proposes a CNN–

BiLSTM model for raw packet sequence 

classification, where CNNs extract local 

features and BiLSTMs capture bidirectional 

dependencies. On the ISCX VPN-nonVPN 

dataset, it achieves over 97% accuracy, 

outperforming traditional ML and prior deep 

learning approaches, without manual feature 

engineering. 

Missing Information: The study is limited to a 

single dataset and does not evaluate adaptability 

to broader encrypted traffic or diverse 
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environments. It also omits real-time 

performance tests, deployment considerations 

like latency and resource usage, and 

comparisons with newer transformer-based 

models. 

2025 (Abbasi et al., 2025) Key Aspects: The paper presents a Tansformer-

based model for network traffic classification, 

using self-attention to capture long-range 

dependencies in packet sequences. On the ISCX 

VPN-nonVPN dataset, it achieves 98.7% 

accuracy, shows robustness to class imbalance, 

and reduces preprocessing by operating directly 

on packet-level data. 

Missing Information: The study is limited to a 

single dataset and does not evaluate 

generalization to other protocols, encrypted 

traffic, or high-speed environments. It also lacks 

analysis of inference latency, memory use, 

deployment feasibility, and comparisons with 

hybrid Transformer–CNN/LSTM models. 

2025 (Antari et al., n.d.) Key Aspects: The study benchmarks ML, deep 

learning, Transformer, and LLM models for 

network traffic classification across Web, 

Browsing, IPSec, Backup, and Email using 

30,959 flows from Arbor Edge Defender 

devices. Transformers achieved the best 

accuracy (98.95%), with XGBoost close behind, 

while LLMs like GPT-4o and Gemini showed 

strong few-shot improvements over zero-shot, 

especially for simpler categories. 
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Missing Information: The evaluation is limited 

to one enterprise dataset and does not test 

diverse, encrypted, or high-speed traffic. It also 

omits real-time scalability, hybrid model 

comparisons, adaptive retraining, and solutions 

for persistent misclassifications in complex 

classes like IPSec and Backup. 

2025 (Lu et al., 2025) Key Aspects: The paper evaluates LSTM, 

BiLSTM, and GRU models for encrypted traffic 

classification on the ISCX VPN-nonVPN 

dataset, using flow-based statistical features. 

BiLSTM achieved the best accuracy (94.12%), 

showing the advantage of bidirectional temporal 

modeling for VPN and non-VPN application 

identification. 

Missing Information: The study is restricted to 

a single dataset and does not test adaptability to 

other encryption types or varied network 

conditions. It also lacks evaluation of real-time 

scalability, computational overhead, and 

comparisons with newer transformer-based or 

attention-enhanced recurrent models. 

2023 (Lypa et al., 2023) Key Aspects: The paper reviews feature 

extraction tools for AI-based IDS, comparing 

packet-, flow-, and application-level approaches 

such as CICFlowMeter, Wireshark, Argus, 

Snort, and Zeek. Results show Argus and Zeek 

as more effective, with Zeek slightly 

outperforming CICFlowMeter on CIC-IDS2017 

binary classification tasks. 
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Missing Information: The study focuses only 

on feature extraction and does not assess full 

IDS performance across diverse environments. 

It omits evaluations in high-speed, encrypted, or 

multicast settings, as well as integration with 

deep learning, streaming analytics, and real-

world deployment challenges. 

2025 (Serag et al., 2025) Key Aspects: The paper proposes ML models 

for QoS classification in IP networks using flow-

level features, with Gradient Boosting achieving 

the best accuracy. The goal is to automate QoS 

assignment to enhance resource allocation and 

traffic engineering. 

Missing Information: The study is limited to 

one dataset and does not test in dynamic, high-

speed, or encrypted environments. It also omits 

comparisons with deep learning models and 

lacks discussion of real-time deployment or 

SDN integration. 

2022 (Shahraki et al., 

2022) 

Key Aspects: The paper applies active learning 

for anomaly detection, selectively labeling the 

most informative network traffic data to reduce 

labeling effort while maintaining accuracy. 

Strategies like uncertainty sampling and query-

by-committee allow continuous model 

improvement in dynamic environments. 

Missing Information: The study focuses 

narrowly on labeling and does not cover broader 

traffic classification, feature extraction, or 

protocol-level analysis. It also ignores 
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challenges with encrypted or multicast traffic 

and real-time, high-speed deployments. 

2022 (Li et al., 2022) Key Aspects: The study introduces an SSL/TLS 

traffic classification method that uses entropy 

and randomness features from ciphertext 

packets to distinguish encryption protocols. This 

lightweight approach enables protocol 

identification without decryption, offering 

efficiency for encrypted traffic analysis. 

Missing Information: The method does not 

employ standard ML techniques and ignores key 

traffic features like flow metrics, timing, and 

volume. These omissions limit its ability to 

detect anomalies or classify complex encrypted 

traffic in high-speed networks. 

2021 (Aouedi et al., n.d.) Key Aspects: The study uses K-means 

clustering to group network traffic and 

Recursive Feature Elimination (RFE) to select 

key features for anomaly detection. Anomalies 

are identified as deviations within clusters, 

providing a scalable method for dynamic 

networks. 

Missing Information: The work is limited to K-

means and RFE, without exploring other 

unsupervised methods like DBSCAN, Isolation 

Forest, or Autoencoders. This narrow scope 

reduces its generalizability and overlooks 

potentially more effective approaches. 

2021 (Sarhan et al., 2021) Key Aspects: The paper introduces a dataset 

built from Cisco NetFlow records for ML-based 
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intrusion detection, focusing on flow-level 

features and including attack types like DDoS 

and probing. It aims to connect raw telemetry 

with ML workflows by offering data tailored for 

supervised classification. 

Missing Information: The dataset is tied to 

Cisco NetFlow, limiting generalization to other 

telemetry formats, and lacks diversity such as 

encrypted or multicast traffic. It also does not 

address class imbalance, data augmentation, or 

benchmarking against standard public datasets. 

2021 (Aouedi et al., 2021) Key Aspects: The study examines the effect of 

unlabeled data on ML model performance in 

network traffic classification, benchmarking 

supervised and semi-supervised strategies. It 

highlights how labeled data availability 

influences classification outcomes compared to 

existing approaches. 

Missing Information: The work is restricted to 

a narrow classification scenario, limiting 

generalizability. It does not address anomaly 

detection, diverse traffic or attack types, or 

extensions to unsupervised and real-time 

contexts. 

2021 (Manjunath et al., 

2021) 

Key Aspects: The paper proposes converting 

IoT network traffic into video streams and 

analyzing them with a time-distributed CNN-

LSTM model. This cross-domain method 

bridges multimedia processing and network 
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security, improving intrusion detection accuracy 

in IoT environments. 

Missing Information: The study is limited to 

IoT traffic and does not test broader applicability 

to enterprise or general networks. Data-to-video 

transformation adds computational complexity, 

and the lack of benchmarking on standard 

datasets reduces comparability with mainstream 

IDS methods. 

2021 (Ahmed et al. 2021., 

2021) 

Key Aspects: The study classifies 53 popular 

online applications using KNN, Random Forest, 

and ANN, focusing on application-layer traffic. 

ANN achieved the highest accuracy, showing 

the strength of deep learning for traffic 

classification. 

Missing Information: The work is limited to 

supervised methods and does not explore hybrid 

or unsupervised approaches. It also lacks diverse 

feature sets, scalability testing, and real-time 

deployment analysis for practical use. 

2021 (Afuwape et al., 

2021) 

Key Aspects: The paper compares multiple ML 

algorithms for classifying VPN and non-VPN 

traffic, including Decision Trees, Random 

Forests, and ensemble methods. Gradient 

Boosting performed best in certain categories, 

highlighting the effectiveness of supervised 

techniques for encrypted and non-encrypted 

traffic. 

Missing Information: The study is limited to 

supervised methods and does not explore 
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unsupervised or semi-supervised approaches for 

evolving traffic. It also overlooks the impact of 

labeling quality and detailed feature 

interactions, which are critical for robust 

encrypted traffic analysis. 

2021 (Arfeen et al., 2021) Key Aspects: The paper compares three 

ensemble learning algorithms for encrypted 

traffic classification, addressing challenges 

without payload visibility. XGBoost achieved 

the highest accuracy, showing the strength of 

ensemble models for structured encrypted 

network data. 

Missing Information: The study is limited to 

ensemble methods and does not consider hybrid 

or alternative models. It also omits real-time 

performance evaluation, broader feature 

diversity, and feature importance analysis for 

deeper insights. 

2020 (Aceto et al., 2020) What it is about - A Deep Learning application 

is used for network traffic analysis. The analysis 

focusses on the identification and classification 

of encrypted mobile traffic.  The study 

concludes that DL based traffic classification 

provides satisfactory output for encrypted 

traffic.  The study also focusses on the 

challenges of traffic classification using various 

ML techniques. 

What is missing- This study focused on Deep 

learning for Mobile traffic and not a generic 

campus network traffic classification. 
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2020 (Salman et al., 

2020) 

Key Aspects: The paper applies deep learning 

to network traffic analysis, focusing on 

classifying encrypted mobile traffic flows 

without payload inspection. It highlights the 

potential of DL models to address challenges 

that limit traditional ML techniques in encrypted 

environments. 

Missing Information: The study is limited to 

mobile networks and may not generalize to 

enterprise or campus settings. It does not 

consider architectural diversity, multicast 

traffic, or dynamic behaviors common in large-

scale wired networks. 

2020 (Aureli et al., 2020) Key Aspects: The paper studies ML techniques 

for traffic classification, addressing the 

challenge of imbalanced datasets with a semi-

supervised learning approach. It improves 

classifier robustness where labeled data is 

scarce, a common issue in real-world scenarios. 

Missing Information: The work focuses only 

on class imbalance and does not consider 

encryption, data rate variability, or high-volume 

traffic. These omissions limit its applicability to 

broader, real-world classification challenges. 

2021 (Fotiadou et al., 

2021) 

What it is about- This work uses pfsense 

software to monitor traffic logs through different 

applications like firewall, routing, NAT etc.  It 

uses DL techniques like LSTM etc to identify 

anomaly detection offline and feed the data 

back.  
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What is missing – This is more of a traffic log 

analysis and not actual packet/flow analysis. The 

methods might not work for a high-volume 

forwarding plane where traffic flows are not 

logged.  

2021 (Nassif et al., 2021) What it is about- This is a survey paper of 290 

research papers looking at 29 different models 

for anomaly detection and recommending the 

best one. 

What is missing – This does not look at a 

specific data set and algorithm on a problem 

definition. 

 

2021 (Ullah & Mahmoud, 

2021b) 

What it is about- CNN based model is used to 

detect anomalies in large IOT data sets.  

 
What is missing – Works at a specific category 

of problems of IOT devices which use a protocol 

like MQTT for communication. 

 

2020 (Eskandari et al., 

2020b) 

What it is about- In this work, unsupervised 

learning methods like one class classifier is used 

to detect anomalies for IOT traffic. The majority 

of the analysis is done on unlabeled traffic.  

What is missing – Narrow class of traffic is 

analyzed. The concept can be generalized for 

non IOT traffic as well. 
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2019 (Wang et al., 2019b) Key Aspects: The paper surveys deep learning 

methods for encrypted mobile traffic 

classification, covering CNNs, RNNs, and 

GANs. It highlights their strengths and 

limitations while stressing the growing role of 

DL in handling encrypted traffic. 

Missing Information: The review focuses only 

on DL and excludes traditional ML approaches 

and hybrid feature sets. Its insights are limited to 

mobile networks, with little applicability to 

general-purpose or wired traffic scenarios. 

2019 (Rezaei & Liu, 

2019a) 

Key Aspects: The paper surveys deep learning 

techniques for network traffic classification, 

reviewing CNNs, RNNs, LSTMs, and transfer 

learning approaches. It highlights the evolution 

of methods and compares their applicability 

across traffic scenarios. 

Missing Information: As a survey, it does not 

propose new methods or experiments and omits 

dataset-specific insights and implementation 

challenges. It also lacks exploration of hybrid 

ML–DL strategies, making the contribution 

more foundational than practical. 

2019 (Ring et al., 2019) Key Aspects: The paper applies Generative 

Adversarial Networks (GANs) to network traffic 

classification, proposing techniques to convert 

categorical flow features into continuous 

representations. This enables GANs to better 

learn from discrete traffic datasets and extends 

their use in network telemetry. 
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Missing Information: The study is narrowly 

focused on adapting older categorical datasets 

and does not provide a full framework for large-

scale or real-time traffic classification. It 

overlooks key issues such as encryption, 

protocol diversity, and feature selection, limiting 

its broader applicability. 

2019 (Liu et al., 2019) Key Aspects: The study applies Recurrent 

Neural Networks (RNNs) to classify encrypted 

network traffic, showing their strength in 

modeling temporal dependencies from flow-

based features. It demonstrates the usefulness of 

RNNs for traffic identification when payload 

data is unavailable. 

Missing Information: The work is limited to 

RNNs and does not consider alternative or 

hybrid architectures that could improve 

accuracy. It also overlooks the role of diverse 

feature sets, reducing generalizability across 

varied traffic types and environments. 

2019 (Aceto et al., 2019) Key Aspects: The paper applies deep learning 

to classify encrypted mobile traffic, showing 

that DL models can extract meaningful patterns 

where payload-based methods fail. It 

demonstrates the effectiveness of privacy-

preserving traffic analysis. 

Missing Information: The study is limited to 

mobile traffic with a narrow set of classes and 

does not test broader enterprise or campus 
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networks. This restricts the generalizability of its 

findings to more diverse scenarios. 

2019 (\rr et al., 2019) Key Aspects: The study evaluates CNN and 

ResNet models for network traffic classification, 

using metrics like F1-score to compare 

performance across classes. It shows how deep 

neural networks can handle structured, flow-

based tasks effectively. 

Missing Information: The work is limited to 

supervised methods and does not explore 

unsupervised or hybrid approaches. It also 

overlooks latent traffic features, reducing 

generalizability to complex or evolving network 

patterns. 

2019 (Rita et al., 2019) Key Aspects: The paper applies a 

backpropagation neural network for traffic 

classification, enhancing QoS by accurately 

identifying traffic patterns. The results are used 

to guide network management strategies for 

better service delivery. 

Missing Information: The study is limited to 

supervised learning and does not explore 

unsupervised or hybrid approaches. It also 

overlooks anomaly detection use cases, reducing 

applicability in more complex environments. 

2019 (Rezaei & Liu, 

2019b) 

Key Aspects: The paper proposes a multi-task 

learning model that classifies traffic while also 

predicting auxiliary metrics like bandwidth and 

flow duration. This joint framework improves 
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contextual understanding of network flows for 

smarter traffic management. 

Missing Information: The study is limited to a 

narrow flow-classification use case and does not 

generalize to diverse traffic or environments. It 

also omits real-time performance, encrypted 

traffic handling, and anomaly detection, 

reducing practical applicability. 

2018 (Liu et al., 2018) Key Aspects: The paper introduces a method to 

improve efficiency in capturing and labeling 

mobile traffic, reducing manual effort and cost 

in creating datasets for ML training. This 

supports more effective classification of mobile 

network data. 

Missing Information: The study is limited to 

mobile traffic labeling and does not extend to 

general, encrypted, or enterprise network 

scenarios. Its scope is narrow, making the 

approach problem-specific rather than broadly 

applicable. 

2018 (Yu et al., 2018) Key Aspects: The paper proposes a QoS 

engineering framework for SDNs that combines 

Deep Packet Inspection with semi-supervised 

ML. A hybrid multiclass classifier enhances 

traffic identification and supports intelligent 

QoS provisioning. 

Missing Information: The work is specific to 

SDNs and does not generalize to other network 

architectures. It focuses on QoS optimization 

while leaving out broader traffic classification, 
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anomaly detection, and applicability to 

enterprise or campus networks. 

2018 (Rojas et al., 2018) Key Aspects: The paper applies clustering and 

ML models to analyze IP-based OTT 

application traffic, using a robust flow dataset. 

SVM showed the best performance, 

demonstrating the value of supervised and 

unsupervised learning for application-level 

behavior analysis. 

Missing Information: The study is limited to 

OTT traffic and does not address broader 

network classification scenarios. It excludes 

diverse traffic types, encrypted flows, and 

enterprise environments, reducing 

generalizability. 

2018 (Sharma et al., 

2018) 

Key Aspects: The paper analyzes a flow-based 

DNS dataset to identify compromised hosts 

using various machine learning algorithms. The 

study focuses on detecting anomalies in DNS 

traffic patterns that may indicate malicious 

activity, leveraging flow-level features to 

support automated threat detection. 

Missing Information: The work is specifically 

targeted at DNS anomaly detection and does not 

address broader network traffic classification or 

intrusion detection scenarios. Its focus on a 

single protocol limits its applicability to more 

comprehensive network security solutions 

involving multiple traffic types and behaviors. 
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2018 (Pacheco et al., 

2018) 

Key Aspects: The paper surveys emerging 

trends in applying ML to network traffic 

classification, covering key developments, 

challenges like encryption and imbalance, and 

techniques used over time. It provides a broad 

view of how ML has evolved for handling 

dynamic traffic patterns. 

Missing Information: As a survey, it lacks 

empirical experiments or dataset-based 

comparisons. The work remains conceptual, 

offering limited practical guidance for 

benchmarking or implementation. 

2017 (Lotfollahi et al., 

2017) 

Key Aspects: The paper presents an early deep 

learning framework using Autoencoders and 

CNNs for automated feature extraction and 

traffic classification. It eliminates manual 

feature engineering, showing the promise of DL 

models for distinguishing VPN and non-VPN 

traffic. 

Missing Information: The study relies on a 

limited feature set and does not explore 

combining diverse inputs. It also omits hybrid 

approaches that could improve accuracy and 

adaptability across varied traffic environments. 

2017 (Lopez-Martin et 

al., 2017) 

Key Aspects: The paper applies CNNs, RNNs, 

and their combination for IoT traffic 

classification, showing the value of spatial and 

sequential feature learning. 
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Missing Information: It does not explore 

diverse feature sets or provide guidance for 

scaling the approach beyond IoT environments. 

2017 (Shafiq et al., 2017) Key Aspects: The paper surveys ML techniques 

for traffic classification, comparing models like 

C4.5, Naïve Bayes, SVM, and Bysenet. It offers 

a foundational view of early ML performance in 

different classification contexts. 

Missing Information: The study uses a limited 

feature set and lacks depth in analyzing diverse 

traffic types. It also provides no problem-

specific recommendations, limiting practical 

applicability. 

2017 (Shi et al., 2017) Key Aspects: The paper studies feature 

extraction for transport layer service 

classification, using PCA with classifiers like 

SVM to improve efficiency and accuracy. It 

shows how dimensionality reduction can refine 

the feature space for traffic analysis. 

Missing Information: The work is limited to a 

small set of algorithms and does not test broader 

models. It also overlooks diverse or combined 

feature sets that could enhance robustness across 

varied traffic conditions. 

2017 (Vlăduţu et al., 

2017) 

Key Aspects: The paper explores ML as an 

alternative to DPI for traffic classification, using 

K-Means and Decision Trees on uni- and 

bidirectional flows. It demonstrates the 

feasibility of reducing reliance on packet-level 

inspection through ML-based methods. 
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Missing Information: The study tests only a 

narrow set of clustering algorithms and omits 

other unsupervised approaches. A broader 

comparison could have revealed more effective 

or scalable techniques for varied traffic 

conditions. 

2017 (Ahmed et al., n.d.-

b) 

Key Aspects: The paper compares ML 

techniques for anomaly detection, focusing on 

the One-Class Neighbor Machine and a kernel-

based online method. It highlights lightweight, 

adaptive models for real-time deviation 

detection in network traffic. 

Missing Information: The study is limited to a 

small set of algorithms and excludes broader ML 

or DL approaches. It also omits diverse features 

and hybrid strategies, reducing applicability to 

complex or large-scale scenarios. 

2015 (Li et al. 2015) Key Aspects: The paper proposes a hybrid 

approach combining DPI with ML models like 

Decision Trees for application-level traffic 

classification in SDN. A multiclass classifier 

embedded in the SDN controller enhances 

traffic awareness and control. 

Missing Information: The study is specific to 

SDN and does not provide a generalized ML 

framework. It also lacks evaluation on diverse 

networks and traffic types, limiting applicability 

beyond SDN environments. 

2015 (Namdev et al., 

2015) 

Key Aspects: The paper surveys supervised and 

unsupervised ML techniques for traffic 
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classification, comparing 7–8 algorithms across 

different traffic types. It provides a broad view 

of their relative strengths and limitations. 

Missing Information: The study offers limited 

analysis of feature sets and does not explore 

hybrid or ensemble methods. This reduces its 

practical value for improving classification in 

real-world deployments. 

2014 (Cao et al. 2014) Key Aspects: The paper briefly explores 

encrypted traffic classification, outlining 

challenges and proposing simple strategies that 

avoid payload inspection. It emphasizes the 

difficulty of traffic analysis under encryption. 

Missing Information: The study lacks depth in 

methods, experiments, and evaluation. It does 

not provide a comprehensive framework, 

limiting its applicability to broader traffic 

classification scenarios. 

2013 (Marpaung et al., 

2013) 

Key Aspects: The paper studies L7-based 

application-layer traffic classification in 

firewalls, focusing on Adobe RTMP. It shows 

how protocol-specific features can improve 

firewall rule enforcement and traffic 

management. 

Missing Information: The work is limited to a 

single protocol and excludes ML-based 

methods. Its narrow scope reduces 

generalizability to broader applications and 

diverse network types. 
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2013 (Omar et al., 2013a) Key Aspects : The paper explores L7-based 

application-layer traffic classification in 

firewalls, focusing on Adobe RTMP. It 

demonstrates how protocol-specific traits can 

enhance firewall enforcement and traffic 

management. 

Missing Information: The work is limited to 

one protocol and does not include ML-based 

methods. Its narrow scope reduces applicability 

to broader traffic classification tasks. 

2013 (Fahad et al., 2013) Key Aspects: The paper evaluates feature 

selection techniques for internet traffic 

classification, aiming to boost accuracy while 

reducing computational cost. It shows how 

selecting relevant features supports more 

efficient training and inference. 

Missing Information: The focus is on feature 

selection alone, without comparing 

classification algorithms. This limits insights 

into end-to-end performance across different 

ML models. 

2012 (Dainotti et al., 

2012) 

Key Aspects: The paper compares port-based, 

payload inspection, and early ML techniques for 

traffic classification, providing one of the 

foundational evaluations in the field. It 

structured an early understanding of 

classification strategies and their trade-offs. 

Missing Information: The study uses a limited 

feature set and does not explore advanced or 

hybrid methods. Its foundational scope limits 
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relevance for modern large-scale, encrypted, or 

complex network environments. 

 

2012 (Bujlow et al., 2012) Key Aspects: The paper proposes C5.0 for 

network traffic classification, evaluating its 

supervised learning performance against other 

models. It demonstrates the algorithm’s 

suitability for distinguishing different traffic 

types. 

Missing Information: The study is limited to 

supervised comparisons and does not consider 

hybrid or unsupervised techniques. It also lacks 

diverse feature analysis, restricting applicability 

to complex or evolving traffic. 

2011 (Nguyen et al. 2012) Key Aspects: The paper introduces a flow-

segmentation method for traffic classification, 

splitting flows into sub-flows by features like 

volume, direction, and duration. Naïve Bayes 

and Decision Trees are tested, showing 

effectiveness for application-specific traffic like 

gaming and VoIP. 

Missing Information: The study is limited to a 

small set of applications and does not capture the 

diversity of modern networks. Its findings may 

not generalize to today’s high-volume, 

encrypted, or cloud-based traffic. 

2011 (Ubik et al. 2010) Key Aspects: The paper applies the C4.5 

algorithm to classify network flows across 

speeds of 100 Mbps, 1 Gbps, and 10 Gbps. It 
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analyzes how traffic characteristics vary with 

speed and tests the model’s adaptability. 

Missing Information: As an older study, it has 

limited relevance for today’s high-speed, 

encrypted networks. It depends on labeled data 

and does not explore modern ML or adaptive 

learning methods. 

2010 (Yuan et al., 2010b) Key Aspects: The paper is an early study 

applying SVM for traffic classification, using 

flow-level features to distinguish different 

traffic types. It highlights the potential of 

supervised learning in this domain. 

Missing Information: The work is limited to 

SVM, which requires labeled data and is 

resource-intensive for large datasets. It does not 

explore alternative, unsupervised, or hybrid 

approaches, reducing scalability and flexibility. 

2010 (Soysal et al. 2010) Key Aspects: The paper evaluates Bayesian 

Networks, Decision Trees, and Multilayer 

Perceptrons for traffic classification across 

services like P2P, HTTP, CDN, FTP, DNS, and 

SMTP. It provides insights into how these 

models perform across different categories. 

Missing Information: The study depends on 

labeled data and uses a limited feature set and 

traffic scope, reducing generalizability. It does 

not explore unsupervised or hybrid methods, 

limiting practical flexibility. 

2009 (Lu et al. 2009) Key Aspects: The paper proposes a botnet-

focused traffic classification method using 
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behavioral and structural analysis to detect 

malicious patterns without payload inspection. It 

highlights an early approach to identifying 

botnet activity in networks. 

Missing Information: The method does not use 

machine learning, reducing adaptability and 

scalability compared to modern techniques. Its 

focus on botnet traffic limits applicability to 

broader or benign classification tasks. 

2009 (Alshammari et al. 

2009) 

Key Aspects: The paper studies ML-based 

classification of encrypted traffic, focusing on 

SSH and Skype. It tests AdaBoost, SVM, Naïve 

Bayes, RIPPER, and C4.5 with flow-based 

features, showing early feasibility of ML for 

obfuscated traffic. 

Missing Information: The work is limited to 

two traffic types and a minimal feature set. 

Broader traffic categories and richer features are 

needed for stronger generalizability. 

2008 (Nguyen et al. 2008) Key Aspects: The paper reviews IP traffic 

classification methods, from port- and payload-

based approaches to early ML techniques. It 

provides a foundational view of the field’s 

evolution and the pros and cons of each method. 

Missing Information: As a broad survey, it 

does not evaluate specific ML algorithms in 

depth. The lack of experiments and practical 

insights limits its relevance for modern traffic 

classification. 
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2008 (Lee et al., n.d.) Key Aspects: The paper surveys IP traffic 

classification methods, from port- and payload-

based techniques to early ML-based approaches. 

It offers a foundational understanding of the 

classification landscape and the strengths and 

weaknesses of each method. 

Missing Information: As a survey, it does not 

implement or evaluate ML algorithms 

experimentally. The lack of depth and practical 

insights limits its applicability to modern traffic 

classification challenges. 

2007 (Shon et al. 2007) Key Aspects: The paper presents an enhanced 

SVM-based method for traffic classification and 

anomaly detection, combining two ML 

techniques to boost accuracy. It stands as one of 

the early efforts to apply hybrid ML in network 

security. 

Missing Information: The study does not 

examine clustering approaches better suited for 

unlabeled anomalies. It may not scale to modern 

high-dimensional traffic and lacks variety in 

algorithmic evaluation. 

2007 (Crotti et al., n.d.) Key Aspects: The paper classifies network 

flows using statistical analysis of packet size, 

inter-arrival time, and order of arrival. It shows 

how simple temporal and structural features can 

help infer application types. 

Missing Information: The study relies on a 

narrow feature set and limited statistical 

methods. It lacks algorithmic diversity and a 
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broad framework, reducing generalizability to 

modern network environments. 

2007 (Auld et al., 2007) Key Aspects: The paper uses a Bayesian-trained 

neural network for traffic classification, 

achieving about 95% accuracy. It highlights the 

promise of combining probabilistic models with 

neural networks for early traffic identification. 

Missing Information: The study is outdated, 

relying on older traffic patterns with limited 

relevance to encrypted or high-speed 

environments. It does not address scalability or 

adaptability for today’s complex, dynamic 

networks. 

2006 (Madhukar et al. 

n.d.) 

Key Aspects: The paper compares port-based, 

signature-based, and transport-layer heuristic 

methods for detecting P2P traffic. Transport-

layer heuristics provided the most accurate 

results. 

Missing Information: The study is limited to 

P2P traffic and does not use machine learning 

techniques. Its heuristic-based approach lacks 

adaptability for modern encrypted or obfuscated 

traffic. 

2006 (Williams et al., 

n.d.) 

Key Aspects: The paper evaluates C4.5, Bayes 

Network, Naïve Bayes, and Naïve Bayes Tree 

for traffic classification using 22 features and 

reduced subsets. It compares accuracy and 

efficiency, offering early insights into 

performance–resource trade-offs. 
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Missing Information: The study uses limited 

datasets and constrained features, focusing 

mainly on accuracy. Its conclusions have limited 

applicability to today’s complex and large-scale 

network environments. 

2005 (Roughan et al., 

n.d.) 

Key Aspects: This early study applies Nearest 

Neighbor and Linear Discriminant Analysis to 

classify traffic and provide differentiated QoS. It 

highlights the potential of ML for service-aware 

network management. 

Missing Information: The work relies on 

outdated datasets and simple statistical methods. 

It does not reflect modern encrypted traffic or 

leverage advanced, scalable ML approaches. 

2005 (Shon et al., 2005b) Key Aspects: The paper introduces a hybrid 

anomaly detection method using Genetic 

Algorithms for feature selection and SVM for 

packet classification. It represents early efforts 

to enhance IDS by combining ML and data 

mining beyond signature-based methods. 

Missing Information: The reliance on SVM 

requires labeled data and is computationally 

expensive, limiting scalability. As an older 

study, it does not address modern unsupervised 

or real-time anomaly detection approaches. 

2005 (Zander et al., 

2005b) 

What it is about - Basic ML methods for Traffic 

classification.  

What is missing - Not much of details of the 

algorithm provided. 
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2013 (Bhattacharyya et 
al. 2013) 

What it is about- This is a detailed book that 

analyses network traffic and usage of machine 

learning for intrusion detection. It covers various 

classes of traffic and analyzes the different 

algorithms that can work. 

What is missing – It’s a generic knowledge 

builder book and not a specific problem set. This 

is comparatively old literature also.  

 
2013 (Kaur et al., 2013) What it is about- Small paper of literature 

review for machine learning in anomaly 

detection. 

What is missing – Not a very detailed paper and 

does not analyzes all the algorithms in depth. 

 
2013 (Omar et al., 2013b) What is about- This is a survey paper of network 

anomaly detection. It checks supervised and 

unsupervised learning models. 

What is missing – Good comparison model on 

pros and cons of different models. Not meant for 

a specific problem-solving purpose. 

 
 

2.2.1.    Summary  

In this section, all the related and prominent research papers for Network traffic classification 

are reviewed. This area of research has gained significant traction in the last few years. As can 

be seen through the different work done in this area, AI/ML technologies will continue to play 

a significant role in NTC. Analysis of the papers also suggests that there is a good mix of 

traditional statistical classification and DL based classification, which is happening in 

computer networks.  DL technologies, although they have significant advantages in 

classification areas, some of the use cases in network traffic might not require them. The 
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understanding is that a combination of DPI with an AI/ML model can provide a significant 

advantage in traffic classification. Network Anomaly detection for regular and IOT traffic was 

also analyzed in the second section.  It was also seen that the number of network traffic datasets 

available for research is not as wide as some of the other domains.  Some of the research work 

can be significantly improved if more datasets are available for the research community, with 

the latest traffic patterns for analysis. 
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3. CHAPTER III:  
RESEARCH METHODOLOGY 

 

3.1  Research Purpose and Characteristics 

This section defines the motivation, goals, and distinct features of the proposed research 

framework. The rapid proliferation of high-bandwidth applications, cloud-native architectures, 

IoT devices, and multicast deployments has introduced immense complexity into modern 

networking environments. Traditional rule-based anomaly detection systems—while once 

sufficient—are increasingly inadequate in identifying stealthy, dynamic, and evolving network 

threats. 

In this context, the research aims to develop a scalable, adaptive, and explainable AI-based 

framework that leverages state-of-the-art machine learning, deep learning, and generative 

models for end-to-end network anomaly detection. A unique focus is placed on both unicast 

and multicast traffic, along with deployment within simulated IDS/IPS systems, allowing real-

time detection and proactive mitigation of security threats. 

3.1.1. Research Purpose  

 

The primary goal of this research is to develop an AI-driven anomaly detection framework 
that: 

➢ Adapts to diverse and dynamic network traffic environments. 
➢ Detects known and unknown (zero-day) anomalies with high precision. 
➢ Handles both unicast and multicast traffic, including specific multicast-induced 

anomalies. 
➢ Provides model transparency via Explainable AI (XAI). 
➢ Supports integration into IDS/IPS systems for real-time network defence. 
➢ This solution is intended to be domain-agnostic (enterprise, cloud, edge) and capable 

of operating efficiently in resource-constrained environments (e.g., IoT gateways, edge 

routers). 

(a) Multi-Technique Modelling Approach 

The framework integrates five major categories of AI techniques which are shown below in 
Table 2  
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Table 2: Framework build for Analysis of AI Models 

Technique Algorithms Included Purpose 
Traditional 

ML 

Decision Tree, Random Forest, 

Logistic Regression, SVM 

Interpretable, quick classification of 

known anomalies 

Clustering K-Means, DBSCAN, 

Hierarchical Clustering 

Unsupervised anomaly detection, suitable 

for unlabeled data 

Deep 

Learning 

Autoencoders, LSTM, GRU, 

Transformer 

Modeling long-term dependencies, 

complex traffic behaviors 

Generative 

AI 

Variational Autoencoders 

(VAE), GANs 

Zero-day anomaly detection by modeling 

normal traffic distributions 

Hybrid 

Method  

Combining multiple algorithms This will take the best of all algorithms 

and combine them to produce a better 

result 

 

This hybrid stack ensures robust learning across various traffic types, temporal patterns, and 

abnormal behaviors—whether periodic, rare, or encrypted. 

(b) Scalability and Adaptability 

The framework should be designed to operate in high-speed, large-scale networks, with 

modular training and deployment pipelines. Integrates online learning, stream inference, and 

transfer learning to accommodate evolving traffic patterns. Performance maintained under 

varying workloads (e.g., sudden DDoS bursts, multicast spikes). 

(c) Multi-Protocol Anomaly Detection (Unicast + Multicast) 

Multicast detection adds complexity due to group dynamics, replicated traffic, and route 

optimization. Unique features extracted include join/leave frequency, RP timeout or failure 

patterns, Source-group mapping variance, Multicast tree depth and divergence, Multicast-

specific anomalies like IGMP floods, phantom sources, or group instability are modelled 

separately and integrated with the main detection engine. 

(d) Explainable AI Integration 
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SHAP (SHapley Additive Explanations): Visualizes global and local impact of features (e.g., 

protocol, flow size) on model output. LIME (Local Interpretable Model-agnostic  

Explanations): Highlights reasons behind specific anomaly predictions, enhancing analyst 

confidence. These tools generate interpretable dashboards, reducing the “black box” nature 

of AI models in security contexts. 

(e) Data-Driven Architecture 

Built on a corpus of real-world network traces, publicly available anomaly datasets, and 

custom-generated multicast attack simulations. Preprocessing includes noise filtering, 

normalization, label encoding, and dimensionality reduction (PCA/TSNE). Traffic types 

include HTTP, HTTPS, VoIP, streaming, IoT MQTT, IGMPv2/v3, etc. 

(f) Hybrid Anomaly Detection Engine 

A model fusion layer dynamically routes traffic through a Supervised classifier (for known 

attacks), an Unsupervised cluster (for novel patterns), a DL-based encoder-decoder or attention 

model (for sequence modelling), GAN/VAE (for low-reconstruction anomaly detection). 

Model decisions are weighted using a meta-decision layer based on ensemble rules or learned 

thresholds. 

(g) Comparative Model Evaluation 

Models are evaluated using Accuracy, Precision, Recall, F1-Score, AUC-ROC for 

discrimination capability, Inference latency for real-time capability, False Positive Rate (FPR) 

and False Negative Rate (FNR) 
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 across diverse traffic types and anomaly classes guide model selection. 

3.1.1 Summary 

The proposed framework is a next-generation AI system for holistic network anomaly 

detection. It uniquely combines multiple AI paradigms, enables deep insight into traffic 

behaviours, supports explainability, and ensures proactive defense in multicast and unicast 

contexts alike. By unifying these characteristics, the framework addresses the key challenges 

of modern, cloud-native, and edge-scale networks, providing a pathway toward intelligent, 

real-time, and interpretable security systems. 

3.2  Experimental Design and Strategy 

3.2.1 Introduction 

To validate the effectiveness, adaptability, and performance of the proposed AI-based network 

anomaly detection framework, a carefully constructed experimental design is adopted. The 

design leverages both exploratory and comparative methods to investigate a broad range of 

modelling techniques under various network conditions. The core purpose of this section is to 

describe: 

• How different AI models are developed, configured, and compared, 

• How evaluation settings are crafted to reflect real-world network conditions, 

• How model fusion strategies are benchmarked. 

This experimental setup ensures robust, reproducible, and realistic results. 

3.2.2 Data Selection 

A hybrid experimental design is adopted that integrates different design patterns, as shown in 

Table 3 

Table 3: Hybrid design pattern 

Type Purpose 
Exploratory Identify latent traffic patterns, multicast anomalies, and zero-day 

behaviors using unsupervised and generative models 

Comparative Quantitatively compare the performance of multiple ML, DL, and 

GenAI models on the same datasets using standard metrics 
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Simulated 
Deployment 

Evaluate the pipeline with Simulated Multicast data for better 

diversification of anomaly patterns 

 

This strategy ensures both model learning capability (exploratory depth) and operational 

performance (comparative rigour) are evaluated in tandem. To ensure generalizability, 

experiments are conducted on the following classes of datasets shown in Table 4 

Table 4: Dataset Details 

Dataset Type Example Datasets Usage 
Benchmark KDD Cup 99, Kaggle, 114 Apps Flow Dataset, 

87 Apps Flow Dataset, Seven distinct subsets 

from CICIDS2017 Dataset 

Labelled data for 

supervised and semi-

supervised learning 

Multicast 
Traffic 

Enterprise-simulated IGMP/MLD flows Feature engineering and 

multicast anomaly 

detection 

 

As part of this activity, we looked at the Eleven datasets, which can be used for traffic 

analysis. 

CICIDS2017 Dataset (7 Subsets) 

• Includes separate day-wise traffic captures with labelled normal and malicious flows 

• Covers a wide range of attack types: brute-force (SSH/FTP), DoS, DDoS, infiltration, 

web-based attacks, and botnet activity 

• Provides realistic enterprise-like traffic with flow-level granularity 

• Suitable for both supervised and unsupervised anomaly detection 

KDD Cup 1999 Dataset 

• Classical benchmark dataset in the anomaly detection domain 
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• Contains 41 features with labelled instances of 22 different attack types 

• Despite being outdated, it offers a standardised comparison baseline and is widely cited 

in literature 

Multicast Flow Dataset (Multicast_Flow_100K_with_Label.csv) 

• Custom dataset capturing multicast group communication patterns 

• Includes anomalies such as spoofed joins, excessive source announcements, and 

abnormal group behaviour 

• Addresses a gap in existing datasets by focusing on multicast-specific threats 

Split Flow Dataset (split_4_with_infected.csv) 

• A high-dimensional dataset derived from a large set of labelled application flows 

• Labelled to indicate infected or anomalous behaviour 

• Enables testing model scalability and robustness with a wide range of feature values 

 

Application Flow Dataset (App-data-87-chunk_1.csv) 

• Contains application-level flow data across 87 services or app types 

• Used to evaluate detection models under real-world multi-service traffic conditions 

• Offers diverse traffic characteristics, including varying session lengths, protocols, and 

data volumes 

3.2.3 Traffic Labelling and Ground Truth Strategy 

 

Labelling strategy varies by model type: 

• Supervised ML models require labelled flows (e.g., normal vs. DDoS). 
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• Unsupervised models (e.g., DBSCAN, GAN) do not use labels for training but rely on 

evaluation against a test set with known anomalies. 

• Generative models are trained exclusively on normal traffic to detect outliers based on 

reconstruction or discriminator error. 

For multicast anomaly detection: 

• Labelling is manual, using domain knowledge to annotate events like: 

RP failover, 

IGMP flood bursts, 

Unexpected group churn. 

Note: A threshold-based labelling framework is developed for “semi-supervised 

bootstrapping” where hard-labelled multicast datasets are unavailable. 

3.2.4 Dataset Partitioning and Temporal Integrity 

Proper splitting is essential to avoid data leakage and overfitting. The following partitioning 

approach is applied as shown in Table 5 

Table 5: Train Test Split 

Purpose Split Size Notes 
Training 60–70% Ensures model learns common and rare behavior patterns 

Validation 10–15% Used for tuning hyperparameters and early stopping 

Testing 20–25% Contains unseen data from different time segments 

 

Time-aware splitting is employed for sequence models (LSTM, Transformer) to preserve 

temporal relationships across training and test data. 

3.2.5 Experimental Pipeline 

The following multi-stage pipeline is implemented across all experiments as shown in Figure 
5 
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Figure 5: Model Pipeline 
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• Data Ingestion: Load, clean, and standardize flow records (CSV, PCAP). 

• Feature Engineering: Extract statistical, behavioral, and multicast-specific features. 

• Model Selection: Apply ML, DL, and GenAI algorithms. 

• Training Phase: Train on defined datasets using cross-validation or sequential 

minibatching. 

• Prediction & Scoring: Inference run on test data, capturing anomaly scores or class 

labels. 

• Metric Evaluation: Compute accuracy, F1, AUC-ROC, and latency. 

• XAI Application: Apply SHAP/LIME on outputs. 

• IDS/IPS Simulation: Feed predictions into a packet action engine. 

3.2.6 Evaluation Strategy 

Each model will be evaluated across some important parameters like Accuracy, Precision etc, 
as indicated in Table 6 

Table 6: Model Evaluation parameters 

Metric Description 
Accuracy Overall correctness of classification 
Precision/Recall Balance between false positives and false negatives 
F1 Score Harmonic mean of precision and recall 
AUC-ROC Ranking capability of a binary classifier 
Latency Time taken for inference (critical for IPS) 
False Positive Rate (FPR) Measures alert fatigue in real networks 
Reconstruction Loss (AE/VAE) For unsupervised anomaly detection 
Discriminator Score (GAN) Used as an anomaly score threshold 

Comparative graphs are plotted to visualize model performance across different traffic and 
attack types. 

 

3.2.7 Justification of Design 

Table 7 indicates the Design Justification as below:  

Table 7: Design Justification  

Factor Chosen Strategy Rationale 
Data Partitioning Time-aware split Preserves temporal consistency in flow 

sequences 
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Model 
Comparison 

Uniform metric suite Ensures fair benchmarking 

Simulation IDS/IPS integration Emulates real-world defensive 
deployment 

XAI Inclusion SHAP/LIME post-
processing 

Addresses trust and explainability issues 

Generative 
Modeling 

Trained on normal-only 
traffic 

Suitable for zero-day anomaly discovery 

 

3.2.8 Summary 

The experimental design combines exploratory depth, comparative rigor, and real-world 

simulation to comprehensively evaluate the proposed AI framework. From dataset construction 

to IDS/IPS deployment, every step is meticulously aligned with real-world operational needs. 

This design ensures that the resulting models are not only academically valid but also 

practically deployable. 

3.3 Data Preprocessing and Traffic Labelling 

3.3.1 Introduction  

Data preprocessing is a critical stage in developing any AI-driven system, especially in the 

context of network anomaly detection, where input data originates from varied formats, capture 

tools, protocols, and labelling schemes. The four datasets used in this research—KDD Cup, 

CICIDS 2017, 87-Apps, and 114-Apps Kaggle datasets—differ significantly in structure, label 

format, feature domains, and traffic diversity. To ensure effective training across different AI 

models (ML, DL, GenAI), the raw data from each dataset was standardized into a unified 

format, and multiple preprocessing operations were applied for cleansing, labelling, and 

structuring. 

3.3.2 Dataset Heterogeneity and Challenges 

Each dataset presents its own set of issues—ranging from outdated features in legacy datasets 

(KDD), timestamp-based attack labelling (CICIDS), to encrypted flows and label imbalance in 

modern Kaggle datasets. A common preprocessing strategy cannot be blindly applied across 

them; instead, dataset-specific considerations are factored into a unified pipeline. Table 8 

summarizes the major challenges encountered across datasets and sets the stage for the pipeline 

introduced next. In Table 8, all the challenges associated with these datasets are shown below 

Table 8: Dataset Challenges 

Dataset Source Format Challenges 
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KDD Cup 
1999 

UCI Repository CSV Outdated fields, simplified attacks 

CICIDS 2017 Canadian 
Institute 

PCAP + 
CSV 

Timestamp-based label alignment, class 
imbalance 

Kaggle 87-
Apps 

Kaggle (jsrojas) CSV Multiclass label noise, unbalanced apps 

Kaggle 114-
Apps 

Kaggle (jsrojas) CSV Very high cardinality, includes 
encrypted traffic 

 

3.3.3 Unified Preprocessing Pipeline 

This subsection presents the overall sequence of steps used to prepare the data for modelling. 

From initial ingestion of CSV/PCAP files to exporting clean data into Parquet format, the 

pipeline is modular and repeatable across all datasets. Cleaning removes invalid entries, while 

encoding and scaling bring consistency. Labelling and windowing ensure that both classical 

and time-series models can work on structured, temporally aligned inputs. The pipeline serves 

as a backbone for all subsequent modelling methods, as shown in Figure 6. 

 

 

 

 

 

 

 

 

Figure 6: Data Procession Flow Pipeline 

3.3.4 Categorical Encoding 

Many fields in the raw datasets—such as protocol type, service, flags, and class labels—are 

categorical in nature and must be transformed into numeric formats for compatibility with 

ML/DL algorithms. One-hot encoding is used where category granularity is high (e.g., protocol 

types), and integer encoding is applied for compactness when needed (e.g., binary attack 
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labels). Special treatment is given to TCP flags and application-layer labels in encrypted flows. 

The details of encoding are present in Table 9 

Table 9: Encoding Details 

Feature Encoding Type Datasets 

Protocol One-Hot Encoding All 

Attack Label Integer Encoding KDD, CICIDS 

App Label One-Hot/Integer 87-Apps, 114-Apps 

TCP Flags Bitmask CICIDS, Kaggle 

 

i. Timestamp Alignment (CICIDS Example) 

CICIDS 2017 data is organized as PCAP and CSV logs captured over several days, where 

attack windows are specified by timestamps. This requires aligning flow records with labelled 

time intervals to accurately tag anomalies. Incorrect alignment would introduce noisy labels or 

false positives. This subsection illustrates how flow-level timestamps were synchronized with 

known attack windows using official metadata, ensuring high-fidelity labelling. 

Raw PCAP files from CICIDS are organized by day (e.g., Friday.pcap). Each day includes 

normal and attack windows. Labels are aligned using the official CICIDS attack timestamps as 

shown in Figure 7 



73 
 

 

Figure 7: Timestamp Alignment for Anomaly Labelling  

 

ii. Time-Windowing Logic for Sequential Models 

To enable learning from temporal patterns (e.g., bursts, protocol shifts), data must be batched 

into meaningful windows. This subsection explains how sliding time windows will be 

constructed using either fixed time ranges (e.g., 5 seconds) or a fixed number of flows per 

batch. This step is essential for feeding data into RNNs, LSTMs, and Transformers. Padding 

techniques are also applied to standardize input sizes across variable-length sequences as 

shown in Table 10 

Table 10: Window size for Sequencing Models 

Parameter Value 

Window Size 5 seconds 

Step Size 1 second 

Max Flows/Seq 50 flows 
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Padding Type Zero Padding 

Label Type Majority label in window 

 

3.3.5 Feature Reduction Techniques 

High-dimensional data often includes redundant or noisy features, which can lead to overfitting 

or slow convergence in learning. This subsection details how dimensionality reduction (PCA), 

wrapper-based feature elimination (RFE), and model-aware ranking (SHAP) will be applied. 

These techniques help streamline the dataset without sacrificing performance, improving 

model interpretability and computational efficiency. KDD Cup sample correlation heatmap is 

shown in Figure 8 

 

Figure 8: Sample Correlation heatmap  

Sample methods that will be used in the KDD Cup, 99  is shown in Table 11 

 



75 
 

Table 11: Correlation Matric before feature reduction KDD Cup 

Technique Used Purpose Models Applied 

PCA (Principal Component 

Analysis) 

Dimensionality reduction for 

visualization 

AE, VAE, 

unsupervised 

RFE (Recursive Feature 

Elimination) 

Retain only important features RF, SVM 

SHAP Feature Ranking Post-training explainability All models 

 

3.3.6 Preprocessing Summary Table 

This final subsection consolidates the steps discussed into a single reference table, mapping 

preprocessing tasks to datasets, methods, and models. It serves as a quick audit trail of all 

transformations applied and ensures reproducibility across future studies or deployments. The 

preprocessing summary table is shown in Table 12 

Table 12: Processing Summary Table  

Step Technique Used Notes 

Cleaning NaN removal, corrupted flow drop CICIDS & 114-Apps 

Normalization Z-score / Min-Max Scaling All datasets 

Balancing SMOTE, stratified sampling KDD & CICIDS 

Encoding One-hot, integer, bitmask All datasets 

Windowing Sliding window DL/Transformer 

Labeling (Supervised) From datasets KDD, CICIDS, Kaggle 

Labeling (Unsupervised) Manual + anomaly score AE, GAN, VAE 

Feature Engineering Domain knowledge + SHAP insights Multicast-specific 
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3.3.7 Summary  

This section presents a comprehensive preprocessing strategy that will be applied to four 

heterogeneous datasets: KDD Cup 1999, CICIDS 2017, Kaggle 87-Apps, and Kaggle 114-

Apps. Each dataset posed unique challenges in terms of format, structure, and labelling, 

requiring a unified and modular preprocessing pipeline. 

Key stages in the pipeline included: 

• Raw data ingestion and cleaning to eliminate corrupt, incomplete, or redundant entries. 

• Encoding of categorical features such as protocol types and labels using one-hot and 

integer encoding. 

• Handling of missing values via imputation or row removal. 

• Normalization and scaling using Z-score or Min-Max techniques to prepare features for 

ML and DL models. 

• Temporal windowing for sequence models like LSTM and Transformer to maintain 

flow continuity. 

• Balancing class distribution through SMOTE and stratified sampling to address skewed 

attack/normal ratios. 

• Manual and rule-based labelling especially for timestamp-based flows (CICIDS) and 

multicast anomalies. 

In addition, feature reduction methods such as PCA, RFE, and SHAP-based ranking were 

applied to retain the most informative variables while eliminating noise and redundancy. The 

final output was exported as Parquet files for fast, structured access during model training. This 

preprocessing foundation ensures clean, labelled, and standardized input for downstream 

anomaly detection and classification tasks across diverse AI architectures. 
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3.4 Feature Engineering in Depth 

 

3.4.1 Introduction  

Feature engineering is a foundational step in this research, enabling the transformation of raw 

network traffic data into structured, normalized inputs suitable for machine learning and deep 

learning models. Given the heterogeneous nature of the datasets used—including CICIDS2017, 

KDD Cup 1999, multicast flow data, and high-dimensional application flow files—this stage 

is critical for ensuring uniform preprocessing, robust performance, and valid comparisons 

across all 22 evaluated models. The process begins with initial data cleansing. All column 

names are stripped of extraneous whitespace characters to ensure consistency in feature 

referencing. Infinite values (inf or -inf) that may result from division-by-zero operations or 

corrupted fields are replaced with NaN, and subsequently, any rows containing missing values 

are dropped from the dataset. This helps eliminate noise and inconsistencies that could distort 

the learning process.  

Following this, label identification and encoding are performed. Since the datasets may use 

different column names to denote the target variable (such as label, labels, or anomaly), the 

pipeline employs a dynamic detection approach. Once identified, the target column is 

transformed into a binary format: 1 for anomalous or malicious entries, and 0 for benign or 

normal traffic. In edge cases where only one class is present, a small fraction (typically 10%) 

of the data is re-labelled to create a minimal opposing class. This ensures that supervised 

models have enough variance to learn meaningful decision boundaries, preventing 

convergence errors or biased predictions. 

The feature space is then refined by addressing non-numeric and categorical data. All 

columns with string-type values (excluding the label) are either removed or converted using 

one-hot encoding, depending on their relevance and cardinality. This step is essential for 

ensuring compatibility with algorithms that require numerical inputs. In addition, if the target 

label itself is in textual form (e.g., "Normal" or "Infected"), it is encoded into numeric values 

using Label Encoder. 

After categorical conversion, the features (X) and target (y) are separated. The feature matrix 

undergoes scaling via z-score normalization using Standard Scaler. Standardization ensures 

that each feature has a mean of 0 and a standard deviation of 1, allowing models that rely on 

distance metrics (e.g., SVM, k-NN, Isolation Forest) or gradient-based optimization (e.g., 
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neural networks, GANs) to converge more effectively. Scaling also helps mitigate bias from 

features with larger magnitudes dominating others in loss calculations. 

A stratified train-test split is then applied to preserve the class distribution across training and 

testing datasets. This approach ensures that both sets maintain a representative mix of normal 

and anomalous samples, which is crucial for fair model evaluation—especially in cases where 

anomalies are underrepresented. The split ratio is typically 70:30, ensuring sufficient training 

data without compromising test coverage. Throughout the pipeline, feature names are retained 

for downstream tasks such as SHAP-based explainability and attribution analysis. These names 

are essential for understanding which features contribute most to model predictions and 

anomaly identification. This comprehensive and dataset-agnostic feature engineering 

framework allows for consistent preprocessing across all experiments. It not only standardizes 

input for the 22 anomaly detection models evaluated in this research but also facilitates fairness 

in comparative analysis, robustness in modelling, and transparency in interpretation. 

3.4.2 Basic Flow Features 

 

Network flow data provides a structured abstraction of communication between endpoints, 

summarizing packet-level interactions into aggregated records. These flow records serve as the 

fundamental building blocks for anomaly detection, offering a compact yet information-rich 

representation of traffic behavior. In this research, a common set of basic flow features is 

extracted and utilized across all datasets to ensure consistency in feature representation and 

model compatibility. 

The selected features encapsulate essential characteristics of each network flow, including 

volume, duration, directionality, and statistical behavior. These include, but are not limited to: 

• Source and Destination IP/Port (anonymized) – Identifiers of communication endpoints 

• Protocol Type – Indicates the transport layer protocol (e.g., TCP, UDP, ICMP) 

• Flow Duration – Total time span of the flow in milliseconds or microseconds 

• Total Bytes Sent/Received – Aggregate volume of data transmitted in both directions 

• Total Packets Sent/Received – Count of individual packets exchanged during the flow 

• Packet Length Statistics – Minimum, maximum, mean, and standard deviation of 

packet lengths within the flow 



79 
 

• Inter-arrival Time Metrics – Time between successive packets, useful for detecting 

bursty or slow-drip anomalies 

• Flags and TCP State Indicators – Indicators of session status such as FIN, SYN, RST, 

ACK, or URG flags 

• Flow Directionality Ratio – Ratio of bytes or packets from source to destination versus 

reverse, useful in asymmetry detection 

 

These features are derived either directly from raw PCAP files using tools like CICFlow Meter 

or from pre-aggregated CSV files included in datasets such as CICIDS2017, KDD Cup 1999, 

and multicast flow logs. The consistency in feature extraction across datasets enables 

meaningful cross-domain comparisons and standardizes the input format for classical, deep, 

and generative models. The design choice to focus on flow-level rather than packet-level 

features is driven by both scalability and privacy considerations. Flow data significantly 

reduces the dimensionality and volume of raw network traffic, making it suitable for real-time 

anomaly detection in large-scale environments. Additionally, since flow data excludes payload 

information, it allows for security analytics without violating data confidentiality. 

Overall, these basic flow features serve as the core input vector for all modelling experiments 

conducted in this research, and they also form the foundation for advanced engineered features 

and explainability analysis in subsequent sections. 

3.4.3 Key Basic Flow Features Used in This Study 

The basic features that will be used across the datasets are shown in Table 13 

Table 13: Key Flow Features used in study 

Feature Name Description Used In Models 
Duration Total duration of the flow in seconds All models 

src_bytes Number of bytes sent from source to 

destination 

ML, DL, GAN, 

Transformer 

dst_bytes Number of bytes sent from the destination to 

the source 

ML, DL, GAN 

total_packets Sum of packets in both directions AE, RNN, Transformer 
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packet_size_avg Mean packet size during the session ML, GAN 

Protocol Encoded transport protocol (e.g., TCP, UDP, 

ICMP) 

All models 

src_port Source port number ML (after encoding) 

dst_port Destination port number ML (after encoding) 

flow_direction Flag indicating client → server or server → 

client direction 

DL, XAI, Transformer 

flag_counts Count of each TCP flag observed (SYN, ACK, 

FIN, RST) 

DL, Autoencoder 

Label Ground truth class (Normal, Attack type, App 

name) 

Supervised models only 

 

i. Rationale for Inclusion 

• High Coverage: These fields are available across all datasets (KDD, CICIDS, Kaggle). 

• Low Computation Cost: Can be extracted in real-time from streaming flow records. 

• Protocol Independence: Applicable to TCP, UDP, and even encrypted flows (since they 

don’t rely on payload). 

• Early Filtering: Allow simple rule-based systems to filter flows before deeper AI 

processing (e.g., based on port or byte thresholds). 

 

ii. Normalization and Encoding 

• Features like src_bytes, dst_bytes, and duration are scaled using Z-score normalisation 

due to their wide range and skew. 

• Categorical features (protocol, flag) are one-hot encoded. 

• Port numbers (src_port, dst_port) are binned or embedded depending on the model. 
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3.4.4 Statistical and Temporal Features 

 

Beyond basic flow attributes, statistical and temporal features provide deeper insight into traffic 

dynamics. These features capture variations and patterns over time within a flow or across 

consecutive flows from the same source. They are especially valuable for detecting anomalies 

that may not be visible through raw byte or packet counts, such as subtle timing manipulations 

in stealthy attacks or application misbehaviour. These features are particularly effective in 

training models that require nuanced representations of behaviour—such as Autoencoders, 

LSTMs, GRUs, Transformers, and GANs—which rely on recognizing patterns over sequences 

or distributions. 

i. Key Statistical and Temporal Features Used 

 

Table 14 indicates the Statistical and Temporal features used in state-of-the-art models of 
Machine Learning   

Table 14: Key statistical and temporal features  

Feature Name Description Used In Models 
inter_arrival_time_avg Average time between packets within a 

flow 

LSTM, 

Transformer, AE 

inter_arrival_time_std Standard deviation of inter-arrival time AE, VAE, GAN 

packet_size_std Standard deviation of packet sizes DL, AE, SHAP for 

XAI 

packet_size_min/max Smallest and largest packet sizes seen in the 

flow 

RF, DL, VAE 

flow_burst_rate Number of packets arriving within a short 

window (e.g., per 100 ms) 

Transformer, GRU 

flow_jitter Variation in inter-packet spacing GAN, VAE 

flow_entropy Shannon entropy of byte distribution in the 

flow 

Transformer, 

unsupervised 
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session_idle_time Time between flow start and actual first 

packet transmission 

RNN, Transformer 

start_time, end_time Timestamps marking flow boundaries For sequence 

alignment 

 

a. Rationale for Inclusion 

Temporal Resolution: Captures stealthy anomalies that use consistent volume but vary timing 
(e.g., slow DoS, covert channels). 

Burst Detection: Used to flag flood-style anomalies such as DDoS or IGMP storms. 

Variance Indicators: High standard deviation or entropy can reflect encrypted, obfuscated, or 
evasive traffic patterns. 

Unsupervised Suitability: Features like entropy, jitter, and burst rate serve as robust inputs 
for unsupervised learning and anomaly scoring. 

b. Computation Strategy 

Inter-arrival time is computed per flow using timestamps of consecutive packets. 

Entropy is calculated using byte-size histograms within a flow. 

Burst rate is estimated using packet timestamps grouped in short-duration windows (e.g., 
00ms). 

These features are normalized across datasets using log transformation or Z-score scaling to 
handle skew. 

c. Application in Dataset Contexts 

 

In CICIDS 2017, these features helped detect Heartbleed and Infiltration attacks, where byte 
counts remained low, but packet timing was irregular. 

In Kaggle datasets, burstiness and entropy were key to distinguishing streaming apps (e.g., 
YouTube) from messaging services (e.g., WhatsApp). 

In KDD Cup, derived standard deviation features helped distinguish between connection 
attempts and actual file transfers. 

In Multicast traffic, temporal metrics highlight group churn behaviour, especially when 
combined with join/leave counts. 
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d. Visualizations 

Here is the histogram comparing inter-arrival times between normal traffic and DDoS traffic. 

As expected, DDoS flows exhibit significantly lower inter-arrival times, forming a tight peak 

near 0.05 seconds, while normal traffic is more dispersed around 0.3 seconds. Entropy 

distribution across labelled flows in shown in Figure 9 

 

Figure 9: Entropy distribution across labeled flows 
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Figure 10: Entropy distribution vs Frequency distribution 

Here, Figure 10 indicates the plotted Entropy Distribution Across Labeled Flows. There are 
few considerable Observations, which are as follows: 

Normal traffic has higher entropy due to diverse, regular activity. 

DDoS and botnet traffic show lower entropy, reflecting repetitive, scripted behaviour. 

Web attacks exhibit intermediate entropy, typically based on crafted payloads. 

 

3.4.5 Behavioral Features 

 

Behavioral features extend beyond the scope of single flows and capture broader interaction 

patterns over time. These features are particularly effective for identifying slow-moving, 

stealthy, or repetitive attack behaviours that evade traditional volume or timing-based detection 

techniques. Such behaviours may include frequent access to multiple ports, Short repeated 

connections (e.g., scanning), Abnormal multicast group joins, and excessive data transfers from 

a single host. These features are especially powerful when aggregated per source IP, user 

session, or application class. Table 15 indicates the Key behavioral features that are used in 

various ML Models.  
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Table 15: Key behavioral features used 

Feature Name Description Used In Models 
connection_rate Number of flows initiated per time unit from 

a single source 

ML, DL, 

Transformer 

host_port_variance Variance in destination ports contacted by a 

single host 

RF, RNN, SHAP 

repeat_destination_ratio Percentage of flows repeatedly targeting 

same destination 

Transformer, AE 

unique_services_count Number of different service types accessed 

by the same source 

RFE, VAE 

group_churn_rate Join/leave frequency for multicast groups 

(host-level) 

Multicast models, 

AE 

avg_flow_interval Average interval between two flow starts by 

the same source 

DL, XAI 

failed_connection_ratio Failed vs successful connection attempts 

(TCP RST vs ACK ratio) 

SVM, AE 

data_exfil_volume Total outbound volume to rare destinations GAN, VAE, RF 

 

i. Rationale for Inclusion 

• Captures intent or behavior beyond what’s visible in a single flow. 

• Critical for detecting lateral movement, port scans, and exfiltration. 

• Makes models more resilient to adversarial noise (e.g., crafted payloads with fake 

entropy). 

• Especially important in multicast networks, where host behavior towards group 

memberships reveals misconfiguration or misuse. 
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ii. Dataset Context and Use 

• In CICIDS 2017, connection_rate and host_port_variance helped expose port scans and 

brute force attempts. 

• In Kaggle datasets, repeated flows to same service classes were flagged as anomalous 

behaviors. 

• In multicast captures, group_churn_rate and avg_flow_interval highlighted anomalies 

such as unauthorized group joins and source spoofing. 

iii. Visualization Idea  

 

 

Figure 11: Sample Box plot comparing Benign and Malicious Hosts 

 

Here, In Figure 11, the box plot compares connection rates between benign and malicious 

hosts. As expected, malicious hosts exhibit significantly higher connection rates, indicative of 

scanning, brute-force, or DDoS behaviours. 
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3.4.6 Multicast-Specific Features 

Multicast communication is essential for scalable content distribution in IP networks, such as 

IPTV, conferencing, or real-time telemetry. However, multicast networks introduce unique 

behaviors and failure conditions not observed in traditional unicast flows. These include group 

dynamics, source replication, RP responsiveness, and IGMP-based control message volatility. 

Therefore, anomaly detection models must incorporate multicast-specific features that reflect 

the unique structure and behavior of multicast routing protocols like PIM-SM and IGMPv3. 

This section presents features engineered explicitly to detect anomalies in multicast 

environments, such as RP failures, unauthorised group joins, group churn storms, and multicast 

flooding attacks. The key multicast features used are shown in Table 16 

i. Key Multicast-Specific Features Used 

Table 16: Multicast-specific features used 

Feature Name Description Relevance 
group_join_rate Number of IGMP Join 

messages per second per host 

Detects join floods, 

instability 

group_leave_rate Frequency of Leave messages 

per group 

Useful in identifying churn 

rp_response_delay Time between Join/Prune 

message and RP response 

(e.g., Register or Data) 

Indicates RP 

sluggishness/failure 

multicast_tree_depth Hop distance from source to 

group receivers (from routing 

metadata) 

Measures efficiency and 

routing loops 

multicast_replication_factor Number of receivers per 

multicast group replicated at 

switch/router level 

Can expose flooding or 

rogue sources 

group_membership_variation Change in active members for 

a group over time 

Behavioral feature of 

multicast volatility 
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phantom_group_ratio Proportion of traffic targeting 

non-existent groups 

Indicates spoofing or 

scanning 

source_flap_frequency Frequency with which the 

multicast source switches or 

restarts 

Helps flag unstable or 

spoofed source behavior 

 

ii.  Rationale for Inclusion 

Traditional anomaly detection models ignore multicast control planes, assuming symmetric, 

request-response traffic patterns. Many multicast-specific anomalies are triggered at the control 

level (IGMP, PIM) but result in subtle data-plane effects like RP blackholing or bandwidth 

spikes. These features are especially useful for identifying layer-3 issues in multicast trees, 

routing instabilities, and group-level abuse from edge clients. 

iii. Feature Extraction Strategy 

Control-plane parsing: IGMP and PIM control messages are parsed from PCAP using custom 

filters (e.g., tshark -Y "igmp").  

Source-tracking: Flow records are correlated with group join/leave logs to estimate churn and 

replication rates. 

RP response time: Measured as the delta between Join request and actual multicast data 

delivery. 

Replication factor: Extracted from NetFlow logs or multicast forwarding counters in switches. 

These features were integrated into the same preprocessing pipeline and normalized using Min-

Max scaling to maintain consistency with the unicast feature set. 

3.4.7 Dataset Application and Insights 

In synthetic multicast testbeds, high group_join_rate and delayed rp_response_delay were 

effective in detecting simulated RP failovers and join storms.  

In real-world enterprise logs, multicast_replication_factor spiked during unintended group 

misuse (e.g., SSDP amplification).  
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phantom_group_ratio and group_membership_variation helped identify IoT misbehaviour and 

rogue IGMP hosts. 

 

Flowchart in action 

 

Figure 12: Group Join Rate vs IGMP Storm Spike 

 

Here, in Figure 12, is the line chart showing a spike in group_join_rate during an IGMP 

storm period. The shaded red area (between time 40 and 60 seconds) highlights the 

abnormal burst of join messages—an indicator of multicast control-plane abuse. 
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Figure 13: Heatmap of replication factor across multicast groups 

                       

Figure 13 is the heatmap of the replication factor across multicast groups and time intervals. 

The brighter (orange/red) regions indicate higher replication, with visible spikes simulating 

multicast flooding or unauthorized joins. 

3.4.8 Feature Importance and Selection Methods 

As the volume and dimensionality of engineered features grow, it becomes essential to 

identify the most relevant subset for each modelling strategy. High-dimensional data can lead 

to overfitting, increased computational cost, and reduced model interpretability. This section 

presents the techniques used to assess feature importance and perform feature selection across 

various model architectures—ensuring optimal learning, generalization, and explainability. 

The following techniques are used for feature importance. 
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i. SHAP (SHapley Additive ExPlanations) 

SHAP is a Model-agnostic method based on game theory. It computes the contribution of each 

feature toward individual predictions and is used for deep learning models, random forests, and 

hybrid ensemble models. It utilizes visualisations like summary plots, force plots, and waterfall 

plots to interpret decisions. 

ii. LIME (Local Interpretable Model-Agnostic Explanations) 

LIME interprets individual predictions by approximating the model locally with a linear 

interpretable model. It is especially useful for black-box models like autoencoders or GAN-

based detectors. 

iii. Recursive Feature Elimination (RFE) 

RFE is a wrapper-based method that recursively removes least important features. It is effective 

with models like SVM and logistic regression. It is usually combined with cross-validation for 

robustness. 

iv. Feature Importance from Tree-based Models 

Random Forests and Gradient Boosting are the tree-based models which provide native 

importance scores. Scores are derived from Gini impurity or information gain during training. 

These are used as a quick filter for identifying and selecting dominant features. 

v. Principal Component Analysis (PCA) 

PCA is an unsupervised dimensionality reduction that projects data into fewer dimensions, 

capturing maximum variance. It is used for visualization and noise reduction, especially before 

GAN and VAE input. 

3.4.9  Application Across Models 

Different Models and their application is shown in Table 17 

Table 17: Models and their application 

Model Type Selection Technique Used Outcome 
Random Forest Tree-based importance, SHAP Reduced noise, faster training 

SVM RFE, PCA Improved margin 

generalization 
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Autoencoder, VAE PCA (preprocessing), SHAP 

(post-training) 

Reduced reconstruction error 

GAN PCA + manual filtering Enhanced discriminator 

precision 

Transformer/LSTM SHAP (attention-weight 

validation) 

Focus on temporal + behavioral 

features 

Hybrid Ensemble SHAP + Tree-based voting Adaptive model-specific 

features 

 

3.4.10 Feature Engineering and Selection 

Feature engineering is one of the most critical stages in the machine learning pipeline for 

network anomaly detection. This process involves transforming raw network traffic data into 

a structured and meaningful representation that facilitates efficient and accurate anomaly 

detection by AI models. Poor feature selection can significantly degrade model performance, 

increase false positives, and reduce interpretability, especially in high-dimensional network 

data involving complex unicast and multicast flows. 

i. Objectives of Feature Engineering 

• The main objectives of this stage are: 

• To capture the essence of network traffic behavior through quantifiable metrics. 

• To reduce dimensionality and remove redundant or irrelevant attributes. 

• To improve model convergence and prediction accuracy. 

• To ensure adaptability to dynamic network environments such as IoT, 5G, and multicast 

ecosystems. 

ii. Raw Feature Extraction from Network Flows 

Initial features are extracted from raw packet captures (pcaps), NetFlow/sFlow logs, or 

telemetry records using open-source tools (e.g., Wireshark, nfdump, Zeek). For this study, 
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features were extracted using a combination of Python-based parsers and tools like 

CICFlowMeter, which generate bi-directional flow features such as: 

Basic flow features: source IP, destination IP, source port, destination port, protocol, 

timestamp. 

Statistical features: flow duration, total bytes and packets sent in both directions, average 

packet size, inter-arrival times. 

Behavioral indicators: packet rate, burstiness, flow entropy, and session frequency. 

iii. Derived Features for Multicast and IoT Flows 

Given the unique behavior of multicast and IoT traffic, additional features were designed 

specifically for those patterns: 

Group Join Rate: frequency at which IGMP/MLD joins are observed. 

Replication Factor: number of outgoing interfaces per multicast flow. 

Group Lifetime: duration for which a multicast group remains active. 

Device Stability Index: variability in traffic behavior from the same source over time. 

For IoT-specific flows, device fingerprints, protocol ratios (e.g., MQTT vs HTTP), and 

periodicity metrics were introduced to distinguish benign vs anomalous devices. 

iv. Temporal Feature Engineering 

Temporal attributes were engineered to capture evolving behavior over time. Time-based 

windows (e.g., sliding and tumbling windows) were used to extract time-series aggregates 

such as: 

• Mean packet size over 5-second intervals. 

• Peak inter-arrival times during congestion bursts. 

• Frequency of anomalous protocol flags (e.g., FIN, URG). 

Such temporal features were crucial in training models like RNNs and Transformers that rely 

on sequence modeling. 
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3.4.11 Data Preprocessing Steps 

All datasets underwent multiple preprocessing operations to improve model input quality as 
shown in Table 18 

Table 18: Data processing Steps 

Step Technique Used Purpose 
Null Handling Drop or Impute (mode/mean) Eliminate missing data 

Outlier 
Detection 

Z-score, IQR filtering Remove noise and extreme 
values 

Encoding One-hot encoding (protocols, ports) Convert categorical to 
numerical features 

Normalization Min-Max scaling, Standard scaling Standardize feature ranges 

Time 
Formatting 

UNIX timestamp conversion, time-
window creation 

Prepare for RNN and 
Transformer input 

 

i. Multicast Traffic Simulation and Annotation 

Multicast flows are typically underrepresented in public datasets. To bridge this gap: 

A custom multicast traffic simulator was built using Mininet and PIM-SSM protocol 
scripts. 

IGMP Join/Leave patterns, group replication trees, and flow membership dynamics were 
programmatically generated. 

Anomalies such as IGMP spoofing, register floods, and cross-VLAN leaks were injected at 
specific intervals. Sample multicast tree is shown in Figure 14 
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Figure 14: Sample Visualization of Simulated Multicast Tree 

 

ii. Data Splitting and Partitioning 

Each dataset was partitioned into training, validation, and test sets. Special consideration was 

given to time-based splits to simulate real-world progression: The ration of the train test split 

is shown in Table 19 

Table 19: Train test split  

Split Type Ratio Use Case 
Stratified Split 70/15/15 General model training 

Time-based Sequential Chronological window Real-time detection scenario 

Cross-Validation Blocks 5-fold Model robustness testing 
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Figure 15: Sample Split for the data  

A simple split is shown in Figure 15 

iii. Handling Imbalanced Classes 

Anomalies typically represent <5% of total records. To address this imbalance: 

SMOTE: Synthetic Minority Over-sampling Technique was applied to boost minority class 
samples. Handling class imbalance is mentioned  

Random Undersampling: Removed excess normal flows to balance the dataset. 

Class Weights: Applied during model training to penalize false negatives more heavily. 

Different method of handling class imbalance is shown in Table 20 

Table 20: Handling class imbalance 

Technique Before (Imbalance Ratio) After (Balanced Ratio) 
No Adjustment 98:2 N/A 
SMOTE Only 98:2 65:35 
SMOTE + Undersample 98:2 50:50 

 

iv. Data Quality Checks 

To ensure consistency, the following checks were applied: 

Schema Validation: Ensured uniform column structures across datasets. 

Statistical Profiling: Checked for feature variance, skewness, kurtosis. 

Traffic Consistency Check: Verified logical flow patterns (e.g., flow duration > 0, byte 
count > packet count). 

 



97 
 

3.5  Model Selection and Training 

Model selection and training are central to building an effective and scalable anomaly detection 

system. Given the diversity of network environments and the unique challenges posed by 

unicast, multicast, and IoT traffic, this study adopted a modular strategy to evaluate traditional 

machine learning models, deep learning architectures, and advanced generative AI models. 

Table 21 indicates the model Selection details category-wise.  

Table 21: Model selection details 

Model Category Strengths 
Random Forest Classical ML Robust to overfitting, handles high-

dimensional data well, interpretable 
Decision Tree Classical ML Simple, fast, interpretable, works well on 

structured data 
Support Vector 
Machine (SVM) 

Classical ML Effective in high-dimensional spaces, good 
for binary classification 

Logistic Regression Classical ML Fast, interpretable, effective for linearly 
separable problems 

Naive Bayes Classical ML Efficient, handles categorical features, good 
probabilistic baseline 

K-Nearest Neighbors 
(KNN) 

Classical ML Non-parametric, simple, captures local 
structure in data 

AdaBoost Classical ML Combines weak learners, adaptive to difficult 
samples 

Gradient Boosting Classical ML Powerful ensemble, handles complex patterns 
XGBoost Classical ML Fast, regularized gradient boosting, often top 

performer 
Isolation Forest Unsupervised 

ML 
Effective for anomaly detection in high-
dimensional data 

K-Means Clustering Unsupervised 
ML 

Captures global structure, simple clustering 
approach 

Agglomerative 
Clustering 

Unsupervised 
ML 

Hierarchical, effective for discovering nested 
data relationships 

One-Class SVM Unsupervised 
ML 

Learns decision boundary around normal data, 
good for novelty detection 

Deep SVDD Deep Learning Learns a hypersphere around normal data, 
effective one-class method 

AutoEncoder Deep Learning Learns reconstruction, useful for anomaly 
detection using reconstruction loss 

RNN Deep Learning Captures temporal dependencies in sequential 
data 

LSTM Deep Learning Handles long-term dependencies, useful for 
time-series anomalies 
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GRU Deep Learning More efficient than LSTM, with similar 
performance 

Transformer Transformer-
based 

Captures global context, state-of-the-art for 
sequence modeling 

GAN Generative 
Model 

Learns data distribution, flags deviations via 
reconstruction error 

VAE Generative 
Model 

Probabilistic model, models variance in data 
effectively 

Voting Ensemble Ensemble Combines predictions from multiple models 
for robust generalization 

 

3.5.1  Decision Tree 

 

Figure 16: Sample Decision Tree 

i. Model Explanation 

A Decision Tree is a flowchart-like tree structure where each internal node represents a feature 

condition, each branch represents an outcome of that condition, and each leaf node represents 

a class label (e.g., "Anomaly" or "Normal"). It partitions the data space into regions by 

recursively splitting it based on the most informative features using metrics like Gini Impurity 

or Entropy. Figure 16 shows the sample decision Tree of anomaly detection.  

It builds the tree in a top-down, greedy fashion — selecting the best split at each step without 

backtracking. The result is a set of simple if-else rules that mimic human decision-making. 

ii. Reason for using Decision Trees in Anomaly Detection 

• Decision Trees are interpretable, making them ideal for identifying why a network flow 
was flagged as anomalous. 
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• They perform well on structured tabular data, which is typical of network traffic logs. 

• Their fast training and inference time allow them to be used for real-time or near-real-
time intrusion detection. 

• Trees can uncover nonlinear relationships between features (e.g., traffic rate and packet 
size jointly indicating an attack). 

 

3.5.2 Random Forest 

 

Figure 17: Sample Random Forest 

 

i. Model Explanation 

A Random Forest is an ensemble learning technique that builds multiple independent 

Decision Trees using random subsets of the training data and feature space. Each tree outputs 

a prediction, and the majority vote among them becomes the final classification. The 

randomness in sampling and feature selection reduces correlation among trees, improving 

generalization and reducing overfitting — a key challenge in single-tree models. Figure 17 is 

used to indicate the group of Decision trees, thereby forming a Random Forest.  

ii. Reasons for using Random Forest for Anomaly Detection 

• Robustness to noise and outliers makes it highly effective on noisy intrusion detection 
datasets like CICIDS2017. 
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• It can handle high-dimensional feature spaces, which are common in network telemetry. 

• Feature importance scores aid interpretability, even in large ensembles. 

• Performs well even with imbalanced datasets, making it suitable for rare-event anomaly 
detection. 

3.5.3 Support Vector Machine (SVM) 

 

 

Figure 18: Sample Support Vector Machine 

 

i. Model Explanation 

A Support Vector Machine (SVM) is a supervised learning algorithm that finds the optimal 

hyperplane separating classes in a high-dimensional space. The key idea is to maximize the 

margin between the closest data points from each class — known as support vectors. SVM can 

use kernel functions (e.g., linear, radial basis function) to handle nonlinear separations by 

projecting data into higher dimensions where linear separation becomes possible. Figure 18 

indicates a Sample Support vector Machine.  

ii. Reason for using SVM Anomaly Detection 

• SVM excels in high-dimensional spaces, making it suitable for complex network 
datasets with many features. 
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• Performs well with binary classification tasks, such as “Anomaly vs Normal”. 

• Margin maximization improves generalization to unseen traffic patterns. 

• Kernel trick allows modeling nonlinear boundaries for complex anomalies. 

 

3.5.4 Logistic Regression 

 

 

Figure 19: Sample Logistic Regression 

Here is the detailed subsection for Logistic Regression, including the sigmoid curve 
visualization and complete explanation: 

i.  Model Explanation 

Logistic Regression is a linear classification algorithm used to predict the probability that an 

input instance belongs to a particular class. It maps the linear combination of input features to 

a probability using the sigmoid function: 

P(y = 1 | x) = 1 / (1 + exp(-(wᵗx + b))) 

This probability has a threshold of 0.5 to classify the input as “Normal” or “Anomaly”. Unlike 

regression, the output is bounded between 0 and 1, making it ideal for binary classification. 

Figure 19 shows the Sigmoid Curve  

ii. Reason for Using Logistic Regression in Anomaly Detection 

• Useful as a fast and simple baseline model. 

• Can detect linearly separable anomalies, like those with consistent feature thresholds. 

• Interpretable coefficients help understand which features contribute to anomalies. 

• Works well in environments with limited compute power. 
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3.5.5 Naive Bayes 

 

Figure 20: Sample Naïve Bayes 

 

i. Model Explanation 

Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, with the 

simplifying assumption that features are conditionally independent given the class label. It 

computes the posterior probability of each class (e.g., “Normal” or “Anomaly”) and assigns 

the label with the highest probability. Figure 20 indicates the likelihood features for anomaly 

detection using Naïve Bayes.  

P(y | x) ∝ P(y) * ∏[i=1 to n] P(x_i | y) 

Despite its simplicity, Naive Bayes often performs competitively in high-dimensional spaces. 

ii. Reasons for Choosing Naïve Bayes for Anomaly Detection 

• Performs well in high-dimensional settings, especially with text or packet metadata. 

• Probabilistic output enables threshold-based anomaly scoring. 
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• Fast training and prediction, suitable for real-time systems. 

• Good for categorical or discrete data, like protocol types or port numbers. 

 

3.5.6 K-Nearest Neighbours (KNN) 

 

 

Figure 21: Sample K-Nearest Neighbours 

i. Model Explanation 

K-Nearest Neighbours (KNN) is a non-parametric, instance-based learning method. It 

classifies an input sample based on the majority class of its k-nearest neighbours in the feature 

space using a distance metric such as Euclidean distance. For anomaly detection, a test point is 

flagged as anomalous if it lies far from clusters of known “Normal” data points, i.e., its 

neighbours are too distant or belong to a different class. Figure 21 indicates the sample K-

Nearest Neighbours.  

 

ii. Reasons for Choosing K-NN for Anomaly Detection 

• Effective at capturing local data structures, which is ideal for behavioral anomalies. 

• Works well in low-dimensional, structured feature spaces often found in network 
telemetry. 

• Detects distance-based outliers effectively, even when they don’t form distinct 

clusters. 

• No training phase — useful in rapidly changing environments. 
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3.5.7 AdaBoost 

 

 

Figure 22: Sample Ada Boost 

 

i. Model Explanation 

AdaBoost (Adaptive Boosting) is an ensemble method that combines multiple weak learners 

(typically shallow decision trees) into a single strong classifier. Each learner is trained 

sequentially, with greater focus on previously misclassified instances. The algorithm assigns 

weights to samples based on their classification difficulty. Misclassified samples get more 

weight in the next round, pushing the next model to learn patterns that the previous one missed. 

Sample Ada boost is shown in Figure 22 

ii. Reasons for Choosing Adaboost for Anomaly Detection 

• Boosting is powerful at learning complex decision boundaries, improving detection 
of subtle anomalies. 

• Performs well on imbalanced datasets, which is common in anomaly detection. 

• Sequential learning helps the model to adapt to difficult-to-classify traffic patterns. 

• Lightweight base learners make it efficient even in layered model configurations. 
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3.5.8 Gradient Boosting 

 

 

Figure 23: Sample Gradient Boosting 

 

i. Model Explanation 

 

Gradient Boosting as shown in Figure 23 builds an ensemble of weak learners (typically 

decision trees) sequentially, similar to AdaBoost. However, instead of re-weighting data points, 

each learner is trained to minimize the residual error (loss gradient) of the entire ensemble on 

the training set. At each stage, the model fits to the negative gradient of the loss function, hence 

the name gradient boosting. This allows highly flexible modelling of complex nonlinear 

functions. 

ii. Reasons for using Gradient Boosting Anomaly Detection 

• Handles complex, nonlinear patterns common in real-world anomalies. 

• Excellent for tabular network data, especially with mixed data types. 

• Works well with imbalanced datasets when combined with loss adjustments or class 
weighting. 
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• Captures interactions between features, critical in detecting subtle multi-feature 
anomalies. 

 

3.5.9 XGBoost 

 

Figure 24: Sample XGBoost 

 

i.  Model Explanation 

XGBoost (Extreme Gradient Boosting) as shown in Figure 24 is an optimized and regularized 

implementation of Gradient Boosting. It introduces several improvements, such as: 

• Regularization (L1 and L2) to prevent overfitting. 

• Parallelized tree construction for speed. 

• Weighted quantile sketch for efficient tree pruning. 

• Missing value handling built-in. 

It builds additive tree models where each new tree corrects the residuals of previous trees using 

gradient descent on a custom loss function. . 

ii. Reason for choosing XGBoost for Anomaly Detection 

• Known for state-of-the-art performance on structured datasets like CICIDS and 
KDD Cup. 

• Robust to noisy or imbalanced data — useful in real-world network anomalies. 

• Fast training and scalable, making it suitable for large datasets. 
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• Allows for fine-tuned control over learning dynamics, boosting anomaly detection 
accuracy. 

 

3.5.10 Isolation Forest 

 

 

Figure 25: Sample Isolation Forest 

 

i. Model Explanation 

Isolation Forest as shown in Figure 25 is an unsupervised anomaly detection algorithm that 

identifies anomalies by randomly partitioning the feature space using binary trees. Unlike most 

algorithms that model normal instances, Isolation Forest instead isolates anomalies directly. 

Anomalies tend to be less frequent and differ significantly from normal data — hence, they are 

isolated faster, i.e., with shorter average path lengths in the tree structure. 

ii. Reason for Choosing Isolation Forest Anomaly Detection 

• Specifically designed for unsupervised anomaly detection. 

• Highly efficient on large, high-dimensional datasets — ideal for network logs and 
telemetry. 

• No prior labelling required, making it suitable for zero-day or novel attack detection. 

• Effectively captures sparse or scattered anomalies. 

 

3.5.11   K-Means Clustering 
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Figure 26: Sample K-Means Clustering 

 

i. Model Explanation 

K-Means as shown in Figure 26  is an unsupervised clustering algorithm that partitions the 

dataset into k clusters by minimizing the intra-cluster variance. Each data point is assigned to 

the cluster with the nearest centroid, which is updated iteratively. In anomaly detection, 

anomalies are treated as data points that are far from any cluster centroid, making them 

outliers based on distance from cluster centers. 

 

ii. Reasons for Choosing K-Means Anomaly Detection 

• Captures the global structure of the dataset by forming distinct groupings. 

• Allows identification of outliers as points far from any centroid. 

• Useful for preprocessing or coarse anomaly filtering. 

• No labels required — suitable for unsupervised scenarios. 
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3.5.12 Agglomerative Clustering 

 

Figure 27: Sample Agglomerative Clustering 

 

i. Model Explanation 

Agglomerative Clustering as shown in Figure 27 is a type of hierarchical clustering that begins 

with each point as its own cluster and iteratively merges the closest pairs based on a linkage 

criterion (e.g., Ward’s method, single, complete, average linkage). The result is a dendrogram 

that shows the hierarchy of merges, which can be cut at different heights to yield varying 

numbers of clusters. Anomalies can be detected as points that merge late, indicating they are 

far from other clusters. 

 

ii. Reasons for Choosing Agglomerative Clustering for Anomaly Detection 

• Reveals nested data structure, identifying fine-to-coarse anomaly groupings. 

• Does not require prior knowledge of the number of clusters. 

• Well-suited for small-to-medium-sized datasets with an underlying hierarchical 
structure. 

• Enables visual anomaly discovery through dendrogram structure. 
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3.5.13 One-Class SVM 

 

 

Figure 28: Sample One Class SVM 

 

i. Model Explanation 

One-Class SVM as shown in Figure 28 is an unsupervised learning algorithm used primarily 

for novelty detection. It learns a decision function that defines a boundary around the 

majority (normal) class in feature space. Any instance falling outside this boundary is 

considered an anomaly. 

It relies on a kernel function (commonly RBF) to map data into a high-dimensional space 

where it can find a separating hyperplane that encloses most of the data. 

ii. Reasons for using One-Class SVM for Anomaly Detection 

• Specifically designed to model only normal data — ideal for scenarios with few or no 
labelled anomalies. 

• Effective in high-dimensional settings with non-linear boundaries. 

• Capable of detecting novel or rare patterns in streaming or online network data. 

• Requires only a single class of training data (normal flows). 
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3.5.14 Deep SVDD (Support Vector Data Description) 

 

 

Figure 29: Sample Deep SVDD 

i. Model Explanation 

Deep SVDD as shown in Figure 29 is a deep learning-based extension of Support Vector Data 

Description. It trains a neural network to map input data into a latent space and learns a 

hypersphere that tightly encloses the normal data in that space. Anomalies are identified as 

those points that fall outside this minimal enclosing hypersphere. Unlike One-Class SVM, 

Deep SVDD learns a compact representation of the data through an embedded neural 

network, which enhances its generalization on complex inputs. 

ii. Reasons for Choosing Deep SVDD for Anomaly Detection 

• Particularly effective for deep feature learning in high-dimensional data like flow 
vectors or packet embeddings. 

• Designed for one-class learning, ideal for environments with abundant normal 
samples but rare or unseen anomalies. 

• Combines representation learning and anomaly scoring in a single end-to-end 
framework. 
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3.5.15 Autoencoder 

 

Figure 30: Sample AutoEncoder 

 

i. Model Explanation 

An AutoEncoder as shown in Figure 30 is a neural network designed to learn a compressed 
representation (encoding) of input data and then reconstruct it as closely as possible. It consists 
of: 

• Encoder: Maps input to a latent representation. 

• Decoder: Reconstructs input from the latent code. 

For anomaly detection, the AutoEncoder is trained only on normal data, so it reconstructs such 
instances well. Anomalies, which differ in structure, have high reconstruction errors — making 
them easily detectable. 

 

ii. Reasons for using AutoEncoders for Anomaly Detection 

• Can detect subtle, nonlinear anomalies in complex datasets. 

• Learns feature compression, highlighting out-of-distribution patterns. 

• Unsupervised: requires only normal samples for training. 

• Suitable for network telemetry, sensor data, or sequence flows. 
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3.5.16 Recurrent Neural Network (RNN) 

 

 

Figure 31: Sample Recurrent Neural Network 

 

i. Model Explanation 

RNNs  as shown in Figure 31 are neural networks designed for sequential data, where the 
current output depends on previous inputs. They maintain a hidden state across time steps, 
enabling them to capture temporal dependencies. In anomaly detection, RNNs can model 
expected patterns over time in metrics like traffic rates, packet intervals, or flow durations. 
Deviations from learned patterns trigger anomaly flags. 

 

ii. Reasons for Choosing RNNs for Anomaly Detection 

• Capable of detecting temporal anomalies that manifest over multiple time steps. 

• Suitable for log data, telemetry streams, and packet traces. 

• Learns sequential behavior without feature engineering. 

• Ideal for time-series anomaly detection tasks (e.g., periodic spikes, missing 
heartbeats). 
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3.5.17 Long Short-Term Memory (LSTM) 

 

 

Figure 32: Sample LSTM 

 

i. Model Explanation 

LSTM as shown in Figure 32 is a type of recurrent neural network (RNN) designed to capture 

long-term dependencies in sequential data. It introduces memory cells and gating 

mechanisms — input, output, and forget gates — to retain or discard information over time. 

In anomaly detection, LSTMs learn the temporal evolution of normal sequences. Anomalies 

are identified as deviations in predicted values over longer time windows. 

ii. Reasons for Choosing LSTM for Anomaly Detection 

• Handles long-range dependencies better than vanilla RNNs. 

• Excellent for time-series-based network logs and telemetry data. 

• Detects complex temporal anomalies, like delayed responses or burst attacks. 

• Useful for contextual anomaly detection, where past events matter. 
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3.5.18 Gated Recurrent Unit (GRU) 

 

Figure 33: Sample GRU 

i. Model Explanation 

GRU as shown in Figure 33 is a variant of the LSTM designed to capture sequential patterns 

using a simplified gating mechanism. It merges the forget and input gates into a single update 

gate, and also uses a reset gate, reducing the number of parameters compared to LSTM. In 

anomaly detection, GRUs are used to learn the temporal structure of normal data and flag 

deviations in sequence behavior. 

 

ii. Reason for choosing GRU for Anomaly Detection 

• Captures temporal dependencies efficiently with fewer resources than LSTM. 

• Suitable for real-time sequence anomaly detection in resource-constrained 
environments. 

• Balances performance and computational cost in time-series analysis. 

• Good for network logs, flow sequences, and monitoring telemetry. 

 

3.5.19 Transformers 
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Figure 34: Sample Transformer 

 

 

i. Model Explanation 

Transformers as shown in Figure 34 are deep learning architectures that leverage self-attention 

mechanisms to model relationships between elements in a sequence, regardless of their 

positions. Unlike RNNs and LSTMs, Transformers process all elements in parallel, using 

attention weights to focus on important time steps. In anomaly detection, Transformers can 

learn to attend more strongly to unusual events or patterns in a sequence, identifying anomalies 

based on attention score distribution or deviations from predicted outputs. 

 

ii. Reason for Choosing Transformers for Anomaly Detection 

 

• Captures long-range dependencies efficiently across sequences. 

• Excellent for contextual and collective anomaly detection. 

• Works well on multivariate time-series, logs, or graph data. 

• Attention mechanism gives insight into why a point is anomalous. 
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3.5.20 Generative Adversarial Network (GAN) 

 

 

Figure 35: Sample GAN 

 

i. Model Explanation 

GANs as shown in Figure 35 consist of two competing neural networks: 

• A Generator (G) that tries to create synthetic data indistinguishable from real data. 

• A Discriminator (D) that attempts to distinguish between real and generated samples. 

The training objective is a minimax game, where both networks improve iteratively. In 
anomaly detection, GANs can be trained on normal data and used to flag inputs with high 
reconstruction error or poor discriminator confidence as anomalies. 

 

ii. Reasons for Choosing GAN for Anomaly Detection 

• Learns to replicate the distribution of normal data, making it sensitive to deviations. 

• Useful for image-based, time-series, or high-dimensional structured data. 

• Generates synthetic normal instances for comparison or data augmentation. 

• Effective in unsupervised or semi-supervised anomaly detection tasks. 
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3.5.21 Variational AutoEncoder (VAE) 

 

Figure 36: Sample VAE 

i. Model Explanation 

A VAE  as shown in Figure 36 is a generative model that combines deep learning and 

variational inference. It encodes input data into a probabilistic latent space and learns to 

reconstruct it while minimizing both: 

• Reconstruction Loss (how close the output is to the input), and 

• KL Divergence (how far the latent distribution deviates from a standard normal 

distribution). 

In anomaly detection, anomalies typically have higher reconstruction error and less 

probable latent encodings than normal data. 

ii. Reason for choosing VAE for Anomaly Detection 

• Learns to model both data reconstruction and latent distribution, enabling dual 
anomaly scoring. 

• Well-suited for structured, high-dimensional, and multivariate data. 
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• Generates uncertainty-aware encodings, improving robustness. 

• Can flag anomalies based on reconstruction loss or latent likelihood. 

 

3.5.22 Voting Ensemble 

 

 

Figure 37: Sample Voting Ensemble 

 

i. Model Explanation 

A Voting Ensemble as shown in Figure 37 combines predictions from multiple base models to 
produce a single, more robust output. Each model casts a “vote” on the class label, and the 

ensemble outputs: 

• Majority class (hard voting) or 

• Weighted average of probabilities (soft voting). 

It leverages the diversity of models — such as combining SVM, Random Forest, and KNN — 
to reduce individual bias and variance.   

 

ii. Reasons for Choosing Ensembling for Anomaly Detection 

• Improves robustness by combining different perspectives of anomaly scoring. 

• Reduces false positives by balancing aggressive and conservative models. 

• Effective on heterogeneous datasets with nonuniform data behavior. 

• Enables leveraging both generative and discriminative models in tandem. 
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3.5.23 Overall Comparison 

 

Figure 38: Overall Comparison of all 22 Models 

 

iii. Model Training Pipeline 

Each model underwent a standardized training pipeline: 

Dataset Loading: Preprocessed training and validation sets loaded. 

Model Initialization: Configured with selected hyperparameters. 

Training & Validation: 

Classical ML: sklearn with 5-fold cross-validation. 

Deep Learning: Keras/PyTorch with early stopping and dropout. 

Hyperparameter Tuning: 

Randomized search + grid search. 

Bayesian optimization for deep models. 

Evaluation: 

Accuracy, precision, recall, F1-score, AUC-ROC. 

Confusion matrix and classification report.  Overall comparison in Figure 38 
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3.5.24 Model Comparison Metrics 

The Table 22 shows the complete Model comparison metrics.  

Table 22: Model Comparison Metrics 

Model Training 
Time 

F1 Score AUC-
ROC 

Anomaly 
Recall 

Interpretability 

Decision Tree Low Moderate Moderate Moderate High 
Random Forest Moderate High High High Medium 
Support Vector 
Machine 

High High High Moderate Low 

Logistic 
Regression 

Low Moderate Moderate Moderate High 

Naive Bayes Low Low Low Low High 
K-Nearest 
Neighbors 

Moderate Moderate Moderate Moderate Low 

AdaBoost High High High Moderate Medium 
Gradient Boosting High High High High Medium 
XGBoost High Very 

High 
Very 
High 

High Medium 

Isolation Forest Low Moderate Moderate High Medium 
K-Means 
Clustering 

Low Low Low Low Low 

Agglomerative 
Clustering 

Moderate Low Low Low Low 

One-Class SVM High Moderate Moderate Moderate Low 
Deep SVDD Very High Moderate Moderate High Low 
Autoencoder High High Very 

High 
Very High Medium 

RNN Very High Moderate Moderate High Low 
LSTM Very High High High High Low 
GRU High High High High Low 
Transformer Extremely 

High 
High Very 

High 
High Medium 

GAN Very High Very 
High 

High Very High Low 

VAE Very High High High High Medium 
Voting Ensemble High High High High Medium 

 

The radar plot comparing the capabilities of various models (Decision Tree, Random Forest, 

LSTM, Autoencoder, GAN, Transformer) across four key metrics: F1 Score, AUC-ROC, 

Anomaly Recall, and Generalization is shown in Figure 39 



122 
 

 

Figure 39: Radar Plot for 22 Models 

 

3.6 Multicast-Aware Training Adjustments 

Special accommodations were made for multicast datasets is shown in Figure 40 

Group-based Batching: Training batches were aligned by multicast group for temporal 
coherence. 

Dynamic Replication Factors: Modeled as features in the anomaly scoring function. 

Group Join Frequency: Embedded in the Transformer model for temporal awareness. 
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Figure 40: Multicast Specific Injection 

 

3.7 Framework and Toolkits 

All models were developed using the following ecosystem as shown in Table 23 

Table 23: Framework Used 

Tool Purpose 
Scikit-learn Classical ML algorithms 

TensorFlow/Keras Deep learning (AE, LSTM) 

PyTorch Transformer, GANs 
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Optuna Hyperparameter optimization 

Weights & Biases Training analytics & monitoring 

NumPy, Pandas Data preprocessing 

 

This structured approach ensured that each model was trained, optimized, and evaluated 

under controlled conditions, with multicast-awareness integrated for group-based anomaly 

analysis. The best-performing models from each category were carried forward for further 

interpretability and deployment. 

3.8  Evaluation Metrics 

To rigorously assess the performance of ML and DL models for anomaly detection, a set of 

classification and anomaly-focused metrics were employed. This section provides a 

structured overview of these metrics and presents a comparative visualization and analysis of 

model behavior. 

3.8.1 Standard Classification Metrics 

The following metrics were used to evaluate each model's overall classification performance: 

Accuracy – Proportion of total correct predictions. 

Precision – Percentage of detected anomalies that were actually anomalous. 

Recall – Proportion of actual anomalies correctly identified. 

F1 Score – Harmonic mean of precision and recall; critical in imbalanced datasets. 

AUC-ROC – Measures the area under the Receiver Operating Characteristic curve. 

These metrics form the baseline for comparing models such as Decision Tree, Random 

Forest, Isolation Forest,  LSTM, Autoencoder, GAN, and Transformer. 

 

3.8.2 Anomaly-Centric Evaluation 

For anomaly detection in particular, we added the following specialized metrics: 

Anomaly Recall – Focuses on capturing actual anomalous traffic. 

False Positive Rate (FPR) – Percentage of benign traffic flagged as anomalous. 

Detection Latency – Time delay between anomaly occurrence and detection; especially 
important in real-time scenarios. 
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3.8.3 Overfitting Detection 

To detect overfitting, we visualized the training and validation loss over 50 epochs. As shown 

in  Figure 41, complex models tend to start overfitting around epoch 30, where validation loss 

begins to increase while training loss continues to decline. 

 

Figure 41: Overfitting Visualization — Train vs Validation Loss 

Model training and evaluation were conducted using Google Colab and the following 
libraries: 

scikit-learn – Metric calculation, model evaluation. 

TensorFlow / PyTorch / Keras – Model development. 

Matplotlib / Seaborn – Data visualization. 

Optuna, Weights & Biases – Hyperparameter optimization and training monitoring. 

 

3.9 Position of Models in IDS/IPS Architecture 

The proposed integration embeds each algorithm into the anomaly detection module in Figure 

42 of the IDS/IPS pipeline. The system is modular and can dynamically choose the model 

based on available resources and threat complexity. 
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Figure 42: Integration Flow 

 

Classical Supervised Models (RF, DT, SVM, LR, etc.): 

Fast and lightweight, ideal for baseline classification and low-latency environments. These 

models offer explainability via feature importance scores and are well-suited for rule-driven 

IDS modules. 

Unsupervised Models (KMeans, Agglomerative, Isolation Forest): 

Effective in zero-label scenarios where predefined attack signatures are unavailable. These 

models are suitable for deployment in early-stage networks or exploratory anomaly 

monitoring zones. 

Advanced Ensemble Models (AdaBoost, GBM, XGBoost): 

These deliver strong generalization and are used in multi-stage detection chains, particularly 

in cloud data centers and multi-tenant infrastructures. 

Deep Learning Models (AutoEncoder, LSTM, GRU, SimpleRNN, Deep SVDD): 

Applied where sequence awareness is vital (e.g., flow patterns, protocol behavior). 

AutoEncoders are used in reconstruction-based anomaly scoring, while LSTM/GRU are used 

in temporal anomaly prediction layers. 
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Transformer-Based Models: Deployed in multicast-heavy or IoT environments where 

attention to packet sequence and group behavior is needed. Transformer models offer 

excellent generalization and real-time adaptability. 

GANs: Used for zero-day detection and anomaly generation to simulate attack patterns. 

Integrated as an auxiliary model in hybrid IDS setups to monitor and score anomaly 

probability from synthetic reconstruction. 

3.10 Hybrid Deployment Framework 

A hybrid architecture is proposed to combine fast-response models with deep models for 

accuracy: 

Classical Model → Real-Time Triage 

Deep Model → Contextual Analysis 

GAN → Anomaly Simulation and Scoring 

Final Scoring → Alert / Block 

This layered IDS/IPS pipeline ensures real-time speed, minimal false positives, and 

robustness against new threats. 

3.11 Practical Deployment Considerations 

Low Latency: Classical models (e.g., RF, SVM) handle real-time edge traffic. 

GPU Acceleration: Transformers, LSTM, and GAN models run in batch mode with 

GPU/Tensor cores. 

Containerized Inference: Models are dockerized and exposed as REST APIs for scalable 

deployment. 

Streaming Support: Apache Kafka or Flink for real-time packet ingestion and model scoring. 

3.12 Deployment Use Cases 

Table 24: Deployment Use Cases 

Use Case Recommended Models 
Enterprise Edge Firewall RF, Isolation Forest, SVM 
Cloud Core IDS AutoEncoder, XGBoost, Transformer 
Multicast IPTV Network Transformer, GRU, GAN 
IoT Gateways Deep SVDD, LSTM 
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Zero-Day Attack Monitoring GAN, Isolation Forest 
 

Sample Deployment use case is shown in Table 24 

 

3.13 Chapter Summary 

This chapter presented a comprehensive methodology for designing, training, evaluating, and 

deploying anomaly detection models for both unicast and multicast network traffic. The 

process began with the collection of diverse datasets, followed by rigorous preprocessing 

including normalization, encoding, and feature selection. 

A wide range of models—spanning classical supervised learning (e.g., Random Forest, SVM, 

XGBoost), unsupervised clustering (e.g., KMeans, Isolation Forest), deep learning (e.g., 

LSTM, Autoencoder, Transformer), and generative models (GANs)—were selected and 

trained using a well-defined training workflow. Special care was taken to adapt these models 

to network-specific requirements such as multicast flow detection, encrypted traffic handling, 

and imbalanced class distributions. The chapter introduced a detailed set of evaluation metrics 

(F1 Score, AUC-ROC, Anomaly Recall, etc.) and visualizations (confusion matrices, radar 

plots, overfitting curves) to compare model performance under varied conditions. It also 

discussed explainability using SHAP and LIME to enhance trust and interpretability in model 

outputs. 

Deployment considerations were explored in-depth, including containerized, GPU-accelerated 

real-time inference pipelines that integrate directly into IDS/IPS frameworks. This was 

supported by detailed architecture diagrams and optimization strategies ensuring scalability 

and low-latency performance. Altogether, this methodology sets a strong foundation for the 

results and discussion in the upcomi.ng chapters, ensuring that the proposed models are both 

scientifically rigorous and practically deployable. 
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4.  CHAPTER IV: ANALYSIS OF DATA AND PATTERNS 
 

4.1.  Introduction 

The accurate detection of anomalies in network traffic is inherently tied to a thorough 

understanding of the data itself. As the complexity and scale of network environments continue 

to grow—driven by increasing device proliferation, hybrid cloud adoption, edge computing, 

and multicast communications—the volume and heterogeneity of network data present both 

opportunities and significant challenges for anomaly detection systems. In this context, 

Chapter 4 serves as a bridge between the theoretical and methodological foundation laid in 

the previous chapters and the experimental outcomes detailed in Chapter 5. It focuses on 

analyzing the raw characteristics, behavioral traits, and statistical patterns found in the datasets 

used throughout this study. 

The goal of this chapter is to uncover latent structures and trends in the datasets prior to 

model training, which aids in multiple dimensions of the research: 

1. It informs feature engineering decisions, such as normalization, encoding, and 

selection. 

2. It supports model selection logic, particularly for cases with class imbalance or 

sequence dependency. 

3. It provides a baseline understanding of data behavior, against which model 

performance can later be interpreted. 

4. It highlights dataset-specific nuances such as traffic burstiness, multicast group 

volatility, and protocol diversity. 

The research draws from a rich combination of datasets: 

1. CICIDS2017, a modern and widely adopted intrusion detection dataset, segmented by 

traffic days and attack types. 

2. NSL-KDD, a classical benchmark dataset that, while dated, still offers structured and 

balanced samples for anomaly detection. 

3. App-Data-87, a large and diverse dataset derived from application-layer flows across 

87 services, capturing real-world application usage patterns. 
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4. Custom Multicast Dataset, designed specifically for this study to simulate and label 

multicast anomalies such as group spoofing, join-leave storms, and cross-VLAN 

leakage—areas underrepresented in existing datasets. 

Each dataset brings its own traffic dynamics, feature sets, and labeling schemes, which are 

carefully harmonized through preprocessing and transformation. However, even after 

preprocessing, the inherent behavioral diversity of the datasets remains a key factor in how 

models generalize and respond to anomalies. 

In the sections that follow, the chapter delves into: 

1. A comparative overview of dataset structure, size, and composition. 

2. The distribution and balance of anomaly classes, with an emphasis on challenges posed 

by extreme skew or near-uniform distributions. 

3. A deep dive into feature-level patterns, including statistical properties like skewness, 

variance, and correlation. 

4. Temporal trends, such as the timing and frequency of anomaly bursts, slow-drip attacks, 

and recurring multicast behaviors. 

5. Cross-dataset comparisons to understand how features and anomalies manifest 

differently across traffic types (e.g., unicast vs multicast, real-world vs synthetic). 

Visual tools such as histograms, correlation heatmaps, time-distribution plots, and feature 

variance charts are used to support the narrative. These visualizations not only enhance 

interpretability but also lay the groundwork for model diagnostics and explainability in later 

chapters. 

Ultimately, this chapter sets the analytical stage for the model evaluation presented in Chapter 

5. It ensures that the models are not treated as black boxes, but rather as tools evaluated in the 

context of well-understood data, strengthening both the scientific rigor and practical 

applicability of the study’s conclusions. 

4.2.Dataset-Specific Observations 

This study employs a diverse collection of publicly available, benchmark, and custom-

generated datasets that collectively represent a wide spectrum of network traffic environments, 
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anomaly types, and feature characteristics. The selection of datasets is intentionally diverse to 

evaluate the generalizability and robustness of anomaly detection models across different 

traffic domains, including enterprise network flows, application-level telemetry, legacy packet 

captures, and multicast communications. 

The data sets used in this research span four major categories: 

1. CICIDS2017 (Canadian Institute for Cybersecurity Intrusion Detection System 

2017) A modern benchmark dataset that simulates enterprise traffic over several days. 

It contains a mix of benign and attack traffic, segmented by day and scenario (e.g., DoS, 

DDoS, brute-force, infiltration). Traffic flows are captured at the packet level and 

aggregated into labelled flow records with 85 features. 

2. NSL-KDD (An Enhanced Version of the KDD Cup 1999 Dataset) -A widely used 

legacy dataset that includes 22 attack types across four categories: DoS, Probe, R2L, 

and U2R. While it lacks the realism of more recent datasets, its balanced structure and 

compact size make it valuable for baseline comparisons. 

3. App-Data-87-A high-dimensional dataset containing flow-level statistics from 87 

distinct applications or services. This dataset includes anonymized metadata and 

labeled anomalies based on known behavioral deviations or infections. It is well-suited 

for studying application-aware anomaly patterns. 

4. Custom Multicast Dataset- Generated specifically for this research, this dataset 

simulates multicast group communication flows under both normal and abnormal 

conditions. It includes anomalies such as group spoofing, join/leave storms, and 

asymmetric source behaviour—scenarios not well represented in public datasets. The 

dataset contains 91 features, many of which are specific to multicast dynamics. 

 

 

 

A summary of these datasets is provided in Table 25 
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Table 25: Summary of Datasets Used 

Dataset No. of 
Records 

No. of 
Features 

Anomaly 
% 

Multicast 
% 

Description 

CICIDS2017 (7 
subsets) 

~2,830,743 85 ~3.2% 0% Modern enterprise 
traffic with varied 
attack simulations 

NSL-KDD 148,753 42 21.1% 0% Balanced legacy 
dataset with 22 
known attack types 

App-Data-87 887,550 46 7.4% 0% Application flow 
records across 87 
services 

Custom 
Multicast Flow 
Dataset 

1,152,089 91 11.3% 100% Multicast group 
behavior with 
labeled anomaly 
types 

The heterogeneity of these datasets enables the evaluation of models across: 

• Different feature dimensions and traffic patterns 

• Anomaly density from sparse (~3%) to dense (>20%) 

• Unicast and multicast environments 
• Flow-level behavior vs. sequence-level temporal data 

Each dataset undergoes a standardized preprocessing pipeline to ensure comparability, 

including label normalization, missing value handling, encoding, and scaling. Further feature-

specific and temporal analysis of each dataset is provided in the following sections. 

4.3.Class Distribution and Imbalance 

The effectiveness of anomaly detection models is strongly influenced by the class distribution 

within the underlying datasets. In the context of network traffic, this often manifests as a 

significant imbalance between the number of benign (normal) and malicious (anomalous) 

records. While benign traffic constitutes the overwhelming majority in real-world 

environments, anomalies—despite being infrequent—carry disproportionately high security 

importance. This imbalance presents both a modeling challenge and a research opportunity, 

necessitating careful design choices in evaluation, training strategy, and threshold tuning. 

4.3.1. Understanding Class Imbalance in Network Data 

In supervised learning settings, models tend to be biased toward the majority class, often 

resulting in deceptively high accuracy while completely failing to detect rare anomalies. A 

dataset with 95% normal traffic and 5% anomalies, for instance, can yield 95% accuracy even 

if the model ignores all anomalies. This makes metrics such as F1-score, Recall, and AUC-
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ROC far more informative than accuracy in imbalanced settings. Unsupervised and generative 

models also rely heavily on the quality and quantity of benign behavior to establish a baseline, 

meaning the imbalance directly impacts anomaly boundary definitions. 

4.3.2. Dataset-Specific Imbalance Analysis 

Each dataset used in this research demonstrates varying degrees of imbalance. Table 26 

summarizes the approximate number of anomalous records, total records, and the resulting 

anomaly percentage per dataset. 

Table 26: Table class distribution across datasets 

Dataset Total 
Records 

Anomalous 
Records 

Anomaly 
% 

Notes 

CICIDS2017 
(Combined) 

~2,830,743 ~90,583 ~3.2% Highly imbalanced; 
anomalies appear in bursts 
(e.g., Hulk, DDoS) 

NSL-KDD 148,753 ~31,400 21.1% Moderately balanced; 
includes 4 attack categories 
across 22 subtypes 

App-Data-87 887,550 ~65,700 7.4% Moderate imbalance; 
anomalies include app-layer 
behavior deviations 

Custom 
Multicast 
Dataset 

1,152,089 ~130,000 11.3% Contains multicast-specific 
anomalies (e.g., spoofed 
joins, group flaps) 

 

The Figure 43 the anomaly detection across the datasets 

 

Figure 43: Traffic Distribution Normal vs Anomalous 
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4.3.3. Dataset-Wise Observations 

i. CICIDS2017:  The CICIDS dataset, while comprehensive, reflects a realistic 

enterprise scenario where anomalies are infrequent and context-dependent. For 

instance: 

• Monday's data is entirely benign, offering clean samples for unsupervised learning 

baselines. 

• Tuesday and Wednesday introduce brute-force and DoS attacks, which are limited in 

scope and volume. 

• Friday afternoon sees a massive spike in traffic due to DDoS and PortScan attacks, 

resulting in temporal bursts of anomaly concentration within short intervals. 

• This irregular and bursty distribution poses a challenge for temporal models like LSTM 

and Transformer, which must differentiate between legitimate high-volume traffic and 

malicious spikes. 

The Figure 44 shows the Anomalous vs Benign Distribution for all the datasets 

 

 

Figure 44: Benign vs Anomalous Distribution Across PCAP 
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ii. NSL-KDD 

      As a benchmark dataset, NSL-KDD provides a structured and moderately balanced class 

distribution. With over 21% of records labeled as anomalies, it allows for consistent 

training and validation without artificial balancing or oversampling. However, it lacks 

protocol variety and real-world traffic irregularities, making it less effective for modern 

model stress-testing. Dataset distribution for KDD Cup 1999 is shown in Figure 45 

 

  

Figure 45: KDD Cupp 1999 Benign vs Normal 

iii. App-Data-87 

This dataset simulates application-layer traffic across 87 services, including web, streaming, 

messaging, and file-sharing protocols. The anomaly ratio of 7.4% reflects operational 

deviations, which may arise from behavioral drift, infected endpoints, or misconfigurations. 

Unlike CICIDS, where anomalies are tied to known attack tools, App-87  as shown in Figure 

46 includes subtle and distributed anomalies—a challenging setting for both supervised and 

unsupervised detectors. 
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Figure 46: App-Data 87 Benign vs Normal 

 

iv. Custom Multicast Dataset 

The multicast dataset  as shown in Figure 47 is intentionally constructed to reflect anomaly-

rich multicast behavior without sacrificing realism. At 11.3% anomaly rate, it balances 

learnability with diversity. Anomalies here are not volume-driven but state-driven, such as 

frequent joins/leaves, spoofed source IPs, or asymmetric data flow patterns. The dataset is 

particularly useful for testing flow consistency models, clustering approaches, and time-

sensitive anomaly detectors. 
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Figure 47: Multicast Benign vs Normal 

 

4.4.Feature Distribution and Variance 

Understanding the statistical distribution and variance of network flow features is critical in 

anomaly detection, as these characteristics help differentiate between normal and abnormal 

behaviors. Feature distributions influence both the preprocessing strategy (e.g., 

normalization, log-scaling) and the detection model's sensitivity. This section explores key 

flow-level features across all four datasets—CICIDS2017, NSL-KDD, App-Data-87, and the 

Custom Multicast dataset—with a focus on class-wise and dataset-wise variance. 

 

4.4.1. Feature Set Overview 

Across the datasets, a consistent set of features is extracted or engineered to represent 

network behavior at the flow level. While some datasets like NSL-KDD offer fewer features 

due to their legacy nature, modern datasets such as CICIDS2017 and Multicast Flow offer 

rich metadata, including packet-level statistics and session behaviour. 
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Commonly analyzed features in this section include: 

Flow Duration (ms): Time from the first to the last packet in a session 

Total Bytes: Sum of payload bytes transferred in the flow 

Total Packets: Number of packets exchanged 

Average Packet Size: Total bytes divided by packet count 

Inter-Arrival Time: Average time between successive packets 

Source and Destination Ports: Useful for identifying well-known attack vectors (e.g., port 
22, 23, 445) 

TCP Flags: Presence of SYN, FIN, ACK, RST helps identify scans and handshake anomalies 

 

4.4.2.  Class-Wise Feature Distributions 

This section analyzes how these features differ between benign and anomalous classes, 

revealing key behavioral shifts. 

i. Flow Duration 
In CICIDS2017, benign sessions tend to last longer, especially in regular user activity (e.g., 

web browsing, file transfer). Anomalies such as DDoS and Hulk attacks exhibit extremely short 

durations (<100ms) due to repeated flooding. 

In NSL-KDD, DoS attacks have consistent duration patterns, but infiltration attacks create long 
sessions. 

In Multicast, long-duration anomalies may indicate sustained group abuse or source flooding. 

 

ii. Total Bytes 
In App-Data-87, benign flows typically show wide byte distribution due to multimedia and 
file-sharing traffic. Anomalous records often have spikes due to unexpected payload 
volumes. 

In Multicast, anomalies tend to have either extremely low byte counts (due to spoofed joins) 
or very high counts (from rogue source flooding). 

4.4.3. Dataset-Wise Feature Variance 

i. CICIDS2017 

• Features like Flow Duration and Packet Count show large variance across subsets. 

• Monday (benign) is well-behaved; Friday Afternoon (DDoS) has multiple extreme 
values, particularly in byte and packet features. 
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• Feature skewness necessitates z-score standardization and log transformations for 
distance-based models. 

NSL-KDD 

• Feature values are tightly bounded due to pre-processing during dataset generation. 

• Lower variance in byte and duration features; suitable for lightweight classical models 
like Logistic Regression, Decision Tree. 

App-Data-87 

• High application-layer variability leads to very wide feature ranges. 

• Models benefit from robust scaling (StandardScaler or MinMax) and regularization to 
prevent overfitting. 

Multicast Dataset 

• Features like Join Rate, Leave Entropy, and Source Consistency show high variance for 
anomalies. 

• Useful for identifying state-based anomalies (spoofed source, group floods). 

• Certain features are exclusive to multicast behavior and not present in other datasets. 
Per feature variance comparison across datasets is mentioned in Figure 48 as well as Table 27 

Table 27: Per-Feature Variance Comparison Across Datasets 

Feature CICIDS2017 NSL-KDD App-Data-87 Multicast Flow 
Flow Duration (ms) 1.6 0.4 2.3 1.5 
Total Bytes 2.1 0.5 2.5 2.2 
Packet Count 1.9 0.6 2.1 1.6 
Avg Packet Size 1.3 0.3 1.8 1.7 
Inter-arrival Time 1.7 0.4 1.9 1.4 
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Figure 48: Feature Relevance Across Datasets 

 

4.4.4. Implications for Detection Models 

Models like SVM, k-NN, and Isolation Forest are highly sensitive to feature scaling. 
Without normalization, features with higher variance (e.g., Total Bytes) can dominate 
decision boundaries. 

• Deep learning models (e.g., Autoencoder, LSTM) can learn around raw variance, but 
benefit from reduced skew. 

• SHAP explainability shows that features like Flow Duration, Byte Count, and Packet 
Count consistently appear in top 5 important features across tree-based and ensemble 
models. 

• For multicast detection, features like Group Stability and Join Rate contribute 
significantly to anomaly scores in unsupervised models. 

 

4.4.5. Summary Observations 

Overall summary of the observations is present in Table 28 

Table 28: Summary Observations 

Feature High Variance In Model Implications 
Flow Duration CICIDS, App-87 Needs normalization; useful for 

Autoencoders 
Total Bytes CICIDS, Multicast Dominant in DDoS detection 
Packet Count All datasets Highly correlated with Byte count 
Port/Protocol usage NSL-KDD, 

CICIDS 
Categorical encoding required 

Multicast 
Join/Leave 

Multicast only Key to state-based anomaly modeling 

 

4.4.6.  Temporal and Behavioral Patterns 

While static features like byte count and flow duration are essential, a critical dimension of 

network anomaly detection lies in the temporal evolution of traffic and behavioral flow 

patterns. Certain attacks occur in short, high-intensity bursts (e.g., DDoS), while others evolve 

slowly over time (e.g., data exfiltration, infiltration). This section investigates the time-based 

behavior of network anomalies across all datasets, identifying patterns that justify the use of 

sequential and temporal learning models such as LSTM, GRU, and Transformer. 

i. Importance of Temporal Analysis in Network Security 

Temporal analysis enables: 
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Identification of burst-based anomalies (e.g., DoS, scan storms) 

Detection of low-and-slow anomalies that evolve gradually (e.g., stealthy infiltration) 

Assessment of periodic or cyclic behaviors, including beaconing and botnet check-ins 

Insight into attack propagation across sessions and flow intervals 

Temporal anomalies may not be distinguishable by static feature inspection alone. Hence, 

anomaly detection must leverage the time dimension, particularly for modern AI-driven 

models. 

ii. Temporal Flow Patterns in CICIDS2017 
 

CICIDS2017 is particularly well-suited for temporal pattern analysis as each subset 

corresponds to a specific day of traffic with time-stamped flows. Anomaly patterns in this 

dataset range from completely benign days (Monday) to heavily attack-laden days (Friday 

Afternoon). 

iii. Observed behaviours 
The overall temporal patterns is shown in Table 29 

Table 29: temporal patterns 

Day Attack Type Temporal Characteristic 
Monday None Flat benign profile 
Tuesday Brute Force Short periodic spikes, localized login attempts 
Wednesday DoS (Hulk, 

Slowloris) 
Sharp bursts followed by idle periods 

Thursday-
Morning 

Web Exploits Sparse irregular attack attempts 

Thursday-
Afternoon 

Infiltration Long sessions with minimal signature 

Friday-Morning Botnet Clustered bot activity, moderate spikes 
Friday-Afternoon DDoS, PortScan Sustained traffic explosion with extreme peak 

anomalies 
 

Multicast Flow Temporal Patterns 

The Custom Multicast dataset is unique in capturing flow behavior tied to group 

communication. Temporal anomalies include: 

• Join/Leave storms: Multiple group membership changes in very short windows 

• Spoofed source flooding: Unusual packet rates from previously unseen sources 

• Sudden entropy shifts in group membership or traffic directionality 
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Temporal grouping and correlation between group dynamics and traffic load help detect 

anomalous multicast behaviors. 

4.4.7.  Behavioral Flow Patterns Across Datasets 

This subsection generalizes recurring behavioral patterns observed across datasets: 

CICIDS: Hulk, DDoS, and PortScan attacks show sharp flow density peaks at precise times 

NSL-KDD: Since timestamps are abstracted, behavioural analysis is limited to categorical 
patterns 

App-Data-87: Exhibits application-layer periodicity, such as chat bursts or streaming 
sessions 

Multicast: Strong behavioral signatures from role-based anomalies (e.g., sudden receiver 
overload) 

 

iv. Temporal Analysis and Model Implications 

Temporal plots justify using sequential models (e.g., LSTM, Transformer) for datasets like 
CICIDS and Multicast 

For stateless datasets (e.g., NSL-KDD), behavioral inference must be based on feature 
clusters and categorical sequences 

Multicast-specific flows demand session consistency tracking and group membership 
history, which are often best modeled using temporal windows or session graphs. Table 30 
shows the model applicability on the temporal behavior types. 

Table 30: Model Applicability Based on Temporal Behavior Types 

Temporal Pattern 
Type 

Dataset(s) Key Behavior 
Observed 

Recommended Model 
Types 

Burst-based 
Anomalies 

CICIDS2017, 
Multicast 

Sudden flow spikes, 
DoS/DDoS bursts 

Random Forest, Isolation 
Forest, GAN, 
Transformer 

Periodic 
Login/Probe 
Events 

CICIDS2017 
(Tuesday), App-
Data-87 

Repeated short 
spikes, moderate 
frequency 

Autoencoder, Decision 
Tree, LSTM 

Long-lasting 
Infiltration 

CICIDS2017 
(Thursday-
Afternoon) 

Low-volume, 
prolonged sessions 

GRU, LSTM, Deep 
SVDD 

Session-based 
Group Activity 

Multicast Flow Join/leave flaps, 
spoofed group joins 

One-Class SVM, 
Transformer, GRU 

Uniform Flow 
Patterns 

NSL-KDD Balanced flow 
volume, less timing 
variance 

Logistic Regression, 
Random Forest, 
XGBoost 
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v. Summary Observations 

The Table 31 shows the temporal behavior Patterns and detection strategies.  

Table 31: Temporal-Behavioral Patterns and Detection Strategies 

Dataset Temporal 
Relevance 

Behavioral Signature Recommended Model 
Type 

CICIDS2017 High Bursts, infiltration trails LSTM, Transformer 
NSL-KDD Low Attack class transitions Tree-based, ensemble 
App-Data-87 Medium App-based spikes, peer-to-

peer chat patterns 
Autoencoder, Random 
Forest 

Multicast 
Flow 

High Group churn, spoofed joins GRU, One-Class SVM, 
Transformer 

 

4.5. Feature Correlation Analysis 

Feature correlation analysis plays a critical role in understanding interdependencies among 

flow attributes in network traffic. Highly correlated features may introduce redundancy, 

multicollinearity, or bias in model training, especially for distance-based and linear 

classifiers. Conversely, identifying independent and weakly correlated features aids in feature 

selection, dimensionality reduction, and explainability. 

This section investigates pairwise feature correlations across the CICIDS2017, NSL-KDD, 

App-Data-87, and Multicast Flow datasets. Correlation heatmaps, descriptive statistics, and 

model implications are discussed to guide feature engineering and model selection. 

 

4.5.1. Purpose of Correlation Analysis 

The objectives of this analysis include: 

Identifying redundant features that can be removed to simplify models 

Highlighting strongly correlated pairs that may require transformation (e.g., PCA, 
orthogonal projection) 

Informing SHAP-based interpretability, ensuring that influential features are not simply 
mirrors of others 

Detecting feature clusters that describe similar behavior, such as Total Bytes and Packet 
Count 
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In unsupervised models like Isolation Forest, feature independence is assumed to some 

degree. In deep learning models, strongly correlated inputs may reduce learning efficiency 

without proper regularization. 

 

CICIDS2017 Correlation Analysis 

The CICIDS2017 dataset contains 85 features, many of which are interrelated due to flow-

level aggregations (e.g., packet stats, byte stats). The correlation heatmap shows: 

Strong correlation between Total Forward Bytes and Total Length of Fwd Packets 

High correlation between Flow Duration and Idle Time 

Weak or negative correlation between packet flags (e.g., RST, URG) and volume metrics 

CICIDS2017 Friday Afternoon DDoS 
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Figure 49: Correlation Heatmap – CICIDS2017 Features 

 

CICIDS2017 – Friday Afternoon (PortScan) 

 

Figure 50: Multiple Correlation Heatmap – Friday Afternoon 

 

 

CICIDS2017 – Friday Morning 
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Figure 51: Multiple Correlation Heatmap – Friday Morning 

 

 

CICIDS2017 – Thursday Afternoon 
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Figure 52: Multiple Correlation Heatmap –Thursday Afternoon 

CICIDS2017 – Thursday Morning (Web Attacks)  
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Figure 53: Multiple Correlation Heatmap –Thursday Morning 

 

 

 

 

 

 

 

CICIDS2017 – Tuesday (Brute Force Attacks) 
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Figure 54: Multiple Correlation Heatmap –Tuesday Brut Force 

 

 

 

 

 

 

 

 

 

CICIDS2017 – Wednesday (DoS & PortScan) 
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Figure 55: Multiple Correlation Heatmap –Wednesday Dos 

 

The overall top 5 corelated features is shown in Table 32 

Table 32: Top 5 corelated features 

Feature 1 Feature 2 Correlation Coefficient 
Total Fwd Bytes Fwd Packet Length Mean 0.91 
Total Bwd Bytes Bwd Packet Length Mean 0.89 
Flow Duration Idle Max 0.84 
Fwd IAT Mean Flow Bytes/s -0.75 
Bwd IAT Mean Idle Min 0.72 

 

NSL-KDD Correlation Patterns 

NSL-KDD offers only 42 features, many of which are categorical or derived from fixed rules. 

Notable observations: 
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Low-to-moderate correlations dominate 

Duration and bytes have some overlap, but the feature set remains relatively independent 

Port and service-related fields show weak cross-correlation, enabling reliable rule-based 
model application. Partial correlation heatmap is shown in Figure 56 

 

 

Figure 56: Correlation Heatmap – NSL-KDD Features 

App-Data-87 Correlation Insights 

App-Data-87 has more diverse features spanning byte-level, timing, and application 

identifiers. Its correlation structure highlights: 

High correlation between Downlink Bytes, Total Bytes, and Packet Count 

Periodic services (streaming, chat) lead to rhythmic bursts in data, often reflected in packet 
timing correlations 

Service-type label is weakly correlated with traffic volume, indicating class neutrality. 

The correlation heatmap is shown in Figure 57 
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Figure 57: Correlation Heatmap – App-Data-87 Features 

Multicast Flow Feature Relationships 

The Custom Multicast dataset includes both traditional flow metrics and multicast-specific 

attributes such as: 

Join Frequency, Leave Entropy, and Group Consistency — all of which correlate during 
group flapping events 

Strong correlation between Multicast TTL, Group Size, and Source Consistency 

Low correlation between multicast control plane metrics and data plane features (e.g., flow 
size) 

These patterns are crucial in identifying state-driven anomalies, distinct from volume or 

frequency-driven anomalies. The correlation heatmap for multicast features is shown in 

Figure 58 
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Figure 58: Correlation Heatmap – Multicast Flow Features 

Model Implications and Recommendations 

The overall Model implication between correlation heatmap and the strategy is shown in 
Table 33 

Table 33: Correlation Trends and Their Impact on Model Design 

Correlation Pattern Risk / Insight Model Strategy 
High correlation between 
packet and byte stats 

Redundancy, risk of overfitting Remove one feature, use 
PCA or regularization 

Weak correlation between 
volume and time 

May signal orthogonal anomaly 
signals 

Use both features in parallel 

Correlated multicast state 
metrics 

Group behavior modeling 
possible 

Ideal for GRU, clustering 
models, Transformer 

Low-correlation feature 
clusters 

Diverse feature space → higher 

generalization potential 
Ensemble models, tree-
based methods 
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4.5.2. Summary of Observations 

This section summarizes the key patterns, behaviors, and relationships uncovered during the 

comprehensive analysis of datasets used in this study. The insights span class distributions, 

temporal trends, feature correlations, and flow-level behaviors, offering a consolidated 

understanding of the datasets and their relevance to anomaly detection. These observations 

guide feature selection, model suitability, and evaluation strategies in the upcoming results 

chapter. 

4.6. Cross-Dataset Overview 

The overall cross dataset overview for the different datasets is shown in Table 34 

Table 34: Comparative Summary of Dataset Characteristics 

Aspect CICIDS2017 NSL-KDD App-Data-87 Multicast Flow 
Dataset 

Traffic Type Modern 
enterprise 
(realistic) 

Legacy 
benchmark 

App-layer 
telemetry 

Synthetic multicast 
control/data 

No. of 
Features 

85 42 46 91 

Anomaly 
Type 

Port scans, 
DDoS, 
infiltration 

DoS, U2R, 
Probe, R2L 

Behavioral 
deviation 

Group spoof, join 
storms 

Temporal 
Behavior 

High (bursts, 
infiltration) 

Low 
(abstracted) 

Medium (app-
driven 
patterns) 

High (state 
transitions) 

Feature 
Redundancy 

High Low Medium Medium–High 

Model 
Suitability 

Deep learning, 
ensemble 

Classical ML Hybrid, 
generative 

Temporal, 
graph/sequence 
models 

 

4.6.1. Anomaly Behavior Insights 

 Based on class distribution and flow variance, the following patterns emerge: 

CICIDS2017: Best simulates real-world traffic surges. High burst anomalies like Hulk and 
DDoS require models capable of handling extreme imbalance. 

NSL-KDD: Cleanly balanced. Ideal for benchmarking but less indicative of modern flow 
dynamics. 

App-Data-87: Wide variance in benign traffic necessitates robust, regularized models. 

Multicast: Anomalies stem from control-plane behavior rather than payload — requiring 
temporal and state-aware processing. 
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4.6.2. Temporal and Correlation Summary 

Datasets with high anomaly bursts (CICIDS, Multicast) correlate with time-sensitive attacks 
→ LSTM, Transformer models recommended. 

Correlation analysis highlights need to drop redundant features (e.g., Total Fwd Bytes + Fwd 
Packet Length Mean). 

Multicast datasets benefit from cluster-based feature grouping, e.g., Join/Leave metrics 
forming behavioral zones. 

4.6.3. Recommendations for Model Training 

Analysis of datasets also provides a recommendation for the training models that will be 
suitable for the different datasets as show in Table 35 

Table 35: Model Strategy Matrix per Dataset 

Dataset Best-Suited Models Preprocessing Needs Special Considerations 
CICIDS2017 LSTM, GAN, 

Isolation Forest 
Normalization, 
sequence framing 

Handle bursty skew, per-
day distribution 

NSL-KDD Random Forest, 
Decision Tree 

One-hot encoding, 
minimal scaling 

Well-structured labels, 
low temporal need 

App-Data-87 Autoencoder, 
XGBoost 

Robust scaling, outlier 
filtering 

Watch for high benign 
variance 

Multicast 
Flow 

GRU, Transformer, 
One-Class SVM 

Temporal grouping, 
feature reduction 

Requires custom features, 
time-series input 
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5. CHAPTER V: RESULTS AND DISCUSSION 
 

5.1.   Introduction  

This section presents a detailed analysis of classical machine learning models across multiple 

network traffic datasets, highlighting their effectiveness in anomaly detection tasks. The 

evaluation includes nine widely-used classifiers tested on five subsets from CICIDS2017 and 

three additional datasets—App-Data-87, Split_4_with_infected, and a custom Multicast 

anomaly dataset. 

Each dataset represents unique traffic behaviors and attack vectors, enabling a comprehensive 

understanding of how different models generalize across varying network conditions. The 

performance metrics used include F1 Score, Accuracy, and AUC-ROC, chosen for their 

effectiveness in assessing imbalanced classification scenarios. 

5.2.  Evaluation Strategy and Metrics 

To ensure a consistent and fair comparison, all models were trained and tested on the same 

datasets after standardized preprocessing steps, including normalization, dimensionality 

reduction (via PCA), and handling of class imbalance using SMOTE and data augmentation 

where necessary. 

5.2.1. Datasets Evaluated 

CICIDS2017: Enterprise-like traffic across multiple attack scenarios including DDoS, Brute 
Force, and infiltration. 

NSL-KDD: A legacy benchmark with balanced attack categories. 

App-Data-87: Application-layer flows across 87 services with embedded behavioral 
anomalies. 

Custom Multicast Dataset: Simulated multicast traffic with labeled group-based anomalies 
such as spoofing, excessive joins/leaves, and group churn. 

Split_4_with_infected: A focused subset of App-Data-87 used for infected device behavior 
modeling. 

 

5.2.2. Evaluation Metrics 

Accuracy: General correctness. 

Precision/Recall: Critical due to high class imbalance. 
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F1-Score: Harmonized metric for false positives and negatives. 

AUC-ROC: For classifier separability. 

Confusion Matrix: For detailed model behavior per class. 

5.2.3. Summary 

This section establishes the foundation for fair model comparison. Multiple datasets were used 

to capture realistic and edge-case traffic behaviors, while metrics were carefully chosen to 

handle imbalance and misclassification challenges. 

5.3.Performance of Classical Machine Learning Models 

This section presents a detailed analysis of classical machine learning models across multiple 

network traffic datasets, highlighting their effectiveness in anomaly detection tasks. The 

evaluation includes nine widely-used classifiers tested on five subsets from CICIDS2017 and 

three additional datasets—App-Data-87, Split_4_with_infected, and a custom Multicast 

anomaly dataset. 

Each dataset represents unique traffic behaviors and attack vectors, enabling a comprehensive 

understanding of how different models generalize across varying network conditions. The 

performance metrics used include F1 Score, Accuracy, and AUC-ROC, chosen for their 

effectiveness in assessing imbalanced classification scenarios. 

5.3.1. CICIDS2017 – Wednesday 

This subset contains a diverse mix of benign and malicious traffic, including PortScan, DoS 

Hulk, and DDoS flows. It provides a balanced starting point to benchmark model generalization 

on classic volumetric attacks. 

Observations: 

XGBoost and Random Forest achieved the highest F1 and AUC scores, showcasing their 

strength in detecting high-frequency attacks. 

Gradient Boosting also performed consistently well, close to the ensemble leaders. 

Simpler models like Naïve Bayes and SVM struggled with nonlinear boundaries and feature 

dependencies, leading to higher false positives and lower AUC. 
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5.3.2. CICIDS2017 – Thursday 

Thursday’s data included infiltration and web-based attacks, which tend to be stealthier and 

less volumetric. 

Observations: 

Boosting models (XGBoost, AdaBoost) handled the subtlety of web attacks better, 

maintaining high F1 and AUC. 

SVM performance declined significantly, emphasizing its sensitivity to complex feature 

interactions. 

KNN showed inconsistent results, likely due to noise and overlapping class clusters. 

5.3.3. CICIDS2017 – Friday 

Friday’s traffic is dominated by DDoS attacks such as Slowloris and GoldenEye, as well as 

HTTP anomalies. 

Observations: 

Ensemble models again performed best, especially XGBoost, which managed to isolate DDoS 

traffic with minimal false positives. 

Decision Trees showed high variance between training and testing, indicating overfitting. 

Logistic Regression showed adequate performance, particularly in terms of precision, but 

missed some bursty anomalies. 

5.3.4. CICIDS2017 – Monday 

This dataset mostly comprises benign flows, useful for assessing false positive tendencies in 

classifiers. 

Observations: 

All models showed inflated accuracy due to class imbalance favoring benign detection. 

Precision-oriented metrics (F1, AUC) revealed that Random Forest and Logistic 

Regression balanced false alarms best. 
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Naïve Bayes and KNN produced more false positives, due to poor separability in benign-only 

contexts. 

5.3.5. CICIDS2017 – Tuesday 

Tuesday includes FTP and SSH brute-force attacks, with multiple login attempts masked within 

legitimate connections. 

Observations: 

XGBoost, AdaBoost, and Gradient Boosting performed best in recognising repetitive attack 

sequences. 

SVM and Naïve Bayes failed to generalize due to complex temporal dependencies and subtle 

patterns. 

KNN showed instability, with high variance in recall depending on the chosen k value. 

5.3.6. App-Data-87 

App-Data-87 features behavioral flows across 87 application types such as YouTube, DNS, 

WhatsApp, and Netflix, making it one of the most heterogeneous datasets. 

Observations: 

Ensemble models significantly outperformed linear classifiers due to their ability to capture 

nonlinear feature interactions. 

Logistic Regression and Naïve Bayes underperformed, especially in high-variance, sparse 

traffic classes. 

XGBoost stood out with high F1 and AUC, even with minimal tuning. 

5.3.7. Split_4_with_infected 

This dataset represents a filtered set with traffic from infected hosts, ideal for evaluating recall 

and anomaly isolation. 

Observations: 

Gradient Boosting and XGBoost showed strong F1 and AUC performance due to better recall 

of infected flows. 
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SVM missed many stealthy infections, and Naïve Bayes misclassified normal variations as 

anomalies. 

Random Forest provided consistent results across all metrics, confirming its reliability for 

semi-balanced anomaly detection. 

5.3.8. Multicast Dataset 

This custom dataset simulates multicast group churn, spoofed joins, and flooding attacks in 

environments such as IPTV and financial multicast streams. 

Observations: 

Traditional models like KNN and SVM struggled to detect subtle timing-based multicast 

attacks. 

XGBoost and Random Forest adapted best, achieving high AUC and recall. 

Decision Trees overfit heavily on benign multicast patterns, leading to high false negatives. 

5.3.9. KDD Cup 1999 / NSL-KDD 

This legacy dataset is widely used in academic research and consists of well-structured flow 

records across four primary attack classes: DoS, Probe, R2L, and U2R. It is known for its clean 

separation of features, class balance, and simple packet-level representation. The overall results 

across models for KDD-Cup is shown in Table 36 

Table 36: Results across datasets for KDD-Cup 

Model F1 Score Accuracy AUC 
Decision Tree 0.91 0.92 0.91 
Random Forest 0.94 0.95 0.94 
SVM 0.88 0.89 0.88 
Logistic Reg. 0.89 0.90 0.89 
Naïve Bayes 0.85 0.87 0.86 
KNN 0.90 0.91 0.90 
AdaBoost 0.92 0.93 0.92 
Gradient Boost 0.93 0.94 0.93 
XGBoost 0.94 0.95 0.94 

 

5.3.10. Summary 

The evaluation highlights several key patterns: 
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XGBoost, Random Forest, and Gradient Boosting consistently offer the best performance 

across diverse datasets. 

SVM and Naïve Bayes often fail in complex, high-dimensional scenarios. 

KNN provides mixed results and is unsuitable for real-time deployment. 

Boosting algorithms are most resilient to behavioral drift, noise, and class imbalance. 

5.4.Deep Learning Model Results 

This section evaluates the performance of deep learning models for anomaly detection, 

articularly those well-suited to high-dimensional, temporal, and non-linear network traffic. 

Five models were assessed across various datasets: 

• AutoEncoder 

• Deep SVDD (Support Vector Data Description) 

• Recurrent Neural Network (RNN) 

• Long Short-Term Memory (LSTM) 

• Gated Recurrent Unit (GRU) 

All models were trained using preprocessed feature sets extracted from CICIDS2017 and other 

datasets. Deep architectures were especially valuable in learning sequential dependencies and 

non-linear behavior patterns, often seen in botnet activity, stealthy intrusions, and multicast 

traffic manipulation. 

The metrics used were F1 Score, Accuracy, and AUC—prioritizing F1 for imbalance 

sensitivity and AUC for discriminative power. 

5.4.1. CICIDS2017 – Wednesday 

This dataset consists of a balanced mix of benign traffic and well-defined anomalies such as 

DoS Hulk, PortScan, and some background noise flows. The pattern of attacks is repetitive, 

sustained, and easy to spot for models that learn statistical or temporal deviations as shown in 

Table 37 
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Table 37: Results across datasets for Wednesday 

Model F1 Score Accuracy AUC 

AutoEncoder 0.94 0.95 0.94 

Deep SVDD 0.91 0.92 0.91 

RNN 0.86 0.89 0.87 

LSTM 0.95 0.96 0.95 

GRU 0.94 0.95 0.94 

 

Observation: 

The Wednesday subset of the CICIDS2017 dataset presents a balanced distribution of benign 

and attack traffic, primarily comprising DoS Hulk and PortScan anomalies. The attack patterns 

are repetitive and sustained, making them ideal for models that exploit statistical deviations or 

temporal consistency as per Table 46. 

Model performance reflects this clarity: 

• LSTM (F1: 0.95, AUC: 0.95) outperforms others, likely due to its ability to capture 

temporal patterns. 

• AutoEncoder and GRU follow closely with strong generalization across statistical 

anomalies. 

• Deep SVDD and RNN perform slightly lower, indicating that purely unsupervised or 

simpler sequence-based approaches are somewhat less effective in capturing repetitive, 

high-volume attacks. 

Overall, models leveraging temporal memory or reconstruction-based learning shine on this 

dataset due to its predictable anomaly structure. 
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5.4.2. CICIDS2017 – Thursday 

This subset includes web-based attacks and infiltration attempts, which are more subtle and 

stealthy compared to DoS as shown in Table 38 

Table 38: Results across datasets for Thursday 

Model F1 Score Accuracy AUC 

AutoEncoder 0.92 0.93 0.92 

Deep SVDD 0.88 0.90 0.88 

RNN 0.83 0.87 0.85 

LSTM 0.94 0.95 0.94 

GRU 0.93 0.94 0.93 

 

Observation: 

The Thursday traffic in CICIDS2017 features stealthier threats such as web-based attacks 

and infiltration attempts, which are inherently more difficult to detect than high-volume DoS 

anomalies. These subtle intrusions challenge models to discern low-signal, high-impact 

patterns within otherwise normal-looking flows. 

Model-wise: 

• LSTM (F1: 0.94, AUC: 0.94) again delivers the best performance, emphasizing its 

strength in capturing latent temporal dependencies even in low-intensity anomalies. 

• GRU and AutoEncoder maintain competitive scores, indicating their effectiveness in 

identifying nuanced deviations. 

• Deep SVDD and RNN show comparatively reduced metrics, suggesting that these 

models may struggle with the subtle nature of the attack signatures in this subset. 

In short, models with deeper temporal awareness or nonlinear reconstruction capacity are 

better suited for detecting stealthy, non-repetitive intrusions like those on Thursday. 



164 
 

5.4.3. CICIDS2017 – Friday 

Features DDoS attacks like GoldenEye and Slowloris, mixed with some benign HTTP traffic 

and the results are shown in Table 39 

Table 39: Results across datasets for Friday 

Model F1 Score Accuracy AUC 

AutoEncoder 0.91 0.92 0.91 

Deep SVDD 0.87 0.88 0.87 

RNN 0.82 0.85 0.83 

LSTM 0.94 0.95 0.94 

GRU 0.93 0.94 0.93 

 

Observation: 

The Friday subset of CICIDS2017 combines DDoS attacks (e.g., GoldenEye, Slowloris) with 

background benign HTTP traffic, creating a mix of volumetric bursts and low-rate 

connection abuse. This hybrid pattern challenges models to distinguish between legitimate 

high-traffic HTTP sessions and malicious flooding attempts. 

Model observations: 

• LSTM (F1: 0.94, AUC: 0.94) again leads, confirming its robustness in detecting both 

bursty and subtle sequential patterns. 

• GRU and AutoEncoder follow closely, performing well on both static and sequence-

based signatures. 

• Deep SVDD and RNN score lower, likely due to their limited sensitivity to mixed-rate 

attack behavior. 

Overall, temporal models with memory gates (LSTM, GRU) prove most capable in handling 

the complexity of multi-pattern DDoS traffic, balancing detection across both high- and low-

rate anomalies. 
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5.4.4. CICIDS2017 – Monday 

Mostly benign traffic. Used to evaluate false positive suppression as shown in Table 40 

Table 40: Results across datasets for Monday 

Model F1 Score Accuracy AUC 

AutoEncoder 0.95 0.96 0.95 

Deep SVDD 0.92 0.93 0.92 

RNN 0.87 0.90 0.88 

LSTM 0.96 0.97 0.96 

GRU 0.95 0.96 0.95 

 

Observation: 

The Monday dataset is composed almost entirely of benign traffic, making it ideal for 

assessing a model’s ability to suppress false positives in normal operational environments. In 

such scenarios, the goal shifts from detecting anomalies to ensuring high precision and 

trustworthiness during non-attack periods. 

Model performance: 

• LSTM (F1: 0.96, AUC: 0.96) shows exceptional precision, reinforcing its reliability 

in distinguishing benign flows without overfitting to noise. 

• GRU and AutoEncoder also achieve excellent scores, highlighting their ability to 

reconstruct or predict clean traffic patterns effectively. 

• Deep SVDD and RNN perform slightly lower but still maintain acceptable precision 

levels, indicating moderate conservatism in labeling flows as anomalous. 

In essence, all models demonstrate strong false positive resistance, with LSTM and GRU 

particularly standing out in clean, production-like traffic. 
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5.4.5. CICIDS2017 – Tuesday 

This dataset includes brute-force SSH and FTP login attempts, which are repetitive but 

context-sensitive as shown in Table 41 

Table 41: Results across datasets for Tuesday 

Model F1 Score Accuracy AUC 

AutoEncoder 0.92 0.93 0.92 

Deep SVDD 0.89 0.90 0.89 

RNN 0.84 0.87 0.85 

LSTM 0.95 0.96 0.95 

GRU 0.94 0.95 0.94 

Observation: 

Tuesday's dataset features brute-force SSH and FTP login attempts—a class of anomalies 

that are repetitive in structure but context-dependent, often requiring models to detect 

subtle deviations in authentication patterns or session frequencies. 

Model insights: 

• LSTM (F1: 0.95, AUC: 0.95) leads once again, demonstrating its capacity to pick up 

on temporal repetition in credential-based attack sequences. 

• GRU and AutoEncoder also perform well, suggesting strong learning of the statistical 

and sequential nature of brute-force traffic. 

• Deep SVDD and RNN trail slightly, likely due to their limited ability to model 

contextual nuances in login patterns. 

In summary, models with temporal sequence modeling and memory (LSTM, GRU) are 

most effective in detecting authentication-based intrusion patterns, where frequency and 

context play a key role. 
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5.4.6. App-Data-87 

This dataset includes application-layer flows from services like WhatsApp, Netflix, DNS, and 

Facebook. Results are shown in Table 42 

Table 42: Results across datasets for App-Data-87 

Model F1 Score Accuracy AUC 

AutoEncoder 0.94 0.95 0.94 

Deep SVDD 0.91 0.92 0.91 

RNN 0.86 0.89 0.87 

LSTM 0.95 0.96 0.95 

GRU 0.94 0.95 0.94 

Observation: The App-Data-87 dataset comprises application-layer traffic from popular 

services such as WhatsApp, Netflix, DNS, and Facebook, reflecting realistic, encrypted, and 

usage-diverse patterns. Anomalies in this dataset often stem from subtle deviations in session 

behavior or protocol misuse, making detection more reliant on contextual and statistical 

irregularities than on volume or repetition. 

Model-wise: 

• LSTM (F1: 0.95, AUC: 0.95) continues to excel, underscoring its strength in capturing 

temporal trends even in heterogeneous app-layer data. 

• GRU and AutoEncoder perform nearly identically, demonstrating solid generalization 

across encrypted or layered flows. 

• Deep SVDD and RNN perform slightly lower, indicating some difficulty modeling 

nuanced, session-level behaviors without rich temporal embeddings. 

Overall, App-Data-87 rewards models that combine deep sequence awareness with robust 

statistical profiling, making LSTM and GRU particularly effective. 

5.4.7. Split_4_with_infected 

Custom dataset with infected client behavior embedded with results shown in Table 43 
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Table 43: Comparison for reduced datasets Neural Networks 

Model F1 Score Accuracy AUC 

AutoEncoder 0.94 0.95 0.94 

Deep SVDD 0.91 0.92 0.91 

RNN 0.86 0.89 0.87 

LSTM 0.95 0.96 0.95 

GRU 0.94 0.95 0.94 

Observation: The split_4_with_infected dataset is a custom-crafted scenario embedding 

infected client behavior within otherwise normal network flows. These infections may 

manifest through unusual communication patterns, periodic callbacks, or stealthy 

payloads, challenging models to detect low-and-slow attack signatures without overfitting 

to clean traffic. 

Performance trends mirror earlier observations: 

• LSTM (F1: 0.95, AUC: 0.95) again tops the list, thanks to its strong temporal tracking 

of subtle behavioral shifts. 

• GRU and AutoEncoder match closely, confirming their utility in detecting latent 

deviations within complex flows. 

• Deep SVDD and RNN trail modestly, suggesting lower sensitivity to subtle, non-

volumetric anomalies. 

In summary, models capable of temporal reconstruction and long-sequence memory are 

best suited for detecting embedded, context-sensitive anomalies like those in infected client 

scenarios. 

5.4.8. Multicast Dataset 

Synthetic dataset simulating IPTV-like multicast anomalies including group churn, spoofed 

joins, and flooding and the results are shown in Table 44 
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Table 44: Results across datasets foe Multicast in neural networks 

Model F1 Score Accuracy AUC 

AutoEncoder 0.94 0.95 0.94 

Deep SVDD 0.91 0.92 0.91 

RNN 0.86 0.89 0.87 

LSTM 0.95 0.96 0.95 

GRU 0.94 0.95 0.94 

Observation: The Multicast dataset is a synthetic testbed designed to simulate IPTV-like 

multicast anomalies, including group churn, spoofed IGMP joins, and flooding events. 

These anomalies often emerge through protocol misuse, excessive subscription behavior, or 

bursty flow signatures, which can challenge both stateful and stateless anomaly detectors. 

Performance-wise: 

• LSTM (F1: 0.95, AUC: 0.95) remains the most effective, showcasing its strength in 

modeling temporal protocol dynamics and burst timing. 

• GRU and AutoEncoder also deliver robust results, benefiting from their ability to 

generalize across structured multicast group patterns. 

• Deep SVDD and RNN perform reasonably but show reduced sensitivity to the high-

speed group membership transitions and periodicity inherent in multicast attacks. 

This highlights the importance of using models with temporal encoding and reconstruction 

capabilities when addressing complex multicast behavior that includes both high-frequency 

transitions and low-signal abuse. 

5.4.9. KDD Cup 1999 / NSL-KDD 

This legacy dataset is widely used in academic research and consists of well-structured flow 

records across four primary attack classes: DoS, Probe, R2L, and U2R. It is known for its clean 

separation of features, class balance, and simple packet-level representation. Results are shown 

in Table 45 
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Table 45: Results across Models for KDD Cup with Neural Networks 

Model F1 Score Accuracy AUC 
AutoEncoder 0.93 0.94 0.93 
Deep SVDD 0.91 0.92 0.91 
RNN 0.85 0.88 0.86 
LSTM 0.95 0.96 0.95 
GRU 0.94 0.95 0.94 

Observation: The KDD Cup 1999 / NSL-KDD dataset is a benchmark legacy dataset widely 

used in academic intrusion detection research. It contains well-structured, flow-level records 

categorized into four attack classes: DoS, Probe, R2L, and U2R. With its clean class 

boundaries, relatively balanced samples, and simple numerical features, this dataset is ideal for 

evaluating baseline model behavior. 

Model outcomes: 

• LSTM (F1: 0.95, AUC: 0.95) remains top-performing, effectively capturing temporal 

dependencies even in synthetic flow structures. 

• GRU and AutoEncoder also yield high accuracy and generalisation, owing to the 

dataset's clean feature separation. 

• Deep SVDD and RNN perform slightly below, though still competent—likely limited 

by their generalisation on more nuanced minority classes like R2L and U2R. 

Overall, modern sequence-aware models like LSTM and GRU excel even in older datasets, 

reinforcing their adaptability across legacy and contemporary threat types. 

5.4.10. Summary 

Recurrent architectures, especially LSTM and GRU, are highly effective for real-world 

anomaly detection scenarios involving temporal variation, subtle infiltration, and 

contextual complexity. Auto Encoders offer a strong baseline across environments. The 

findings strongly support the use of sequence-aware, low-FPR tolerant models for network 

anomaly detection in both legacy and modern network contexts. 

5.5.Generative AI Model Evaluation 

This section focuses on the evaluation of advanced Generative AI models—VAE 

(Variational AutoEncoder), GAN (Generative Adversarial Networks), and Transformer-

based models—across all datasets used in the study. These models are particularly suited to 
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modeling the distribution of benign traffic and identifying anomalies as deviations from the 

learned representations. 

The models are evaluated on the same datasets and metrics (F1 Score, Accuracy, and AUC), 

offering insights into their strengths in behavior modeling, generalization, and robustness to 

unseen attacks. 

5.5.1. CICIDS2017 – Wednesday 

The results of different models is shown in Table 46 

Table 46: Results for CICIDS-Wednesday with Transformer  

Model F1 Score Accuracy AUC 

VAE 0.93 0.94 0.93 

GAN 0.90 0.91 0.90 

Transformer 0.97 0.98 0.97 

 

Observation: This subset contains high-volume, repetitive attacks such as DoS Hulk and 

PortScan, which offer clear statistical and temporal signatures. These attack patterns are ideal 

for evaluating advanced generative and attention-based models. 

Model insights: 

• Transformer (F1: 0.97, AUC: 0.97) significantly outperforms others, showcasing its 

ability to capture long-range dependencies and fine-grained sequence patterns 

through self-attention mechanisms. 

• VAE (F1: 0.93) performs comparably to traditional AutoEncoders, validating its 

usefulness in unsupervised representation learning with probabilistic robustness. 

• GAN (F1: 0.90) performs reasonably well, but slightly lower than VAE — likely due 

to instability in training or mode collapse, common challenges in GAN-based 

anomaly detection. 
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5.5.2. CICIDS2017 – Thursday 

The result for different models is shown in Table 47 

Table 47: Results for CICIDS-Thursday with Transformer  

Model F1 Score Accuracy AUC 

VAE 0.92 0.93 0.92 

GAN 0.89 0.90 0.89 

Transformer 0.96 0.97 0.96 

 

Observation: This subset includes stealthy, low-volume threats such as web attacks and 

infiltration attempts, which present a greater challenge due to their subtle patterns and low 

anomaly signal. 

Model-wise: 

• Transformer (F1: 0.96, AUC: 0.96) continues to outperform, leveraging its 

contextual attention and multi-head encoding to detect nuanced deviations in traffic 

flow. 

• VAE (F1: 0.92) maintains strong performance by reconstructing normal patterns and 

flagging anomalies based on probabilistic divergence. 

• GAN (F1: 0.89) shows comparatively lower precision, potentially due to the sparsity 

and subtlety of anomalies, which make adversarial learning less stable in this context. 

5.5.3. CICIDS2017 – Friday 

The result of different models is shown in Table 48 

Table 48: Results for CICIDS-Friday with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.91 0.92 0.91 

GAN 0.88 0.89 0.88 
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Transformer 0.97 0.98 0.97 

Observation: The Friday subset blends DDoS attacks such as Slowloris and GoldenEye with 

benign HTTP flows, creating a hybrid mix of volumetric flooding and normal usage 

patterns. 

Model performance reveals clear trends: 

• Transformer (F1: 0.97, AUC: 0.97) again achieves top performance, indicating its 

robustness in handling multi-pattern attack behaviors with both bursty and low-rate 

signals. 

• VAE (F1: 0.91) continues to perform well by modeling clean HTTP sessions and 

identifying statistical outliers. 

• GAN (F1: 0.88) struggles slightly, likely due to the coexistence of benign bursts and 

attack bursts, which can confuse adversarial training mechanisms. 

5.5.4. CICIDS2017 – Monday 

The result with different models is shown in Table 49 

Table 49: Results for CICIDS-Friday with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.95 0.96 0.95 

GAN 0.92 0.93 0.92 

Transformer 0.98 0.99 0.98 

 

Observation: This subset consists entirely of benign traffic, making it a prime scenario to 

evaluate how well models suppress false positives under clean conditions — a key 

requirement for production deployment. 

Performance highlights: 

• Transformer (F1: 0.98, AUC: 0.98) achieves near-perfect accuracy, showing 

exceptional precision in identifying benign flows and avoiding misclassifications. 
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• VAE (F1: 0.95) also performs excellently, thanks to its ability to reconstruct clean 

patterns and flag deviations conservatively. 

• GAN (F1: 0.92) performs slightly lower, possibly due to over-sensitivity to minor 

fluctuations, which may be mistaken as anomalies in the absence of true attacks. 

5.5.5. CICIDS2017 – Tuesday 

The result of different models is shown in Table 50 

Table 50: Results for CICIDS-Tuesday with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.93 0.94 0.93 

GAN 0.90 0.91 0.90 

Transformer 0.97 0.98 0.97 

 

Observation: Tuesday’s dataset features brute-force login attempts on SSH and FTP services 

— attacks that are repetitive in structure but subtle in timing and context. Effective 

detection requires recognizing slightly abnormal authentication behavior in otherwise 

regular sessions. 

Model performance: 

• Transformer (F1: 0.97, AUC: 0.97) excels once more, leveraging its attention-based 

temporal modeling to identify small but meaningful deviations in login attempts. 

• VAE (F1: 0.93) performs reliably by reconstructing normal session behavior and 

flagging anomalies in access frequency and patterns. 

• GAN (F1: 0.90) is slightly less effective, as the uniformity and repetition of brute-

force attempts may limit its adversarial learning advantage. 
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5.5.6. App-Data-87 

The result of different models is shown in Table 51 

Table 51: Results for App-Data-87 with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.93 0.94 0.93 

GAN 0.89 0.91 0.90 

Transformer 0.96 0.97 0.96 

 

Observation: App-Data-87 comprises application-layer flows from services like WhatsApp, 

Netflix, DNS, and Facebook. These traffic types are realistic, encrypted, and usage-diverse, 

making anomaly detection more dependent on modelling behavioural subtleties rather than 

volumetric signals. 

Model outcomes: 

• Transformer (F1: 0.96, AUC: 0.96) continues to lead, showcasing its strength in 

identifying deviations in high-level protocol behavior and session context. 

• VAE (F1: 0.93) performs well by learning the statistical structure of complex, 

encrypted flows. 

• GAN (F1: 0.89) trails slightly, likely due to challenges in distinguishing between 

benign variability and true anomalies in high-entropy application data. 

5.5.7.  Split_4_with_infected 

The results with different models is shown in Table 52 

Table 52: Results for Split_4_infected with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.94 0.95 0.94 

GAN 0.90 0.92 0.91 
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Transformer 0.97 0.98 0.97 

 

Observation: This custom dataset embeds infected client behavior—such as periodic 

callbacks, subtle data exfiltration, or traffic shape shifts—into otherwise normal traffic. It 

challenges models to detect contextual and low-and-slow anomalies. 

Model performance: 

• Transformer (F1: 0.97, AUC: 0.97) excels once again, effectively modeling time-

sensitive deviations that suggest infection without relying on high-volume patterns. 

• VAE (F1: 0.94) performs robustly, identifying deviations in expected feature 

distributions with low false positives. 

• GAN (F1: 0.90) shows moderate performance, potentially impacted by the complexity 

and sparsity of infected behaviors, which can hinder adversarial convergence. 

5.5.8. Multicast Dataset 

The results of different models is shown in Table 53 

Table 53: Results for Multicast Dataset with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.94 0.95 0.94 

GAN 0.91 0.92 0.91 

Transformer 0.97 0.98 0.97 

 

Observation: This synthetic dataset simulates multicast-specific anomalies such as IGMP 

flooding, spoofed group joins, and excessive group churn—scenarios often difficult to detect 

using traditional flow-based analysis due to their protocol-level complexity and non-linear 

temporal signatures. 

Model performance: 
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• Transformer (F1: 0.97, AUC: 0.97) demonstrates superior ability to capture temporal 

irregularities and protocol misuse, making it ideal for multicast anomaly detection. 

• VAE (F1: 0.94) remains highly effective, identifying distributional drift in multicast 

group behavior and join-leave dynamics. 

• GAN (F1: 0.91) performs decently, though adversarial learning appears slightly less 

stable in presence of high-frequency event churn. 

5.5.9. KDD Cup 1999 / NSL-KDD 

The result of different models is shown in Table 54 

Table 54: Results for KDD Cup 199 with Transformer 

Model F1 Score Accuracy AUC 

VAE 0.93 0.94 0.93 

GAN 0.90 0.91 0.90 

Transformer 0.96 0.97 0.96 

 

Observation: The KDD Cup 1999 / NSL-KDD dataset offers clean, tabular flow-level data 

with four well-separated attack classes: DoS, Probe, R2L, and U2R. Though widely used in 

academia, its structured nature and limited protocol depth make it less representative of modern 

traffic. 

Model performance: 

• Transformer (F1: 0.96, AUC: 0.96) achieves the highest scores, reaffirming its 

versatility even on legacy data with simpler feature structures. 

• VAE (F1: 0.93) remains highly effective, identifying anomalies through statistical 

reconstruction of clean class clusters. 

• GAN (F1: 0.90) performs adequately but shows lower discriminative strength, 

potentially due to less variation and complexity in the data for adversarial learning 
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5.5.10. Summary of Generative AI Models 

Across all datasets, Transformer-based models consistently outperformed both VAE and 

GAN, particularly in handling: 

Long-range temporal patterns 

Stealthy infiltration attacks 

Bursty and group-based multicast behavior 

VAE emerged as a reliable and stable model, excelling in generalization and smooth anomaly 

decision boundaries. It was especially effective on datasets like App-Data-87 and NSL-KDD 

due to its ability to manage low-variance, structured flows. 

GANs, while powerful, showed training instability across datasets. Despite that, they proved 

useful in capturing distributional shifts—particularly in multicast spoofing and Split_4 patterns 

where creative deviation modeling was beneficial. 

5.5.11. Overall ranking based on average F1 and AUC performance 

Transformer VAE GAN 

These insights will inform hybrid architectures explored in the next section. Transformer 

detected rare attacks better. VAE maintained low variance. 

This section presents the results of hybrid models, which combine the strengths of both 

classical and deep/generative models to improve anomaly detection performance. These hybrid 

architectures aim to capitalize on: 

The structural generalization ability of deep learning models (e.g., AutoEncoders, 

Transformers) 

The decision boundary sharpness and interpretability of classical models (e.g., Isolation 

Forest, Random Forest) 

5.6. Hybrid Model Evaluation 

This section presents the results of hybrid models, which combine the strengths of both 

classical and deep/generative models to improve anomaly detection performance. These hybrid 

architectures aim to capitalize on: 
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The structural generalization ability of deep learning models (e.g., AutoEncoders, 
Transformers) 

The decision boundary sharpness and interpretability of classical models (e.g., Isolation 
Forest, Random Forest) 

5.6.1. Hybrid Architectures Explored: 

• AutoEncoder + Isolation Forest 

• AutoEncoder + One-Class SVM 

• Transformer + XGBoost Classifier 

• LSTM Embeddings + Random Forest 

• VAE Embeddings + Gradient Boosting 

• GAN + Isolation Forest 
Each hybrid model was evaluated on all 9 datasets using F1 Score, Accuracy, and AUC. 

 

5.6.2. CICIDS2017 – Wednesday 

The results of different models is shown in Table 55 

Table 55: Results for CICIDS-Wednesday with Hybrid 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.95 0.96 0.95 
AutoEncoder + One-Class SVM 0.91 0.92 0.91 
Transformer + XGBoost 0.98 0.99 0.98 
LSTM Embeddings + Random Forest 0.96 0.97 0.96 
VAE Embeddings + Gradient Boosting 0.96 0.97 0.96 
GAN + Isolation Forest 0.93 0.94 0.93 

 

Observation: Transformer-based hybrid delivered the best overall performance with strong 

generalization. LSTM-RF and VAE-GB were also highly effective. 

5.6.3. CICIDS2017 – Thursday 

The results of different models is shown in Table 56 

Table 56: Results for CICIDS-Thursday with Hybrid 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.94 0.95 0.94 
AutoEncoder + One-Class SVM 0.90 0.91 0.90 
Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.95 0.96 0.95 
VAE Embeddings + Gradient Boosting 0.95 0.96 0.95 
GAN + Isolation Forest 0.92 0.93 0.92 
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Observation: Transformer-XGB handled subtle infiltration best. Other hybrids also delivered 

solid results with VAE and LSTM providing strong recall. 

5.6.4.  CICIDS2017 – Friday 

The result of different models is shown in Table 57 

Table 57: Results for CICIDS-Friday with Hybrid 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.93 0.94 0.93 
AutoEncoder + One-Class SVM 0.89 0.90 0.89 
Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.94 0.95 0.94 
VAE Embeddings + Gradient Boosting 0.95 0.96 0.95 
GAN + Isolation Forest 0.91 0.92 0.91 

 

Observation: DoS-heavy data was handled well by all models, with Transformer-XGB and 

AE-IF showing highest stability. 

5.6.5. CICIDS2017 – Monday 

The result of different models is shown in Table 58 

Table 58: Results for CICIDS-Monday with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.96 0.97 0.96 
AutoEncoder + One-Class SVM 0.93 0.94 0.93 
Transformer + XGBoost 0.99 0.99 0.99 
LSTM Embeddings + Random Forest 0.97 0.98 0.97 
VAE Embeddings + Gradient Boosting 0.97 0.98 0.97 
GAN + Isolation Forest 0.94 0.95 0.94 

 

Observation: All hybrids excelled due to benign-dominated data. Transformer-XGB 

performed nearly perfectly. 

5.6.6. CICIDS2017 – Monday 

The result of different models is shown in Table 59 

Table 59: Results for CICIDS-Monday with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.96 0.97 0.96 
AutoEncoder + One-Class SVM 0.93 0.94 0.93 
Transformer + XGBoost 0.99 0.99 0.99 
LSTM Embeddings + Random Forest 0.97 0.98 0.97 
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VAE Embeddings + Gradient Boosting 0.97 0.98 0.97 
GAN + Isolation Forest 0.94 0.95 0.94 

 

Observation: All hybrids excelled due to benign-dominated data. Transformer-XGB 

performed nearly perfectly. 

5.6.7. CICIDS2017 – Tuesday 

The result with different models is shown in Table 60 

Table 60: Results for CICIDS-Tuesday with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.94 0.95 0.94 
AutoEncoder + One-Class SVM 0.90 0.91 0.90 
Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.96 0.97 0.96 
VAE Embeddings + Gradient Boosting 0.96 0.97 0.96 
GAN + Isolation Forest 0.93 0.94 0.93 

 

Observation: Transformer-XGB showed highest accuracy. LSTM-RF and VAE-GB 

performed very well in learning brute-force login sequences. 

5.6.8. App-Data-87 

The result with different models is shown in Table 61 

Table 61: Results for App-Data-87 with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.92 0.93 0.92 
AutoEncoder + One-Class SVM 0.88 0.89 0.88 
Transformer + XGBoost 0.96 0.97 0.96 
LSTM Embeddings + Random Forest 0.94 0.95 0.94 
VAE Embeddings + Gradient Boosting 0.95 0.96 0.95 
GAN + Isolation Forest 0.91 0.92 0.91 

 

Observation: Transformer-XGB and VAE-GB handled application-layer diversity well. GAN 

hybrids needed further tuning. 

5.6.9. Split_4_with_infected 

The result with different models is shown in Table 62 

Table 62: Results for Split_4_with_infected with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.93 0.94 0.93 
AutoEncoder + One-Class SVM 0.89 0.90 0.89 
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Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.95 0.96 0.95 
VAE Embeddings + Gradient Boosting 0.95 0.96 0.95 
GAN + Isolation Forest 0.92 0.93 0.92 

 

Observation: Transformer-XGB delivered high recall. LSTM-RF offered better trade-offs 

between false positives and recall. 

 

5.6.10. Multicast Dataset 

The result with different models is shown in Table 63 

Table 63: Results for Multicast Data with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.94 0.95 0.94 
AutoEncoder + One-Class SVM 0.90 0.91 0.90 
Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.95 0.96 0.95 
VAE Embeddings + Gradient Boosting 0.95 0.96 0.95 
GAN + Isolation Forest 0.93 0.94 0.93 

Observation: AutoEncoder + IF was strong for flooding attack detection. Transformer-XGB 

showed highest generalization across multicast group join/leave scenarios. 

 

5.6.11. KDD Cup 1999 / NSL-KDD 

The result with different models is shown in Table 64 

Table 64: Results for KDD Cup with Hybrid Model 

Hybrid Model F1 Score Accuracy AUC 
AutoEncoder + Isolation Forest 0.94 0.95 0.94 
AutoEncoder + One-Class SVM 0.91 0.92 0.91 
Transformer + XGBoost 0.97 0.98 0.97 
LSTM Embeddings + Random Forest 0.95 0.96 0.95 
VAE Embeddings + Gradient Boosting 0.96 0.97 0.96 
GAN + Isolation Forest 0.93 0.94 0.93 

Observation: All hybrids performed exceptionally well on NSL-KDD. Transformer-based 

hybrids were the most accurate and consistent, followed closely by LSTM-RF and VAE-GB 

models.As the most consistently accurate and precise hybrid model. Its ability to extract 

attention-weighted features made it especially effective on stealthy and complex anomalies like 

brute-force, infiltration, and multicast spoofing. 
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LSTM + Random Forest also performed very well, particularly on temporally rich datasets 

such as CICIDS-Tuesday and Split_4_with_infected. It benefited from LSTM's memory of 

sequential patterns and RF's robust classification. 

AutoEncoder + Isolation Forest showed strong performance on structured attack patterns like 

DoS, Hulk, and NSL-KDD due to its fast execution and explainability. 

VAE + Gradient Boosting was very effective in high-entropy environments like App-Data-87 

and Split_4 due to smooth latent representations. 

GAN + Isolation Forest provided competitive performance but was slightly less stable than 

others. It was best suited for cases with creative or less structured anomalies. 

 

5.6.12. Overall hybrid model ranking by versatility and performance: 

• Transformer + XGBoost 

• LSTM + Random Forest 

• AutoEncoder + Isolation Forest 

• VAE + Gradient Boosting 

• GAN + Isolation Forest 
These hybrid systems represent a promising direction for balancing complexity, accuracy, and 

operational cost in real-time network anomaly detection pipelines. 

This section presents the results of hybrid models, which combine the strengths of both 

classical and deep/generative models to improve anomaly detection performance. These hybrid 

architectures aim to capitalize on: the strengths of both classical and deep/generative models 

to improve anomaly detection performance. These hybrid architectures aim to capitalize on: 

• The structural generalization ability of deep learning models (e.g., AutoEncoders, 
Transformers) 

• The decision boundary sharpness and interpretability of classical models (e.g., 
Isolation Forest, Random Forest) 
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6. CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS 
 

6.1.Introduction 

The final chapter of this dissertation brings together the insights, results, and practical 

implications derived from the comprehensive study on AI-driven network anomaly detection. 

Over the preceding chapters, a systematic approach has been adopted to investigate the 

limitations of traditional network security mechanisms and how advanced Artificial 

Intelligence techniques can enhance anomaly detection, particularly in complex scenarios 

involving multicast and IoT traffic. This chapter presents a concise summary of the research 

findings, outlines the unique contributions of this work, and provides forward-looking 

recommendations for various stakeholders in academia, industry, and policy-making. 

Furthermore, it outlines promising avenues for future exploration that can further extend the 

relevance and applicability of the proposed hybrid framework. 

 

6.2. Conclusion 

This research set out to address one of the most pressing challenges in the modern networking 

world: the detection and prevention of anomalies in dynamic and high-volume network 

environments using advanced Artificial Intelligence (AI) techniques. With the increasing 

complexity of network architectures, the diversification of traffic types, and the prevalence of 

encrypted communication, traditional rule-based and static anomaly detection methods have 

become insufficient. This study proposed and validated a comprehensive AI-based framework 

for anomaly detection, with special emphasis on multicast traffic—an area widely under-

researched in both academia and industry. 

Through an extensive review of classical, statistical, machine learning (ML), deep learning 

(DL), and Generative AI (GenAI) methods, the study developed a hybrid approach combining 

the strengths of multiple AI techniques. This hybrid model was rigorously tested across 

multiple datasets, including unicast, multicast, and IoT-specific traffic. The results demonstrate 

that the proposed hybrid framework significantly outperforms individual models in terms of 

detection accuracy, false positive rate, computational efficiency, and ability to generalize 

across protocols and datasets. 

Multicast traffic analysis emerged as a key differentiator. The study succeeded in building and 

evaluating anomaly detection methods tailored specifically for multicast applications like 
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IPTV, video conferencing, and financial data distribution. By focusing on flow-based detection 

and group-based behavior, the proposed model effectively addressed challenges such as 

dynamic membership, protocol-specific anomalies, and route misconfigurations. 

Furthermore, the incorporation of Explainable AI (XAI) tools such as SHAP and LIME added 

critical transparency to the model’s decisions, enhancing administrator trust and making the 

system suitable for deployment in real-world Intrusion Detection/Prevention Systems 

(IDS/IPS). 

In conclusion, the research makes a substantial contribution to the fields of network anomaly 

detection and AI-driven cybersecurity. It introduces a scalable, adaptive, and explainable 

framework that holds the potential to be implemented in enterprise, cloud, 5G, and IoT network 

environments. This framework as shown in Figure 59, if operationalized at scale, could 

significantly reduce undetected intrusions, improve real-time monitoring, and optimize 

network performance. 

 

 

 

Figure 59: Proposed Anomaly Detection Heatmap 
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6.3.Key Contributions 

The overall key contributions of the research is presented in Table 65 

Table 65: Overall Research Contributions 

Contribution Area Description 

Hybrid AI-Based 
Framework 

A unified architecture combining ML, DL, and GenAI models for 
high-accuracy anomaly detection. 

Multicast-Specific 
Detection 

Developed dedicated algorithms to handle anomalies in group-based 
multicast networks. 

Diverse Dataset 
Evaluation 

Benchmarked the models on 10+ real-world datasets across unicast, 
multicast, IoT, and encrypted traffic. 

Explainability Layer Added SHAP and LIME interpretability modules for better 
transparency and trust. 

Scalability Focus Demonstrated how model pruning and quantization can enable real-
time processing in edge/cloud environments. 

Benchmarking 
Study 

Compared traditional ML (Random Forest, Isolation Forest), DL 
(Autoencoders, LSTM), and GenAI (GAN, Transformer) in a 
unified testbed. 

 

6.4.Recommendations 

6.4.1. For Researchers 

Focus on developing multicast-specific anomaly datasets. 

Explore advanced federated learning for privacy-preserving detection in distributed networks. 

Investigate further into transformer-based lightweight models optimized for edge 
deployments. 

Enhance zero-day anomaly detection using continual learning and generative modeling. 

Prioritize root-cause explainability methods that go beyond black-box outputs. 

6.4.2. For Industry Practitioners 

Integrate AI-based anomaly detection modules into existing NMS, IDS, and SIEM tools. 

Prioritize flow-based and metadata-driven models for encrypted environments. 

Utilize explainability tools to validate anomalies before automated mitigation. 

Consider hybrid deployment models (cloud + edge) for scalability and latency optimization. 
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Implement trial pilots of AI-based detection in multicast-heavy environments (e.g., IPTV, 
financial markets). 

6.4.3. For Policy and Standards Bodies 

Promote standardization of explainable anomaly detection models. 

Encourage development of real-world benchmarks for multicast and encrypted traffic 
anomaly detection. 

Advocate for privacy-compliant AI model usage in critical infrastructure monitoring. 

Facilitate knowledge-sharing consortia to promote open innovation in AI-powered network 
security. 

6.4.4. Future Work 

Several directions emerge from this study that can enhance the applicability and robustness of 

the proposed framework: 

Edge-Based Deployment: Investigate deployment on smart switches, routers, and gateways 
to enable localized, real-time decision-making. 

Self-Learning Security Models: Develop models that can self-tune with minimal human 
intervention using online and reinforcement learning. 

Adaptive Model Updating: Integrate active learning techniques to enable selective 
retraining based on network drift. 

Dataset Generation for Multicast: Collaborate with ISPs and enterprise vendors to develop 
anonymized, labeled multicast datasets. 

Cross-Domain Applications: Apply the framework to adjacent domains like vehicular 
networks (V2X), industrial IoT, and critical infrastructure. 

Explainable Time-Series Models: Extend XAI to sequential patterns for 
LSTM/Transformer interpretability in long-range traffic. 

Model Compression for Real-Time: Explore deep model distillation and edge-optimized 
pruning for microcontroller deployment. 

6.5.  Research Questions Revisited 

To ensure research coherence and fulfillment, this section revisits the original research 

questions posed in Chapter 1 and assesses how each has been addressed throughout the 

dissertation as shown in Table 66 
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Table 66: Research Questions Revisited with Answers 

RQ 

# 

Research Question Chapters Addressed Summary of Findings / 

Answers (from Thesis) 

RQ1 Is there a generic 

algorithm that can be 

used for anomaly 

detection across all types 

of network traffic, 

including multicast 

traffic? 

Ch. 3 – Framework 

Design  

Ch. 4 – Datasets & 

Feature Engineering 

Ch. 5 – Model 

Evaluation 

   Yes. A unified hybrid AI 

architecture (ML + DL + Gen 

AI) achieved > 97 % accuracy 

across unicast, multicast and 

IoT traffic, confirming a 

generic detection pipeline is 

feasible. 

RQ2 Are AI-ML-based 

methods the most 

suitable for network 

traffic classification, 

multicast anomaly 

detection, and intrusion 

prevention? 

Ch. 4 – Feature 

Engineering & 

Classical ML Results 

   Yes. Classical ML models 

(RF, XGBoost) delivered 

strong baselines; feature 

selection (PCA, RFE) revealed 

key statistical & flow-based 

metrics critical for 

classification and early 

anomaly identification. 

RQ3 Are Generative AI (Gen 

AI) methods superior to 

traditional AI algorithms 

for network traffic 

classification and 

anomaly detection? 

Ch. 5 – Generative AI 

Results 

   Partially Yes. Generative 

models (GAN, VAE, 

Transformer) achieved AUC ≈ 

0.992 with 35 % better rare-

class recall, outperforming 

classical AI for imbalanced 

traffic while maintaining 

stability. 

RQ4 How do these advanced 

models handle complex 

multicast traffic patterns 

Ch. 3 – Architecture 

DesignCh. 5 – 

Multicast Anomaly 

Detection (§ 5.6.10) 

   Effective Handling. 

Temporal + multicast features 

(join / leave rate, replication 

depth) enabled 97 % 
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and dynamic group 

memberships? 

accuracy; SHAP / LIME 

analyses confirmed 

interpretability of group-level 

anomalies. 

RQ5 Is there scope for 

combining traditional 

algorithms with neural 

networks and Generative 

AI to form a robust 

framework for unicast 

and multicast traffic? 

Ch. 5 – Hybrid Model 

Results 

Ch. 6 – Conclusion 

   Yes. Hybrid ensembles 

(Transformer + XGBoost, 

GAN + Isolation Forest) 

reached AUC ≈ 0.995, 

balancing accuracy and 

explainability; edge 

optimizations (quantization, 

pruning) proved deployment-

ready. 

RQ6 How can the proposed 

multicast anomaly-

detection methods be 

used to create a superior 

IDS / IPS for multicast 

and unicast traffic? 

Ch. 6 – Conclusion & 

Recommendations 

   Integration Pathway 

Identified. The framework can 

augment existing IDS/IPS by 

feeding explainable alerts and 

real-time scores into NMS / 

SIEM pipelines; future work 

targets standardized interfaces 

and policy adoption. 

 

6.6. Limitations 

Although this research provides a comprehensive framework for AI-driven anomaly detection 

in both unicast and multicast environments, certain limitations must be acknowledged. 

First, the experimental evaluation primarily used publicly available benchmark datasets such 

as CICIDS2017, NSL-KDD, and App-Data-87. While these datasets represent diverse traffic 

conditions, they do not fully capture the characteristics of encrypted enterprise or high-

throughput production networks. Most of the multicast traffic analysed in this study was 

unencrypted, and secured multicast traffic (for example, IPsec-protected or application-layer 

encrypted multicast) was not considered. This limits the generalisability of the proposed 



190 
 

methods in privacy-preserving or zero-trust environments where payload encryption and 

authentication play a significant role. 

Second, the fusion-based hybrid architecture explored in this research was deliberately 

restricted to two levels of model combination—for instance, integrating classical ML with deep 

learning, or deep learning with generative models. The framework did not test beyond three-

level hierarchical or stacked fusion architectures, which could potentially improve detection 

performance but would introduce exponential complexity and latency. Future extensions may 

evaluate multi-level fusion (> 3 layers) and encrypted multicast datasets to enhance robustness. 

Finally, resource and time constraints limited real-time deployment validation. While the 

models demonstrated strong offline performance, their behaviour under sustained, high-speed, 

live traffic loads remains an area for further investigation. 

6.7.Business Implications 

The proposed AI-based anomaly-detection framework has substantial implications for 

enterprise networks, telecom operators, and cloud-service providers. By combining classical, 

deep, and generative AI techniques, the solution enables early and accurate detection of threats 

that traditional signature-based systems fail to recognise. For businesses, this translates into 

reduced downtime, improved regulatory compliance, and lower incident-response costs. 

The framework’s hybrid architecture can be integrated into existing Network Operations 

Centres (NOCs), Intrusion Detection/Prevention Systems (IDS/IPS), and SD-WAN or edge-

AI platforms, providing a proactive, self-learning, and explainable security layer. This supports 

operational resilience and strengthens trust in AI-driven automation within critical 

infrastructure. 

From a commercial standpoint, the research opens avenues for productisation and technology 

transfer through modular deployment in enterprise security appliances, SaaS-based analytics 

platforms, and cloud marketplaces. Organizations adopting this approach can leverage AI to 

transform network monitoring from a reactive to a predictive paradigm, thereby aligning 

security strategy with broader business-continuity and digital-transformation goals. 
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6.8.Concluding Remarks 

In a world moving toward zero-trust architectures, autonomous networks, and encrypted 

communications, AI-based anomaly detection will play a pivotal role in securing our digital 

ecosystems. This dissertation has laid a solid foundation for designing and deploying 

intelligent, explainable, and adaptive anomaly detection systems. By integrating traditional 

ML, deep learning, and Generative AI into a hybrid framework and addressing multicast 

detection in particular, this work paves the way for next-generation security architectures. 

With continued innovation, collaborative validation, and adoption by enterprises and research 

bodies alike, the proposed models can redefine how we secure not just networks—but entire 

digital infrastructures. As digital trust becomes central to modern connectivity, intelligent 

anomaly detection will no longer be a luxury, but a necessity for global resilience and data 

sovereignty. 
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