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ABSTRACT

NETWORK ANOMALY DETECTION THROUGH THE USE OF Al BASED
TECHNOLOGIES

Tathagata Nandy
2025

Dissertation Chair: Jaka Vadnjal
Co-Chair: Aleksandar Erceg

Networking is one of the most fundamental aspect of computer infrastructure along with
Servers and Storage. The impact of Artificial Intelligence on Computer Networking has been
profound from the early days (Mistry et al., 2024) of networking.

Artificial intelligence is used to make the network more efficient (Umoga et al., 2024)and
effective. Cloud computing-based analysis with Al for Edge computing (Umoga et al., 2024)
is analysed with advanced Al and analytics methods. The growth and importance of
networking asadomain in the past decade has coincided with the explosion of Al technologies.
This has led to building Al for networking as well as networking for Al as two separate
adjacencies. Inthiswork Al for networking is examined with focus on classical and generative
Al based technologies for network traffic classification and anomaly detection. The results are
also compared with traditional methods like neural network based aswell as classical statistical
methods for anomaly detection methodologies. The work aims to provide the benefit of Al
based technologies for intrusion detection and prevention which can be used to build a secure
and robust network. The work looks at different class of machine learning technologies with
multiple class of traffic and provides valuable insights. As part of this work close to twenty
different machine learning algorithms along with Ten different publicly available dataset and
provides the best combination for network traffic classification and anomaly detection. The
research will provide notable insights to build a system for network anomaly detection as well

asintrusion detection for the next generation of large scale and complex networks.
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1. CHAPTER
INTRODUCTION

1.1 Introduction

The concepts of anomaly detection and network traffic classification have evolved hand-in-
hand with the broader devel opment of computer networking and cybersecurity. Initially treated
as distinct areas—one focusing on identifying unusual behaviour, the other on categorizing
traffic flows—they have increasingly converged, particularly in the face of modern encrypted,

multiprotocol, and high-volume network environments.

Network Anomaly Detection is an advanced cybersecurity approach that continuously keeps
track of, analyses results across datasets for the KDD Cup with Neural behaviora patterns. It
operates under the basic assumption that malicious activities, system crashes, or performance
degradations are reflected as quantifiable changes in the network's communication patterns. It
creates detailed baseline models of normal network activity through statistical examination of
older traffic activity, protocol usage habits, bandwidth utilization metrics, and temporal
communication streams. These baselines serve as points of reference for all future network
activity that is measured and analyzed for potential anomalies.

Its operating structure supports rea-time data aggregations that grab network packets, flow
records, and metadata from various network levels. Sophisticated processing engines
subsequently use advanced algorithms to examine the constant flow of network data, matching
emerging patternsto predefined baselinesto detect statistically significant changes. The system
supports dynamic adaptation, repeatedly adjusting baseline models to reflect legitimate

changes in network usage patterns while retaining sensitivity to actual security breaches.

1.2 Network Traffic Classification

In parallel with network evolution, the flow classification architecture has evolved over the last
20 years. It hasto be noted that the initial flow classification was port-based. It transitioned to
payload-based inspection as the same application (e.g., YouTube) began using multiple ports.
This made the simple port-based classification insufficient. The next came payload-based
classification(Finsterbusch et a., 2014), which was effective, but started having issues as
encrypted traffic started to increase. The evolution continued with TLS certificate-based
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classification and eventually progressed to machine learning-based classification. ML-based
classification also evolved with time. Simple statistical classification to advanced DL based
classification to ensemble methods like X GS or Gradient Boost. The areais still evolving, with
traditional and neural networks-based algorithms, and multiple new industrial and academic
research papersare being published (Haqueet al., 2022). Figure 1 showsthe history of network

traffic classification.
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Figure 1: Network Traffic Classification evolution

1.2.1 Reason for Network Traffic Classification

Network Traffic Classification has many reasons. The primary reason is that it started with
traffic visibility and telemetry. Then it evolved to differentiated Quality of Service (QOS) for
different classes of traffic. With the evolution of 10T and new devices, anomaly detection
became another major reason for traffic classification. Lastly, application detection,

application-based policies, as well as Intrusion Detection systems are some of the pressing



needs to do network traffic classification. Figure 2 shows network traffic classification and

why it is so valuable.
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Figure 2: Different Uses of Network Traffic Classification

1.2.2 Historical Development of Network Anomaly Detection

History of Network Anomaly Detection. The development of network anomaly detection has
been through four separate stages, which demonstrate the sophistication and changes of the
cybersecurity attacks over the last forty years. In the early 1980s through the 1990s, most
systems in the field used rule-based systems and used hand-crafted signatures and static
heuristics to detect anomalies concerning expected network behaviour, with early intrusion
detection systems such as Snort and Bro (since renamed Zeek) setting the standard of packet
header and payload examination with a set of predefined attack signatures. A major shift of
statistical modeling and shallow machine learning methods occurred in the 2000s, as
researchersrealized the inadequacy of fixed rule sets and started considering Gaussian Mixture
Models, Principal Component Analysis, Support Vector Machines, decision trees and k-means
clustering models, and a groundbreaking paper released in 2008 by T.T.T. Nguyen and
Grenville Armitage showed that metadata at the flow level could successfully classify
applications without examining packet contents, and is now considered the standard

methodology of applying flow-based featuresto traffic classification The 2010s saw the rise of



big data methods based on comprehensive datasets, e.g., CICIDS2017, UNSW-NB15, and
BoT-IoT, that gave redlistic, labeled traffic at new scales, making hybrid methods combining
anomaly detection with traffic classification possible, and the growing popularity of encrypted
communications and multiprotocol enterprise networks that made payl oad-based detection less
effective and fastened the development of deep learning implementations like Autoencoders
and Long Short-Term Memory networks to model temporal patterns and provide zero-day
attacks that can be detected. The contemporary period, 2020-2027 marks the intersection of
anomaly detectors and traffic classifiers, with Al-native designs using Transformers,
Generative Adversarial Networks and Variational Autoencoders to replicate subtle variations
in behavior in dynamic environments and payload inspection by protocols such asHTTPS and
QUIC has rendered it impossible to inspect payloads, making it important that real-time
classification and analysisisavailable at network edges using switches, gateways, and 10T hubs
to support zero-trust security models and edge computing paradigms. Simultaneously, edge
computing and zero-trust security models demand that decisions be made close to the user or
device. Thisrequirestraffic to be classified and analysed in real-time at switches, gateways, or
loT hubs, blurring the lines between routing, classification, and security. Multicast network
traffic classification (Gombao, 2025), along with IDS, is gaining interest as not much work has

been done on this area.

1.3 Network Anomaly Detection

Network anomaly detection refers to the process of identifying unusual patterns or deviations
in network traffic that do not conform to expected behaviour. These anomalies often indicate
security threats such as unauthorised access, malware propagation, data exfiltration, denial-of-
service (DoS) attacks, or performance degradation caused by misconfigurations or system

faults. Let's take a close look at network anomaly detection methods over the yearsin Figure 3
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Figure 3: Network Traffic classification and Anomaly detection

Network anomaly detection has its origins in the broader field of network security and
performance management, evolving alongside the growth of computer networks and the
internet. As networks became more complex, with increasing numbers of connected devices
and diverse applications, the need to monitor and protect these networks from unauthorized
access, performance degradation, and security breaches became critical. This led to the
development of network anomaly detection techniques. There has always been adeep interest
in network anomaly detection through Al-based methods. Early work done by (Kaur et al.,
2013) Focused on different methods for anomaly detection as a survey paper. Similar work has
been done by (Bhattacharyya & Kalita, 2013). 10T devices and blockchain-based work
(Golomb et al., 2018a) started gaining prominence as and when the related technologies
evolved. Asneura networks became the state of the art for Al (Liu et a., 2019) (Klarak et al.,
2024)Proposed RNNs for anomaly detection of IP traffic. Finaly, with GenAl and
Reinforcement learning gaining popularity (Edozie et a., 2025) analyzed RL and GAN-based
methods for anomaly detection for IP traffic. The next sections provide details of the trends

across decades.

A. Machine Learning and Data-Driven Approaches. Machine learning (ML) techniques,
both supervised and unsupervised, were applied to anomaly detection. Popular methods
included:

e Clustering (e.g., K-Means, DBSCAN) for unsupervised anomaly detection.
e Classification (e.g., Decision Trees, Random Forest) for supervised anomaly detection.

e Deeplearning modelslike Autoencoders, Recurrent Neural Networks (RNN), and Long
Short-Term Memory (LSTM) networks for advanced sequence modelling.

B. Advanced Al and Deep Learning Models: Deep learning models, such as Variational
Autoencoders (VAE), Generative Adversarial Networks (GAN), and Transformer
models, brought significant improvements in anomaly detection accuracy. These
models can automatically learn complex patterns in high-dimensional network traffic

data, identifying both known and unknown anomalies. Real-time anomaly detection



using these models has become feasible with the rise of high-performance computing

and cloud-based solutions.

C. Modern Network Anomaly Detection: Today, network anomaly detection is an
essential component of network security, powered by a combination of machine
learning, deep learning, and big data analytics. It is used in various applications,
including Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (I1PS),
Network Performance Monitoring (NPM) for identifying congestion and latency issues,
Cloud and Data Centre Security for detecting malicious traffic, 10T Security for
monitoring connected devices and identifying compromised endpoints. Unlike
signature-based intrusion detection systems (IDS) that rely on known attack patterns,
anomaly detection techniques focus on identifying unknown or evolving threats —
making them especialy valuable in zero-day attack scenarios and dynamic network

environments.

1.4 Need and Significance of Network Anomaly Detection

With the exponential growth of cloud computing, 10T devices, and 5G networks, network
anomaly detection has become more critical than ever. Organizations rely on it to maintain
network security, optimize performance, and ensurereliable service delivery in anincreasingly
complex and dynamic network environment.

i. State-of-the-Art Threat Detection Beyond Security

State-sponsored attacks, zero-day exploits, and advanced persistent threats are modern-day
manifestations of cyber threats using advanced tricks to circumvent signature-based detection
systems. These attacks tend to use valid network protocols and can sustain low-profile
operations over long durations of time as they proceed with the rogue activities. Behavioural
analysis capabilities are offered by network anomaly detection, whereby suspicious patterns
are identified irrespective of the attack methodology, and can spot previously unknown threats
that traditional security measures fail to identify. The capability of the system to understand
the normal behaviour patterns of the network and raise alarms on abnormal behaviour makes
it fundamental in detecting new attack vectors and new measuresto exploit the network without

the ordinary security measures.

ii. Business Continuity and Financial Protection



The average expense of data breachesis greater than millions of dollars when you include the
remediation cost, regulatory fines, legal expenses and damage to reputation. Network anomaly
detection is atype of early warning system that allows detecting potential security incidents at
the early stages, allowing quick containment and minimizing the scope of breaches and their
costs by a significant margin. In addition to security advantages, the system eliminates the
expensive business interruptions as the system detects network performance problems,
infrastructure failures and capacity issues before negatively affecting the critical business
operations. Thisis a proactive surveillance feature that facilitates continuity in operations and
service quality, which is critical in satisfying customers and maintaining a competitive stance

in online business scenarios.
iii. Regulatory Compliance and Regulatory Legal Requirements

The modern regulatory frameworks, such as GDPR, PCI-DSS, HIPAA, and SOX, present a
robust system of network surveillance as a core functionality in the list of requirements to
comply with data protection. The organizations should prove they have regular observation of
the network operations, detection of unauthorized access, and documentation of the incident to
meet the requirements of the regulations and to avoid massive fines. Network anomaly
detection offers the technical base needed to comply with it and also yields detailed audit trails
needed by regulatory reporting. Risks of legal liability that come with poor security
surveillance have posed a huge risk since courts continue to hold organizations responsible
when security breaches that could have been averted by proper surveillance systems have been
witnessed.

iv. Resource Optimization and operational Efficiency

Surveillance of the modern enterprise networks with thousands of devices and huge volumes
of traffic is computationaly infeasible and cost-prohibitive to security experts. Network
anomaly detectors remove the need for human-operated threat identification and prioritization
software, and allow security expertsto apply expertise to investigating actual incidents and not
to investigate standard network data. The more sophisticated systems offer contextual data and
scoring of risksthat simplify theincident response procedures and decrease mean timeto threat
containment. This automation feature enables organizations to have a full security coverage at
minimal security personnel utilization, as well as to guarantee a uniform performance of

monitoring in cresting network infrastructures.



1.5 Resear ch Problem

The rapid growth of modern networks, including enterprise networks, cloud environments, loT
ecosystems, and 5G infrastructures, has significantly increased the complexity and diversity of
network traffic. As networks become more dynamic, they are increasingly exposed to a wide
range of security threats, including malware, distributed denial-of-service (DDoS) attacks, data
breaches, unauthorized access, and misconfigurations. Traditional network security measures,
such as static rule-based detection and signature-based Intrusion Detection Systems (IDS),
have proven inadequate in effectively detecting and preventing sophisticated and evolving
network anomalies. Multicast networks, which are widely used in applications such as IPTV,
video conferencing, financial data distribution, and content delivery networks, pose additional
challenges for anomaly detection due to their dynamic group membership, traffic replication,
and complex routing protocols. Detecting anomalies in multicast traffic requires specialized
methods that can account for group-based communication, membership changes, and multicast
traffic optimization. Existing network anomaly detection methods suffer from severa

Problems and Limitations, which are as follows:

> Lack of Adaptability: Traditional anomaly detection modelsrely on predefined rules or
static thresholds, making them ineffective in dynamicaly changing network

environments.

> High False Positive Rate: Static detection methods and even some machine learning
model s often generate high fal se positives due to their inability to differentiate between

normal and anomalous traffic patterns accurately.

» Inadequate Multicast Anomaly Detection: Existing solutions are primarily focused on
unicast traffic, leaving multicast traffic, which is critical for many applications, poorly
protected.

» Limited Scaability: Many Al-based anomaly detection models require significant
computational resources, making them impractical for real-time detection in high-speed
networks (e.g., 5G, 10T, cloud).

» Lack of Explainability: Advanced Al models (e.g., Deep Learning, Generative Al)
often function as "black boxes," providing accurate anomaly detection but without

explaining why an anomaly was detected, leading to trust and interpretability issues.



> Difficulty in Handling Diverse Traffic Types: Modern networks generate awide variety
of traffic types, including web traffic, video streams, VolP, multicast, 10T device
communication, and more. A single anomaly detection model may not effectively

detect anomalies across all these traffic types.

> Zero-Day Attack Detection Challenge: Many existing methods fail to detect zero-day
attacks (previously unknown threats), leaving networks vulnerable to new and evolving

attack techniques.
Key Aspects of the Research Problem are:

a. How to develop an Al-based anomaly detection framework that can accurately identify
anomalies in both unicast and multicast traffic?

b. How to ensure that the framework is scalable for high-speed networks (e.g., 5G, IoT,

cloud) without compromising detection accuracy?

c. How to leverage advanced Al techniques (Generative Al, Deep Learning) while

maintaining model explainability and trust?

d. How to minimize false positives and false negatives, ensuring that the anomaly

detection system is both accurate and reliable?

e. How to design aflexible framework that can adapt to different network environments,

including enterprise, cloud, 10T, and multicast networks?

f. How to provide actionable insights for network administrators, including root cause
analysis of detected anomalies?

This research aims to address the critical problem of accurately detecting, classifying, and
preventing network anomalies (including multicast anomalies) using advanced Artificia
Intelligence (Al) techniques. The primary problem is the lack of a unified, adaptive, scalable,
and explainable Al-based framework capable of detecting anomalies in both unicast and
multicast network traffic, ensuring network security and performance across diverse network

environments.

1.6 Purpose of Resear ch and Resear ch Questions



The long-term objective of this research is to develop a comprehensive framework and
methodology for network traffic classification, anomaly detection, intruson detection, and
prevention using advanced Artificial Intelligence (Al) techniques. Network traffic
classification, anomaly detection, and specifically multicast anomaly detection is critical for
securing modern networks, where the sheer diversity and heterogeneity of network traffic pose
significant challenges. This research aims to explore and evaluate various Al techniques,
identify their strengths and limitations, and propose an optimized framework that ensures
secure and efficient network traffic management.

Multicast networks, which are commonly used in IPTV, video conferencing, financial data
distribution, and cloud services, present unique challenges in anomaly detection due to their
dynamic membership, group-based communication, and complex traffic patterns. Thisresearch
will specifically focus on developing methods for effective multicast anomaly detection,
ensuring that multicast traffic is efficiently monitored, analyzed, and secured without affecting
performance.

Thiswork will systematically investigate the application of multiple Al technologies, including
traditional machine learning, deep learning, and Generative Al (Gen Al) methods, to determine
the most effective approach for network security. Given the evolving nature of network
environments, this research will focus on creating aflexible, scalable, and adaptive framework
that can cater to a wide range of network types, including unicast, multicast, 10T, and 5G

infrastructures.

RQL1: Is there a generic algorithm that can be used for anomaly detection across all types of
network traffic, including multicast traffic?

RQ2: Are Al-ML-based methods the most suitable for network traffic classification, multicast
anomaly detection, and intrusion prevention?

RQ3: Are Generative Al (Gen Al)-based methods superior to traditional Al agorithms for
network traffic classification, multicast anomaly detection, and anomaly detection in general?

RQ4: How do these advanced models handle complex multicast traffic patterns and dynamic
group memberships?

RQ5: Isthere scope for combining traditional algorithmswith neural network-based algorithms
and further integrating them with Generative Al to develop a robust anomaly detection
framework for unicast and multicast traffic?
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RQ6: How can the proposed multicast anomaly detection methods be effectively used to
create a superior Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) for
multicast and unicast traffic?

1.6.1 Research Objectives

0 To construct a robust, adaptive, and scalable framework for network traffic
classification, multicast anomaly detection, general anomaly detection, and

intrusion prevention.

0 To perform a comparative analysis of various Al techniques (traditional ML,
deep learning, Gen Al) for multicast and unicast anomaly detection.

0 To create an optimised hybrid model that combines the strengths of multiple Al

approaches for superior anomaly detection.

o To introduce a practical methodology for integrating the proposed framework
into real-world IDS and IPS systems, specifically addressing the unique

characteristics of multicast networks.

o Building a comprehensive framework for Multicast Anomaly detection, which

ismissing in most of the industrial and academic research.

This research aims to contribute to the field of network security and anomaly detection by
providing a practical and theoretically sound approach to securing network traffic, including
multicast, using state-of-the-art Al techniques.

1.6.2 Impact on Futuristic Resear ch and Innovation

The proposed research on network traffic classification, anomaly detection, multicast anomaly
detection, and intrusion prevention using Al-based techniques is expected to have a profound
and far-reaching impact on futuristic research and innovation in multiple domains of
networking and cybersecurity. The following are the key areas where this study will drive

innovation and inspire future research:
i. Advanced Al Modelsfor Network Security
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The study will pave the way for the development of next-generation Al models that can
efficiently detect anomaliesin complex and dynamic network environments, including

multicast networks, 5G networks, 10T ecosystems, and cloud infrastructures.

Researchers will be encouraged to explore the application of advanced Al models such as
Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), Transformers,
and Hybrid Al models for network security.

ii. Multicast Security and Performance Optimisation

By focusing on multicast anomaly detection, this research will highlight the importance of
securing multicast traffic in video streaming, IPTV, financial data distribution, and cloud
services. Future research can build on the proposed methodologies to enhance multicast

performance, minimise latency, and improve the reliability of multicast communications.
iii. Hybrid Al Models for Enhanced Anomaly Detection

The study's emphasis on combining traditional algorithms, deep learning, and Generative Al
models will inspire researchers to explore hybrid approaches for anomaly detection. This will
driveinnovation in designing modelsthat can adapt to diverse network conditions, dynamically
select the best algorithm, and achieve superior detection accuracy.

iv. Real-Time Anomaly Detection Systems

The research will contribute to the development of scalable, real-time anomaly detection
systems capable of handling high-speed networks, including 5G, 10T, and edge computing.
Researchers will be motivated to develop lightweight, optimised Al models for real-time

detection without significant computational overhead.
v. Explainable Al in Network Security

The study's focus on integrating Explainable Al (XAl) techniques will promote transparency
in anomaly detection, allowing network administrators to understand why specific anomalies
were detected. Future research may explore more sophisticated XAl techniques that provide

intuitive visual explanations for detected anomalies.

vi. Adaptive and Self-Learning Security Systems
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The research will lay the foundation for the development of adaptive Al models that
continuously learn from network traffic, automatically adjusting their detection capabilities
without manual retraining. Thiswill inspirethe creation of self-learning intrusion detection and
prevention systems that can evolve with changing network behaviours.

Vii. Secure and Privacy-Preserving Anomaly Detection

The study will encourage future research on designing anomaly detection systems that can
operate in encrypted network environments without violating user privacy. This may lead to
the development of privacy-preserving anomaly detection techniques using homomorphic

encryption, federated learning, and zero-knowledge proofs.
viii.  Optimised IDS/IPS Systems for Diverse Network Environments

The proposed framework can be directly applied to develop next-generation Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems (1PS) that support both unicast and
multicast traffic. Researchers may focus on building IDS/IPS systems that are context-aware,

protocol-independent, and capable of detecting both known and unknown threats.
iX. Enhanced Multicast Monitoring and Management Solutions

By providing methods for detecting multicast anomalies, the research will drive innovation in
multicast monitoring tools, traffic simulation platforms, and diagnostic systems. Future
solutions may focus on advanced multicast traceability, dynamic group management, and

intelligent multicast route optimization.
X. Cross-Disciplinary Research Opportunities

The study will open up cross-disciplinary research opportunities, combining Al, networking,
cybersecurity, and cloud computing. Researchers may explore the application of Al-driven
anomaly detection in networked robotics, autonomous systems, smart cities, and secure 0T

ecosystems.
xi. Policy Formulation and Standardisation

The insights gained from this research may influence the formulation of security policies,

guidelines, and standards for network anomaly detection, especially in multicast and critical

13



network environments. Standardization bodies (e.g., IEEE, IETF) may adopt the proposed

framework as a reference for secure multicast management.
xii. Real-World Adoption in Enterprise Networks

The proposed framework will have a direct impact on the design and deployment of network
security solutions in enterprise networks, including financial institutions, healthcare, cloud
service providers, and telecom operators. Organizations may |leverage the research outcomes
to enhance their network security posture, protect critical infrastructure, and ensure regulatory

compliance.

1.7 Summary

The research will drive significant advancements in network anomaly detection and security,
fostering a new generation of intelligent, adaptive, and explainable network protection
solutions. It will inspire future research on Al-driven network security, creste new
opportunities for cross-disciplinary innovation, and ensure that modern networks can be
securely managed and monitored in an increasingly complex and connected world. The scope
of this study isclearly defined to ensure afocused and practical approach to developing an Al-
based network anomaly detection and prevention framework. By identifying out-of-scope
areas, this study maintains its focus on developing a scalable, adaptive, and high-performance
anomaly detection solution for |P-based unicast and multicast networks.

1.8 Organization of Thesis
Chapter 1: Introduction

This chapter introduces the fundamental concepts of network anomaly detection, emphasising
itsimportancein securing modern network environments, including enterprise networks, cloud
infrastructures, 10T ecosystems, and 5G networks. The introduction further explains the
challenges associated with detecting anomaliesin diverse network environments, including the
complexity of multicast traffic, the need for rea-time detection, and the difficulty of
identifying zero-day attacks. It also defines the scope of the research, which focuses on
developing an Al-driven framework capable of accurately detecting anomaliesin both unicast

and multicast traffic.

Chapter 2: Literature Review
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This chapter reviews existing literature on network anomaly detection, covering
traditional methods like threshold-based and rul e-based approaches, which are limited by static
configurations and high false positive rates. It explores the evolution of machine learning
techniques, including supervised methods (Decision Trees, SVM) and unsupervised methods
(K-Means, Isolation Forest), as well as deep learning models (Autoencoders, RNN, LSTM,

Transformer) that excel in detecting complex patterns in network traffic.
Chapter 3: Research M ethodology

This chapter outlines the research methodology used to develop an Al-based
framework for network traffic classification, anomaly detection, multicast anomaly detection,
and intrusion prevention. It begins with data collection, including real-world and synthetic
network datasets, followed by data preprocessing to enhance model accuracy. Various Al
techniques, including traditional Machine Learning (ML), Deep Learning, and Generative Al
(Gen Al), are explored, with a focus on model selection, training, and evauation. Feature
engineering techniques are applied to extract relevant network features, including specialized
features for multicast traffic. Models are trained using a train-test split, and their performance
is evaluated using standard metrics such as accuracy, precision, recall, F1-score, and AUC-

ROC.

Chapter 4: Analysis

In this chapter, a thorough analysis of the various datasets is conducted which are
utilized in this Research , aiming to uncover inherent patterns, statistical properties, and
behavioural trends that are critical to the design and evaluation of anomaly detection models.
Thisincludes an exploratory examination of network traffic attributes such as packet size, flow
duration, byte count, and protocol usage across datasets like CICIDS2017, KDD Cup 1999,

multicast flow data, and high-dimensional application-level chunks.

Chapter 5: Results and Discussion
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Thischapter presentsthe results of the Al-based network anomaly detection framework
developed in this study, focusing on its performance in detecting anomalies across both unicast
and multicast traffic. Theresults are presented through detailed performance metrics, including
accuracy, precision, recall, F1-score, and Area Under the Curve (AUC-ROC) for each model
evaluated. Traditional machine learning models (Decision Trees, Isolation Forest, Random
Forest, SVM), deep learning models (Autoencoders, LSTM, Transformer), and advanced
Generative Al models (GAN, VAE) are compared, highlighting their strengths and

weaknesses.
Chapter 6: Conclusion and Recommendations

This chapter concludes the study, summarising the key findings and contributions of
the research. The study successfully developed a comprehensive Al-based framework for
network anomaly detection, capable of detecting anomaliesin both unicast and multicast traffic
using a combination of machine learning, deep learning, and Generative Al techniques. The
hybrid model demonstrated superior performance, achieving high detection accuracy, low
false positive rates, and effective multicast anomaly detection. Explainable Al (XAl)
techniques enhanced model transparency, providing clear insights into anomaly detection
decisions. The study addresses existing research gaps by providing a scalable, adaptive, and
explainable solution suitable for diverse network environments, including enterprise, cloud,

loT, and 5G networks.
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2. CHAPTERII:
LITERATURE REVIEW

2.1 Introduction

Computer Networking has come along way in the last few decades. Networks have
grown, the types of traffic and volume have expanded and managing them has become a
nightmare. The sheer variety and complexity of Network Traffic make it extremely interesting
aswell asachallenging vertical to manage. Securing anetwork isone of the major challenges
for the network operator. ldentification of Traffic in the Network or Network Traffic
Classification is the first step in designing a robust, scalable and scalable network. The need
for analytics in IP networking(Bachechi et al., 2022) Starting from the early days of networks
and anomaly detection and prediction are of great importance in building a solid and robust
network. More recent work in these areas has been done by (Klarak et al., 2024). The study
presents a method for detecting and classifying defects using a combination of autoencoders
and clustering techniques. 10T network anomaly detection is surveyed in (Hussain Kalwar &
Bhatti, n.d.) This explores the application of deep learning modelsfor classifying loT network
traffic. It reviews various architectures, including CNNs and RNNSs, for their ability to capture

and classify traffic patterns.

Network traffic classification and network anomaly detection are one of the topics
where Artificial Intelligence (Al) based methods have become more popular over the years.
One of the early works donein IP traffic classification was by (Zander et al., 2005a). The work
looked at Unsupervised learning methods to classify traffic based on the Applications that are
generating it. A general survey of encrypted traffic classification using deep learning methods
(Wang et a., 2019b) is done, where the classification is done for intrusion detection and
prevention and its application in the larger area of enterprise security. Similar work for
encrypted traffic classification was done by (Cao et al., 2014a) . As artificial intelligence has
gained more prevaencein thelast decade, the magjority of work in Network Anomaly detection
has happened in this using Al only. As Al and ML world moves from Statistical to Deep
Learning to Generative Al, the network traffic classification also follows the same path. The

evaluation of statistical and deep learning methods for anomaly detection (Elmrabit et al.,
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2020) has been done. The paper looked at the state-of-the-art ML agorithms and analysed
their ability to detect anomalous behaviours in networking, using popular datasets. The
Random Forest (RF) method demonstrated the highest performance by beating al other
algorithms. This was consi stent across all datasets evauated.
(Ahmed et d., n.d.-a) looked at different approaches using Machine Learning for Network
Anomaly detection. One-Class Neighbour Machine (OCNM) estimates minimum volume sets
to detect anomalies. It uses sparsity measures (e.g., k-th nearest neighbour distance) to identify
points in the minimum volume set. It also looks at Kernel-based Online Anomaly Detection
(KOAD). Both OCNM and KOAD algorithms effectively detected anomalies in sequences of
images from the cameranetwork. The paper (Landauer et al., 2023) analyzesthe use of various
neural network-based techniques in faster anomaly detection of log data, confirming the
superiority of these methods over traditional machine learning in handling unstable data

formats and detecting unexpected log events.

Network Anomaly detection for IOT devicesis a pretty important topic (Hwang et al.,
2020) proposed a model named D-PACK. This model is designed to detect malicious traffic
in networks, particularly in the context of 10T traffic, where countless devices are constantly
communicating with each other. D-PACK anayses CNN for profiling network traffic patterns.
It aso incorporates an unsupervised deep learning model known as an Autoencoder. CNN
helps to identify the characteristics of the traffic. The Autoencoder then filters out any
abnormal traffic effectively. The experimental results demonstrate that D-PACK is highly
effective at detecting malicious network traffic. It achieves an accuracy rate close to 100%.
Additionally, it maintains an exceptionally low false-positive rate of just 0.83%. (Eskandari et
al., 2020a) proposes an anomaly-based intrusion detection system designed for 10T edge
devices. It can be deployed on cost-effective 10T gateways, leveraging edge computing to
detect cyber threats close to the data sources. It utilizes machine learning to model the normal
behaviour of incoming traffic and detect deviationsindicative of cyber threats. (Golomb et al.,
2018b) proposes a non-Al-based method that uses blockchain for network anomaly detection.
They proposed a lightweight, scalable framework for network anomaly detection. It utilizes

blockchain technology for distributed and collaborative anomaly detection, ensuring a trusted
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and secure model. (Ullah & Mahmoud, 2021a) Again proposes a model that uses CNN for
anomaly detection in 10T networks. The model is validated through various datasets and
showed high accuracy in every parameter in which models are evaluated (recall, F1 score,
precision, etc). The proposed model includes 1D, 2D, and 3D CNNs for anomaly detection.
The suggested CNN model achieves better results than conventional machine learning
approaches, surpassing them in accuracy and various performance metrics. (Nguyen et al.,
2018) proposes a smart and controlled self-learning network anomaly detection system for
different types of 0T traffic. It proposesamodel called DIOT, which is an autonomous, self-
learning distributed system that uses device-type-specific communication profilesfor anomaly

detection, leveraging federated learning for aggregating behaviour profiles efficiently.

(Vaswani et a., 2017) Changed the overall Gen Al landscape with the introduction
of the Transformer Architecture. It utilizes self-attention mechanisms to draw globa
dependencies between input and output, allowing for parallelization and improved efficiency.
Transformer Architecture led to the growth of GenAl, and every domain started using it in
some form or another. Network anomaly detection using generative Al(Gen Al) has aso
gained alot of attention in the last few years. A few of the Gen Al works, including those that

use transformers, are analyzed.

Intrusion detection using a transformer-based model was evaluated in (Nguyen et al.,
2023) for in-vehicle Intrusion Detection. The transformer-based attention network provides a
robust solution for in-vehicle intrusion detection, which overcomes the shortcomings of the
existing methods, thereby enhancing the detection of various cyberattacks on the CAN bus.
The application of transfer learning further improves the model's adaptability and performance
across different datasets. The model uses transfer learning to improve its performance on
anomaly detection. (Shinetal., 2023) presentsaunigque framework for detecting and isolating
various anomalies that are present in time series data using a Transformer-based Generative
Adversarial Network (GAN) named AnoFormer. Further interesting work has been done by
(Shao et a., 2025a) which leverages the unique properties of the transformer, which isthe self-
attention mechanism. It uses Tab Transformer to capture intricate patterns as well as
dependencies within tabular data, making it well-suited for network intrusion detection. (Liu
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et al. 2023) also proposes atransformer-based intrusion detection system. It introduces anovel
under-sampling method which uses KNN over-sampling using the SMOTE method to balance
the complete dataset and improve detection accuracy for overlapping classes. This model
works on the NSL-KDD dataset to perform binary classification and achieved 88.7% accuracy
and an F1-score of 88.2%. It aso uses multi-class classification and achieved 84.1% accuracy
and an F1-score of 83.8%. (Kim & Pak, 2023). It isan academic paper that presents a unique
and non-obvious method for detecting network and traffic intrusion. The authors propose a
techniquethat transforms Network Intrusion Detection System (NIDS) datasetsinto 2D images
using various image transformers, which can then be processed by various neural network-
based models. The work aims to enhance the performance of existing neura network-based

network intrusion detection systems.

The general trend of network anomaly detection-based studies is about clustering IP
Flows and then detecting anomalies. Major studies on this have been done using deep learning
techniques. (Fotiadou et al., 2021) uses pfSense software to monitor network traffic logs
through different applications, like network application services. Deep Learning model like
LSTM isused to identify anomaly detection offline. The analysisis more on network logs and
not the actual traffic flows. (Nassif et al., 2021) provides a survey paper on various network
anomaly works. It actually has analysed two hundred and ninety papers with twenty-nine
different models. Unsupervised Models for 10T traffic classification are done by (Eskandari
et a., 2020b) in their work for unlabeled traffic. The maority of the analysis is done on
unlabeled traffic. A common gap in past studiesisthe combination of traditional deep learning
methods along with generative Al-based techniquesto identify network anomalies. The power
of generative Al techniques can be used to generate synthetic data as well as to do proper IP
flow classification. Generative Al and transformer-based architecture are comparatively new,

and their application for IP Flow Anomaly is not well researched.
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2.2 Literature Review Theories

Therole of Al in networking has always been prominent, as it was studied by (Jaber,
2022). The study details the use of Al to enhance network performance, improve operational
efficiency, aswell as optimise network management. Al technigues such as genetic algorithms,
neural networks, and decision-making processes like Markov Decision Processes (MDP) are
explored. The work specifically emphasises deep learning’s role in processing sequential data
using recurrent neura networks (RNNs) and analysing image data through convolutional
neural networks (CNNSs). Finally, Deep reinforcement learning (DRL) is observed as an
important and useful tool for network automation and bandwidth optimisation. Similar
comparison work, but itsimpact on security is done by(Thesis et al., 2022) In their work. The
work concludes that Al-based technologies play a very significant role in modern network
security by automating user processes, detecting threats early in the cycle, aswell asimproving
overal network efficiency. There are ethical implications and potential biases in Al systems
that must be carefully managed. Lastly (Wu et a., n.d.)Proposes the integration of computer
networks with neural networks to create an intelligent system capable of autonomously
managing and optimising network operations. This modern and unique Al-based approach
improves network performance, network security, and operational efficiency, thereby
providing a robust solution for modern enterprise networks which are undergoing digital

transformation.

In this context of, the work and the impact of Al and ML technologies on network
anomaly detection and prediction are analysed right from early statistical machine learning to
deep learning to generative Al isinvestigated. The analysiswill help usin shaping the scope

and direction of this research.

2.1.1. Statistical Al methodsfor Network Anomaly Detection

Research work on network anomaly detection and classification started with non-ML
techniques to start with. They were mostly based on Port (indicating the A pplication/Protocol

type) classification. (Dainotti et al., 2012) In their very early study looked at various
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algorithms for anomaly detection, starting from early port and the payload-based approaches

to the new era of machine learning. Network traffic anomaly detection through cascading

K-Means clustering and C4.5-based decision trees (Muniyandi et a., 2012). The K-
Means + C4.5 combination showed much higher detection accuracy and a substantially lower
false positive rate compared to individual algorithms like SVM, Naive Bayes, and K-NN. The
cascading method significantly improves anomaly detection by leveraging the strengths of
both algorithms. Combining multiple algorithms for creating a framework was proposed by
(Shon et a., 2005a) that proposes the use of Genetic Algorithm (GA) for feature selection, and
on top of that use of an Unsupervised method like Support Vector Machine (SVM) for further
packet categorization and classification. The idea is to optimize the feature selection process
using GA and then apply SVM for detecting anomalies in network traffic. A similar hybrid
architecture was proposed by (Shon & Moon, 2007a) which combines supervised and
unsupervised learning. This model provides the detection capabilities of a supervised model
while handling novel attacks like an unsupervised model. The paper highlightsthe importance
of ahybrid model, which is followed by many researchers. Another successful application of
SVM for traffic classification and anomaly detection was done (Yuan et a., 2010a) which
showed promising results with internet data. More recent work has been done by (Schummer
et a., 2024) The paper explores the development and evaluation of a machine learning-based
system for detecting network anomalies, specifically focusing on point anomalies within
network traffic. Anomaly detection is critical for maintaining network integrity, detecting
unauthorised access, network crashes, and unusua traffic patterns. The study aimsto create a
robust anomaly detection system using machine learning, capable of identifying and

classifying network anomalies accurately.

2.1.2. Deep Learning and Network Anomaly Detection

Asneura networks started to gain prominence (Bouzida& Cuppens, n.d.) did theearly
investigation comparison between decision trees and neural networks for detecting network

intrusions, with afocus on anomaly detection. The results show that neural networks excel at
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generaization, and decision trees are more effective for detecting both known and new attack
types. CNN-based analysis (Kwon et a., n.d.) was used for anomaly detection using popular
datasets NSL-KDD, Kyoto Honeypot, and MAWILab. CNN models show competitive
detection accuracy, but performance may vary based on the dataset and further optimizations.
Similar studies using Recurrent Neural Networks (RNN) are done in (Radford et al., 2018),
which proposes the use of Long-Short Term Memory (LSTM) for detecting and isolating
network anomalies. The conclusion was that the LSTM-based anomaly detection model
demonstrated the ability to detect previously unseen attack patterns. Another combination
techniques are evaluated in (Aneetha, 2012), where the paper proposes a hybrid approach that
combines standard k-means clustering with a method called Self-Organizing Map (SOM) for
network anomaly detection. Thework showsthat combining the neural network and clustering
approach improves anomaly detection accuracy, especially for detecting DDoS attacks.
(Pradhan et al., 2012) proposes fully Connected Neural Networks (FCN) along with generative
Al-based models like Variational Autoencoder (VAE), along with Sequence-to-Sequence
models combined with LSTM (Seg2Seg-LSTM) to detect anomalies in network flows.
Slowly, from deep learning models, the investigation moved to generative Al-based models,

which are investigated in the next section.

2.1.3. Generative Al and network anomaly detection

Generative Al techniques are different from the traditional discriminative Al
techniques asthey are primarily used for data generation, data classification, with their efficacy
much better than traditional models. (Vaswani et a., 2017) . Their revolutionary Transformer
model indicated that self-attention mechanisms can replace traditiona deep learning
algorithms like recurrent neura networks and convolutional layers in sequence transduction
tasks, thereby offering improved paralelisation and unmatched performance. Anomaly
detection using Transformer architecture (Manocchio et al., 2024) has been used to compare
the performance of lightweight transformer-based models with much larger and complex

architectures like GPT and BERT for Intrusion Detection, terming them as NIDS (Network
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Intrusion Detection System). The general observation has been that while the large models
could achieve a similar level of performance as the shallower models, the large size and
comparatively much lower overal throughput make them less optimal for most NIDS tasks.
Network anomaly using SDN (Software Defined Networking) controller (Ezeh & de Oliveira,
2023) discusses the application of GAN-based ensemble methods for anomaly detection that
happens in amodern network of today, which is managed by a software-based controller, also
called Software-Defined Networking (SDN) environment. The authors propose a unique
controller-based framework that incorporates several components across the detection chain.
The authors also compare their GAN ensemble approach with other one-class anomaly-
detection agorithms. The authors conclude that GAN-based algorithms show sufficient
promisein detecting network anomalies on different kinds of traffic in anetwork. Thisis done
after training a very robust and large traffic dataset that forms the discriminator network. This
is used to identify and detect network events and separate them from anomal ous and unusual
network events. They also suggest that future work should focus on creating more robust
datasets that include more attack classes and testing aframework based on multiple controllers.
Time Series-based anomaly detection (Shin et al., 2023) was proposed using a GAN-based
network which internally also uses Transformer architecture. This internally uses a masking
method which is two-step. This is a very powerful tool for time series anomaly detection. It
outperforms traditional methods and other deep learning models, providing a robust solution
for various applications. GAN-based imbalanced malicious (Cao et al., 2022)algorithm works
by dividing the original sampled session traffic. Thiswill look into the traffic and break it into
three parts. Once it divides into three parts, it extracts the Markov matrix from them. Thisis
used to form an image, which is a three-channel one and has its own characteristics. This
conversion reshapes the initial session data structure into a standardized-length matrix,
offering an extensive depiction of network behaviour. It ensures consistent representation
across al traffic flows. This uniformity enhances the analysis and understanding of traffic
characteristics. (Tang et a., 2022) The proposed Markov-GAN method effectively balances
and enhances datasets, improving the generalization and classification performance of models

for malicious encrypted traffic. |OT traffic-based classificationisdonein (Shahid et al., 2020),
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which discusses the application of Generative Deep Learning in the context of Internet of
Things (IoT) Network Traffic Generation. The researchers introduce an innovative approach
for creating a series of packet sizes that replicate actual 10T device patterns. Their technique
effectively models the traffic characteristics of rea-world 10T systems. This method aims to
closely simulate the authentic behaviours observed in 10T communication. Thisis achieved by
integrating an autoencoder with a Generative Adversarial Network (GAN). Autoencoder-
based methods for network traffic anomaly detection and prevention are proposed in (Torabi
et al., 2023). The paper introduces an innovative strategy for detecting anomalies within cloud
computing networks by utilizing autoencoders. Instead of conventional approaches that
summarize reconstruction errors into a single metric, this model evauates the error as a
multidimensional vector. Each component of the vector representsthe error for aspecific input
feature, which serves as an indicator for anomaly identification or categorization. This
approach is designed to enhance the accuracy and effectiveness of detecting and classifying
anomalies. Other important work in this areais done by (Klarak et al., 2024), which presents
a method for detecting and classifying defects using a combination of autoencoders and
clustering techniques. The research work on network anomaly detection clearly shows a
pattern of how it evolved across years. (Rao et a., 2024) proposes a novel approach for
network anomaly detection using a Hybrid Convolutional Neural Network (CNN) and
Generative Adversarial Network (GAN) model. This hybrid architecture combines the feature
extraction capabilities of CNN with the generative and discriminative capabilities of GAN,
making it highly effective in detecting complex network anomalies. The study addresses the
limitations of traditional anomaly detection methods, which struggle with detecting
sophisticated and evolving cyber threats. Figure 4 shows how Al evolved, and network
anomaly detection also moved with it. In our approach, we will try and combine al the

approaches and build the base network anomaly detection methodol ogies.
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Figure 4: Evolution of Network Anomaly Detection over the Y ears

2.1.4. Combining different methods

There has been some work that has combined different methods to combine neural
networks with Gen Al techniques (Rao et al., 2024) introduces a hybrid framework that
integrates Convolutional Neura Networks (CNN) with Generative Adversarial Networks
(GAN) to detect anomalies in network traffic. The CNN component is used for high-level
feature extraction, while the GAN generates synthetic normal traffic to train the model and
distinguish anomalies. The approach demonstrates superior performance in detecting
anomalies with high detection rates and low false positives compared to traditional methods.
Similarly, (lliyasu & Deng, 2022) proposed novel GAN-based which they call NGAN for
intrusion detection in networks. The proposed approach includes a small number of malicious
samples during the training phase. This technique aims to enhance detection accuracy and
minimise the rate of false darms. The proposed approach is to create a weakly supervised

model, which helpsin modelling both benign and malicious behaviour, improving robustness
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against evolving cyber threats. The experimental results show that N-GAN outperforms
traditional reconstruction-based anomaly detection methods. Other work like (Tang et al.,
2020) in which the authors introduce a neura network for anomaly detection, employing a
dua auto-encoder GAN (DAGAN) architecture tailored for industrial uses like automated
optical inspection (AOI). This DAGAN model tackles the problem of imbalanced samples by
incorporating a dual auto-encoder with skip-connections, enhancing both reconstruction
capabilities and training stability. The proposed approach is evaluated across various datasets.
It shows superior performance compared to other GAN-based models for anomaly detection,
particularly when working with limited training data. The model undergoes evaluation using
several datasets. It consistently outperforms other GAN-based models designed for anomaly
detection in the majority of categories. Its advantage becomes even more pronounced when
thereisascarcity of training data. The results indicate the model's effectiveness in challenging
scenarios with limited data availability. The proposed (Fu et a., 2022) GANAD method
addresses the limitations of existing GAN-based anomaly detection approaches, which were
designed primarily for data synthesis rather than detection. GANAD uses a WGAN-based
architecture with gradient penalty and spectral normalization to stabilize training and enhance
performance. This method emphasizes effectively capturing the distribution of minority
abnormal data. It achieves higher detection accuracy compared to other advanced techniques
while also lowering computational requirements. LSTM based analysisisdonein (Niu et a.,
2020) presents a VAE-GAN model based on LSTMs for detecting anomalies in time-series
data. The model trains an encoder, generator, and discriminator simultaneously to leverage
both reconstruction error and discrimination ability. By efficiently mapping real-time data to
latent spaces, the approach enhances both detection speed and accuracy. The results show that
it outperforms traditional methods in identifying anomalies within industrial time-series
datasets. Lastly, (Li et a., 2019) introduce MAD-GAN, an unsupervised method aimed at
identifying anomaliesin multivariate time-series data. It employs LSTM architecturesin both
the generator and discriminator to effectively capture time-related patterns within the dataset.
The innovative aspect of this model is the combination of reconstruction and discrimination

losses to identify unusual behaviour. Evaluation on real-world datasets, such as SWaT and
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WADI, demonstrates its superior performance in detecting anomalies in cyber-physical

environments compared to conventional and other GAN-based techniques.

In the next section, al of the major work in Network Anomaly detection in last few

years using Al-ML methods has been summarized in atable.

2.2.Previouswork details

A summary of all the previous work, along with their key areas and Research Gaps, is

highlighted in Table 1

Table 1: Related Research Comparison

Y ear

Paper

Comments

2025

(Ghgari e 4.,
2025)

Key Aspects. The paper introduces an HDC-
based method for loT anomaly detection,
encoding traffic features into hyper vectors for
efficient classification. On the NSL-KDD
dataset, it outperforms traditional ML models
with up to 86.21% accuracy, showing
scalability, resilience, and suitability for loT
devices.

Missing Information: The study is limited to
NSL-KDD, without tests on real-world or high-
throughput 10T traffic. It omits protocol -specific
analysis and comparisons with deep learning or
hybrid methods, reducing its generalizability.

2025

(Edozie et al., 2025)

Key Aspectss. The paper provides a
comprehensive review of Al-based anomaly
detection in telecom networks, covering deep
learning and hybrid models (CNNs, RNNS,
LSTMs, Autoencoders, GANs, GNNs,
Federated Learning, RL). It discusses telecom-
specific challenges such as rea-time high-
volume traffic, distributed architectures, and
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data privacy, while comparing supervised,
unsupervised, and semi-supervised approaches,
datasets, case studies, and performance metrics.

Missing Information: Despite its breadth, the
review is literature-focused with  no
experimental validation or benchmarking on
standardized datasets. It lacks a unified
performance framework, practical deployment
architectures, and deeper treatment of feature
engineering, protocol-level traffic
categorization, and cross-domain transfer
learning—Ilimiting its guidance for real-world

implementation.

2025

(Yang et d., 2025)

Key Aspects. The paper proposes an LLM-
based anomaly detection system for cloud
traffic, combining Transformer self-attention
with an anomaly detection layer and transfer
learning for adaptability. Tested on CICIDS
2017, it achieves higher accuracy, fewer false
positives, and faster inference than severa
baseline models.

Missing Information: The study is limited to
one dataset, without testing in rea-time, large-
scale, or encrypted/multicast cloud
environments. It lacks detalled feature
engineering, comparisons with advanced hybrid
models, and analysis of deployment scalability
in data centers.

2025

(Nesset al., 2025)

Key Aspects of the Study: This paper proposes
a GAN-based semi-supervised anomaly
detection method for software-defined networks
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(SDNs). The GAN generates synthetic normal
traffic to train a discriminator that can detect
deviations as anomalies. Tested on the NSL-
KDD dataset, the method achieves higher
detection rates and lower false positives
compared to Random Forest, SVM, and KNN,
while requiring fewer |abelled samples.

Missing Information: The approach is
evaluated on asingle dataset and lackstesting on
modern, high-speed, or encrypted SDN traffic. It
does not explore feature extraction, protocol-
level behavior, or deployment performance in
real-time SDN controllers. Comparisons with
recent deep hybrid or attention-based modelsare
absent.

2025

(Liu et a., 2025)

Key Aspects of the Study: This paper
introduces a privacy-preserving  hybrid
ensemble model for network anomaly detection,
combining KNN, SVM, XGBoost, and ANN.
Advanced preprocessing techniques address
imbalanced and small datasets, while privacy is
ensured through federated learning, SMPC, and
differential privacy. The ensemble achieves
94.3% accuracy, outperforming individual
models on both binary and multi-class
classification tasks.

Missing Information: The evaluationislimited
to a single dataset and does not assess
performance on rea-time, high-speed, or
encrypted network traffic. The study omits
detailed protocol-specific behavior analysis and
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does not compare against recent deep hybrid or
attention-based methods.  Scalability and
deployment considerations in  production

network environments are not explored.

2025

(Gombao, 2025)

Key Aspects. The paper proposes an intrusion
detection system (IDS) tailored for multicast
traffic, combining flow-based anaysis with a
lightweight edge-friendly classifier. Tested on
simulated datasets, it detects multicast-specific
attacks faster and with lower resource use than

general-purpose IDS tools.

Missing Information: The study is limited to
synthetic multicast traffic, leaving performance
in real-world large-scale networks uncertain. It
does not address encrypted multicast,
integration with 1Psec, comparisons with deep
learning IDS, or scalability to high-throughput

environments.

2025

(Prasad et al., 2025)

Key Aspects. The paper presents a threat
detection framework for SDN-based multicast
systems, combining a hybrid CNN-LSTM
model with explainable Al. CNNs extract spatial
features, LSTMs capture temporal patterns, and
LIME/SHAP provide transparency. Embedding
the IDS in the SDN controller enables low-
latency responses, making it suitable for real-

time applications like live video streaming.

Missing I nformation: The evaluationislimited

to controlled multicast traffic, leaving real-
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world scalability, encrypted environments, and
large-scale deployments untested. SHAP and
LIME introduce overhead, raising concerns for
high-volume use. The study aso omits
comparisons with newer transformer-based
methods and does not address integration
challengesin production-grade SDN controllers.

2025

(JLiu et al., 2025)

Key Aspects. The paper introduces a graph-
based anomaly detection method for IloT
networks, representing devices and their traffic
as graphs. Using a GCN, it detects subtle
structural  deviations and leverages sparse
labeling to adapt to environments with limited
attack data. Tests on public 10T datasets show
improved detection, particularly for unseen

attack types, compared to baseline ML models.

Missing Information: The study is limited to
one dataset and does not evaluate performance
in real-time or high-speed 10T settings. It lacks
discussion on encrypted traffic, comparisons
with newer attention-based graph models, and
scalability to large heterogeneous networks.
Integration with real-world monitoring systems
is also unexplored.

2025

(Shao et al., 2025)

Key Aspects: The paper proposes a federated
learning framework for anomaly detection,
where local models share parameters instead of
raw traffic data. This preserves privacy, reduces
bandwidth, and achieves accuracy close to
centralized training while handling data
heterogeneity.
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Missing Information: The study is limited in
scale, with few nodes tested and no validation in
high-speed or encrypted traffic scenarios. It aso
overlooks risks like model poisoning,
comparisons with advanced privacy-preserving

methods, and real-world deployment challenges.

2025

(Jineta., 2025)

Key Aspects: The paper proposes a CNN-
LSTM model for protocol classification, where
CNNs capture spatial patterns and LSTMs
handle tempora dependencies. Tested on
Universidad Del Cauca’s network data, it
achieves up to 98.1% accuracy, outperforming
standalone CNNs and LSTMs.

Missing Information: The study islimited to a
single dataset and does not explore diverse,
encrypted, or high-speed traffic scenarios. It also
lacks anaysis of real-time deployment,
scalability, and comparisons with newer
attention-based or transformer models.

2025

(Park et al., 2025)

Key Aspects: The paper proposes a CNN-
BiLSTM model for raw packet sequence
classification, where CNNs extract loca
features and BiLSTMs capture bidirectional
dependencies. On the ISCX VPN-nonVPN
dataset, it achieves over 97% accuracy,
outperforming traditional ML and prior deep
learning approaches, without manual feature

engineering.

Missing Information: The study islimited to a
single dataset and does not evaluate adaptability
to broader encrypted traffic or diverse
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environments. It aso omits rea-time
performance tests, deployment considerations
like latency and resource usage, and
comparisons with newer transformer-based

models.

2025

(Abbasi et d., 2025)

Key Aspects: The paper presents a Tansformer-
based model for network traffic classification,
using self-attention to capture long-range
dependencies in packet sequences. On the ISCX
VPN-nonVPN dataset, it achieves 98.7%
accuracy, shows robustness to class imbalance,
and reduces preprocessing by operating directly
on packet-level data.

Missing Information: The study islimited to a
single dataset and does not evauate
generalization to other protocols, encrypted
traffic, or high-speed environments. It also lacks
analysis of inference latency, memory use,
deployment feasibility, and comparisons with
hybrid Transformer—CNN/LSTM models.

2025

(Antari et a., n.d))

Key Aspects: The study benchmarks ML, deep
learning, Transformer, and LLM models for
network traffic classification across Web,
Browsing, IPSec, Backup, and Emaill using
30,959 flows from Arbor Edge Defender
devices. Transformers achieved the best
accuracy (98.95%), with XGBoost close behind,
while LLMs like GPT-40 and Gemini showed
strong few-shot improvements over zero-shot,

especially for smpler categories.




Missing Information: The evaluationislimited
to one enterprise dataset and does not test
diverse, encrypted, or high-speed traffic. It also
omits rea-time scalability, hybrid model
comparisons, adaptive retraining, and solutions
for persistent misclassifications in complex
classes like IPSec and Backup.

2025

(Luetal., 2025)

Key Aspects. The paper evauates LSTM,
BiLSTM, and GRU models for encrypted traffic
classification on the ISCX VPN-nonVPN
dataset, using flow-based statistical features.
BiLSTM achieved the best accuracy (94.12%),
showing the advantage of bidirectiona temporal
modeling for VPN and non-VPN application
identification.

Missing Information: The study isrestricted to
asingle dataset and does not test adaptability to
other encryption types or varied network
conditions. It also lacks evaluation of real-time
scalability, computational overhead, and
comparisons with newer transformer-based or

attention-enhanced recurrent models.

2023

(Lypaet al., 2023)

Key Aspects. The paper reviews feature
extraction tools for Al-based IDS, comparing
packet-, flow-, and application-level approaches
such as CICFlowMeter, Wireshark, Argus,
Snort, and Zeek. Results show Argus and Zeek
as more effective, with Zeek dightly
outperforming CICFlowMeter on CIC-IDS2017
binary classification tasks.
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Missing Information: The study focuses only
on feature extraction and does not assess full
IDS performance across diverse environments.
It omits evaluationsin high-speed, encrypted, or
multicast settings, as well as integration with
deep learning, streaming analytics, and real-
world deployment challenges.

2025

(Serag et al., 2025)

Key Aspects. The paper proposes ML models
for QoS classification in IP networks using flow-
level features, with Gradient Boosting achieving
the best accuracy. The godl is to automate QoS
assignment to enhance resource alocation and

traffic engineering.

Missing Information: The study is limited to
one dataset and does not test in dynamic, high-
speed, or encrypted environments. It also omits
comparisons with deep learning models and
lacks discussion of real-time deployment or
SDN integration.

2022

(Shahreki et al.,
2022)

Key Aspects. The paper applies active learning
for anomaly detection, selectively labeling the
most informative network traffic data to reduce
labeling effort while maintaining accuracy.
Strategies like uncertainty sampling and query-
by-committee  allow  continuous  model

improvement in dynamic environments.

Missing Information: The study focuses
narrowly on labeling and does not cover broader
traffic classification, feature extraction, or

protocol-level anaysis. It aso ignores
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challenges with encrypted or multicast traffic
and real-time, high-speed deployments.

2022

(Li eta., 2022)

Key Aspects: The study introducesan SSL/TLS
traffic classification method that uses entropy
and randomness features from ciphertext
packets to distinguish encryption protocols. This
lightweight  approach  enables  protocol
identification without decryption, offering

efficiency for encrypted traffic analysis.

Missing Information: The method does not
employ standard ML techniques and ignores key
traffic features like flow metrics, timing, and
volume. These omissions limit its ability to
detect anomalies or classify complex encrypted
traffic in high-speed networks.

2021

(Aouedi et al., n.d.)

Key Aspectss The study uses K-means
clustering to group network traffic and
Recursive Feature Elimination (RFE) to select
key features for anomaly detection. Anomalies
are identified as deviations within clusters,
providing a scalable method for dynamic

networks.

Missing I nformation: Thework islimitedto K-
means and RFE, without exploring other
unsupervised methods like DBSCAN, Isolation
Forest, or Autoencoders. This narrow scope
reduces its generaizability and overlooks

potentially more effective approaches.

2021

(Sarhan et dl., 2021)

Key Aspects. The paper introduces a dataset
built from Cisco NetFlow records for ML -based
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intrusion detection, focusing on flow-level
features and including attack types like DD0oS
and probing. It ams to connect raw telemetry
with ML workflows by offering data tailored for

supervised classification.

Missing Information: The dataset is tied to
Cisco NetFlow, limiting generaization to other
telemetry formats, and lacks diversity such as
encrypted or multicast traffic. It also does not
address class imbalance, data augmentation, or
benchmarking against standard public datasets.

2021

(Aouedi etal., 2021)

Key Aspects: The study examines the effect of
unlabeled data on ML model performance in
network traffic classification, benchmarking
supervised and semi-supervised strategies. It
highlights how labeled data availability
influences classification outcomes compared to

existing approaches.

Missing Information: The work is restricted to
a narrow classification scenario, limiting
generalizability. It does not address anomaly
detection, diverse traffic or attack types, or
extensions to unsupervised and rea-time

contexts.

2021

(Manjunath et dl.,
2021)

Key Aspects. The paper proposes converting
loT network traffic into video streams and
analyzing them with a time-distributed CNN-
LSTM model. This cross-domain method

bridges multimedia processing and network
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security, improving intrusion detection accuracy

inloT environments.

Missing Information: The study is limited to
loT traffic and does not test broader applicability
to enterprise or general networks. Data-to-video
transformation adds computational complexity,
and the lack of benchmarking on standard
datasets reduces comparability with mainstream
IDS methods.

2021

(Ahmed et al. 2021,
2021)

Key Aspects: The study classifies 53 popular
online applications using KNN, Random Forest,
and ANN, focusing on application-layer traffic.
ANN achieved the highest accuracy, showing
the strength of deep learning for traffic
classification.

Missing Information: The work is limited to
supervised methods and does not explore hybrid
or unsupervised approaches. It also lacks diverse
feature sets, scalability testing, and real-time

deployment analysis for practical use.

2021

(Afuwape et 4.,
2021)

Key Aspects: The paper compares multiple ML
algorithms for classifying VPN and non-VPN
traffic, including Decision Trees, Random
Forests, and ensemble methods. Gradient
Boosting performed best in certain categories,
highlighting the effectiveness of supervised
techniques for encrypted and non-encrypted
traffic.

Missing Information: The study is limited to

supervised methods and does not explore
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unsupervised or semi-supervised approaches for
evolving traffic. It also overlooks the impact of
labeling quality and detailed feature
interactions, which are critical for robust

encrypted traffic analysis.

2021

(Arfeen et al., 2021)

Key Aspectss The paper compares three
ensemble learning algorithms for encrypted
traffic classification, addressing challenges
without payload visibility. XGBoost achieved
the highest accuracy, showing the strength of
ensemble models for structured encrypted
network data.

Missing Information: The study is limited to
ensemble methods and does not consider hybrid
or alternative models. It also omits real-time
performance evauation, broader feature
diversity, and feature importance analysis for

deeper insights.

2020

(Aceto et al., 2020)

What it isabout - A Deep Learning application
isused for network traffic analysis. The analysis
focusses on the identification and classification
of encrypted mobile traffic.  The study
concludes that DL based traffic classification
provides satisfactory output for encrypted
traffic.  The study also focusses on the
challenges of traffic classification using various
ML techniques.

What is missing- This study focused on Deep
learning for Mobile traffic and not a generic

campus network traffic classification.

40




2020

(Sdman e a.,
2020)

Key Aspects. The paper applies deep learning
to network traffic analysis, focusing on
classifying encrypted mobile traffic flows
without payload inspection. It highlights the
potential of DL models to address challenges
that limit traditional ML techniquesin encrypted

environments.

Missing Information: The study is limited to
mobile networks and may not generalize to
enterprise or campus settings. It does not
consider architectural diversity, multicast
traffic, or dynamic behaviors common in large-
scale wired networks.

2020

(Aurdli et al., 2020)

Key Aspects: The paper studies ML techniques
for traffic classification, addressing the
challenge of imbalanced datasets with a semi-
supervised learning approach. It improves
classifier robustness where labeled data is

scarce, a common issue in real-world scenarios.

Missing Information: The work focuses only
on class imbalance and does not consider
encryption, datarate variability, or high-volume
traffic. These omissions limit its applicability to
broader, real-world classification challenges.

2021

(Fotiadou et 4.,
2021)

What it is about- This work uses pfsense
software to monitor traffic logsthrough different
applications like firewall, routing, NAT etc. It
uses DL techniques like LSTM etc to identify
anomaly detection offline and feed the data
back.
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What is missing — This is more of a traffic log
analysisand not actual packet/flow analysis. The
methods might not work for a high-volume
forwarding plane where traffic flows are not

logged.

2021

(Nassif et al., 2021)

What it is about- Thisisasurvey paper of 290
research papers looking at 29 different models
for anomaly detection and recommending the
best one.

What is missing — This does not look at a
specific data set and algorithm on a problem
definition.

2021

(Ullah & Mahmoud,
2021b)

What it is about- CNN based model is used to
detect anomaliesin large |OT data sets.

What is missing — Works at a specific category
of problemsof 10T deviceswhich use aprotocol
like MQTT for communication.

2020

(Eskandari et al.,
2020b)

What it is about- In this work, unsupervised
learning methods like one class classifier isused
to detect anomaliesfor |OT traffic. The maority
of the analysisis done on unlabeled traffic.

What is missing — Narrow class of traffic is
analyzed. The concept can be generalized for
non 10T traffic aswell.
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2019

(Wang et al., 2019b)

Key Aspects: The paper surveys deep learning
methods for encrypted mobile traffic
classification, covering CNNs, RNNs, and
GANs. It highlights their strengths and
limitations while stressing the growing role of

DL in handling encrypted traffic.

Missing Information: The review focuses only
on DL and excludes traditional ML approaches
and hybrid feature sets. Itsinsights are limited to
mobile networks, with little applicability to
general-purpose or wired traffic scenarios.

2019

(Rezaei &  Liu,
2019a)

Key Aspects: The paper surveys deep learning
techniques for network traffic classification,
reviewing CNNs, RNNs, LSTMs, and transfer
learning approaches. It highlights the evolution
of methods and compares their applicability

across traffic scenarios.

Missing Information: As asurvey, it does not
propose new methods or experiments and omits
dataset-specific insights and implementation
challenges. It aso lacks exploration of hybrid
ML-DL strategies, making the contribution
more foundational than practical.

2019

(Ring et d., 2019)

Key Aspects. The paper applies Generative
Adversarial Networks (GANS) to network traffic
classification, proposing techniques to convert
categorical flow features into continuous
representations. This enables GANs to better
learn from discrete traffic datasets and extends

their usein network telemetry.
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Missing Information: The study is narrowly
focused on adapting older categorical datasets
and does not provide afull framework for large-
scale or red-time traffic classification. It
overlooks key issues such as encryption,
protocol diversity, and feature selection, limiting
its broader applicability.

2019

(Liu et a., 2019)

Key Aspects. The study applies Recurrent
Neura Networks (RNNSs) to classify encrypted
network traffic, showing their strength in
modeling temporal dependencies from flow-
based features. It demonstrates the useful ness of
RNNs for traffic identification when payload
datais unavailable.

Missing Information: The work is limited to
RNNs and does not consider aternative or
hybrid architectures that could improve
accuracy. It also overlooks the role of diverse
feature sets, reducing generadizability across

varied traffic types and environments.

2019

(Aceto et al., 2019)

Key Aspects. The paper applies deep learning
to classify encrypted mobile traffic, showing
that DL models can extract meaningful patterns
where payload-based methods fail. It
demonstrates the effectiveness of privacy-

preserving traffic analysis.

Missing Information: The study is limited to
mobile traffic with a narrow set of classes and

does not test broader enterprise or campus




networks. Thisrestrictsthe generalizability of its

findings to more diverse scenarios.

2019

(\r et a., 2019)

Key Aspects: The study evaluates CNN and
ResNet modelsfor network traffic classification,
using metrics like Fl-score to compare
performance across classes. It shows how deep
neural networks can handle structured, flow-
based tasks effectively.

Missing Information: The work is limited to
supervised methods and does not explore
unsupervised or hybrid approaches. It aso
overlooks latent traffic features, reducing
generalizability to complex or evolving network

patterns.

2019

(Ritaet a., 2019)

Key Aspectss The paper applies a
backpropagation neural network for traffic
classification, enhancing QoS by accurately
identifying traffic patterns. The results are used
to guide network management strategies for

better service delivery.

Missing Information: The study is limited to
supervised learning and does not explore
unsupervised or hybrid approaches. It aso
overlooksanomaly detection use cases, reducing

applicability in more complex environments.

2019

(Rezaei & Liu,
2019b)

Key Aspects. The paper proposes a multi-task
learning model that classifies traffic while also
predicting auxiliary metrics like bandwidth and

flow duration. This joint framework improves
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contextual understanding of network flows for

smarter traffic management.

Missing Information: The study islimited to a
narrow flow-classification use case and does not
generalize to diverse traffic or environments. It
also omits real-time performance, encrypted
traffic handling, and anomaly detection,

reducing practical applicability.

2018

(Liu et d., 2018)

Key Aspects. The paper introduces a method to
improve efficiency in capturing and labeling
mobile traffic, reducing manual effort and cost
in creating datasets for ML training. This
supports more effective classification of mobile
network data.

Missing Information: The study is limited to
mobile traffic labeling and does not extend to
general, encrypted, or enterprise network
scenarios. Its scope is narrow, making the
approach problem-specific rather than broadly
applicable.

2018

(Yuetal., 2018)

Key Aspects. The paper proposes a QoS
engineering framework for SDNs that combines
Deep Packet Inspection with semi-supervised
ML. A hybrid multiclass classifier enhances
traffic identification and supports intelligent

QoS provisioning.

Missing Information: The work is specific to
SDNs and does not generalize to other network
architectures. It focuses on QoS optimization

while leaving out broader traffic classification,
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anomaly detection, and applicability to

enterprise or campus networks.

2018

(Rojaset a., 2018)

Key Aspects: The paper applies clustering and
ML models to anayze IP-based OTT
application traffic, using a robust flow dataset.
SVM  showed the best performance,
demonstrating the value of supervised and
unsupervised learning for application-level

behavior analysis.

Missing Information: The study is limited to
OTT traffic and does not address broader
network classification scenarios. It excludes
diverse traffic types, encrypted flows, and
enterprise environments, reducing

generaizability.

2018

(Sharma et 4d.,
2018)

Key Aspects:. The paper analyzes a flow-based
DNS dataset to identify compromised hosts
using various machine learning algorithms. The
study focuses on detecting anomalies in DNS
traffic patterns that may indicate malicious
activity, leveraging flow-level features to

support automated threat detection.

Missing Information: The work is specificaly
targeted at DNS anomaly detection and does not
address broader network traffic classification or
intrusion detection scenarios. Its focus on a
single protocol limits its applicability to more
comprehensive network security solutions

involving multiple traffic types and behaviors.
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2018

(Pacheco et a.,

2018)

Key Aspects. The paper surveys emerging
trends in applying ML to network traffic
classification, covering key developments,
challenges like encryption and imbalance, and
techniques used over time. It provides a broad
view of how ML has evolved for handling
dynamic traffic patterns.

Missing Information: As a survey, it lacks
empiricdl  experiments or  dataset-based
comparisons. The work remains conceptual,
offering limited practicdl guidance for

benchmarking or implementation.

2017

(Lotfollahi et 4.,

2017)

Key Aspects: The paper presents an early deep
learning framework using Autoencoders and
CNNs for automated festure extraction and
traffic classification. It eliminates manua
feature engineering, showing the promise of DL
models for distinguishing VPN and non-VPN
traffic.

Missing Information: The study relies on a
limited feature set and does not explore
combining diverse inputs. It also omits hybrid
approaches that could improve accuracy and
adaptability across varied traffic environments.

2017

(Lopez-Martin
a., 2017)

et

Key Aspects:. The paper applies CNNs, RNNSs,
and their combination for IoT traffic
classification, showing the value of spatial and
sequentia feature learning.
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Missing Information: It does not explore
diverse feature sets or provide guidance for
scaling the approach beyond 10T environments.

2017

(Shafiq et a., 2017)

Key Aspects: The paper surveys ML techniques
for traffic classification, comparing models like
C4.5, Naive Bayes, SVM, and Bysenet. It offers
afoundational view of early ML performancein

different classification contexts.

Missing Information: The study uses alimited
feature set and lacks depth in analyzing diverse
traffic types. It also provides no problem-
specific recommendations, limiting practica

applicability.

2017

(Shi et al., 2017)

Key Aspects: The paper studies feature
extraction for transport layer service
classification, using PCA with classifiers like
SVM to improve efficiency and accuracy. It
shows how dimensionality reduction can refine
the feature space for traffic analysis.

Missing Information: The work is limited to a
small set of algorithms and does not test broader
models. It aso overlooks diverse or combined
feature setsthat could enhance robustness across

varied traffic conditions.

2017

(Vladutu et al.,
2017)

Key Aspects: The paper explores ML as an
aternativeto DPI for traffic classification, using
K-Means and Decision Trees on uni- and
bidirectional flows. It demonstrates the
feasibility of reducing reliance on packet-level
inspection through ML -based methods.
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Missing Information: The study tests only a
narrow set of clustering algorithms and omits
other unsupervised approaches. A broader
comparison could have revealed more effective
or scaable techniques for varied traffic

conditions.

2017

(Ahmed et d., n.d.-
b)

Key Aspectss The paper compares ML
techniques for anomaly detection, focusing on
the One-Class Neighbor Machine and a kernel -
based online method. It highlights lightweight,
adaptive models for real-time deviation
detection in network traffic.

Missing Information: The study islimited to a
small set of algorithmsand excludes broader ML
or DL approaches. It also omits diverse features
and hybrid strategies, reducing applicability to

complex or large-scale scenarios.

2015

(Li et d. 2015)

Key Aspects: The paper proposes a hybrid
approach combining DPI with ML models like
Decision Trees for application-level traffic
classification in SDN. A multiclass classifier
embedded in the SDN controller enhances
traffic awareness and control.

Missing Information: The study is specific to
SDN and does not provide a generalized ML
framework. It aso lacks evaluation on diverse
networks and traffic types, limiting applicability

beyond SDN environments.

2015

(Namdev et 4.,
2015)

Key Aspects: The paper surveys supervised and
unsupervised ML techniques for traffic
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classification, comparing 7-8 agorithms across
different traffic types. It provides a broad view
of their relative strengths and limitations.

Missing Information: The study offers limited
analysis of feature sets and does not explore
hybrid or ensemble methods. This reduces its
practical value for improving classification in

real-world deployments.

2014

(Cao et d. 2014)

Key Asgpects. The paper briefly explores
encrypted traffic classification, outlining
challenges and proposing simple strategies that
avoid payload inspection. It emphasizes the

difficulty of traffic analysis under encryption.

Missing Information: The study lacks depth in
methods, experiments, and evaluation. It does
not provide a comprehensive framework,
limiting its applicability to broader traffic
classification scenarios.

2013

(Marpaung et al.,
2013)

Key Aspects: The paper studies L7-based
application-layer  traffic  classification in
firewalls, focusing on Adobe RTMP. It shows
how protocol-specific features can improve
firewall rule enforcement and traffic

management.

Missing Information: The work is limited to a
single protocol and excludes ML-based
methods. Its narrow  scope  reduces
generdizability to broader applications and

diverse network types.
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2013

(Omar et d., 2013a)

Key Aspects : The paper explores L7-based
application-layer traffic classification in
firewalls, focusng on Adobe RTMP. It
demonstrates how protocol-specific traits can
enhance firewall enforcement and traffic

management.

Missing Information: The work is limited to
one protocol and does not include ML-based
methods. Its narrow scope reduces applicability
to broader traffic classification tasks.

2013

(Fahad et dl., 2013)

Key Aspects: The paper evaluates feature
selection techniques for internet traffic
classification, aiming to boost accuracy while
reducing computational cost. It shows how
selecting relevant features supports more

efficient training and inference.

Missing Information: The focus is on feature
selection aone, without comparing
classification algorithms. This limits insights
into end-to-end performance across different
ML models.

2012

(Dainotti et a.,
2012)

Key Aspects. The paper compares port-based,
payload inspection, and early ML techniquesfor
traffic classification, providing one of the
foundationa evauations in the fied. It
structured an early understanding  of
classification strategies and their trade-offs.

Missing Information: The study uses alimited
feature set and does not explore advanced or

hybrid methods. Its foundational scope limits
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relevance for modern large-scale, encrypted, or

complex network environments.

2012

(Bujlow et ., 2012)

Key Aspects. The paper proposes C5.0 for
network traffic classification, evaluating its
supervised learning performance against other
models. It demonstrates the algorithm’s
suitability for distinguishing different traffic
types.

Missing Information: The study is limited to
supervised comparisons and does not consider
hybrid or unsupervised techniques. It also lacks
diverse feature analysis, restricting applicability
to complex or evolving traffic.

2011

(Nguyen et al. 2012)

Key Aspects. The paper introduces a flow-
segmentation method for traffic classification,
splitting flows into sub-flows by features like
volume, direction, and duration. Naive Bayes
and Decison Trees are tested, showing
effectiveness for application-specific traffic like
gaming and VolP.

Missing Information: The study islimited to a
small set of applications and does not capturethe
diversity of modern networks. Its findings may
not generalize to today’s high-volume,
encrypted, or cloud-based traffic.

2011

(Ubik et al. 2010)

Key Aspects: The paper applies the C4.5
algorithm to classify network flows across
speeds of 100 Mbps, 1 Gbps, and 10 Gbps. It
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analyzes how traffic characteristics vary with

speed and tests the model’s adaptability.

Missing Information: As an older study, it has
limited relevance for today’s high-speed,
encrypted networks. It depends on labeled data
and does not explore modern ML or adaptive
learning methods.

2010

(Yuan et a., 2010b)

Key Agpects. The paper is an early study
applying SVM for traffic classification, using
flow-level features to distinguish different
traffic types. It highlights the potential of

supervised learning in this domain.

Missing Information: The work is limited to
SVM, which requires labeled data and is
resource-intensive for large datasets. It does not
explore dternative, unsupervised, or hybrid

approaches, reducing scalability and flexibility.

2010

(Soysd et al. 2010)

Key Aspects. The paper evaluates Bayesian
Networks, Decison Trees, and Multilayer
Perceptrons for traffic classification across
services like P2P, HTTP, CDN, FTP, DNS, and
SMTP. It provides insights into how these
models perform across different categories.

Missing Information: The study depends on
labeled data and uses a limited feature set and
traffic scope, reducing generalizability. It does
not explore unsupervised or hybrid methods,

limiting practical flexibility.

2009

(Lu et a. 2009)

Key Aspects. The paper proposes a botnet-

focused traffic classification method using




behavioral and structural analysis to detect
malicious patternswithout payload inspection. It
highlights an early approach to identifying

botnet activity in networks.

Missing I nformation: The method does not use
machine learning, reducing adaptability and
scalability compared to modern techniques. Its
focus on botnet traffic limits applicability to

broader or benign classification tasks.

2009

(Alshammari et al.
2009)

Key Aspects. The paper studies ML-based
classification of encrypted traffic, focusing on
SSH and Skype. It tests AdaBoost, SVM, Naive
Bayes, RIPPER, and C4.5 with flow-based
features, showing early feasibility of ML for
obfuscated traffic.

Missing Information: The work is limited to
two traffic types and a minimal feature set.
Broader traffic categories and richer features are
needed for stronger generalizability.

2008

(Nguyen et al. 2008)

Key Aspects. The paper reviews IP traffic
classification methods, from port- and payload-
based approaches to early ML techniques. It
provides a foundational view of the field’s

evolution and the pros and cons of each method.

Missing Information: As a broad survey, it
does not evaluate specific ML algorithms in
depth. The lack of experiments and practical
insights limits its relevance for modern traffic

classification.
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2008

(Leeeta., nd)

Key Agspects. The paper surveys IP traffic
classification methods, from port- and payload-
based techniquesto early ML -based approaches.
It offers a foundational understanding of the
classification landscape and the strengths and

weaknesses of each method.

Missing Information: As a survey, it does not
implement or evaluate ML agorithms
experimentally. The lack of depth and practical
insights limits its applicability to modern traffic
classification challenges.

2007

(Shon et al. 2007)

Key Aspects. The paper presents an enhanced
SVM-based method for traffic classification and
anomaly detection, combining two ML
techniques to boost accuracy. It stands as one of
the early efforts to apply hybrid ML in network

security.

Missing Information: The study does not
examine clustering approaches better suited for
unlabeled anomalies. It may not scale to modern
high-dimensional traffic and lacks variety in

algorithmic evauation.

2007

(Crotti et a., n.d.)

Key Aspects. The paper classifies network
flows using statistical analysis of packet size,
inter-arrival time, and order of arrival. It shows
how ssimple temporal and structural features can
help infer application types.

Missing Information: The study relies on a
narrow feature set and limited statistical

methods. It lacks algorithmic diversity and a
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broad framework, reducing generalizability to

modern network environments.

2007

(Auld et d., 2007)

Key Aspects: The paper usesaBayesian-trained
neura network for traffic classification,
achieving about 95% accuracy. It highlights the
promise of combining probabilistic models with
neural networks for early traffic identification.

Missing Information: The study is outdated,
relying on older traffic patterns with limited
relevance to encrypted or high-speed
environments. It does not address scal ability or
adaptability for today’s complex, dynamic

networks.

2006

(Madhukar et 4.
n.d.)

Key Aspects. The paper compares port-based,
signature-based, and transport-layer heuristic
methods for detecting P2P traffic. Transport-
layer heuristics provided the most accurate

results.

Missing Information: The study is limited to
P2P traffic and does not use machine learning
techniques. Its heuristic-based approach lacks
adaptability for modern encrypted or obfuscated
traffic.

2006

(Williams et 4.,
n.d.)

Key Aspects:. The paper evaluates C4.5, Bayes
Network, Naive Bayes, and Naive Bayes Tree
for traffic classification using 22 features and
reduced subsets. It compares accuracy and
efficiency, offering early insights into

performance-resource trade-offs.
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Missing Information: The study uses limited
datasets and constrained features, focusing
mainly on accuracy. Its conclusions havelimited
applicability to today’s complex and large-scale

network environments.

2005

(Roughan et 4.,
n.d.)

Key Aspects: This early study applies Nearest
Neighbor and Linear Discriminant Anaysis to
classify traffic and provide differentiated QoS. It
highlights the potential of ML for service-aware

network management.

Missing Information: The work relies on
outdated datasets and simple statistical methods.
It does not reflect modern encrypted traffic or

leverage advanced, scalable ML approaches.

2005

(Shon et al., 2005b)

Key Aspects. The paper introduces a hybrid
anomaly detection method using Genetic
Algorithms for feature selection and SVM for
packet classification. It represents early efforts
to enhance IDS by combining ML and data
mining beyond signature-based methods.

Missing Information: The reliance on SVM
requires labeled data and is computationally
expensive, limiting scalability. As an older
study, it does not address modern unsupervised

or real-time anomaly detection approaches.

2005

(Zander et a.,
2005b)

What it isabout - Basic ML methodsfor Traffic
classification.
What is missing - Not much of details of the

algorithm provided.
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2013

(Bhattacharyya et
al. 2013)

What it is about- Thisis a detailed book that
analyses network traffic and usage of machine
learning for intrusion detection. It coversvarious
classes of traffic and analyzes the different

algorithms that can work.

What is missing — It’s a generic knowledge
builder book and not a specific problem set. This

is comparatively old literature also.

2013

(Kaur et a., 2013)

What it is about- Small paper of literature
review for machine learning in anomaly
detection.

What ismissing — Not avery detailed paper and
does not analyzes all the algorithms in depth.

2013

(Omear et d., 2013b)

What is about- Thisisasurvey paper of network
anomaly detection. It checks supervised and

unsupervised learning models.

What is missing — Good comparison model on
pros and cons of different models. Not meant for
a specific problem-solving purpose.

2.2.1.

Summary

In this section, al the related and prominent research papers for Network traffic classification

arereviewed. This area of research has gained significant traction in the last few years. Ascan

be seen through the different work done in this area, AI/ML technologies will continue to play

a significant role in NTC. Analysis of the papers also suggests that there is a good mix of
traditional statistical classification and DL based classification, which is happening in

computer networks.

DL technologies, athough they have significant advantages in

classification areas, some of the use cases in network traffic might not require them. The
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understanding is that a combination of DPI with an AI/ML model can provide a significant
advantage in traffic classification. Network Anomaly detection for regular and 10T traffic was
also analyzed in the second section. It was also seen that the number of network traffic datasets
available for research is not as wide as some of the other domains. Some of the research work
can be significantly improved if more datasets are available for the research community, with
the latest traffic patterns for analysis.
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3. CHAPTERIII:
RESEARCH METHODOLOGY

3.1 Research Purpose and Characteristics

This section defines the motivation, goals, and distinct features of the proposed research
framework. Therapid proliferation of high-bandwidth applications, cloud-native architectures,
loT devices, and multicast deployments has introduced immense complexity into modern
networking environments. Traditional rule-based anomaly detection systems—while once
sufficient—are increasingly inadequate in identifying stealthy, dynamic, and evolving network
threats.

In this context, the research aims to develop a scalable, adaptive, and explainable Al-based
framework that leverages state-of-the-art machine learning, deep learning, and generative
models for end-to-end network anomaly detection. A unigue focus is placed on both unicast
and multicast traffic, along with deployment within smulated IDS/IPS systems, allowing real -

time detection and proactive mitigation of security threats.

3.1.1. Research Purpose

The primary goal of thisresearch isto develop an Al-driven anomaly detection framework
that:

» Adaptsto diverse and dynamic network traffic environments.

» Detects known and unknown (zero-day) anomalies with high precision.

» Handles both unicast and multicast traffic, including specific multicast-induced
anomalies.

» Provides model transparency via Explainable Al (XAl).

» Supports integration into IDS/IPS systems for real -time network defence.

» This solution is intended to be domain-agnostic (enterprise, cloud, edge) and capable

of operating efficiently in resource-constrained environments (e.g., 10T gateways, edge

routers).

(a) Multi-Technique Modelling Approach

The framework integrates five mgjor categories of Al techniques which are shown below in
Table2
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Table 2: Framework build for Analysis of Al Models

Technique | AlgorithmsIincluded Purpose

Traditional | Decision Tree, Random Forest, | Interpretable, quick classification of

ML Logistic Regression, SVM known anomalies

Clustering K-Means, DBSCAN, | Unsupervised anomaly detection, suitable
Hierarchical Clustering for unlabeled data

Deep Autoencoders, LSTM, GRU, | Moddiing long-term  dependencies,

Learning Transformer complex traffic behaviors

Generative | Variational Autoencoders | Zero-day anomaly detection by modeling

Al (VAE), GANs normal traffic distributions

Hybrid Combining multiple algorithms | This will take the best of al algorithms

Method and combine them to produce a better

result

This hybrid stack ensures robust learning across various traffic types, temporal patterns, and

abnormal behaviors—whether periodic, rare, or encrypted.

(b) Scalability and Adaptability

The framework should be designed to operate in high-speed, large-scale networks, with
modular training and deployment pipelines. Integrates online learning, stream inference, and
transfer learning to accommodate evolving traffic patterns. Performance maintained under
varying workloads (e.g., sudden DDoS bursts, multicast spikes).

(c) Multi-Protocol Anomaly Detection (Unicast + Multicast)

Multicast detection adds complexity due to group dynamics, replicated traffic, and route
optimization. Unique features extracted include join/leave frequency, RP timeout or failure
patterns, Source-group mapping variance, Multicast tree depth and divergence, Multicast-
specific anomalies like IGMP floods, phantom sources, or group instability are modelled

separately and integrated with the main detection engine.

(d) Explainable Al Integration
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SHAP (SHapley Additive Explanations): Visualizes global and local impact of features (e.g.,
protocol, flow size) on model output. LIME (Local Interpretable Model-agnostic
Explanations): Highlights reasons behind specific anomaly predictions, enhancing analyst
confidence. These tools generate inter pretable dashboar ds, reducing the “black box™ nature

of Al modelsin security contexts.

(e) Data-Driven Architecture

Built on a corpus of rea-world network traces, publicly available anomaly datasets, and
custom-generated multicast attack simulations. Preprocessing includes noise filtering,
normalization, label encoding, and dimensionality reduction (PCA/TSNE). Traffic types
include HTTP, HTTPS, VolP, streaming, loT MQTT, IGMPv2/v3, etc.

(f) Hybrid Anomaly Detection Engine

A model fusion layer dynamically routes traffic through a Supervised classifier (for known
attacks), an Unsupervised cluster (for novel patterns), a DL -based encoder-decoder or attention
model (for sequence modelling), GAN/VAE (for low-reconstruction anomaly detection).
Model decisions are weighted using ameta-decision layer based on ensemblerules or learned
thresholds.

(g) Comparative Model Evaluation

Models are evaluated using Accuracy, Precision, Recal, F1-Score, AUC-ROC for
discrimination capability, Inference latency for real-time capability, False Positive Rate (FPR)
and False Negative Rate (FNR)
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across diverse traffic types and anomaly classes guide model selection.

311 Summary

The proposed framework is a next-generation Al system for holistic network anomaly
detection. It uniquely combines multiple Al paradigms, enables deep insight into traffic
behaviours, supports explainability, and ensures proactive defense in multicast and unicast
contexts alike. By unifying these characteristics, the framework addresses the key challenges
of modern, cloud-native, and edge-scale networks, providing a pathway toward intelligent,

real-time, and interpretable security systems.

3.2 Experimental Design and Strategy

3.21 Introduction

To validate the effectiveness, adaptability, and performance of the proposed Al-based network
anomaly detection framework, a carefully constructed experimental design is adopted. The
design leverages both exploratory and comparative methods to investigate a broad range of

modelling techniques under various network conditions. The core purpose of this section is to

describe:
. How different Al models are developed, configured, and compared,
. How evaluation settings are crafted to reflect real-world network conditions,
o How model fusion strategies are benchmarked.

This experimental setup ensures robust, reproducible, and realistic results.

3.2.2 Data Selection
A hybrid experimental design is adopted that integrates different design patterns, as shown in
Table3

Table 3: Hybrid design pattern

Type Purpose
Exploratory Identify latent traffic patterns, multicast anomalies, and zero-day

behaviors using unsupervised and generative models

Comparative Quantitatively compare the performance of multiple ML, DL, and

GenAl models on the same datasets using standard metrics




Simulated Evaluate the pipeline with Simulated Multicast data for better

Deployment diversification of anomaly patterns

This strategy ensures both model learning capability (exploratory depth) and operational
performance (comparative rigour) are evaluated in tandem. To ensure generalizability,

experiments are conducted on the following classes of datasets shown in Table 4

Table 4: Dataset Details

Dataset Type Example Datasets Usage
Benchmark | KDD Cup 99, Kaggle, 114 Apps Flow Dataset, | Labelled data for

87 Apps Flow Dataset, Seven distinct subsets | supervised and semi-

from CICIDS2017 Dataset supervised learning
Multicast Enterprise-simulated IGMP/MLD flows Feature engineering and
Traffic multicast anomaly
detection

As part of this activity, we looked at the Eleven datasets, which can be used for traffic

anaysis.

CICIDS2017 Dataset (7 Subsets)

Includes separate day-wise traffic captures with labelled normal and malicious flows

Covers awide range of attack types: brute-force (SSH/FTP), DoS, DDoS, infiltration,
web-based attacks, and botnet activity

Provides redlistic enterprise-like traffic with flow-level granularity

Suitable for both supervised and unsupervised anomaly detection

KDD Cup 1999 Dataset

e Classica benchmark dataset in the anomaly detection domain
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e Contains 41 features with labelled instances of 22 different attack types

e Despite being outdated, it offers a standardised comparison baseline and iswidely cited

in literature
Multicast Flow Dataset (Multicast_ Flow_ 100K with Label.csv)
e Custom dataset capturing multicast group communication patterns

e Includes anomalies such as spoofed joins, excessive source announcements, and

abnormal group behaviour
e Addresses agap in existing datasets by focusing on multicast-specific threats
Solit Flow Dataset (split_4 with_infected.csv)
e A high-dimensional dataset derived from alarge set of |abelled application flows
e Labelled to indicate infected or anomal ous behaviour

e Enablestesting model scalability and robustness with a wide range of feature values

Application Flow Dataset (App-data-87-chunk_1.csv)
e Contains application-level flow data across 87 services or app types
e Used to evaluate detection models under real-world multi-service traffic conditions

o Offersdiverse traffic characteristics, including varying session lengths, protocols, and

data volumes

3.2.3 TrafficLabeling and Ground Truth Strategy

Labelling strategy varies by model type:

e Supervised ML models require labelled flows (e.g., normal vs. DDoS).
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e Unsupervised models (e.g., DBSCAN, GAN) do not use labels for training but rely on

evaluation against atest set with known anomalies.

e Generative models are trained exclusively on normal traffic to detect outliers based on

reconstruction or discriminator error.
For multicast anomaly detection:
e Labelling is manual, using domain knowledge to annotate events like:
RP failover,
IGMP flood bursts,
Unexpected group churn.

Note: A threshold-based labelling framework is developed for “semi-supervised
bootstrapping” where hard-labelled multicast datasets are unavailable.

3.24 Dataset Partitioning and Temporal Integrity
Proper splitting is essentia to avoid data leakage and overfitting. The following partitioning
approach is applied as shown in Table 5

Table5: Train Test Split

Purpose | Split Size Notes
Training | 60-70% | Ensures model learns common and rare behavior patterns

Validation | 10-15% | Used for tuning hyperparameters and early stopping

Testing 20-25% | Contains unseen data from different time segments

Time-aware splitting is employed for sequence models (LSTM, Transformer) to preserve

temporal relationships across training and test data.

3.25 Experimental Pipeline

The following multi-stage pipeline is implemented across all experiments as shown in Figure
5
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Figure 5: Model Pipeline
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e Datalngestion: Load, clean, and standardize flow records (CSV, PCAP).
e Feature Engineering: Extract statistical, behavioral, and multicast-specific features.
e Model Selection: Apply ML, DL, and GenAl agorithms.

e Traning Phase: Train on defined datasets using cross-vaidation or sequentia
minibatching.

e Prediction & Scoring: Inference run on test data, capturing anomaly scores or class
labels.

e Metric Evaluation: Compute accuracy, F1, AUC-ROC, and latency.
o XAl Application: Apply SHAP/LIME on outputs.
e |IDS/IPS Simulation: Feed predictions into a packet action engine.

3.2.6 Evaluation Strategy

Each model will be evaluated across some important parameters like Accuracy, Precision etc,
asindicated in Table 6

Table 6: Model Evaluation parameters

Metric Description
Accuracy Overal correctness of classification
Precision/Recall Balance between false positives and fal se negatives
F1 Score Harmonic mean of precision and recall
AUC-ROC Ranking capability of abinary classifier
Latency Time taken for inference (critical for IPS)
False Positive Rate (FPR) Measures alert fatigue in real networks
Reconstruction Loss (AE/VAE) | For unsupervised anomaly detection
Discriminator Score (GAN) Used as an anomaly score threshold

Comparative graphs are plotted to visualize model performance across different traffic and
attack types.

3.2.7 Justification of Design
Table 7 indicates the Design Justification as below:

Table 7: Design Justification

Factor Chosen Strategy Rationale
Data Partitioning | Time-aware split Preserves temporal consistency in flow
sequences
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Model Uniform metric suite Ensures fair benchmarking
Comparison
Simulation IDS/IPS integration Emulates real-world defensive
deployment
XAl Inclusion SHAP/LIME post- Addresses trust and explainability issues
processing
Generative Trained on normal-only Suitable for zero-day anomaly discovery
Modeling traffic
3.2.8 Summary

The experimental design combines exploratory depth, comparative rigor, and real-world
simulation to comprehensively evaluate the proposed Al framework. From dataset construction
to IDS/IPS deployment, every step is meticulously aligned with real-world operational needs.
This design ensures that the resulting models are not only academically valid but aso

practically deployable.

3.3 Data Preprocessing and Traffic Labelling

3.3.1 Introduction

Data preprocessing is a critical stage in developing any Al-driven system, especially in the
context of network anomaly detection, where input data originates from varied formats, capture
tools, protocols, and labelling schemes. The four datasets used in this research—KDD Cup,
CICIDS 2017, 87-Apps, and 114-Apps Kaggle datasets—differ significantly in structure, |abel
format, feature domains, and traffic diversity. To ensure effective training across different Al
models (ML, DL, GenAl), the raw data from each dataset was standardized into a unified
format, and multiple preprocessing operations were applied for cleansing, labelling, and

structuring.

3.3.2 Dataset Heterogeneity and Challenges

Each dataset presents its own set of issues—ranging from outdated features in legacy datasets
(KDD), timestamp-based attack labelling (CICIDS), to encrypted flows and label imbalancein
modern Kaggle datasets. A common preprocessing strategy cannot be blindly applied across
them; instead, dataset-specific considerations are factored into a unified pipeline. Table 8
summarizes the major challenges encountered across datasets and sets the stage for the pipeline
introduced next. In Table 8, al the challenges associated with these datasets are shown below

Table 8: Dataset Challenges

| Datasst | Source | Format | Challenges
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KDD Cup UCI Repository | CSV Outdated fields, simplified attacks

1999

CICIDS 2017 | Canadian PCAP + Timestamp-based label alignment, class
Institute csv imbalance

Kaggle 87- Kaggle (jsrojas) | CSV Multiclass label noise, unbalanced apps

Apps

Kaggle 114- Kaggle (jsrojas) | CSV Very high cardinality, includes

Apps encrypted traffic

3.3.3 Unified Preprocessing Pipdline

This subsection presents the overall sequence of steps used to prepare the data for modelling.
From initial ingestion of CSV/PCAP files to exporting clean data into Parquet format, the
pipelineis modular and repeatable across all datasets. Cleaning removes invalid entries, while
encoding and scaling bring consistency. Labelling and windowing ensure that both classica
and time-series models can work on structured, temporally aligned inputs. The pipeline serves

as a backbone for al subsequent modelling methods, as shown in Figure 6.
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Figure 6: Data Procession Flow Pipeline

3.3.4 Categorical Encoding

Many fields in the raw datasets—such as protocol type, service, flags, and class labels—are
categorical in nature and must be transformed into numeric formats for compatibility with
ML/DL agorithms. One-hot encoding is used where category granularity ishigh (e.g., protocol
types), and integer encoding is applied for compactness when needed (e.g., binary attack
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labels). Special treatment is given to TCP flags and application-layer |abelsin encrypted flows.

The details of encoding are present in Table 9

Table 9: Encoding Details

Feature Encoding Type Datasets

Protocol One-Hot Encoding | All

Attack Label | Integer Encoding KDD, CICIDS

App Label One-Hot/Integer 87-Apps, 114-Apps

TCP Flags Bitmask CICIDS, Kaggle

i Timestamp Alignment (CICIDS Example)
CICIDS 2017 data is organized as PCAP and CSV logs captured over severa days, where
attack windows are specified by timestamps. This requires aligning flow records with |abelled
timeintervals to accurately tag anomalies. Incorrect alignment would introduce noisy labels or
false positives. This subsection illustrates how flow-level timestamps were synchronized with

known attack windows using official metadata, ensuring high-fidelity labelling.

Raw PCAP files from CICIDS are organized by day (e.g., Friday.pcap). Each day includes
normal and attack windows. Labels are aligned using the official CICIDS attack timestamps as

shown in Figure 7
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CICIDS Timestamp Alignment for Anomaly Lbeling
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Figure 7: Timestamp Alignment for Anomaly Labelling

ii. Time-Windowing Logic for Sequential Models
To enable learning from temporal patterns (e.g., bursts, protocol shifts), data must be batched
into meaningful windows. This subsection explains how dliding time windows will be
constructed using either fixed time ranges (e.g., 5 seconds) or a fixed number of flows per
batch. This step is essential for feeding data into RNNs, LSTMs, and Transformers. Padding
techniques are also applied to standardize input sizes across variable-length sequences as
shown in Table 10

Table 10: Window size for Sequencing Models

Parameter Vaue
Window Size 5 seconds
Step Size 1 second
Max Flows/Seq 50 flows
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Padding Type Zero Padding

Labd Type Majority label in window

3.3.5 FeatureReduction Techniques

High-dimensional data often includes redundant or noisy features, which can lead to overfitting
or slow convergence in learning. This subsection details how dimensionality reduction (PCA),
wrapper-based feature elimination (RFE), and model-aware ranking (SHAP) will be applied.
These techniques help streamline the dataset without sacrificing performance, improving
model interpretability and computational efficiency. KDD Cup sample correlation heatmap is

shown in Figure 8
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Figure 8: Sample Correlation heatmap
Sample methods that will be used in the KDD Cup, 99 isshownin Table 11
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Table 11: Correlation Matric before feature reduction KDD Cup

Technique Used Purpose Models Applied
PCA (Principal Component | Dimensionality  reduction  for | AE, VAE,
Analysis) visualization unsupervised

RFE  (Recursive Feature | Retain only important features RF, SVM
Elimination)

SHAP Feature Ranking Post-training explainability All models

3.3.6 Preprocessing Summary Table

This final subsection consolidates the steps discussed into a single reference table, mapping
preprocessing tasks to datasets, methods, and models. It serves as a quick audit trail of all
transformations applied and ensures reproducibility across future studies or deployments. The

preprocessing summary table is shown in Table 12

Table 12: Processing Summary Table

Step Technique Used Notes

Cleaning NaN removal, corrupted flow drop | CICIDS & 114-Apps
Normalization Z-score/ Min-Max Scaling All datasets

Balancing SMOTE, stratified sampling KDD & CICIDS
Encoding One-hot, integer, bitmask All datasets
Windowing Sliding window DL/Transformer
Labeling (Supervised) From datasets KDD, CICIDS, Kaggle
Labeling (Unsupervised) | Manua + anomaly score AE, GAN, VAE
Feature Engineering Domain knowledge + SHAP insights | Multicast-specific
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3.3.7 Summary

This section presents a comprehensive preprocessing strategy that will be applied to four
heterogeneous datasets: KDD Cup 1999, CICIDS 2017, Kaggle 87-Apps, and Kaggle 114-
Apps. Each dataset posed unique chalenges in terms of format, structure, and labelling,

requiring a unified and modular preprocessing pipeline.

Key stages in the pipeline included:

Raw dataingestion and cleaning to eliminate corrupt, incomplete, or redundant entries.

Encoding of categorical features such as protocol types and labels using one-hot and

integer encoding.
Handling of missing values viaimputation or row removal.

Normalization and scaling using Z-score or Min-Max techniquesto prepare featuresfor
ML and DL models.

Tempora windowing for sequence models like LSTM and Transformer to maintain

flow continuity.

Balancing class distribution through SMOTE and stratified sampling to address skewed

attack/normal ratios.

Manual and rule-based labelling especialy for timestamp-based flows (CICIDS) and

multicast anomalies.

In addition, feature reduction methods such as PCA, RFE, and SHAP-based ranking were
applied to retain the most informative variables while eliminating noise and redundancy. The

final output was exported as Parquet filesfor fast, structured access during model training. This

preprocessing foundation ensures clean, labelled, and standardized input for downstream

anomaly detection and classification tasks across diverse Al architectures.
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3.4 Feature Engineering in Depth

3.4.1 Introduction

Feature engineering is afoundational step in this research, enabling the transformation of raw
network traffic data into structured, normalized inputs suitable for machine learning and deep
learning models. Given the heterogeneous nature of the datasets used—including CICIDS2017,
KDD Cup 1999, multicast flow data, and high-dimensional application flow files—this stage
is critical for ensuring uniform preprocessing, robust performance, and valid comparisons
across all 22 evaluated models. The process begins with initial data cleansing. All column
names are stripped of extraneous whitespace characters to ensure consistency in fesature
referencing. Infinite values (inf or -inf) that may result from division-by-zero operations or
corrupted fields are replaced with NaN, and subsequently, any rows containing missing values
are dropped from the dataset. This helps eliminate noise and inconsistencies that could distort
the learning process.

Following this, label identification and encoding are performed. Since the datasets may use
different column names to denote the target variable (such as label, labels, or anomaly), the
pipeline employs a dynamic detection approach. Once identified, the target column is
transformed into a binary format: 1 for anomalous or malicious entries, and O for benign or
normal traffic. In edge cases where only one class is present, a small fraction (typically 10%)
of the data is re-labelled to create a minimal opposing class. This ensures that supervised
models have enough variance to learn meaningful decision boundaries, preventing

convergence errors or biased predictions.

The feature space is then refined by addressing non-numeric and categorical data. All
columns with string-type values (excluding the label) are either removed or converted using
one-hot encoding, depending on their relevance and cardindlity. This step is essential for
ensuring compatibility with algorithms that require numerical inputs. In addition, if the target
label itself isin textual form (e.g., "Normal" or "Infected"), it is encoded into numeric values
using Label Encoder.

After categorical conversion, the features (X) and target (y) are separated. The feature matrix
undergoes scaling via z-scor e nor malization using Standard Scaler. Standardization ensures
that each feature has a mean of 0 and a standard deviation of 1, allowing models that rely on
distance metrics (e.g., SVM, k-NN, Isolation Forest) or gradient-based optimization (e.g.,
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neural networks, GANS) to converge more effectively. Scaling also helps mitigate bias from

features with larger magnitudes dominating othersin loss calculations.

A stratified train-test split is then applied to preserve the class distribution across training and
testing datasets. This approach ensures that both sets maintain a representative mix of normal
and anomal ous samples, which is crucial for fair model evaluation—especialy in cases where
anomalies are underrepresented. The split ratio is typically 70:30, ensuring sufficient training
datawithout compromising test coverage. Throughout the pipeline, featur e names areretained
for downstream tasks such as SHA P-based explainability and attribution analysis. These names
are essential for understanding which features contribute most to model predictions and
anomaly identification. This comprehensive and dataset-agnostic feature engineering
framework alows for consistent preprocessing across all experiments. It not only standardizes
input for the 22 anomaly detection models evaluated in thisresearch but also facilitatesfairness

in comparative analysis, robustness in modelling, and transparency in interpretation.

3.4.2 Basic Flow Features

Network flow data provides a structured abstraction of communication between endpoints,
summarizing packet-level interactionsinto aggregated records. These flow records serve asthe
fundamental building blocks for anomaly detection, offering a compact yet information-rich
representation of traffic behavior. In this research, a common set of basic flow features is
extracted and utilized across al datasets to ensure consistency in feature representation and
model compatibility.

The selected features encapsulate essential characteristics of each network flow, including

volume, duration, directionality, and statistical behavior. These include, but are not limited to:

e Source and Destination | P/Port (anonymized) — Identifiers of communication endpoints
e Protocol Type — Indicates the transport layer protocol (e.g., TCP, UDP, ICMP)

e Fow Duration — Total time span of the flow in milliseconds or microseconds

e Total Bytes Sent/Received — Aggregate volume of data transmitted in both directions
e Total Packets Sent/Received — Count of individual packets exchanged during the flow
e Packet Length Statistics — Minimum, maximum, mean, and standard deviation of

packet lengths within the flow
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e Inter-arrival Time Metrics — Time between successive packets, useful for detecting
bursty or slow-drip anomalies

e Flagsand TCP Statelndicators— Indicators of session statussuch asFIN, SYN, RST,
ACK, or URG flags

e Flow Directionality Ratio— Ratio of bytes or packets from source to destination versus

reverse, useful in asymmetry detection

These features are derived either directly from raw PCAP files using tools like CICFlow Meter
or from pre-aggregated CSV files included in datasets such as CICIDS2017, KDD Cup 1999,
and multicast flow logs. The consistency in feature extraction across datasets enables
meaningful cross-domain comparisons and standardizes the input format for classical, deep,
and generative models. The design choice to focus on flow-level rather than packet-level
features is driven by both scalability and privacy considerations. Flow data significantly
reduces the dimensionality and volume of raw network traffic, making it suitable for real-time
anomaly detection in large-scal e environments. Additionally, since flow data excludes payload

information, it alows for security analytics without violating data confidentiality.

Overal, these basic flow features serve as the core input vector for all modelling experiments
conducted in thisresearch, and they aso form the foundation for advanced engineered features

and explainability analysis in subsequent sections.

3.4.3 KeyBasic Flow Features Used in This Study
The basic features that will be used across the datasets are shown in Table 13

Table 13: Key Flow Features used in study

Feature Name | Description Used In Models
Duration Total duration of the flow in seconds All models
src_bytes Number of bytes sent from source to | ML, DL, GAN,
destination Transformer
dst_bytes Number of bytes sent from the destination to | ML, DL, GAN
the source
total _packets Sum of packetsin both directions AE, RNN, Transformer

79



packet size avg | Mean packet size during the session ML, GAN

Protocol Encoded transport protocol (e.g., TCP, UDP, | All models

ICMP)
src_port Source port number ML (after encoding)
dst_port Destination port number ML (after encoding)

flow_direction | Flag indicating client — server or server — | DL, XAl, Transformer

client direction

flag_counts Count of each TCP flag observed (SYN, ACK, | DL, Autoencoder
FIN, RST)
Label Ground truth class (Normal, Attack type, App | Supervised models only

name)
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Rationale for Inclusion

High Coverage: Thesefields are available across all datasets (KDD, CICIDS, Kaggle).
Low Computation Cost: Can be extracted in real-time from streaming flow records.

Protocol Independence: Applicableto TCP, UDP, and even encrypted flows (since they
don’t rely on payload).

Early Filtering: Allow simple rule-based systems to filter flows before deeper Al
processing (e.g., based on port or byte thresholds).

Normalization and Encoding
Features like src_bytes, dst_bytes, and duration are scaled using Z-score normalisation

dueto their wide range and skew.
Categorical features (protocol, flag) are one-hot encoded.

Port numbers (src_port, dst_port) are binned or embedded depending on the model.



3.4.4 Statistical and Temporal Features

Beyond basic flow attributes, statistical and temporal features provide deeper insight into traffic
dynamics. These features capture variations and patterns over time within a flow or across
consecutive flows from the same source. They are especially valuable for detecting anomalies
that may not be visible through raw byte or packet counts, such as subtle timing manipulations
in steathy attacks or application misbehaviour. These features are particularly effective in
training models that require nuanced representations of behaviour—such as Autoencoders,
LSTMs, GRUs, Transformers, and GANs—which rely on recognizing patterns over sequences

or distributions.

i Key Satistical and Temporal Features Used

Table 14 indicates the Statistical and Temporal features used in state-of-the-art models of
Machine Learning

Table 14: Key statistical and temporal features

Feature Name Description Used In Models
inter_arrival_time_avg | Average time between packets within a| LSTM,

flow Transformer, AE

inter_arrival_time_std | Standard deviation of inter-arrival time AE, VAE, GAN

packet size std Standard deviation of packet sizes DL, AE, SHAP for
XAl

packet_ size min/max | Smallest and largest packet sizesseeninthe | RF, DL, VAE

flow

flow_burst_rate Number of packets arriving within a short | Transformer, GRU

window (e.g., per 100 ms)

flow_jitter Variation in inter-packet spacing GAN, VAE
flow_entropy Shannon entropy of byte distribution in the | Transformer,
flow unsupervised
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session_idle_time Time between flow start and actual first | RNN, Transformer

packet transmission

start_time, end_time | Timestamps marking flow boundaries For sequence

alignment

a Rationale for Inclusion

Temporal Resolution: Captures stealthy anomaliesthat use consistent volume but vary timing
(e.g., low DoS, covert channels).

Burst Detection: Used to flag flood-style anomalies such as DDoS or IGMP storms.

Variance I ndicators: High standard deviation or entropy can reflect encrypted, obfuscated, or
evasive traffic patterns.

Unsupervised Suitability: Features like entropy, jitter, and burst rate serve as robust inputs
for unsupervised learning and anomaly scoring.

b. Computation Strategy
Inter-arrival timeis computed per flow using timestamps of consecutive packets.

Entropy is calculated using byte-size histograms within a flow.

Burst rate is estimated using packet timestamps grouped in short-duration windows (e.g.,
00ms).

These features are normalized across datasets using log transfor mation or Z-scor e scaling to
handle skew.

C. Application in Dataset Contexts

In CICIDS 2017, these features helped detect Heartbleed and Infiltration attacks, where byte
counts remained low, but packet timing wasirregular.

In Kaggle datasets, burstiness and entropy were key to distinguishing streaming apps (e.g.,
Y ouTube) from messaging services (e.g., WhatsApp).

In KDD Cup, derived standard deviation features helped distinguish between connection
attempts and actual file transfers.

In Multicast traffic, temporal metrics highlight group churn behaviour, especially when
combined with join/leave counts.
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d. Visualizations
Here is the histogram comparing inter-arrival times between normal traffic and DDoS traffic.
As expected, DDoS flows exhibit significantly lower inter-arrival times, forming a tight peak
near 0.05 seconds, while normal traffic is more dispersed around 0.3 seconds. Entropy

distribution across labelled flows in shown in Figure 9

Histogram of Inter-Amival Times: Normal vs DDo% Traffic
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Figure 9: Entropy distribution across labeled flows
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Entropy Distribution Across Labeled Flows
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Figure 10: Entropy distribution vs Frequency distribution

Here, Figure 10 indicates the plotted Entropy Distribution Across Labeled Flows. There are
few considerable Observations, which are as follows:

Normal traffic has higher entropy due to diverse, regular activity.
DDoS and botnet traffic show lower entropy, reflecting repetitive, scripted behaviour.
Web attacks exhibit intermediate entropy, typically based on crafted payloads.

3.45 Behavioral Features

Behavioral features extend beyond the scope of single flows and capture broader interaction
patterns over time. These features are particularly effective for identifying slow-moving,
stealthy, or repetitive attack behavioursthat evade traditional volume or timing-based detection
techniques. Such behaviours may include frequent access to multiple ports, Short repeated
connections (e.g., scanning), Abnormal multicast group joins, and excessive datatransfersfrom
a single host. These features are especially powerful when aggregated per source 1P, user
session, or application class. Table 15 indicates the Key behavioral features that are used in
various ML Models.



Table 15: Key behavioral features used

Feature Name Description Used In Models

connection_rate Number of flowsinitiated per time unit from | ML, DL,
asingle source Transformer

host_port_variance Variance in destination ports contacted by a | RF, RNN, SHAP

single host

repeat_destination_ratio

Percentage of flows repeatedly targeting

same destination

Transformer, AE

unique_services_count

Number of different service types accessed

by the same source

RFE, VAE

group_churn_rate

Join/leave frequency for multicast groups
(host-level)

Multicast models,
AE

avg_flow_interval Average interval between two flow starts by | DL, XAl
the same source

failed_connection ratio | Failed vs successful connection attempts | SVM, AE
(TCPRST vs ACK ratio)

data_exfil_volume Total outbound volume to rare destinations | GAN, VAE, RF

i. Rationale for Inclusion

e Captures intent or behavior beyond what’s visible in a single flow.

e Critical for detecting lateral movement, port scans, and exfiltration.

e Makes models more resilient to adversaria noise (e.g., crafted payloads with fake

entropy).

e Especialy important in multicast networks, where host behavior towards group

memberships reveal s misconfiguration or misuse.
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Dataset Context and Use

In CICIDS 2017, connection_rate and host_port_variance hel ped expose port scans and
brute force attempts.

In Kaggle datasets, repeated flows to same service classes were flagged as anomalous
behaviors.

In multicast captures, group_churn_rate and avg_flow_interval highlighted anomalies
such as unauthorized group joins and source spoofing.

Visualization Idea

Connection Rate Comparison: Benign vs Malicious Hosts
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Figure 11: Sample Box plot comparing Benign and Malicious Hosts

Here, In Figure 11, the box plot compares connection rates between benign and malicious

hosts. As expected, malicious hosts exhibit significantly higher connection rates, indicative of
scanning, brute-force, or DDoS behaviours.
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3.4.6 Multicast-Specific Features

Multicast communication is essential for scalable content distribution in IP networks, such as

IPTV, conferencing, or real-time telemetry. However, multicast networks introduce unique

behaviors and failure conditions not observed in traditional unicast flows. These include group

dynamics, source replication, RP responsiveness, and |GM P-based control message volatility.

Therefore, anomaly detection models must incorporate multicast-specific features that reflect

the unique structure and behavior of multicast routing protocols like PIM-SM and IGMPv3.

This section presents features engineered explicitly to detect anomalies in multicast

environments, such as RP failures, unauthorised group joins, group churn storms, and multicast
flooding attacks. The key multicast features used are shown in Table 16

I Key Multicast-Specific Features Used
Table 16: Multicast-specific features used

Feature Name Description Relevance
group_join_rate Number of IGMP Join| Detects join  floods,
messages per second per host | instability

group_leave rate

Frequency of Leave messages
per group

Useful inidentifying churn

rp_response_delay

Time between Join/Prune
message and RP response
(e.g., Register or Data)

Indicates RP

sluggishness/failure

multicast_tree depth

Hop distance from source to
group receivers (from routing
metadata)

Measures efficiency and

routing loops

agroup over time

multicast_replication factor | Number of recelvers per | Can expose flooding or
multicast group replicated at | rogue sources
switch/router level

group_membership_variation | Change in active membersfor | Behavioral  feature  of

multicast volatility
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phantom_group_ratio Proportion of traffic targeting | Indicates  spoofing  or
non-existent groups scanning

source_flap_frequency Frequency with which the | Helps flag unstable or
multicast source switches or | spoofed source behavior
restarts

ii.  Rationalefor Inclusion
Traditional anomaly detection models ignore multicast control planes, assuming symmetric,
request-response traffic patterns. Many multicast-specific anomalies aretriggered at the control
level (IGMP, PIM) but result in subtle data-plane effects like RP blackholing or bandwidth
spikes. These features are especialy useful for identifying layer-3 issues in multicast trees,

routing instabilities, and group-level abuse from edge clients.

iii. Feature Extraction Strategy
Control-planeparsing: IGMP and PIM control messages are parsed from PCAP using custom
filters (e.g., tshark -Y "igmp").

Sour ce-tracking: Flow records are correlated with group join/leave logs to estimate churn and

replication rates.

RP response time: Measured as the delta between Join request and actual multicast data
delivery.

Replication factor : Extracted from NetFlow logs or multicast forwarding countersin switches.

These features wereintegrated into the same preprocessing pipeline and normalized using Min-

Max scaling to maintain consistency with the unicast feature set.

3.4.7 Dataset Application and Insights
In synthetic multicast testbeds, high group join rate and delayed rp_response delay were
effective in detecting simulated RP faillovers and join storms.

In rea-world enterprise logs, multicast_replication_factor spiked during unintended group
misuse (e.g., SSDP amplification).
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phantom_group_ratio and group_membership_variation helped identify 10T misbehaviour and
rogue IGMP hosts.

Flowchart in action

Group Join Rate Over Time Showing IGMP Storm Spike
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Figure 12: Group Join Rate vs IGMP Storm Spike

Here, in Figure 12, is the line chart showing a spike in group_join_rate during an IGMP
storm period. The shaded red area (between time 40 and 60 seconds) highlights the
abnormal burst of join messages—an indicator of multicast control-plane abuse.
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Replication Factor Heabmap Across Multicast Groups and Time Intervals
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Figure 13: Heatmap of replication factor across multicast groups

Figure 13 is the heatmap of the replication factor across multicast groups and time intervals.
The brighter (orange/red) regions indicate higher replication, with visible spikes simulating

multicast flooding or unauthorized joins.

3.4.8 Featurelmportance and Selection M ethods

Asthe volume and dimensionality of engineered features grow, it becomes essential to
identify the most relevant subset for each modelling strategy. High-dimensional data can lead
to overfitting, increased computational cost, and reduced model interpretability. This section
presents the techniques used to assess feature importance and perform feature selection across
various model architectures—ensuring optimal learning, generalization, and explainability.

The following techniques are used for feature importance.
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i. SHAP (SHapley Additive ExPlanations)
SHAP is a Model-agnostic method based on game theory. It computes the contribution of each
feature toward individual predictionsand isused for deep learning models, random forests, and
hybrid ensemble models. It utilizes visualisations like summary plots, force plots, and waterfall

plotsto interpret decisions.

ii. LIME (Local Interpretable Model-Agnostic Explanations)
LIME interprets individual predictions by approximating the model locally with a linear
interpretable model. It is especially useful for black-box models like autoencoders or GAN-
based detectors.

iii. Recursive Feature Elimination (RFE)
RFE isawrapper-based method that recursively removes|east important features. It iseffective
with models like SVM and logistic regression. It is usually combined with cross-validation for

robustness.

iv. Feature Importance from Tree-based Models
Random Forests and Gradient Boosting are the tree-based models which provide native
importance scores. Scores are derived from Gini impurity or information gain during training.

These are used as a quick filter for identifying and selecting dominant features.

V. Principal Component Analysis (PCA)
PCA is an unsupervised dimensionality reduction that projects data into fewer dimensions,
capturing maximum variance. It is used for visualization and noise reduction, especialy before
GAN and VAE input.

3.4.9 Application Across Models
Different Models and their application is shown in Table 17

Table 17: Models and their application

Model Type Selection Technique Used Outcome
Random Forest Tree-based importance, SHAP Reduced noise, faster training
SVM RFE, PCA Improved margin

generdization
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Autoencoder, VAE

PCA (preprocessing), SHAP
(post-training)

Reduced reconstruction error

GAN PCA + manual filtering Enhanced discriminator
precision
Transformer/LSTM | SHAP (attention-weight Focus on temporal + behavioral
validation) features
Hybrid Ensemble | SHAP + Tree-based voting Adaptive model-specific

features

3.4.10 Feature Engineering and Selection

Feature engineering is one of the most critical stages in the machine learning pipeline for

network anomaly detection. This process involves transforming raw network traffic datainto

a structured and meaningful representation that facilitates efficient and accurate anomaly

detection by Al models. Poor feature selection can significantly degrade model performance,

increase false positives, and reduce interpretability, especialy in high-dimensiona network

datainvolving complex unicast and multicast flows.

i.  Objectives of Feature Engineering

The main objectives of this stage are:

e To capture the essence of network traffic behavior through quantifiable metrics.

e Toreduce dimensionality and remove redundant or irrelevant attributes.

e Toimprove model convergence and prediction accuracy.

e Toensureadaptability to dynamic network environmentssuch as1oT, 5G, and multicast

ecosystems.

ii. Raw Feature Extraction from Network Flows

Initial features are extracted from raw packet captures (pcaps), NetFlow/sFlow logs, or

telemetry records using open-source tools (e.g., Wireshark, nfdump, Zeek). For this study,
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features were extracted using a combination of Python-based parsers and tools like

CICHowM eter, which generate bi-directional flow features such as:

Basic flow features: source IP, destination IP, source port, destination port, protocol,
timestamp.

Statistical features: flow duration, total bytes and packets sent in both directions, average

packet size, inter-arrival times.
Behavioral indicators. packet rate, burstiness, flow entropy, and session frequency.

iii. Derived Features for Multicast and |oT Flows
Given the unique behavior of multicast and |oT traffic, additional features were designed
specifically for those patterns:

Group Join Rate: frequency at which IGMP/MLD joins are observed.

Replication Factor: number of outgoing interfaces per multicast flow.

Group Lifetime: duration for which a multicast group remains active.

Device Stability Index: variability in traffic behavior from the same source over time.

For loT-specific flows, device fingerprints, protocol ratios (e.g., MQTT vs HTTP), and
periodicity metrics were introduced to distinguish benign vs anomalous devices.

iv. Temporal Feature Engineering
Temporal attributes were engineered to capture evolving behavior over time. Time-based
windows (e.g., diding and tumbling windows) were used to extract time-series aggregates

such as:
e Mean packet size over 5-second intervals.
e Peak inter-arrival times during congestion bursts.
e Frequency of anomalous protocol flags (e.g., FIN, URG).

Such temporal features were crucial in training models like RNNs and Transformers that rely

on sequence modeling.
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3.4.11 Data Preprocessing Steps

All datasets underwent multiple preprocessing operations to improve model input quality as
shown in Table 18

Table 18: Data processing Steps

Step Technique Used Purpose

Null Handling | Drop or Impute (mode/mean) Eliminate missing data

Outlier Z-score, QR filtering Remove noise and extreme

Detection values

Encoding One-hot encoding (protocols, ports) Convert categorical to
numerical features

Normalization | Min-Max scaling, Standard scaling Standardize feature ranges

Time UNIX timestamp conversion, time- Prepare for RNN and

Formatting window creation Transformer input

i Multicast Traffic Smulation and Annotation

Multicast flows are typically underrepresented in public datasets. To bridge this gap:

A custom multicast traffic ssmulator was built using Mininet and PIM-SSM protocol
scripts.

IGMP Join/L eave patterns, group replication trees, and flow membership dynamics were
programmatically generated.

Anomalies such as | GM P spoofing, register floods, and cross-VL AN leaks were injected at
specific intervals. Sample multicast tree is shown in Figure 14
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Sample Visualization of Simulated Multicast Traffic Traa
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Figure 14: Sample Visualization of Simulated Multicast Tree

ii. Data Splitting and Partitioning
Each dataset was partitioned into training, validation, and test sets. Special consideration was
given to time-based splits to simulate real-world progression: The ration of the train test split
isshown in Table 19

Table 19: Train test split

Split Type Ratio Use Case
Stratified Split 70/15/15 Genera model training

Time-based Sequential | Chronological window | Real-time detection scenario

Cross-Validation Blocks | 5-fold Model robustness testing
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Figure 15: Sample Split for the data
A simple split is shown in Figure 15

iii. Handling Imbalanced Classes
Anomaliestypically represent <5% of total records. To address thisimbalance:

SMOTE: Synthetic Minority Over-sampling Technique was applied to boost minority class
samples. Handling class imbalance is mentioned

Random Under sampling: Removed excess normal flows to balance the dataset.
Class Weights: Applied during model training to penalize fal se negatives more heavily.
Different method of handling classimbalance is shown in Table 20

Table 20: Handling class imbalance

Technique Before (Imbalance Ratio) | After (Balanced Ratio)
No Adjustment 98:2 N/A

SMOTE Only 98:2 65:35

SMOTE + Undersample | 98:2 50:50

iv. Data Quality Checks

To ensure consistency, the following checks were applied:
Schema Validation: Ensured uniform column structures across datasets.
Statistical Profiling: Checked for feature variance, skewness, kurtosis.

Traffic Consistency Check: Verified logical flow patterns (e.g., flow duration > 0, byte
count > packet count).
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3.5 Model Selection and Training
Model selection and training are central to building an effective and scalable anomaly detection

system. Given the diversity of network environments and the unique challenges posed by
unicast, multicast, and 10T traffic, this study adopted a modular strategy to evaluate traditional

machine learning models, deep learning architectures, and advanced generative Al models.

Table 21 indicates the model Selection details category-wise.

Table 21: Modedl selection details

M odel Category Strengths
Random Forest Classical ML Robust to overfitting, handles high-
dimensional datawell, interpretable
Decision Tree Classical ML Simple, fast, interpretable, works well on
structured data
Support Vector Classical ML Effective in high-dimensional spaces, good
Machine (SVM) for binary classification
Logistic Regression Classica ML Fast, interpretable, effective for linearly
separable problems
Naive Bayes Classical ML Efficient, handles categorical features, good
probabilistic baseline
K-Nearest Neighbors Classical ML Non-parametric, simple, captures local
(KNN) structure in data
AdaBoost Classical ML Combines weak |learners, adaptive to difficult
samples
Gradient Boosting Classica ML Powerful ensemble, handles complex patterns
XGBoost Classical ML Fast, regularized gradient boosting, often top
performer
Isolation Forest Unsupervised Effective for anomaly detection in high-
ML dimensional data
K-Means Clustering Unsupervised Captures global structure, simple clustering
ML approach
Agglomerative Unsupervised Hierarchical, effective for discovering nested
Clustering ML datarelationships
One-Class SVM Unsupervised L earns decision boundary around normal data,
ML good for novelty detection
Deep SVDD Deep Learning | Learns ahypersphere around normal data,
effective one-class method
AutoEncoder Deep Learning | Learns reconstruction, useful for anomaly
detection using reconstruction loss
RNN Deep Learning | Captures tempora dependenciesin sequential
data
LSTM Deep Learning | Handles long-term dependencies, useful for

time-series anomalies
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GRU Deep Learning | More efficient than LSTM, with similar
performance
Transformer Transformer- Captures global context, state-of-the-art for
based sequence modeling
GAN Generative Learns data distribution, flags deviations via
Model reconstruction error
VAE Generative Probabilistic model, models variance in data
Model effectively
Voting Ensemble Ensemble Combines predictions from multiple models
for robust generalization

3.5.1 Decison Tree

Zecision Tree! Anomaly Detection Using Network Flow Features

Figure 16: Sample Decision Tree
i Model Explanation

A Decision Treeis aflowchart-like tree structure where each internal node represents a feature
condition, each branch represents an outcome of that condition, and each leaf node represents
a class label (e.g., "Anomaly” or "Normal™). It partitions the data space into regions by
recursively splitting it based on the most informative features using metrics like Gini Impurity

or Entropy. Figure 16 shows the sample decision Tree of anomaly detection.

It builds the tree in a top-down, greedy fashion — selecting the best split at each step without

backtracking. Theresult isaset of smple if-else rules that mimic human decision-making.

ii. Reason for using Decision Trees in Anomaly Detection

o Decision Trees areinterpretable, making them ideal for identifying why a network flow
was flagged as anomalous.
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e They perform well on structured tabular data, which istypical of network traffic logs.

o Their fast training and inference time allow them to be used for real-time or near-real-
time intrusion detection.

e Treescan uncover nonlinear rel ationships between features (e.g., traffic rate and packet
sizejointly indicating an attack).

3.5.2 Random Forest

Hanmdam Forest: Ensamble of Dacision Trees and Majarty Vobing
Input Fertune s
e ety
™ == -\-\--\-\"'--
- T
o e
& --\-"'i
Tea ] T Tes 1
L
wabe 1 ¥aie 7 Ve 3
-\-"\-\_\__\_ e a3
i =
~—— -
ey e
Finsl Decishor

Figure 17: Sample Random Forest

i. Model Explanation
A Random Forest is an ensemble learning technique that builds multiple independent
Decision Trees using random subsets of the training data and feature space. Each tree outputs
a prediction, and the majority vote among them becomes the fina classification. The
randomness in sampling and feature selection reduces correlation among trees, improving
generdization and reducing overfitting — a key challenge in single-tree models. Figure 17 is

used to indicate the group of Decision trees, thereby forming a Random Forest.

ii. Reasons for using Random Forest for Anomaly Detection

e Robustness to noise and outliers makes it highly effective on noisy intrusion detection
datasets like CICIDS2017.
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« It can handle high-dimensional feature spaces, which are common in network telemetry.
« Feature importance scores aid interpretability, even in large ensembles.

o Performswell even with imbalanced datasets, making it suitablefor rare-event anomaly
detection.

3.5.3 Support Vector Machine (SVM)

svM: Decision Boundary and Support Vectors for Anomaly Detection
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Figure 18: Sample Support Vector Machine

i Model Explanation
A Support Vector Machine (SVM) is a supervised learning agorithm that finds the optimal
hyperplane separating classes in a high-dimensional space. The key idea is to maximize the
margin between the closest data points from each class— known as support vectors. SVM can
use kernel functions (e.g., linear, radial basis function) to handle nonlinear separations by
projecting data into higher dimensions where linear separation becomes possible. Figure 18
indicates a Sample Support vector Machine.

ii. Reason for using SYM Anomaly Detection

e« SVM excelsin high-dimensional spaces, making it suitable for complex network
datasets with many features.
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o Performswell with binary classification tasks, such as “Anomaly vs Normal”.
e Margin maximization improves generalization to unseen traffic patterns.

o Kerne trick allows modeling nonlinear boundaries for complex anomalies.

354 Logistic Regression

Logistic Aegression: Sigmoid Curve for Anomaly Classification
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Figure 19: Sample Logistic Regression

Hereisthe detailed subsection for L ogistic Regression, including the sigmoid curve
visualization and compl ete explanation:

i Model Explanation
Logistic Regression is a linear classification algorithm used to predict the probability that an
input instance belongs to a particular class. It maps the linear combination of input features to

a probability using the sigmoid function:
Py =1|x)=1/(1+exp(-(wx +b)))

This probability has athreshold of 0.5 to classify the input as “Normal” or “Anomaly”. Unlike
regression, the output is bounded between 0 and 1, making it ideal for binary classification.
Figure 19 shows the Sigmoid Curve
ii. Reason for Using Logistic Regression in Anomaly Detection
e Useful asafast and ssimple baseline model.
e Can detect linearly separable anomalies, like those with consistent feature thresholds.
« Interpretable coefficients help understand which features contribute to anomalies.

e Workswell in environments with limited compute power.
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3.5.5 NaiveBayes

MNaive Bayes: Feature Likelihoods for Anomaly Detection
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Figure 20: Sample Naive Bayes

i Model Explanation
Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, with the
simplifying assumption that features are conditionally independent given the class label. It
computes the posterior probability of each class (e.g., “Normal” or “Anomaly”) and assigns
the label with the highest probability. Figure 20 indicates the likelihood features for anomaly

detection using Naive Bayes.
Py [X) o< P(y) * [1[i=1 to n] P(x_i|y)
Degspite its smplicity, Naive Bayes often performs competitively in high-dimensional spaces.

ii. Reasons for Choosing Naive Bayes for Anomaly Detection

e Performswell in high-dimensional settings, especially with text or packet metadata.
o Probabilistic output enables threshold-based anomaly scoring.
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o Fast training and prediction, suitable for real-time systems.

« Good for categorical or discrete data, like protocol types or port numbers.

3.5.6 K-Nearest Neighbours (KNN)

E-Mearest Neighbaors (KNN): Anamaly Detection via Local Distance
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Figure 21: Sample K-Nearest Neighbours

i Model Explanation
K-Nearest Neighbours (KNN) is a non-parametric, instance-based learning method. It
classifies an input sample based on the mgjority class of its k-nearest neighbours in the feature
space using a distance metric such as Euclidean distance. For anomaly detection, atest point is
flagged as anomalous if it lies far from clusters of known “Normal” data points, i.e., its

neighbours are too distant or belong to a different class. Figure 21 indicates the sample K-
Nearest Neighbours.

ii. Reasons for Choosing K-NN for Anomaly Detection
o Effective at capturing local data structures, which isideal for behavioral anomalies.

o Workswell inlow-dimensional, structured feature spaces often found in network
telemetry.

o Detects distance-based outliers effectively, even when they don’t form distinct
clusters.

e No training phase — useful in rapidly changing environments.
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3.5.7 AdaBoost

AdaBoost: Iterative Reduction in Classification Error
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Figure 22: Sample Ada Boost

i Model Explanation
AdaBoost (Adaptive Boosting) is an ensemble method that combines multiple weak learners
(typically shalow decision trees) into a single strong classifier. Each learner is trained
sequentially, with greater focuson previousy misclassified instances. The algorithm assigns
weights to samples based on their classification difficulty. Misclassified samples get more
weight in the next round, pushing the next model to learn patternsthat the previous one missed.

Sample Ada boost is shown in Figure 22

ii. Reasons for Choosing Adaboost for Anomaly Detection

e Boosting is powerful at learning complex decision boundaries, improving detection
of subtle anomalies.

e Performswell onimbalanced datasets, which is common in anomaly detection.
e Sequentia learning helps the model to adapt to difficult-to-classify traffic patterns.

o Lightweight base learners make it efficient even in layered model configurations.
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3.5.8 Gradient Boosting

Gradient Boosting: Learning Curve Over |terations
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Figure 23: Sample Gradient Boosting

i Model Explanation

Gradient Boosting as shown in Figure 23 builds an ensemble of weak learners (typicaly
decision trees) sequentially, similar to AdaBoost. However, instead of re-weighting data points,
each learner is trained to minimize the residual error (loss gradient) of the entire ensemble on
thetraining set. At each stage, the model fits to the negative gradient of theloss function, hence
the name gradient boosting. This allows highly flexible modelling of complex nonlinear
functions,

ii. Reasons for using Gradient Boosting Anomaly Detection

o Handles complex, nonlinear patterns common in real-world anomalies.
o Excdlent for tabular network data, especially with mixed data types.

e Workswell with imbalanced datasets when combined with loss adjustments or class
weighting.
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o Captures interactions between features, critical in detecting subtle multi-feature
anomalies.

359 XGBoost

XGBoost: Learming Curve with Regularization
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Figure 24: Sample XGBoost

i Model Explanation
XGBoost (Extreme Gradient Boosting) as shown in Figure 24 is an optimized and regularized
implementation of Gradient Boosting. It introduces several improvements, such as:

e Regularization (L1 and L2) to prevent overfitting.

o Parallelized tree construction for speed.

o Weighted quantile sketch for efficient tree pruning.
e Missing value handling built-in.

It builds additive tree models where each new tree corrects the residuals of previoustrees using

gradient descent on a custom loss function. .

ii. Reason for choosing XGBoost for Anomaly Detection

e Known for state-of-the-art perfor mance on structured datasets like CICIDS and
KDD Cup.

e Robust to noisy or imbalanced data — useful in real-world network anomalies.

o Fast training and scalable, making it suitable for large datasets.
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Allowsfor fine-tuned control over learning dynamics, boosting anomaly detection
accuracy.

3.5.10 Isolation Forest
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Figure 25: Sample Isolation Forest

i Model Explanation

Isolation Forest as shown in Figure 25 is an unsupervised anomaly detection algorithm that

identifies anomalies by randomly partitioning the feature space using binary trees. Unlike most

algorithms that model normal instances, Isolation Forest instead isolates anomalies directly.

Anomalies tend to be less frequent and differ significantly from normal data— hence, they are

isolated faster, i.e., with shorter average path lengths in the tree structure.

ii. Reason for Choosing Isolation Forest Anomaly Detection
Specifically designed for unsupervised anomaly detection.

Highly efficient on large, high-dimensional datasets — ideal for network logs and
telemetry.

No prior labelling required, making it suitable for zero-day or novel attack detection.
Effectively captures sparse or scattered anomalies.

3511 K-MeansClustering

107



K-Means Clustering: Anomalies as Quthers from Clusters
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Figure 26: Sample K-Means Clustering

i Model Explanation
K-Means as shown in Figure 26 is an unsupervised clustering algorithm that partitions the
dataset into k clusters by minimizing the intra-cluster variance. Each data point is assigned to
the cluster with the nearest centroid, which is updated iteratively. In anomaly detection,
anomalies are treated as data points that are far from any cluster centroid, making them

outliers based on distance from cluster centers.

ii. Reasons for Choosing K-Means Anomaly Detection

o Capturesthe global structure of the dataset by forming distinct groupings.
o Allowsidentification of outliers as points far from any centroid.
e Useful for preprocessing or coar se anomaly filtering.

e Nolabelsrequired — suitable for unsupervised scenarios.
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3.5.12 Agglomerative Clustering

Agglomerative Clustering: Dendrogram Representation
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Figure 27: Sample Agglomerative Clustering

i Model Explanation
Agglomerative Clustering as shown in Figure 27 isatype of hierarchical clustering that begins
with each point as its own cluster and iteratively merges the closest pairs based on a linkage
criterion (e.g., Ward’s method, single, complete, average linkage). The result is a dendrogram
that shows the hierarchy of merges, which can be cut at different heights to yield varying
numbers of clusters. Anomalies can be detected as points that merge late, indicating they are

far from other clusters.

ii. Reasons for Choosing Agglomerative Clustering for Anomaly Detection

e Revedsnested data structure, identifying fine-to-coarse anomaly groupings.
« Doesnot require prior knowledge of the number of clusters.

o Waéll-suited for small-to-medium-sized datasets with an underlying hierarchical
structure.

o Enablesvisual anomaly discovery through dendrogram structure.
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3.5.13 One-Class SVM

One-Class SVM: Boundary of Normal Data
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Figure 28: Sample One Class SVM

i. Model Explanation
One-Class SVM as shown in Figure 28 is an unsupervised learning algorithm used primarily
for novelty detection. It learns a decision function that defines a boundary around the
majority (normal) class in feature space. Any instance faling outside this boundary is

considered an anomaly.

It relies on a kernel function (commonly RBF) to map data into a high-dimensional space

where it can find a separating hyperplane that encloses most of the data.

ii. Reasons for using One-Class SVYM for Anomaly Detection

o Specifically designed to model only normal data— ideal for scenarios with few or no
labelled anomalies.

o Effectivein high-dimensional settings with non-linear boundaries.
o Capable of detecting novel or rare patterns in streaming or online network data.

e Requiresonly asingle class of training data (normal flows).
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3.5.14 Deep SVDD (Support Vector Data Description)

Latent Feature 2
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Figure 29: Sample Deep SVDD

i Model Explanation

Deep SVDD as shown in Figure 29 is adeep |earning-based extension of Support Vector Data

Description. It trains a neura network to map input data into a latent space and learns a

hyper sphere that tightly encloses the normal data in that space. Anomalies are identified as

those points that fall outside this minimal enclosing hypersphere. Unlike One-Class SVM,

Deep SVDD learns a compact representation of the data through an embedded neural

network, which enhances its generalization on complex inputs.
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ii. Reasonsfor Choosing Deegp SVDD for Anomaly Detection

Particularly effective for deep featurelearning in high-dimensional data like flow
vectors or packet embeddings.

Designed for one-class lear ning, ideal for environments with abundant normal
samples but rare or unseen anomalies.

Combines representation learning and anomaly scoring in a single end-to-end
framework.



3.5.15 Autoencoder

AutoEncoder: Reconstruction Error Distribution
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Figure 30: Sample AutoEncoder

i. Model Explanation

An AutoEncoder as shown in Figure 30 is a neural network designed to learn a compressed
representation (encoding) of input data and then reconstruct it as closely as possible. It consists
of:

e Encoder: Maps input to alatent representation.
o Decoder: Reconstructs input from the latent code.

For anomaly detection, the AutoEncoder istrained only on normal data, so it reconstructs such
instances well. Anomalies, which differ in structure, have high reconstruction errors — making
them easily detectable.

ii. Reasons for using AutoEncoders for Anomaly Detection

e Can detect subtle, nonlinear anomaliesin complex datasets.
e Learnsfeature compression, highlighting out-of-distribution patterns.
e Unsupervised: requires only normal samplesfor training.

« Suitable for network telemetry, sensor data, or sequence flows.
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3.5.16 Recurrent Neural Network (RNN)

RNN: Temporal Sequence Modeling for Anomaly Detection
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Figure 31: Sample Recurrent Neural Network

i Model Explanation

RNNs as shown in Figure 31 are neural networks designed for sequential data, where the
current output depends on previous inputs. They maintain ahidden state across time steps,
enabling them to capture temporal dependencies. In anomaly detection, RNNs can model
expected patternsover timein metrics like traffic rates, packet intervals, or flow durations.
Deviations from learned patterns trigger anomaly flags.

ii. Reasons for Choosing RNNs for Anomaly Detection
o Capable of detecting temporal anomalies that manifest over multiple time steps.

o Suitablefor log data, telemetry streams, and packet traces.
e Learnssequentia behavior without feature engineering.

« lded for time-series anomaly detection tasks (e.g., periodic spikes, missing
heartbeats).
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3.5.17
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LSTM: Long-Term Sequence Modeling for Anomaly Detection
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Figure 32: Sample LSTM

i Model Explanation

L STM asshown in Figure 32 is atype of recurrent neural network (RNN) designed to capture

long-term dependencies in sequential data. It introduces memory cells and gating

mechanisms — input, output, and forget gates — to retain or discard information over time.

In anomaly detection, LSTMs learn the temporal evolution of normal sequences. Anomalies

areidentified as deviations in predicted values over longer time windows.
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ii. Reasons for Choosing LSTM for Anomaly Detection

Handles long-range dependencies better than vanilla RNNSs.
Excellent for time-series-based network logs and telemetry data.
Detects complex tempor al anomalies, like delayed responses or burst attacks.

Useful for contextual anomaly detection, where past events matter.



3.5.18 Gated Recurrent Unit (GRU)

GRU: Efficient Sequence Modeling for Anomaly Detection
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Figure 33: Sample GRU
i Model Explanation

GRU as shown in Figure 33 is a variant of the LSTM designed to capture sequential patterns
using asimplified gating mechanism. It merges the forget and input gates into a single update

gate, and also uses a reset gate, reducing the number of parameters compared to LSTM. In
anomaly detection, GRUs are used to learn the temporal structure of normal data and flag

deviationsin sequence behavior.

ii. Reason for choosing GRU for Anomaly Detection
o Capturestemporal dependencies efficiently with fewer resources than LSTM.

o Suitable for real-time sequence anomaly detection in resource-constrained
environments.

o Baances performance and computational cost in time-series analysis.

e Good for network logs, flow sequences, and monitoring telemetry.

3.5.19 Transformers
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ransformer; Attention Peaks for Anomaly Detection
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Figure 34: Sample Transformer

i Model Explanation
Transformers as shown in Figure 34 are deep learning architectures that leverage self-attention
mechanisms to model relationships between elements in a sequence, regardiess of their
positions. Unlike RNNs and LSTMs, Transformers process al elements in paralel, using
attention weights to focus on important time steps. In anomaly detection, Transformers can
learn to attend more strongly to unusual events or patternsin a sequence, identifying anomalies

based on attention score distribution or deviations from predicted outputs.

ii. Reason for Choosing Transformers for Anomaly Detection

o Captures long-range dependencies efficiently across sequences.
o Excellent for contextual and collective anomaly detection.
e Workswell on multivariate time-series, logs, or graph data.

« Attention mechanism givesinsight into why a point is anomalous.
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3.5.20 Generative Adversarial Network (GAN)

i GAN: Generator vs Discriminator Loss During Training
L]
\ _/.H_
I". L. .-"'F__
- \ A
B 1 oo
Is ,h.w/'
0k
;; - 1 L
E mifalnn L
0.4
xh-__'.d'".\\.
0.2 x‘m. e
d - el
\_a- ‘\'.—-._pl
2.5 %0 7.5 10.0 125 15.0 175 20.0

Epoh

Figure 35: Sample GAN

i Model Explanation
GANSs as shown in Figure 35 consist of two competing neural networks:

o A Generator (G) that triesto create synthetic data indistinguishable from real data.
e A Discriminator (D) that attempts to distinguish between real and generated samples.

The training objective is a minimax game, where both networks improve iteratively. In
anomaly detection, GANs can be trained on normal data and used to flag inputs with high
reconstruction error or poor discriminator confidence as anomalies.

ii. Reasons for Choosing GAN for Anomaly Detection
e Learnsto replicate the distribution of normal data, making it sensitive to deviations,

o Useful for image-based, time-series, or high-dimensiona structured data.
o Generates synthetic normal instances for comparison or data augmentation.

o Effectivein unsupervised or semi-supervised anomaly detection tasks.
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3.5.21 Variational AutoEncoder (VAE)

VAE: Latent Space Representation
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Figure 36: Sample VAE

i Model Explanation
A VAE as shown in Figure 36 is a generative model that combines deep learning and
variational inference. It encodes input data into a probabilistic latent space and learns to

reconstruct it while minimizing both:
e Reconstruction L oss (how close the output isto the input), and

« KL Divergence (how far the latent distribution deviates from a standard normal
distribution).

In anomaly detection, anomalies typically have higher reconstruction error and less

probable latent encodings than normal data.

ii. Reason for choosing VAE for Anomaly Detection

e Learnsto model both data reconstruction and latent distribution, enabling dual
anomaly scoring.

o Wadl-suited for structured, high-dimensional, and multivariate data.
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o Generates uncertainty-aware encodings, improving robustness.

e Can flag anomalies based on reconstruction loss or latent likelihood.

3.5.22 Voting Ensemble

Voting Ensemble; Agagregating Predictions from Multiple Mode|s
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Figure 37: Sample Voting Ensemble

i Model Explanation

A Voting Ensemble as shown in Figure 37 combines predictions from multiple base modelsto
produce a single, more robust output. Each model casts a “vote” on the class label, and the
ensemble outputs:

e Mgjority class (hard voting) or
o Weighted average of probabilities (soft voting).

It leverages the diversity of models— such as combining SVM, Random Forest, and KNN —
to reduce individual bias and variance.

ii. Reasons for Choosing Ensembling for Anomaly Detection

o Improves robustness by combining different perspectives of anomaly scoring.
e Reduces fase positives by balancing aggressive and conservative models.
« Effective on heterogeneous datasets with nonuniform data behavior.

« Enablesleveraging both generative and discriminative models in tandem.
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3.5.23 Overall Comparison

Classification af All 22 Models by Capability and Complaxity
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Figure 38: Overall Comparison of all 22 Models

iii. Model Training Pipeline

Each model underwent a standardized training pipeline:
Dataset L oading: Preprocessed training and validation sets |oaded.
Model Initialization: Configured with selected hyperparameters.
Training & Validation:

Classica ML: sklearn with 5-fold cross-validation.

Deep Learning: Keras/PyTorch with early stopping and dropout.
Hyper parameter Tuning:

Randomized search + grid search.

Bayesian optimization for deep models.
Evaluation:

Accuracy, precision, recall, F1-score, AUC-ROC.

Confusion matrix and classification report. Overall comparison in Figure 38
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3.5.24 Model Comparison Metrics

The Table 22 shows the complete Model comparison metrics.

Table 22: Model Comparison Metrics

M odel Training F1 Score | AUC- Anomaly Interpretability
Time ROC Recall
Decision Tree Low Moderate | Moderate | Moderate High
Random Forest Moderate High High High Medium
Support Vector High High High Moderate Low
Machine
Logistic Low Moderate | Moderate | Moderate High
Regression
Naive Bayes Low Low Low Low High
K-Nearest Moderate Moderate | Moderate | Moderate Low
Neighbors
AdaBoost High High High Moderate Medium
Gradient Boosting | High High High High Medium
XGBoost High Very Very High Medium
High High
Isolation Forest Low Moderate | Moderate | High Medium
K-Means Low Low Low Low Low
Clustering
Agglomerative Moderate Low Low Low Low
Clustering
One-Class SVM High Moderate | Moderate | Moderate Low
Deep SVDD Very High | Moderate | Moderate | High Low
Autoencoder High High Very Very High | Medium
High
RNN Very High | Moderate | Moderate | High Low
LSTM Very High | High High High Low
GRU High High High High Low
Transformer Extremely | High Very High Medium
High High
GAN Very High | Very High Very High | Low
High
VAE Very High | High High High Medium
Voting Ensemble | High High High High Medium

The radar plot comparing the capabilities of various models (Decision Tree, Random Forest,
LSTM, Autoencoder, GAN, Transformer) across four key metrics: F1 Score, AUC-ROC,
Anomaly Recall, and Generalization is shown in Figure 39
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Figure 39: Radar Plot for 22 Models

3.6 Multicast-Aware Training Adjustments

Specia accommodations were made for multicast datasets is shown in Figure 40

Group-based Batching: Training batches were aligned by multicast group for temporal
coherence.

Dynamic Replication Factors: Modeled as features in the anomaly scoring function.

Group Join Frequency: Embedded in the Transformer model for temporal awareness.
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Figure 40: Multicast Specific Injection

3.7 Framework and Toolkits
All models were devel oped using the following ecosystem as shown in Table 23

Table 23: Framework Used

Tool Purpose
Scikit-learn Classical ML algorithms

TensorFlow/Keras | Deep learning (AE, LSTM)

PyTorch Transformer, GANs
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Optuna Hyperparameter optimization

Weights & Biases | Training analytics & monitoring

NumPy, Pandas Data preprocessing

This structured approach ensured that each model was trained, optimized, and evaluated
under controlled conditions, with multicast-awareness integrated for group-based anomaly
analysis. The best-performing models from each category were carried forward for further

interpretability and deployment.

3.8 Evaluation Metrics

To rigorously assess the performance of ML and DL models for anomaly detection, a set of
classification and anomaly-focused metrics were employed. This section provides a
structured overview of these metrics and presents a comparative visualization and analysis of
model behavior.

3.8.1 Standard Classification Metrics

The following metrics were used to evaluate each model's overall classification performance:
Accuracy — Proportion of total correct predictions.

Precision — Percentage of detected anomalies that were actually anomalous.

Recall — Proportion of actual anomalies correctly identified.

F1 Score— Harmonic mean of precision and recall; critical in imbalanced datasets.
AUC-ROC — Measures the area under the Receiver Operating Characteristic curve.

These metrics form the baseline for comparing models such as Decision Tree, Random
Forest, Isolation Forest, LSTM, Autoencoder, GAN, and Transformer.

3.8.2 Anomaly-Centric Evaluation
For anomaly detection in particular, we added the following specialized metrics:

Anomaly Recall — Focuses on capturing actual anomalous traffic.
False Positive Rate (FPR) — Percentage of benign traffic flagged as anomalous.

Detection Latency — Time delay between anomaly occurrence and detection; especially
important in real-time scenarios.
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3.8.3 Overfitting Detection
To detect overfitting, we visualized the training and validation loss over 50 epochs. As shown
in Figure 41, complex models tend to start overfitting around epoch 30, where validation loss

begins to increase while training loss continues to decline.

Cherfitting Visualbizabion — Train vs Validation Loss
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Figure 41: Overfitting Visualization — Train vs Validation Loss

Modé training and evaluation were conducted using Google Colab and the following
libraries:

scikit-learn — Metric calculation, model evaluation.
TensorFlow / PyTorch / Keras— Model development.
Matplotlib / Seaborn — Data visualization.

Optuna, Weights & Biases— Hyperparameter optimization and training monitoring.

3.9 Position of Modelsin IDS/IPS Ar chitecture
The proposed integration embeds each algorithm into the anomaly detection module in Figure
42 of the IDS/IPS pipeline. The system is modular and can dynamically choose the model

based on available resources and threat complexity.
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Classica Supervised Models (RF, DT, SVM, LR, etc.):
Fast and lightweight, ideal for baseline classification and low-latency environments. These
models offer explainability via feature importance scores and are well-suited for rule-driven

IDS modules.

Unsupervised Models (KMeans, Agglomerative, | solation Forest):
Effective in zero-label scenarios where predefined attack signatures are unavailable. These
models are suitable for deployment in early-stage networks or exploratory anomaly

monitoring zones.

Advanced Ensemble Models (AdaBoost, GBM, X GBoost):
These deliver strong generalization and are used in multi-stage detection chains, particularly

in cloud data centers and multi-tenant infrastructures.

Deep Learning Models (AutoEncoder, LSTM, GRU, SimpleRNN, Deep SVDD):

Applied where sequence awarenessis vita (e.g., flow patterns, protocol behavior).
AutoEncoders are used in reconstruction-based anomaly scoring, while LSTM/GRU are used
in temporal anomaly prediction layers.
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Transformer-Based Models: Deployed in multicast-heavy or 10T environments where
attention to packet sequence and group behavior is needed. Transformer models offer

excellent generalization and real-time adaptability.

GANSs:. Used for zero-day detection and anomaly generation to simulate attack patterns.
Integrated as an auxiliary model in hybrid IDS setups to monitor and score anomaly

probability from synthetic reconstruction.

3.10 Hybrid Deployment Framework
A hybrid architectureis proposed to combine fast-response models with deep models for

accuracy.

Classical Model — Real-Time Triage
Deep Model — Contextual Analysis

GAN — Anomaly Simulation and Scoring
Final Scoring — Alert / Block

Thislayered IDS/IPS pipeline ensures real-time speed, minimal false positives, and

robustness against new threats.

3.11 Practical Deployment Considerations
Low Latency: Classica models (e.g., RF, SYM) handle real-time edge traffic.

GPU Accderation: Transformers, LSTM, and GAN models run in batch mode with

GPU/Tensor cores.

Containerized Inference: Models are dockerized and exposed as REST APIsfor scalable
deployment.

Streaming Support: Apache Kafka or Flink for real-time packet ingestion and model scoring.

3.12 Deployment Use Cases
Table 24: Deployment Use Cases

Use Case Recommended Models

Enterprise Edge Firewall RF, Isolation Forest, SVM

Cloud CoreIDS AutoEncoder, XGBoost, Transformer
Multicast IPTV Network Transformer, GRU, GAN

loT Gateways Deep SVDD, LSTM
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| Zero-Day Attack Monitoring | GAN, Isolation Forest

Sample Deployment use caseis shown in Table 24

3.13 Chapter Summary

This chapter presented a comprehensive methodol ogy for designing, training, evaluating, and
deploying anomaly detection models for both unicast and multicast network traffic. The
process began with the collection of diverse datasets, followed by rigorous preprocessing

including normalization, encoding, and feature selection.

A wide range of models—spanning classical supervised learning (e.g., Random Forest, SVM,
XGBoost), unsupervised clustering (e.g., KMeans, Isolation Forest), deep learning (e.g.,
LSTM, Autoencoder, Transformer), and generative models (GANs)—were selected and
trained using a well-defined training workflow. Special care was taken to adapt these models
to network-specific requirements such as multicast flow detection, encrypted traffic handling,
and imbalanced class distributions. The chapter introduced a detailed set of evaluation metrics
(F1 Score, AUC-ROC, Anomaly Recall, etc.) and visualizations (confusion matrices, radar
plots, overfitting curves) to compare model performance under varied conditions. It also
discussed explainability using SHAP and LIME to enhance trust and interpretability in model

outputs.

Deployment considerations were explored in-depth, including containerized, GPU-accel erated
real-time inference pipelines that integrate directly into IDS/IPS frameworks. This was
supported by detailed architecture diagrams and optimization strategies ensuring scalability
and low-latency performance. Altogether, this methodology sets a strong foundation for the
results and discussion in the upcomi.ng chapters, ensuring that the proposed models are both

scientifically rigorous and practically deployable.
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4. CHAPTERIV: ANALYSISOF DATA AND PATTERNS

4.1. Introduction

The accurate detection of anomalies in network traffic is inherently tied to a thorough
understanding of the dataitself. Asthe complexity and scale of network environments continue
to grow—driven by increasing device proliferation, hybrid cloud adoption, edge computing,
and multicast communications—the volume and heterogeneity of network data present both
opportunities and significant challenges for anomaly detection systems. In this context,
Chapter 4 serves as a bridge between the theoretical and methodologica foundation laid in
the previous chapters and the experimental outcomes detailed in Chapter 5. It focuses on
analyzing the raw characteristics, behavioral traits, and statistical patterns found in the datasets
used throughout this study.

The goal of this chapter isto uncover latent structures and trendsin the datasets prior to

model training, which aids in multiple dimensions of the research:

1. It informs feature engineering decisions, such as normalization, encoding, and
selection.

2. It supports model selection logic, particularly for cases with class imbalance or

sequence dependency.

3. It provides a basdline understanding of data behavior, against which model
performance can later be interpreted.

4. It highlights dataset-specific nuances such as traffic burstiness, multicast group

volatility, and protocol diversity.
The research draws from arich combination of datasets:

1. CICIDS2017, amodern and widely adopted intrusion detection dataset, segmented by
traffic days and attack types.

2. NSL-KDD, aclassical benchmark dataset that, while dated, still offers structured and
balanced samples for anomaly detection.

3. App-Data-87, alarge and diverse dataset derived from application-layer flows across
87 services, capturing real-world application usage patterns.
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4. Custom Multicast Dataset, designed specifically for this study to simulate and label
multicast anomalies such as group spoofing, join-leave storms, and cross-VLAN

|leakage—areas underrepresented in existing datasets.

Each dataset brings its own traffic dynamics, feature sets, and labeling schemes, which are
carefully harmonized through preprocessing and transformation. However, even after
preprocessing, the inherent behavioral diversity of the datasets remains a key factor in how

models generalize and respond to anomalies.
In the sections that follow, the chapter delvesinto:
1. A comparative overview of dataset structure, size, and composition.

2. Thedistribution and balance of anomaly classes, with an emphasis on challenges posed

by extreme skew or near-uniform distributions.

3. A deep dive into feature-level patterns, including statistical properties like skewness,

variance, and correlation.

4. Temporal trends, such asthetiming and frequency of anomaly bursts, slow-drip attacks,

and recurring multicast behaviors.

5. Cross-dataset comparisons to understand how features and anomalies manifest

differently across traffic types (e.g., unicast vs multicast, real-world vs synthetic).

Visual tools such as histograms, correlation heatmaps, time-distribution plots, and feature
variance charts are used to support the narrative. These visualizations not only enhance
interpretability but also lay the groundwork for model diagnostics and explainability in later
chapters.

Ultimately, this chapter sets the analytical stage for the model evaluation presented in Chapter
5. It ensures that the models are not treated as black boxes, but rather as tools evaluated in the
context of well-understood data, strengthening both the scientific rigor and practica

applicability of the study’s conclusions.

4.2 .Dataset-Specific Observations
This study employs a diverse collection of publicly available, benchmark, and custom-

generated datasets that collectively represent awide spectrum of network traffic environments,
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anomaly types, and feature characteristics. The selection of datasetsis intentionally diverse to

evaluate the generalizability and robustness of anomaly detection models across different

traffic domains, including enterprise network flows, application-level telemetry, legacy packet

captures, and multicast communications.

The data sets used in this research span four major categories:

1.

3.

CICIDS2017 (Canadian Institute for Cybersecurity Intrusion Detection System
2017) A modern benchmark dataset that simulates enterprise traffic over severa days.
It containsamix of benign and attack traffic, segmented by day and scenario (e.g., DoS,
DDoS, brute-force, infiltration). Traffic flows are captured at the packet level and
aggregated into labelled flow records with 85 features.

NSL-KDD (An Enhanced Version of the KDD Cup 1999 Dataset) -A widely used
legacy dataset that includes 22 attack types across four categories: DoS, Probe, R2L,
and U2R. While it lacks the realism of more recent datasets, its balanced structure and

compact size make it valuable for baseline comparisons.

App-Data-87-A high-dimensional dataset containing flow-level statistics from 87
distinct applications or services. This dataset includes anonymized metadata and
labeled anomalies based on known behavioral deviations or infections. It iswell-suited

for studying application-aware anomaly patterns.

Custom Multicast Dataset- Generated specifically for this research, this dataset
simulates multicast group communication flows under both normal and abnormal
conditions. It includes anomalies such as group spoofing, join/leave storms, and
asymmetric source behaviour—scenarios not well represented in public datasets. The

dataset contains 91 features, many of which are specific to multicast dynamics.

A summary of these datasets is provided in Table 25
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Table 25: Summary of Datasets Used

Dataset No. of No. of Anomaly | Multicast | Description
Records Features | % %

CICIDS2017 (7 | ~2,830,743 | 85 ~3.2% 0% Modern enterprise

subsets) traffic with varied
attack simulations

NSL-KDD 148,753 42 21.1% 0% Balanced legacy
dataset with 22
known attack types

App-Data-87 887,550 46 7.4% 0% Application flow
records across 87
services

Custom 1,152,089 |91 11.3% 100% Multicast group

Multicast Flow behavior with

Dataset labeled anomaly
types

The heterogeneity of these datasets enables the evaluation of models across:

e Different feature dimensions and traffic patterns
e Anomaly density from sparse (~3%) to dense (>20%)
e Unicast and multicast environments
o Flow-level behavior vs. sequence-level temporal data
Each dataset undergoes a standardized preprocessing pipeline to ensure comparability,

including label normalization, missing value handling, encoding, and scaling. Further feature-
specific and temporal analysis of each dataset is provided in the following sections.

4.3.Class Distribution and Imbalance

The effectiveness of anomaly detection models is strongly influenced by the class distribution
within the underlying datasets. In the context of network traffic, this often manifests as a
significant imbalance between the number of benign (normal) and malicious (anomalous)
records. While benign traffic constitutes the overwhelming majority in real-world
environments, anomalies—despite being infrequent—carry disproportionately high security
importance. This imbalance presents both a modeling challenge and a research opportunity,
necessitating careful design choicesin evaluation, training strategy, and threshold tuning.

4.3.1. Understanding Class Imbalancein Network Data
In supervised learning settings, models tend to be biased toward the mgjority class, often
resulting in deceptively high accuracy while completely failing to detect rare anomalies. A
dataset with 95% normal traffic and 5% anomalies, for instance, can yield 95% accuracy even

if the model ignores al anomalies. This makes metrics such as F1-score, Recall, and AUC-
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ROC far more informative than accuracy in imbalanced settings. Unsupervised and generative
models also rely heavily on the quality and quantity of benign behavior to establish a baseline,

meaning the imbalance directly impacts anomaly boundary definitions.

4.3.2. Dataset-Specific Imbalance Analysis
Each dataset used in this research demonstrates varying degrees of imbalance. Table 26
summarizes the approximate number of anomal ous records, total records, and the resulting

anomaly percentage per dataset.

Table 26: Table class distribution across datasets

Dataset Total Anomalous | Anomaly | Notes
Records Records %

CICIDS2017 ~2,830,743 | ~90,583 ~3.2% Highly imbalanced;

(Combined) anomalies appear in bursts
(e.g., Hulk, DDoS)

NSL-KDD 148,753 ~31,400 21.1% Moderately balanced;
includes 4 attack categories
across 22 subtypes

App-Data-87 887,550 ~65,700 7.4% Moderate imbalance;
anomalies include app-layer
behavior deviations

Custom 1,152,089 | ~130,000 11.3% Contains multicast-specific

Multicast anomalies (eg., spoofed

Dataset joins, group flaps)

The Figure 43 the anomaly detection across the datasets
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4.3.3. Dataset-Wise Observations

CICIDS2017: The CICIDS dataset, while comprehensive, reflects a redlistic
enterprise scenario where anomalies are infrequent and context-dependent. For
instance:
Monday's data is entirely benign, offering clean samples for unsupervised learning
baselines.

Tuesday and Wednesday introduce brute-force and DoS attacks, which are limited in
scope and volume.

Friday afternoon sees a massive spike in traffic due to DDoS and PortScan attacks,
resulting in temporal bursts of anomaly concentration within short intervals.

Thisirregular and bursty distribution poses achallenge for temporal modelslike LSTM
and Transformer, which must differentiate between legitimate high-volume traffic and

malicious spikes.

The Figure 44 shows the Anomalous vs Benign Distribution for all the datasets
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Figure 44: Benign vs Anomalous Distribution Across PCAP
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ii. NSL-KDD
As a benchmark dataset, NSL-KDD provides a structured and moderately balanced class
distribution. With over 21% of records labeled as anomalies, it alows for consistent
training and validation without artificial balancing or oversampling. However, it lacks
protocol variety and real-world traffic irregularities, making it less effective for modern
model stress-testing. Dataset distribution for KDD Cup 1999 is shown in Figure 45
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Figure 45: KDD Cupp 1999 Benign vs Normal
iii. App-Data-87

This dataset simulates application-layer traffic across 87 services, including web, streaming,
messaging, and file-sharing protocols. The anomaly ratio of 7.4% reflects operational
deviations, which may arise from behavioral drift, infected endpoints, or misconfigurations.
Unlike CICIDS, where anomalies are tied to known attack tools, App-87 as shown in Figure
46 includes subtle and distributed anomalies—a challenging setting for both supervised and
unsupervised detectors.
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App-Data-87: Label Distribution in split_4_with_infected.csv
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Figure 46: App-Data 87 Benign vs Normal

iv. Custom Multicast Dataset
The multicast dataset as shown in Figure 47 is intentionally constructed to reflect anomaly-
rich multicast behavior without sacrificing realism. At 11.3% anomaly rate, it balances
learnability with diversity. Anomalies here are not volume-driven but state-driven, such as
frequent joing/leaves, spoofed source IPs, or asymmetric data flow patterns. The dataset is
particularly useful for testing flow consistency models, clustering approaches, and time-

sensitive anomaly detectors.
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Multicast Dataset: Flow Distribution (Benign vs Anomalous)
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Figure 47: Multicast Benign vs Normal

4.4.Feature Distribution and Variance
Understanding the statistical distribution and variance of network flow featuresiscritical in
anomaly detection, as these characteristics help differentiate between normal and abnormal
behaviors. Feature distributions influence both the preprocessing strategy (e.g.,
normalization, log-scaling) and the detection model's sensitivity. This section explores key
flow-leve features across all four datasets—CICIDS2017, NSL-KDD, App-Data-87, and the
Custom Multicast dataset—with afocus on class-wise and dataset-wise variance.

4.4.1. Feature Set Overview
Across the datasets, a consistent set of featuresis extracted or engineered to represent
network behavior at the flow level. While some datasets like NSL-KDD offer fewer features
due to their legacy nature, modern datasets such as CICIDS2017 and Multicast Flow offer
rich metadata, including packet-level statistics and session behaviour.
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Commonly analyzed features in this section include:

Flow Duration (ms): Time from the first to the last packet in a session
Total Bytes: Sum of payload bytes transferred in the flow

Total Packets: Number of packets exchanged

Average Packet Size: Total bytes divided by packet count
Inter-Arrival Time: Average time between successive packets

Sour ce and Destination Ports: Useful for identifying well-known attack vectors (e.g., port
22, 23, 445)

TCP Flags: Presence of SYN, FIN, ACK, RST helpsidentify scans and handshake anomalies

4.4.2. Class-Wise Feature Distributions

This section analyzes how these features differ between benign and anomal ous classes,
revealing key behaviora shifts.

i. Flow Duration
In CICIDS2017, benign sessions tend to last longer, especially in regular user activity (e.g.,

web browsing, filetransfer). Anomalies such asDDoS and Hulk attacks exhibit extremely short
durations (<100ms) due to repeated flooding.

InNSL-KDD, DoS attacks have consi stent duration patterns, but infiltration attacks createlong
sessions.

In Multicast, long-duration anomalies may indicate sustained group abuse or source flooding.

ii. Total Bytes
In App-Data-87, benign flows typically show wide byte distribution due to multimedia and
file-sharing traffic. Anomal ous records often have spikes due to unexpected payload
volumes.

In Multicast, anomalies tend to have either extremely low byte counts (due to spoofed joins)
or very high counts (from rogue source flooding).

4.4.3. Dataset-Wise Feature Variance

i CICIDS2017
e Featureslike Flow Duration and Packet Count show large variance across subsets.
e Monday (benign) is well-behaved; Friday Afternoon (DDoS) has multiple extreme
values, particularly in byte and packet features.
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e Feature skewness necessitates z-score standardization and log transformations for
distance-based models.
NSL-KDD

e Feature values are tightly bounded due to pre-processing during dataset generation.
e Lower variance in byte and duration features; suitable for lightweight classical models
like Logistic Regression, Decision Tree.
App-Data-87

e High application-layer variability leads to very wide feature ranges.
e Models benefit from robust scaling (StandardScaler or MinMax) and regularization to
prevent overfitting.
Multicast Dataset

e Featureslike Join Rate, Leave Entropy, and Source Consistency show high variance for
anomalies.
e Useful for identifying state-based anomalies (spoofed source, group floods).
e Certain features are exclusive to multicast behavior and not present in other datasets.
Per feature variance comparison across datasets is mentioned in Figure 48 as well as Table 27

Table 27: Per-Feature Variance Comparison Across Datasets

Feature CICIDS2017 | NSL-KDD | App-Data-87 | Multicast Flow
Flow Duration (ms) | 1.6 04 2.3 15
Tota Bytes 2.1 0.5 25 2.2
Packet Count 1.9 0.6 21 1.6
Avg Packet Size 1.3 0.3 1.8 1.7
Inter-arrival Time | 1.7 04 19 14
Feature FRelesance Acmss Datasets (Mormalized Scooes )
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Figure 48: Feature Relevance Across Datasets

4.4.4. Implicationsfor Detection Models

Modelslike SVM, k-NN, and I solation Forest are highly sensitive to feature scaling.
Without normalization, features with higher variance (e.g., Total Bytes) can dominate
decision boundaries.

e Deep learning models (e.g., Autoencoder, LSTM) can learn around raw variance, but
benefit from reduced skew.

e SHAP explainability shows that features like Flow Duration, Byte Count, and Packet
Count consistently appear in top 5 important features across tree-based and ensemble
models.

e For multicast detection, features like Group Stability and Join Rate contribute
significantly to anomaly scores in unsupervised models.

4.45. Summary Observations
Overal summary of the observationsis present in Table 28

Table 28: Summary Observations

Feature High Varianceln | Model Implications
Flow Duration CICIDS, App-87 Needs normalization; useful for
Autoencoders

Tota Bytes CICIDS, Multicast | Dominant in DDoS detection

Packet Count All datasets Highly correlated with Byte count

Port/Protocol usage | NSL-KDD, Categorical encoding required
CICIDS

Multicast Multicast only Key to state-based anomaly modeling

Join/Leave

4.4.6. Temporal and Behavioral Patterns
While static features like byte count and flow duration are essential, a critical dimension of
network anomaly detection lies in the tempora evolution of traffic and behavioral flow
patterns. Certain attacks occur in short, high-intensity bursts (e.g., DDoS), while others evolve
dowly over time (e.g., data exfiltration, infiltration). This section investigates the time-based
behavior of network anomalies across all datasets, identifying patterns that justify the use of
sequential and temporal learning models such as LSTM, GRU, and Transformer.

i Importance of Temporal Analysisin Network Security

Temporal analysis enables:
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Identification of burst-based anomalies (e.g., DoS, scan storms)

Detection of low-and-slow anomalies that evolve gradually (e.g., stealthy infiltration)
Assessment of periodic or cyclic behaviors, including beaconing and botnet check-ins
Insight into attack propagation across sessions and flow intervals

Temporal anomalies may not be distinguishable by static feature inspection alone. Hence,
anomaly detection must leverage the time dimension, particularly for modern Al-driven

models.

ii. Temporal Flow Patternsin CICIDS2017

CICIDS2017 is particularly well-suited for temporal pattern analysis as each subset
corresponds to a specific day of traffic with time-stamped flows. Anomaly patternsin this
dataset range from completely benign days (Monday) to heavily attack-laden days (Friday

Afternoon).

iii. Observed behaviours
The overall temporal patternsis shown in Table 29

Table 29: temporal patterns

Day Attack Type Temporal Characteristic

Monday None Flat benign profile

Tuesday Brute Force Short periodic spikes, localized login attempts

Wednesday DoS (Hulk, Sharp bursts followed by idle periods
Slowloris)

Thursday- Web Exploits Sparseirregular attack attempts

Morning

Thursday- Infiltration Long sessions with minimal signature

Afternoon

Friday-Morning Botnet Clustered bot activity, moderate spikes

Friday-Afternoon | DDaoS, PortScan Sustained traffic explosion with extreme peak

anomalies

Multicast Flow Temporal Patterns

The Custom Multicast dataset is unigque in capturing flow behavior tied to group

communication. Temporal anomalies include:
e Join/L eave storms: Multiple group membership changesin very short windows

e Spoofed sour ce flooding: Unusual packet rates from previously unseen sources
e Sudden entropy shiftsin group membership or traffic directionality
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Temporal grouping and correlation between group dynamics and traffic load help detect

anomal ous multicast behaviors.

4.4.7.

Behavioral Flow Patter ns Across Datasets

This subsection generalizes recurring behavioral patterns observed across datasets:

CICIDS: Hulk, DDoS, and PortScan attacks show sharp flow density peaks at precise times

NSL-KDD: Since timestamps are abstracted, behavioural analysisis limited to categorical

patterns

App-Data-87: Exhibits application-layer periodicity, such as chat bursts or streaming

sessions

Multicast: Strong behaviora signatures from role-based anomalies (e.g., sudden receiver

overload)

iv.

Temporal Analysis and Model Implications

Temporal plotsjustify using sequential models (e.g., LSTM, Transformer) for datasets like
CICIDS and Multicast

For stateless datasets (e.g., NSL-KDD), behavioral inference must be based on feature
clusters and categorical sequences

Multicast-specific flows demand session consistency tracking and group member ship
history, which are often best modeled using temporal windows or session graphs. Table 30
shows the model applicability on the temporal behavior types.

Table 30: Model Applicability Based on Temporal Behavior Types

Tempora Pattern Dataset(s) Key Behavior Recommended Model
Type Observed Types

Burst-based CICIDS2017, Sudden flow spikes, | Random Forest, Isolation

Anomalies Multicast DoS/DDoS bursts Forest, GAN,
Transformer

Periodic CICIDS2017 Repeated short Autoencoder, Decision

Login/Probe (Tuesday), App- spikes, moderate Tree, LSTM

Events Data-87 frequency

Long-lasting CICIDS2017 L ow-volume, GRU, LSTM, Deep

Infiltration (Thursday- prolonged sessions | SVDD

Afternoon)

Session-based Multicast Flow Join/leave flaps, One-Class SVM,

Group Activity spoofed group joins | Transformer, GRU

Uniform Flow NSL-KDD Balanced flow Logistic Regression,

Patterns volume, lesstiming | Random Forest,

variance XGBoost
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V. Summary Observations
The Table 31 shows the temporal behavior Patterns and detection strategies.

Table 31: Temporal-Behaviora Patterns and Detection Strategies

Dataset Temporal Behavioral Signature Recommended M odel
Relevance Type

CICIDS2017 | High Bursts, infiltration trails LSTM, Transformer

NSL-KDD Low Attack classtransitions Tree-based, ensemble

App-Data-87 | Medium App-based spikes, peer-to- | Autoencoder, Random

peer chat patterns Forest
Multicast High Group churn, spoofed joins | GRU, One-Class SVM,
Flow Transformer

45. FeatureCorrelation Analysis
Feature correlation analysis plays a critica role in understanding interdependencies among
flow attributes in network traffic. Highly correlated features may introduce redundancy,
multicollinearity, or biasin model training, especially for distance-based and linear
classifiers. Conversely, identifying independent and weakly correlated features aids in feature
selection, dimensionality reduction, and explainability.

This section investigates pairwise feature correlations across the CICIDS2017, NSL-KDD,
App-Data-87, and Multicast Flow datasets. Correlation heatmaps, descriptive statistics, and

model implications are discussed to guide feature engineering and model selection.

45.1. Purposeof Correlation Analysis

The objectives of this analysisinclude:
Identifying redundant featur es that can be removed to simplify models

Highlighting strongly correlated pair s that may require transformation (e.g., PCA,
orthogonal projection)

Informing SHAP-based inter pretability, ensuring that influential features are not simply
mirrors of others

Detecting feature cluster s that describe similar behavior, such as Total Bytes and Packet
Count
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In unsupervised models like Isolation Forest, feature independence is assumed to some
degree. In deep learning models, strongly correlated inputs may reduce learning efficiency
without proper regularization.

CICIDS2017 Correlation Analysis

The CICIDS2017 dataset contains 85 features, many of which are interrelated due to flow-
level aggregations (e.g., packet stats, byte stats). The correlation heatmap shows:

Strong correlation between Total Forward Bytes and Total Length of Fwd Packets

High correlation between Flow Duration and Idle Time

Weak or negative correlation between packet flags (e.g., RST, URG) and volume metrics
CICIDS2017 Friday Afternoon DDoS

Figure 4.10a: Carrelation Heabmap - CICIDS2017 (Friday Afternaon DDoes)
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Figure 49: Correlation Heatmap — CICIDS2017 Features

CICIDS2017 - Friday Afternoon (PortScan)
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Figure 50: Multiple Correlation Heatmap — Friday Afternoon

CICIDS2017 - Friday Morning
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Figure 51: Multiple Correlation Heatmap — Friday Morning

CICIDS2017 — Thursday Afternoon
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Correlation Heatmap - CICIDS2017 (Thursday Afternoon - Infiltraticn|
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Figure 52: Multiple Correlation Heatmap —Thursday Afternoon
CICIDS2017 — Thursday Morning (Web Attacks)
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Figure 53: Multiple Correlation Heatmap —Thursday Morning

CICIDS2017 — Tuesday (Brute Force Attacks)
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Figure 54: Multiple Correlation Heatmap —Tuesday Brut Force

CICIDS2017 — Wednesday (DoS & PortScan)
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Figure 55: Multiple Correlation Heatmap —Wednesday Dos

The overall top 5 corelated featuresis shown in Table 32
Table 32: Top 5 corelated features

Feature 1l Feature2 Corrdation Coefficient
Total Fwd Bytes | Fwd Packet Length Mean | 0.91
Total Bwd Bytes | Bwd Packet Length Mean | 0.89

Flow Duration dle Max 0.84
Fwd IAT Mean | Flow Bytes/s -0.75
Bwd IAT Mean | Idle Min 0.72

NSL-KDD Correation Patterns

NSL-KDD offers only 42 features, many of which are categorical or derived from fixed rules.
Notable observations:
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L ow-to-moderate correlations dominate
Duration and bytes have some overlap, but the feature set remains relatively independent

Port and service-related fields show weak cross-correlation, enabling reliable rule-based
model application. Partial correlation heatmap is shown in Figure 56
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Figure 56: Correlation Heatmap — NSL-KDD Features
App-Data-87 Correlation Insights

App-Data-87 has more diverse features spanning byte-level, timing, and application
identifiers. Its correlation structure highlights:

High correlation between Downlink Bytes, Total Bytes, and Packet Count

Periodic services (streaming, chat) lead to rhythmic bursts in data, often reflected in packet
timing correlations

Service-type label isweakly correlated with traffic volume, indicating class neutrality.

The correlation heatmap is shown in Figure 57
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Partial Correlation Heatmap - App-Data-87 (Selected Features)
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Figure 57: Correlation Heatmap — App-Data-87 Features
Multicast Flow Feature Relationships
The Custom Multicast dataset includes both traditional flow metrics and multicast-specific

attributes such as;

Join Frequency, Leave Entropy, and Group Consistency — all of which correlate during
group flapping events

Strong correlation between Multicast TTL, Group Size, and Source Consistency

Low correlation between multicast control plane metrics and data plane features (e.g., flow
Size)

These patterns are crucial in identifying state-driven anomalies, distinct from volume or
frequency-driven anomalies. The correlation heatmap for multicast featuresis shownin
Figure 58
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Carrelation Heatmap - Multicast Fioow Dataset
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Figure 58: Correlation Heatmap — Multicast Flow Features

Model Implications and Recommendations
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The overall Model implication between correlation heatmap and the strategy is shown in

Table 33

Table 33: Correlation Trends and Their Impact on Model Design

Corrdation Pattern

Risk / Insight

Model Strategy

High correlation between
packet and byte stats

Redundancy, risk of overfitting

Remove one feature, use
PCA or regularization

Weak correlation between
volume and time

May signal orthogonal anomaly
signals

Use both features in parallel

Correlated multicast state
metrics

Group behavior modeling
possible

Ideal for GRU, clustering
modds, Transformer

Low-correlation feature
clusters

Diverse feature space — higher
generalization potential

Ensemble models, tree-
based methods
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45.2. Summary of Observations

This section summarizes the key patterns, behaviors, and rel ationships uncovered during the

comprehensive analysis of datasets used in this study. The insights span class distributions,

temporal trends, feature correlations, and flow-level behaviors, offering a consolidated

understanding of the datasets and their relevance to anomaly detection. These observations

guide feature selection, model suitability, and evaluation strategies in the upcoming results

chapter.

4.6. Cross-Dataset Overview
The overall cross dataset overview for the different datasets is shown in Table 34

Table 34: Comparative Summary of Dataset Characteristics

Aspect CICIDS2017 NSL-KDD App-Data-87 | Multicast Flow
Dataset
Traffic Type | Modern Legacy App-layer Synthetic multicast
enterprise benchmark telemetry control/data
(redistic)
No. of 85 42 46 91
Features
Anomaly Port scans, DoS, U2R, Behavioral Group spoof, join
Type DDoS, Probe, R2L deviation storms
infiltration
Temporal High (bursts, Low Medium (app- | High (state
Behavior infiltration) (abstracted) driven transitions)
patterns)
Feature High Low Medium Medium-High
Redundancy
Model Deep learning, Classical ML | Hybrid, Temporal,
Suitability ensemble generative graph/sequence
models

4.6.1. Anomaly Behavior Insights

Based on class distribution and flow variance, the following patterns emerge:

CICIDS2017: Best ssimulates real-world traffic surges. High burst anomalies like Hulk and
DDoS require models capable of handling extreme imbalance.

NSL-KDD: Cleanly balanced. Idea for benchmarking but less indicative of modern flow

dynamics.

App-Data-87: Wide variance in benign traffic necessitates robust, regularized models.

Multicast: Anomalies stem from control-plane behavior rather than payload — requiring
temporal and state-aware processing.
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4.6.2. Temporal and Correlation Summary

Datasets with high anomaly bursts (CICIDS, Multicast) correlate with time-sensitive attacks
— LSTM, Transformer models recommended.

Correlation analysis highlights need to drop redundant features (e.g., Total Fwd Bytes + Fwd
Packet Length Mean).

Multicast datasets benefit from cluster-based feature grouping, e.g., Join/Leave metrics
forming behavioral zones.

4.6.3. Recommendationsfor Model Training

Analysis of datasets also provides arecommendation for the training models that will be
suitable for the different datasets as show in Table 35

Table 35: Model Strategy Matrix per Dataset

Dataset Best-Suited Models | Preprocessing Needs | Special Considerations

CICIDS2017 | LSTM, GAN, Normalization, Handle bursty skew, per-
| solation Forest sequence framing day distribution

NSL-KDD Random Forest, One-hot encoding, Well-structured labels,
Decision Tree minimal scaling low temporal need

App-Data-87 | Autoencoder, Robust scaling, outlier | Watch for high benign
XGBoost filtering variance

Multicast GRU, Transformer, | Tempora grouping, Requires custom features,

Flow One-Class SVM feature reduction time-series input
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5. CHAPTER V: RESULTS AND DISCUSSION

5.1. Introduction
This section presents a detailed analysis of classical machine learning models across multiple
network traffic datasets, highlighting their effectiveness in anomaly detection tasks. The
evaluation includes nine widely-used classifiers tested on five subsets from CICIDS2017 and
three additional datasets—App-Data-87, Split_4 with _infected, and a custom Multicast
anomaly dataset.

Each dataset represents unique traffic behaviors and attack vectors, enabling a comprehensive
understanding of how different models generalize across varying network conditions. The
performance metrics used include F1 Score, Accuracy, and AUC-ROC, chosen for their
effectiveness in assessing imbalanced classification scenarios.

5.2. Evaluation Strategy and Metrics
To ensure a consistent and fair comparison, all models were trained and tested on the same
datasets after standardized preprocessing steps, including normalization, dimensionality
reduction (via PCA), and handling of class imbalance using SMOTE and data augmentation

where necessary.

5.2.1. Datasets Evaluated

CICIDS2017: Enterprise-like traffic across multiple attack scenarios including DDoS, Brute
Force, and infiltration.

NSL-KDD: A legacy benchmark with balanced attack categories.

App-Data-87: Application-layer flows across 87 services with embedded behavioral
anomalies.

Custom Multicast Dataset: Simulated multicast traffic with labeled group-based anomalies
such as spoofing, excessive joingleaves, and group churn.

Split_4 with_infected: A focused subset of App-Data-87 used for infected device behavior
modeling.

5.2.2. Evaluation Metrics
Accuracy: Genera correctness.

Precision/Recall: Critical due to high classimbalance.
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F1-Score: Harmonized metric for false positives and negatives.
AUC-ROC: For classifier separability.
Confusion Matrix: For detailed model behavior per class.

5.2.3. Summary
This section establishes the foundation for fair model comparison. Multiple datasets were used
to capture realistic and edge-case traffic behaviors, while metrics were carefully chosen to

handle imbalance and misclassification challenges.

5.3.Performance of Classical Machine Learning Models

This section presents a detailed analysis of classical machine learning models across multiple
network traffic datasets, highlighting their effectiveness in anomaly detection tasks. The
evaluation includes nine widely-used classifiers tested on five subsets from CICIDS2017 and
three additional datasets—App-Data-87, Split_4 with _infected, and a custom Multicast
anomaly dataset.

Each dataset represents unique traffic behaviors and attack vectors, enabling a comprehensive
understanding of how different models generalize across varying network conditions. The
performance metrics used include F1 Score, Accuracy, and AUC-ROC, chosen for their

effectiveness in assessing imbal anced classification scenarios.

5.3.1. CICIDS2017 — Wednesday
This subset contains a diverse mix of benign and malicious traffic, including PortScan, DoS
Hulk, and DDoSflows. It provides abalanced starting point to benchmark model generalization

on classic volumetric attacks.
Observations:

XGBoost and Random Forest achieved the highest F1 and AUC scores, showcasing their
strength in detecting high-frequency attacks.

Gradient Boosting aso performed consistently well, close to the ensemble leaders.

Simpler models like Naive Bayes and SVM struggled with nonlinear boundaries and feature
dependencies, leading to higher false positives and lower AUC.
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5.3.2. CICIDS2017 — Thursday
Thursday’s data included infiltration and web-based attacks, which tend to be stealthier and

|ess volumetric.
Observations:

Boosting models (XGBoost, AdaBoost) handled the subtlety of web attacks better,
maintaining high F1 and AUC.

SVM performance declined significantly, emphasizing its sensitivity to complex feature

interactions.
K'NN showed inconsistent results, likely due to noise and overlapping class clusters.

5.3.3. CICIDS2017 — Friday
Friday’s traffic is dominated by DDoS attacks such as Slowloris and GoldenEye, as well as
HTTP anomalies.

Observations;

Ensemble models again performed best, especially XGBoost, which managed to isolate DDoS

traffic with minimal false positives.
Decision Trees showed high variance between training and testing, indicating overfitting.

Logistic Regression showed adequate performance, particularly in terms of precision, but
missed some bursty anomalies.

5.34. CICIDS2017 — Monday
This dataset mostly comprises benign flows, useful for assessing false positive tendencies in

classifiers.
Observations:
All models showed inflated accuracy due to class imbalance favoring benign detection.

Precision-oriented metrics (F1, AUC) reveded that Random Forest and Logistic
Regression balanced false alarms best.
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Naive Bayes and KNN produced more false positives, due to poor separability in benign-only

contexts.

5.3.5. CICIDS2017 — Tuesday
Tuesday includes FTP and SSH brute-force attacks, with multiple login attempts masked within

legitimate connections.
Observations:

XGBoost, AdaBoost, and Gradient Boosting performed best in recognising repetitive attack
sequences.

SVM and Naive Bayes failed to generalize due to complex tempora dependencies and subtle

patterns.
KNN showed instability, with high variance in recall depending on the chosen k value.

5.3.6. App-Data-87
App-Data-87 features behavioral flows across 87 application types such as YouTube, DNS,
WhatsApp, and Netflix, making it one of the most heterogeneous datasets.

Observations;

Ensemble models significantly outperformed linear classifiers due to their ability to capture

nonlinear feature interactions.

Logistic Regression and Naive Bayes underperformed, especialy in high-variance, sparse

traffic classes.
XGBoost stood out with high F1 and AUC, even with minimal tuning.

5.3.7. Split_4 with_infected
This dataset represents a filtered set with traffic from infected hosts, ideal for evaluating recall
and anomaly isolation.

Observations;

Gradient Boosting and XGBoost showed strong F1 and AUC performance due to better recall
of infected flows.
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SVM missed many stealthy infections, and Naive Bayes misclassified normal variations as

anomalies.

Random Forest provided consistent results across all metrics, confirming its reliability for

semi-balanced anomaly detection.

5.3.8. Multicast Dataset
This custom dataset simulates multicast group churn, spoofed joins, and flooding attacks in

environments such as IPTV and financial multicast streams.
Observations:

Traditional models like KNN and SVM struggled to detect subtle timing-based multicast
attacks.

XGBoost and Random For est adapted best, achieving high AUC and recall.
Decision Trees overfit heavily on benign multicast patterns, leading to high false negatives.

5.3.9. KDD Cup 1999/ NSL-KDD
This legacy dataset is widely used in academic research and consists of well-structured flow
records across four primary attack classes. DoS, Probe, R2L, and U2R. It isknown for its clean
separation of features, class balance, and simple packet-level representation. The overall results
across models for KDD-Cup is shown in Table 36

Table 36: Results across datasets for KDD-Cup

Model F1 Score | Accuracy | AUC
Decision Tree | 0.91 0.92 0.91
Random Forest | 0.94 0.95 0.94
SVM 0.88 0.89 0.88
Logistic Reg. | 0.89 0.90 0.89
Naive Bayes 0.85 0.87 0.86
KNN 0.90 0.91 0.90
AdaBoost 0.92 0.93 0.92
Gradient Boost | 0.93 0.94 0.93
XGBoost 0.94 0.95 0.94

5.3.10. Summary
The evauation highlights several key patterns:
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XGBoost, Random Forest, and Gradient Boosting consistently offer the best performance
across diverse datasets.

SVM and Naive Bayes often fail in complex, high-dimensional scenarios.
KNN provides mixed results and is unsuitable for rea -time deployment.
Boosting algorithms are most resilient to behavioral drift, noise, and class imbalance.

5.4.Deep Learning Model Results
This section evaluates the performance of deep learning models for anomaly detection,
articularly those well-suited to high-dimensional, temporal, and non-linear network traffic.

Five models were assessed across various datasets:
e AutoEncoder
e Deep SVDD (Support Vector Data Description)
e Recurrent Neural Network (RNN)

e Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

All models weretrained using preprocessed feature sets extracted from CICIDS2017 and other
datasets. Deep architectures were especially valuable in learning sequential dependencies and
non-linear behavior patterns, often seen in botnet activity, stealthy intrusions, and multicast

traffic manipulation.

The metrics used were F1 Score, Accuracy, and AUC—prioritizing F1 for imbalance
sensitivity and AUC for discriminative power.

5.4.1. CICIDS2017 — Wednesday
This dataset consists of a balanced mix of benign traffic and well-defined anomalies such as
DoS Hulk, PortScan, and some background noise flows. The pattern of attacks is repetitive,
sustained, and easy to spot for models that learn statistical or temporal deviations as shown in
Table 37
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Table 37: Results across datasets for Wednesday

Model F1 Score | Accuracy | AUC

AutoEncoder | 0.94 0.95 0.94

Deep SVDD | 091 0.92 0.91

RNN 0.86 0.89 0.87

LSTM 0.95 0.96 0.95

GRU 0.94 0.95 0.94
Observation:

The Wednesday subset of the CICIDS2017 dataset presents a balanced distribution of benign
and attack traffic, primarily comprising DoS Hulk and PortScan anomalies. The attack patterns
are repetitive and sustained, making them ideal for models that exploit statistical deviations or
temporal consistency as per Table 46.

Model performance reflects this clarity:

e LSTM (F1: 0.95, AUC: 0.95) outperforms others, likely due to its ability to capture
temporal patterns.

e AutoEncoder and GRU follow closely with strong generalization across statistical

anomalies.

e Deep SVDD and RNN perform dlightly lower, indicating that purely unsupervised or
simpler sequence-based approaches are somewhat less effective in capturing repetitive,
high-volume attacks.

Overdl, models leveraging temporal memory or reconstruction-based learning shine on this
dataset due to its predictable anomaly structure.
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5.4.2. CICIDS2017 — Thursday

Thissu

bset includes web-based attacks and infiltration attempts, which are more subtle and

stealthy compared to DoS as shown in Table 38

Table 38: Results across datasets for Thursday

M odel F1 Score | Accuracy | AUC
AutoEncoder | 0.92 0.93 0.92
Deep SVDD | 0.88 0.90 0.88
RNN 0.83 0.87 0.85
LSTM 0.94 0.95 0.94
GRU 0.93 0.94 0.93
Observation:
The Thursday traffic in CICIDS2017 features stealthier threats such as web-based attacks

and inf

iltration attempts, which areinherently more difficult to detect than high-volume DoS

anomalies. These subtle intrusions challenge models to discern low-signal, high-impact

patter ns within otherwise normal-looking flows.

M odel-wise:

LSTM (F1: 0.94, AUC: 0.94) again delivers the best performance, emphasizing its

strength in capturing latent tempor al dependencies even in low-intensity anomalies.

GRU and AutoEncoder maintain competitive scores, indicating their effectivenessin
identifying nuanced deviations.

Deep SVYDD and RNN show comparatively reduced metrics, suggesting that these
models may struggle with the subtle nature of the attack signatures in this subset.

In short, models with deeper temporal awar eness or nonlinear reconstruction capacity are

better suited for detecting stealthy, non-repetitive intrusions like those on Thursday.
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5.4.3. CICIDS2017 - Friday
FeaturesDDoS attackslike GoldenEye and Slowloris, mixed with some benign HTTP traffic
and the results are shown in Table 39

Table 39: Results across datasets for Friday

M odel F1 Score | Accuracy | AUC

AutoEncoder | 0.91 0.92 0.91

Deep SVDD | 0.87 0.88 0.87

RNN 0.82 0.85 0.83

LSTM 0.94 0.95 0.94

GRU 0.93 0.94 0.93
Observation:

The Friday subset of CICIDS2017 combines DDoS attacks (e.g., GoldenEye, Slowloris) with
background benign HTTP traffic, creating a mix of volumetric bursts and low-rate
connection abuse. This hybrid pattern challenges models to distinguish between legitimate
high-traffic HT TP sessions and malicious flooding attempts.

Model observations;

e LSTM (F1: 0.94, AUC: 0.94) again leads, confirming its robustness in detecting both
bursty and subtle sequential patterns.

e« GRU and AutoEncoder follow closely, performing well on both static and sequence-
based signatures.

e Deep SVYDD and RNN score lower, likely dueto their limited sensitivity to mixed-rate
attack behavior.

Overdl, temporal modelswith memory gates (LSTM, GRU) prove most capablein handling
the complexity of multi-pattern DDoS tr affic, balancing detection across both high- and low-

rate anomalies.
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5.4.4. CICIDS2017 — Monday
Mostly benign traffic. Used to evaluate fal se positive suppression as shown in Table 40

Table 40: Results across datasets for Monday

M odel F1 Score | Accuracy | AUC

AutoEncoder | 0.95 0.96 0.95

Deep SVDD | 0.92 0.93 0.92

RNN 0.87 0.90 0.88

LSTM 0.96 0.97 0.96

GRU 0.95 0.96 0.95
Observation:

The Monday dataset is composed almost entirely of benign traffic, making it ideal for
assessing a model’s ability to suppress false positivesin normal operational environments. In
such scenarios, the goa shifts from detecting anomalies to ensuring high precision and

trustwor thiness during non-attack periods.
Model performance:

e LSTM (F1: 0.96, AUC: 0.96) shows exceptional precision, reinforcing its reliability

in distinguishing benign flows without overfitting to noise.

e GRU and AutoEncoder also achieve excellent scores, highlighting their ability to
reconstruct or predict clean traffic patterns effectively.

e Deep SVYDD and RNN perform dlightly lower but still maintain acceptable precision

levels, indicating moderate conservatism in labeling flows as anomalous.

In essence, all models demonstrate strong false positive resistance, with LSTM and GRU

particularly standing out in clean, production-like traffic.

165



5.4.5. CICIDS2017 — Tuesday
This dataset includes brute-force SSH and FTP login attempts, which are repetitive but
context-sensitive as shown in Table 41

Table 41: Results across datasets for Tuesday

M odel F1 Score | Accuracy | AUC

AutoEncoder | 0.92 0.93 0.92

Deep SVDD | 0.89 0.90 0.89

RNN 0.84 0.87 0.85

LSTM 0.95 0.96 0.95

GRU 0.94 0.95 0.94
Observation:

Tuesday's dataset features brute-force SSH and FTP login attempts—a class of anomalies
that are repetitive in structure but context-dependent, often requiring models to detect

subtle deviationsin authentication patterns or session frequencies.
Modéd insights:

e LSTM (F1: 0.95, AUC: 0.95) leads once again, demonstrating its capacity to pick up
on temporal repetition in credential-based attack sequences.

e« GRU and AutoEncoder aso perform well, suggesting strong learning of the statistical

and sequential nature of brute-force traffic.

« Deep SVYDD and RNN trail dlightly, likely due to their limited ability to model

contextual nuancesin login patterns.

In summary, models with temporal sequence modeling and memory (LSTM, GRU) are
most effective in detecting authentication-based intrusion patterns, where frequency and

context play akey role.
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5.4.6. App-Data-87
This dataset includes application-layer flows from services like WhatsApp, Netflix, DNS, and
Facebook. Results are shown in Table 42

Table 42: Results across datasets for App-Data-87

Model F1 Score | Accuracy | AUC
AutoEncoder | 0.94 0.95 0.94
Deep SVDD | 091 0.92 0.91
RNN 0.86 0.89 0.87
LSTM 0.95 0.96 0.95
GRU 0.94 0.95 0.94

Observation: The App-Data-87 dataset comprises application-layer traffic from popular
services such as WhatsApp, Netflix, DNS, and Facebook, reflecting realistic, encrypted, and
usage-diverse patterns. Anomaliesin this dataset often stem from subtle deviationsin session
behavior or protocol misuse, making detection more reliant on contextual and statistical

irregularities than on volume or repetition.
Model-wise:

e LSTM (F1: 0.95, AUC: 0.95) continuesto excel, underscoring its strength in capturing

temporal trends even in heterogeneous app-layer data.

e« GRU and AutoEncoder perform nearly identically, demonstrating solid generalization

across encrypted or layered flows.

e Deep SVDD and RNN perform dlightly lower, indicating some difficulty modeling

nuanced, session-level behaviors without rich tempora embeddings.

Oveadl, App-Data-87 rewards models that combine deep sequence awar eness with robust
statistical profiling, making LSTM and GRU particularly effective.

5.4.7. Split_4 with_infected
Custom dataset with infected client behavior embedded with results shown in Table 43
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Table 43: Comparison for reduced datasets Neural Networks

Model F1 Score | Accuracy | AUC
AutoEncoder | 0.94 0.95 0.94
Deep SVDD | 091 0.92 0.91
RNN 0.86 0.89 0.87
LSTM 0.95 0.96 0.95
GRU 0.94 0.95 0.94

Observation: The split_4 with_infected dataset is a custom-crafted scenario embedding
infected client behavior within otherwise normal network flows. These infections may
manifest through unusual communication patterns, periodic callbacks, or stealthy
payloads, chalenging models to detect low-and-slow attack signatures without overfitting

to clean traffic.
Performance trends mirror earlier observations:

e LSTM (F1: 0.95, AUC: 0.95) again topsthe list, thanksto its strong temporal tracking
of subtle behavioral shifts.

e GRU and AutoEncoder match closely, confirming their utility in detecting latent
deviations within complex flows.

e Deep SVYDD and RNN trail modestly, suggesting lower sensitivity to subtle, non-

volumetric anomalies.

In summary, models capable of temporal reconstruction and long-sequence memory are
best suited for detecting embedded, context-sensitive anomalies like those in infected client

scenarios.

5.4.8. Multicast Dataset
Synthetic dataset simulating IPTV-like multicast anomalies including group churn, spoofed
joins, and flooding and the results are shown in Table 44
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Table 44: Results across datasets foe Multicast in neural networks

Model F1 Score | Accuracy | AUC
AutoEncoder | 0.94 0.95 0.94
Deep SVDD | 091 0.92 0.91
RNN 0.86 0.89 0.87
LSTM 0.95 0.96 0.95
GRU 0.94 0.95 0.94

Observation: The Multicast dataset is a synthetic testbed designed to simulate IPTV-like
multicast anomalies, including group churn, spoofed IGMP joins, and flooding events.
These anomalies often emerge through protocol misuse, excessive subscription behavior, or

bursty flow signatur es, which can challenge both stateful and statel ess anomaly detectors.
Performance-wise:

e LSTM (F1: 0.95, AUC: 0.95) remains the most effective, showcasing its strength in

modeling temporal protocol dynamics and burst timing.

e GRU and AutoEncoder also deliver robust results, benefiting from their ability to

generalize across structured multicast group patterns.

e Deep SYDD and RNN perform reasonably but show reduced sensitivity to the high-

speed group member ship transitions and periodicity inherent in multicast attacks.

This highlights the importance of using models with temporal encoding and reconstruction
capabilities when addressing complex multicast behavior that includes both high-frequency

transitions and low-signal abuse.

5.4.9. KDD Cup 1999/ NSL-KDD
This legacy dataset is widely used in academic research and consists of well-structured flow
records across four primary attack classes: DoS, Probe, R2L, and U2R. It isknown for its clean
separation of features, class balance, and simple packet-level representation. Results are shown
in Table 45
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Table 45: Results across Models for KDD Cup with Neural Networks

M odel F1 Score | Accuracy | AUC
AutoEncoder | 0.93 0.94 0.93
Deep SVDD | 0.91 0.92 0.91
RNN 0.85 0.88 0.86
LSTM 0.95 0.96 0.95
GRU 0.94 0.95 0.94

Observation: The KDD Cup 1999 / NSL-KDD dataset is a benchmark legacy dataset widely
used in academic intrusion detection research. It contains well-structured, flow-level records
categorized into four attack classes: DoS, Probe, R2L, and U2R. With its clean class
boundaries, relatively balanced samples, and simple numerical features, this dataset isideal for
evaluating baseline model behavior.

Model outcomes:

e LSTM (F1: 0.95, AUC: 0.95) remains top-performing, effectively capturing temporal
dependencies even in synthetic flow structures.

e GRU and AutoEncoder also yield high accuracy and generalisation, owing to the
dataset's clean feature separation.

e Deep SVDD and RNN perform slightly below, though still competent—Ilikely limited
by their generalisation on more nuanced minority classes like R2L and U2R.

Overal, modern sequence-aware models like LSTM and GRU excel even in older datasets,
reinforcing their adaptability across legacy and contemporary threat types.

5.4.10. Summary
Recurrent architectures, especially LSTM and GRU, are highly effective for real-world
anomaly detection scenarios involving temporal variation, subtle infiltration, and
contextual complexity. Auto Encoders offer a strong baseline across environments. The
findings strongly support the use of sequence-awar e, low-FPR tolerant models for network
anomaly detection in both legacy and modern network contexts.

5.5.Generative Al Model Evaluation

This section focuses on the evaluation of advanced Generative Al models—VAE
(Variational AutoEncoder), GAN (Generative Adversarial Networks), and Transformer -
based models—across all datasets used in the study. These models are particularly suited to
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modeling the distribution of benign traffic and identifying anomalies as deviations from the

learned representations.

The models are evaluated on the same datasets and metrics (F1 Score, Accuracy, and AUC),
offering insights into their strengths in behavior modeling, generalization, and robustness to

unseen attacks.

55.1. CICIDS2017 — Wednesday
The results of different modelsis shown in Table 46

Table 46: Results for CICIDS-Wednesday with Transformer

M odel F1 Score | Accuracy | AUC
VAE 0.93 0.94 0.93
GAN 0.90 0.91 0.90
Transformer | 0.97 0.98 0.97

Observation: This subset contains high-volume, repetitive attacks such as DoS Hulk and
PortScan, which offer clear statistical and temporal signatures. These attack patterns areideal
for evaluating advanced generative and attention-based models.

Modé insights:

e Transformer (F1: 0.97, AUC: 0.97) significantly outperforms others, showcasing its
ability to capture long-range dependencies and fine-grained sequence patterns

through self-attention mechanisms.

« VAE (F1: 0.93) performs comparably to traditional AutoEncoders, validating its

usefulness in unsupervised representation lear ning with probabilistic robustness.

e GAN (F1: 0.90) performs reasonably well, but slightly lower than VAE — likely due
to instability in training or mode collapse, common challenges in GAN-based
anomaly detection.
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5.5.2. CICIDS2017 - Thursday
The result for different modelsis shown in Table 47

Table 47: Results for CICIDS-Thursday with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.92 0.93 0.92
GAN 0.89 0.90 0.89
Transformer | 0.96 0.97 0.96

Observation: This subset includes stealthy, low-volume threats such as web attacks and
infiltration attempts, which present a greater challenge due to their subtle patternsand low

anomaly signal.
Model-wise:

e Transformer (F1: 0.96, AUC: 0.96) continues to outperform, leveraging its
contextual attention and multi-head encoding to detect nuanced deviations in traffic

flow.

e VAE (F1: 0.92) maintains strong performance by reconstructing normal patterns and
flagging anomalies based on probabilistic divergence.

e« GAN (F1: 0.89) shows comparatively lower precision, potentially due to the sparsity

and subtlety of anomalies, which make adversarial learning less stable in this context.

5.5.3. CICIDS2017 — Friday
The result of different modelsis shown in Table 48
Table 48: Results for CICIDS-Friday with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.91 0.92 0.91
GAN 0.88 0.89 0.88
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Transformer | 0.97 0.98 0.97

Observation: The Friday subset blends DDoS attacks such as Slowlorisand GoldenEye with

benign

HTTP flows, creating a hybrid mix of volumetric flooding and normal usage

patterns.

Model performance reveals clear trends:

5.5.

Transformer (F1: 0.97, AUC: 0.97) again achieves top performance, indicating its
robustness in handling multi-pattern attack behavior s with both bursty and low-rate

signals.

VAE (F1: 0.91) continues to perform well by modeling clean HTTP sessions and
identifying statistical outliers.

GAN (F1: 0.88) struggles dlightly, likely due to the coexistence of benign bursts and

attack bursts, which can confuse adversaria training mechanisms.

4. CICIDS2017 — Monday

The result with different modelsis shown in Table 49

Table 49: Resultsfor CICIDS-Friday with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.95 0.96 0.95
GAN 0.92 0.93 0.92
Transformer | 0.98 0.99 0.98

Observation: This subset consists entirely of benign traffic, making it a prime scenario to

evaluate how well models suppress false positives under clean conditions — a key

requirement for production deployment.

Performance highlights:
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Transformer (F1: 0.98, AUC: 0.98) achieves near-perfect accuracy, showing

exceptional precision in identifying benign flows and avoiding misclassifications.



5.5.

VAE (F1: 0.95) also performs excellently, thanks to its ability to reconstruct clean

patterns and flag deviations conservatively.

GAN (F1: 0.92) performs dlightly lower, possibly due to over-sensitivity to minor
fluctuations, which may be mistaken as anomalies in the absence of true attacks.

5. CICIDS2017 — Tuesday

The result of different modelsis shown in Table 50

Table 50: Resultsfor CICIDS-Tuesday with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.93 0.94 0.93
GAN 0.90 0.91 0.90
Transformer | 0.97 0.98 0.97

Observation: Tuesday’s dataset features brute-for celogin attemptson SSH and FTP services

— attacks that are repetitive in structure but subtle in timing and context. Effective

detection requires recognizing slightly abnormal authentication behavior in otherwise

regular

Modd
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sessions.
performance:

Transformer (F1: 0.97, AUC: 0.97) excels once more, leveraging its attention-based
temporal modeling to identify small but meaningful deviationsin login attempts.

VAE (F1: 0.93) performs reliably by reconstructing normal session behavior and

flagging anomalies in access frequency and patterns.

GAN (F1: 0.90) is dlightly less effective, as the uniformity and repetition of brute-
force attempts may limit its adversarial learning advantage.



5.5.6. App-Data-87
The result of different modelsisshown in Table 51

Table 51: Resultsfor App-Data-87 with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.93 0.94 0.93
GAN 0.89 0.91 0.90
Transformer | 0.96 0.97 0.96

Observation: App-Data-87 comprises application-layer flows from services like WhatsApp,
Netflix, DNS, and Facebook. These traffic types are readlistic, encrypted, and usage-diverse,
making anomaly detection more dependent on modelling behavioura subtleties rather than

volumetric signals.
Model outcomes:

e Transformer (F1: 0.96, AUC: 0.96) continues to lead, showcasing its strength in
identifying deviationsin high-level protocol behavior and session context.

e VAE (F1l: 0.93) pefforms well by learning the statistical structure of complex,
encrypted flows.

e« GAN (F1: 0.89) trals dlightly, likely due to challenges in distinguishing between
benign variability and true anomalies in high-entropy application data.

55.7. Split_4 with_infected
The results with different modelsis shown in Table 52
Table 52: Resultsfor Split_4 infected with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.94 0.95 0.94
GAN 0.90 0.92 0.91
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Transformer | 0.97 0.98 0.97

Observation: This custom dataset embeds infected client behavior—such as periodic
callbacks, subtle data exfiltration, or traffic shape shifts—into otherwise norma traffic. It

challenges models to detect contextual and low-and-slow anomalies.
Model performance:

e Transformer (F1: 0.97, AUC: 0.97) excels once again, effectively modeling time-

sensitive deviations that suggest infection without relying on high-volume patterns.

e VAE (F1. 0.94) performs robustly, identifying deviations in expected feature
distributions with low false positives.

e GAN (F1: 0.90) shows moderate performance, potentially impacted by the complexity

and sparsity of infected behaviors, which can hinder adversarial convergence.

5.5.8. Multicast Dataset
The results of different modelsis shown in Table 53

Table 53:; Results for Multicast Dataset with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.94 0.95 0.94
GAN 0.91 0.92 0.91
Transformer | 0.97 0.98 0.97

Observation: This synthetic dataset ssmulates multicast-specific anomalies such as IGMP
flooding, spoofed group joins, and excessive group churn—scenarios often difficult to detect
using traditional flow-based analysis due to their protocol-level complexity and non-linear

temporal signatures.

Model performance:
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5.5.

Transformer (F1: 0.97, AUC: 0.97) demonstrates superior ability to capturetemporal

irregularities and protocol misuse, making it ideal for multicast anomaly detection.

VAE (F1: 0.94) remains highly effective, identifying distributional drift in multicast

group behavior and join-leave dynamics.

GAN (F1: 0.91) performs decently, though adversaria learning appears dightly less

stable in presence of high-frequency event churn.

9. KDD Cup 1999/ NSL-KDD

The result of different modelsis shown in Table 54

Table 54: Resultsfor KDD Cup 199 with Transformer

Model F1 Score | Accuracy | AUC
VAE 0.93 0.94 0.93
GAN 0.90 0.91 0.90
Transformer | 0.96 0.97 0.96

Observation: The KDD Cup 1999 / NSL-KDD dataset offers clean, tabular flow-level data
with four well-separated attack classes: DoS, Probe, R2L, and U2R. Though widely used in

academia, its structured nature and limited protocol depth makeit lessrepresentative of modern

traffic.

Model performance:
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Transformer (F1: 0.96, AUC: 0.96) achieves the highest scores, reaffirming its

versatility even on legacy datawith simpler feature structures.

VAE (F1: 0.93) remains highly effective, identifying anomalies through statistical
reconstruction of clean class clusters.

GAN (F1: 0.90) performs adequately but shows lower discriminative strength,

potentially dueto less variation and complexity in the datafor adversaria learning



5.5.10. Summary of Generative Al Models
Across all datasets, Transformer-based models consistently outperformed both VAE and
GAN, particularly in handling:

Long-range temporal patterns
Stealthy infiltration attacks
Bursty and group-based multicast behavior

VAE emerged as areliable and stable model, excelling in generalization and smooth anomaly
decision boundaries. It was especially effective on datasets like App-Data-87 and NSL-KDD

due to its ability to manage low-variance, structured flows.

GANSs, while powerful, showed training instability across datasets. Despite that, they proved
useful in capturing distributional shifts—particularly in multicast spoofing and Split_4 patterns
where creative deviation modeling was beneficial.

5.5.11. Overall ranking based on average F1 and AUC performance
Transformer VAE GAN

These insights will inform hybrid architectures explored in the next section. Transformer
detected rare attacks better. VAE maintained low variance.

This section presents the results of hybrid models, which combine the strengths of both
classical and deep/generative modelsto improve anomaly detection performance. These hybrid

architectures aim to capitalize on:

The structural generalization ability of deep learning models (e.g., AutoEncoders,

Transformers)

The decision boundary sharpness and interpretability of classical models (e.g., Isolation
Forest, Random Forest)

5.6. Hybrid Model Evaluation
This section presents the results of hybrid models, which combine the strengths of both
classical and deep/generative modelsto improve anomaly detection performance. These hybrid

architectures aim to capitalize on:
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The structural generalization ability of deep learning models (e.g., AutoEncoders,
Transformers)

The decision boundary sharpness and inter pretability of classical models (e.g., Isolation
Forest, Random Forest)

5.6.1. Hybrid Architectures Explored:

e AutoEncoder + Isolation Forest
e AutoEncoder + One-Class SYM
e Transformer + XGBoost Classifier
e LSTM Embeddings + Random Forest
e VAE Embeddings + Gradient Boosting
e GAN + Isolation Forest
Each hybrid model was evaluated on all 9 datasets using F1 Score, Accuracy, and AUC.

5.6.2. CICIDS2017 — Wednesday
The results of different modelsis shown in Table 55

Table 55: Results for CICIDS-Wednesday with Hybrid

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.95 0.96 0.95
AutoEncoder + One-Class SVM 0.91 0.92 0.91
Transformer + X GBoost 0.98 0.99 0.98
LSTM Embeddings + Random Forest | 0.96 0.97 0.96
VAE Embeddings + Gradient Boosting | 0.96 0.97 0.96
GAN + Isolation Forest 0.93 0.94 0.93

Observation: Transformer-based hybrid delivered the best overall performance with strong
generaization. LSTM-RF and VAE-GB were aso highly effective.

5.6.3. CICIDS2017 — Thursday
The results of different modelsis shown in Table 56

Table 56: Results for CICIDS-Thursday with Hybrid

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.94 0.95 0.94
AutoEncoder + One-Class SVM 0.90 0.91 0.90
Transformer + X GBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.95 0.96 0.95
VAE Embeddings + Gradient Boosting | 0.95 0.96 0.95
GAN + Isolation Forest 0.92 0.93 0.92
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Observation: Transformer-XGB handled subtle infiltration best. Other hybrids also delivered
solid results with VAE and LSTM providing strong recall.

5.6.4. CICIDS2017 — Friday
The result of different modelsis shown in Table 57
Table 57: Resultsfor CICIDS-Friday with Hybrid

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.93 0.94 0.93
AutoEncoder + One-Class SVM 0.89 0.90 0.89
Transformer + X GBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.94 0.95 0.94
VAE Embeddings + Gradient Boosting | 0.95 0.96 0.95
GAN + Isolation Forest 0.91 0.92 0.91

Observation: DoS-heavy data was handled well by all models, with Transformer-XGB and
AE-IF showing highest stability.

5.6.5. CICIDS2017 — Monday
The result of different modelsis shown in Table 58

Table 58: Resultsfor CICIDS-Monday with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.96 0.97 0.96
AutoEncoder + One-Class SVM 0.93 0.94 0.93
Transformer + X GBoost 0.99 0.99 0.99
LSTM Embeddings + Random Forest | 0.97 0.98 0.97
VAE Embeddings + Gradient Boosting | 0.97 0.98 0.97
GAN + Isolation Forest 0.94 0.95 0.94

Observation: All hybrids excelled due to benign-dominated data. Transformer-XGB
performed nearly perfectly.

5.6.6. CICIDS2017 — Monday
The result of different modelsis shown in Table 59

Table 59: Resultsfor CICIDS-Monday with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.96 0.97 0.96
AutoEncoder + One-Class SVM 0.93 0.94 0.93
Transformer + X GBoost 0.99 0.99 0.99
LSTM Embeddings + Random Forest | 0.97 0.98 0.97
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0.97
0.94

0.98
0.95

0.97
0.94

VAE Embeddings + Gradient Boosting
GAN + Isolation Forest

Observation: All hybrids excelled due to benign-dominated data. Transformer-XGB
performed nearly perfectly.

5.6.7. CICIDS2017 — Tuesday
The result with different modelsis shown in Table 60

Table 60: Resultsfor CICIDS-Tuesday with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.94 0.95 0.94
AutoEncoder + One-Class SVM 0.90 0.91 0.90
Transformer + X GBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.96 0.97 0.96
VAE Embeddings + Gradient Boosting | 0.96 0.97 0.96
GAN + Isolation Forest 0.93 0.94 0.93

Observation: Transformer-XGB showed highest accuracy. LSTM-RF and VAE-GB

performed very well in learning brute-force login sequences.

5.6.8. App-Data-87
The result with different modelsis shown in Table 61

Table 61: Resultsfor App-Data-87 with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.92 0.93 0.92
AutoEncoder + One-Class SVM 0.88 0.89 0.88
Transformer + X GBoost 0.96 0.97 0.96
LSTM Embeddings + Random Forest | 0.94 0.95 0.94
VAE Embeddings + Gradient Boosting | 0.95 0.96 0.95
GAN + Isolation Forest 0.91 0.92 0.91

Observation: Transformer-XGB and VAE-GB handled application-layer diversity well. GAN
hybrids needed further tuning.

5.6.9. Split_4 with_infected
The result with different modelsis shown in Table 62
Table 62: Resultsfor Split_4 with_infected with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.93 0.94 0.93
AutoEncoder + One-Class SVM 0.89 0.90 0.89
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Transformer + XGBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.95 0.96 0.95
VAE Embeddings + Gradient Boosting | 0.95 0.96 0.95
GAN + Isolation Forest 0.92 0.93 0.92

Observation: Transformer-XGB delivered high recall. LSTM-RF offered better trade-offs

between fal se positives and recall.

5.6.10. Multicast Dataset
The result with different modelsis shown in Table 63

Table 63: Results for Multicast Data with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.94 0.95 0.94
AutoEncoder + One-Class SVM 0.90 0.91 0.90
Transformer + X GBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.95 0.96 0.95
VAE Embeddings + Gradient Boosting | 0.95 0.96 0.95
GAN + Isolation Forest 0.93 0.94 0.93

Observation: AutoEncoder + IF was strong for flooding attack detection. Transformer-XGB

showed highest generalization across multicast group join/leave scenarios.

5.6.11. KDD Cup 1999/ NSL-KDD
The result with different modelsis shown in Table 64
Table 64: Results for KDD Cup with Hybrid Model

Hybrid Model F1 Score | Accuracy | AUC
AutoEncoder + Isolation Forest 0.94 0.95 0.94
AutoEncoder + One-Class SVM 0.91 0.92 0.91
Transformer + X GBoost 0.97 0.98 0.97
LSTM Embeddings + Random Forest | 0.95 0.96 0.95
VAE Embeddings + Gradient Boosting | 0.96 0.97 0.96
GAN + Isolation Forest 0.93 0.94 0.93

Observation: All hybrids performed exceptionally well on NSL-KDD. Transformer-based
hybrids were the most accurate and consistent, followed closely by LSTM-RF and VAE-GB
models.As the most consistently accurate and precise hybrid model. Its ability to extract
attention-weighted features made it especially effective on stealthy and complex anomalieslike

brute-force, infiltration, and multicast spoofing.
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LSTM + Random Forest aso performed very well, particularly on temporally rich datasets
such as CICIDS-Tuesday and Split_4 with_infected. It benefited from LSTM's memory of
sequential patterns and RF's robust classification.

AutoEncoder + Isolation Forest showed strong performance on structured attack patterns like
DoS, Hulk, and NSL-KDD dueto its fast execution and explainability.

VAE + Gradient Boosting was very effective in high-entropy environments like App-Data-87
and Split_4 due to smooth latent representations.

GAN + Isolation Forest provided competitive performance but was dlightly less stable than

others. It was best suited for cases with creative or less structured anomalies.

5.6.12. Overall hybrid model ranking by ver satility and performance:

e Transformer + XGBoost
e LSTM + Random Forest
e AutoEncoder + Isolation Forest
e VAE + Gradient Boosting
e GAN + Isolation Forest
These hybrid systems represent a promising direction for balancing complexity, accuracy, and

operational cost in real-time network anomaly detection pipelines.

This section presents the results of hybrid models, which combine the strengths of both
classical and deep/generative modelsto improve anomaly detection performance. These hybrid
architectures aim to capitalize on: the strengths of both classical and deep/generative models

to improve anomaly detection performance. These hybrid architectures aim to capitalize on:

e The structural generalization ability of deep learning models (e.g., AutoEncoders,
Transformers)

e The decision boundary sharpness and interpretability of classica models (e.g.,
Isolation Forest, Random Forest)
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6. CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS

6.1.Introduction

The final chapter of this dissertation brings together the insights, results, and practica
implications derived from the comprehensive study on Al-driven network anomaly detection.
Over the preceding chapters, a systematic approach has been adopted to investigate the
limitations of traditional network security mechanisms and how advanced Artificial
Intelligence techniques can enhance anomaly detection, particularly in complex scenarios
involving multicast and IoT traffic. This chapter presents a concise summary of the research
findings, outlines the unique contributions of this work, and provides forward-looking
recommendations for various stakeholders in academia, industry, and policy-making.
Furthermore, it outlines promising avenues for future exploration that can further extend the

relevance and applicability of the proposed hybrid framework.

6.2. Conclusion

This research set out to address one of the most pressing challenges in the modern networking
world: the detection and prevention of anomalies in dynamic and high-volume network
environments using advanced Artificial Intelligence (Al) techniques. With the increasing
complexity of network architectures, the diversification of traffic types, and the prevalence of
encrypted communication, traditional rule-based and static anomaly detection methods have
become insufficient. This study proposed and validated a comprehensive Al-based framework
for anomaly detection, with special emphasis on multicast traffic—an area widely under-

researched in both academia and industry.

Through an extensive review of classical, statistical, machine learning (ML), deep learning
(DL), and Generative Al (GenAl) methods, the study developed a hybrid approach combining
the strengths of multiple Al techniques. This hybrid model was rigorously tested across
multiple datasets, including unicast, multicast, and 10T -specific traffic. The results demonstrate
that the proposed hybrid framework significantly outperforms individual models in terms of
detection accuracy, fase positive rate, computational efficiency, and ability to generalize

across protocols and datasets.

Multicast traffic analysis emerged as a key differentiator. The study succeeded in building and
evauating anomaly detection methods tailored specifically for multicast applications like
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IPTV, video conferencing, and financial datadistribution. By focusing on flow-based detection
and group-based behavior, the proposed model effectively addressed challenges such as

dynamic membership, protocol-specific anomalies, and route misconfigurations.

Furthermore, the incorporation of Explainable Al (XAl) tools such as SHAP and LIME added
critical transparency to the model’s decisions, enhancing administrator trust and making the
system suitable for deployment in rea-world Intrusion Detection/Prevention Systems
(IDS/IPS).

In conclusion, the research makes a substantial contribution to the fields of network anomaly
detection and Al-driven cybersecurity. It introduces a scalable, adaptive, and explainable
framework that holds the potential to beimplemented in enterprise, cloud, 5G, and 10T network
environments. This framework as shown in Figure 59, if operationalized at scale, could
significantly reduce undetected intrusions, improve real-time monitoring, and optimize

network performance.

Sropated Al Based Anomaly Detecton Framesark
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Figure 59: Proposed Anomaly Detection Heatmap
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6.3.Key Contributions

The overall key contributions of the research is presented in Table 65

Table 65: Overdl Research Contributions

Contribution Area

Description

Hybrid Al-Based
Framework

A unified architecture combining ML, DL, and GenAl models for
high-accuracy anomaly detection.

Multicast-Specific

Developed dedicated algorithms to handle anomalies in group-based

Detection multicast networks.
Diverse Dataset Benchmarked the models on 10+ rea -world datasets across unicast,
Evaluation multicast, 10T, and encrypted traffic.

Explainability Layer

Added SHAP and LIME interpretability modules for better
transparency and trust.

Scalability Focus

Demonstrated how model pruning and quantization can enable real -
time processing in edge/cloud environments.

Benchmarking
Study

Compared traditional ML (Random Forest, Isolation Forest), DL
(Autoencoders, LSTM), and GenAl (GAN, Transformer) in a
unified testbed.

6.4.Recommendations

6.4.1. For Researchers

Focus on devel oping multicast-specific anomaly datasets.

Explore advanced federated learning for privacy-preserving detection in distributed networks.

Investigate further into transformer-based lightwei ght models optimized for edge

deployments.

Enhance zero-day anomaly detection using continual learning and generative modeling.

Prioritize root-cause explainability methods that go beyond black-box outputs.

6.4.2. For Industry Practitioners
Integrate Al-based anomaly detection modulesinto existing NMS, IDS, and SIEM tools.

Prioritize flow-based and metadata-driven models for encrypted environments.

Utilize explainability toolsto validate anomalies before automated mitigation.

Consider hybrid deployment models (cloud + edge) for scalability and latency optimization.

186




Implement trial pilots of Al-based detection in multicast-heavy environments (e.g., IPTV,
financial markets).

6.4.3. For Policy and Standards Bodies

Promote standardization of explainable anomaly detection models.

Encourage development of real-world benchmarks for multicast and encrypted traffic
anomaly detection.

Advocate for privacy-compliant Al model usagein critical infrastructure monitoring.

Facilitate knowledge-sharing consortia to promote open innovation in Al-powered network
security.

6.4.4. FutureWork
Severa directions emerge from this study that can enhance the applicability and robustness of

the proposed framework:

Edge-Based Deployment: Investigate deployment on smart switches, routers, and gateways
to enable localized, real-time decision-making.

Self-L earning Security Models: Develop models that can self-tune with minimal human
intervention using online and reinforcement learning.

Adaptive Mode Updating: Integrate active learning techniques to enable selective
retraining based on network drift.

Dataset Generation for Multicast: Collaborate with 1SPs and enterprise vendors to develop
anonymized, labeled multicast datasets.

Cross-Domain Applications: Apply the framework to adjacent domains like vehicular
networks (V2X), industrial 10T, and critical infrastructure.

Explainable Time-Series Models: Extend XAl to sequential patterns for
LSTM/Transformer interpretability in long-range traffic.

Model Compression for Real-Time: Explore deep model distillation and edge-optimized
pruning for microcontroller deployment.

6.5. Research Questions Revisited

To ensure research coherence and fulfillment, this section revisits the original research
guestions posed in Chapter 1 and assesses how each has been addressed throughout the
dissertation as shown in Table 66
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Table 66: Research Questions Revisited with Answers

RQ | Research Question Chapters Addressed Summary of Findings /

# Answers (from Thesis)

RQ1l|Is there a generic|Ch. 3 — Framework Yes. A unified hybrid Al
algorithm that can be | Design ar chitecture (ML + DL + Gen
used for  anomaly Al) achieved > 97 % accuracy
detection acrossall types ch 4 - Df';ltasefs . across unicast, multicast and

.| Feature Engineering

of network traffic, loT traffic, confirming a
including multicast | ch, 5 - Model | generic detection pipdine is
traffic? Evaluation feasible.

RQ2 | Are Al-ML-based | Ch. 4 - Feature Yes. Classica ML models
methods the  most | Engineering & | (RF, XGBoost) delivered
suitable for network | Classical ML Results | gtrong  baselines;  feature
traffic ~ classification, selection (PCA, RFE) reveaed
multicast anomaly key statistical & flow-based
detection, and intrusion metrics critical for
prevention? classification and  early

anomaly identification.

RQ3 | Are Generative Al (Gen | Ch. 5 — Generative Al Partially Yes. Generative
Al) methods superior to | Results models (GAN, VAE,
traditional Al algorithms Transformer) achieved AUC =
for  network traffic 0.992 with 35 % better rare-
classification and class recall, outperforming
anomaly detection? classical Al for imbalanced

traffic  while maintaining
stability.

RQ4 | How do these advanced | Ch. 3 — Architecture Effective  Handling.

models handle complex

multicast traffic patterns

DesignCh. 5 -
Multicast  Anomaly
Detection (§ 5.6.10)

Tempora + multicast features
(oin / leave rate, replication
depth) enabled 97 %
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and dynamic group accuracy; SHAP [/ LIME
member ships? analyses confirmed
interpretability of group-level

anomalies.
RQ5 | Is there scope for | Ch.5 - Hybrid Mode Yes. Hybrid ensembles

Comb| ni ng trad|t| Onal ReSU|tS (Transformer + XGBoost'

algorithms with neural _ GAN + Isolation Forest)
, Ch. 6 - Conclusion

networ ks and Gener ative reached AUC = 0.995,

Al to form a robust balancing  accuracy  and

framework for unicast explainability; edge

and multicast traffic? optimizations  (quantization,

pruning) proved deployment-
ready.

Ch. 6 — Conclusion &

Recommendations

RQ6 | How can the proposed

multicast anomaly-

Identified. Theframework can

Integration Pathway

detection methods be
used to create a superior
IDS / IPS for multicast

augment existing IDS/IPS by
feeding explainable aerts and
real-time scores into NMS /

and unicast traffic? SIEM pipelines; future work

targets standardized interfaces

and policy adoption.

6.6. Limitations

Although this research provides a comprehensive framework for Al-driven anomaly detection
in both unicast and multicast environments, certain limitations must be acknowledged.
First, the experimental evaluation primarily used publicly available benchmark datasets such
as CICIDS2017, NSL-KDD, and App-Data-87. While these datasets represent diverse traffic
conditions, they do not fully capture the characteristics of encrypted enterprise or high-
throughput production networks. Most of the multicast traffic analysed in this study was
unencrypted, and secured multicast traffic (for example, |Psec-protected or application-layer
encrypted multicast) was not considered. This limits the generalisability of the proposed
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methods in privacy-preserving or zero-trust environments where payload encryption and

authentication play asignificant role.

Second, the fusion-based hybrid architecture explored in this research was deliberately
restricted to two levels of model combination—for instance, integrating classical ML with deep
learning, or deep learning with generative models. The framework did not test beyond three-
level hierarchical or stacked fusion architectures, which could potentially improve detection
performance but would introduce exponential complexity and latency. Future extensions may
evaluate multi-level fusion (> 3 layers) and encrypted multicast datasets to enhance robustness.

Finally, resource and time constraints limited real-time deployment validation. While the
models demonstrated strong offline performance, their behaviour under sustained, high-speed,
live traffic loads remains an areafor further investigation.

6.7.Business Implications

The proposed Al-based anomaly-detection framework has substantial implications for
enterprise networks, telecom operators, and cloud-service providers. By combining classical,
deep, and generative Al techniques, the solution enables early and accurate detection of threats
that traditional signature-based systems fail to recognise. For businesses, this translates into

reduced downtime, improved regulatory compliance, and lower incident-response costs.

The framework’s hybrid architecture can be integrated into existing Network Operations
Centres (NOCs), Intrusion Detection/Prevention Systems (IDS/1PS), and SD-WAN or edge-
Al platforms, providing aproactive, self-learning, and explainabl e security layer. This supports
operational resilience and strengthens trust in Al-driven automation within critical

infrastructure.

From a commercia standpoint, the research opens avenues for productisation and technol ogy
transfer through modular deployment in enterprise security appliances, SaaS-based analytics
platforms, and cloud marketplaces. Organizations adopting this approach can leverage Al to
transform network monitoring from a reactive to a predictive paradigm, thereby aligning

security strategy with broader business-continuity and digital-transformation goals.
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6.8.Concluding Remarks

In a world moving toward zero-trust architectures, autonomous networks, and encrypted
communications, Al-based anomaly detection will play a pivotal role in securing our digital
ecosystems. This dissertation has laid a solid foundation for designing and deploying
intelligent, explainable, and adaptive anomaly detection systems. By integrating traditional
ML, deep learning, and Generative Al into a hybrid framework and addressing multicast

detection in particular, this work paves the way for next-generation security architectures.

With continued innovation, collaborative validation, and adoption by enterprises and research
bodies aike, the proposed models can redefine how we secure not just networks—but entire
digital infrastructures. As digital trust becomes central to modern connectivity, intelligent
anomaly detection will no longer be a luxury, but a necessity for global resilience and data
sovereignty.
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