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ABSTRACT 

A COMPREHENSIVE STUDY OF ADAPTIVE RECOMMENDATION 

TECHNOLOGIES IN EDUCATION FOR ENHANCING PERSONALIZED 

LEARNING 

 

 

 

Ankita Thakkar 

2025 

 

 

 

Dissertation Chair: Dr. Ljiljana Kukec 

 

The traditional one-size-fits-all education model often fails to cater to the ever-evolving 

learning needs of students. Personalized learning supported by adaptive recommendation 

systems serves as a great approach to enhance the engagement and learning outcomes of 

students. This study examines the implementation of recommendation systems in 

academics. The main focus is to deliver customized and adaptive learning experiences. 

 

The research integrates machine learning techniques and advanced algorithms to analyze 

student performance data and recommend tailored learning paths. A comparative study of 

various methodologies highlights the effectiveness of adaptive systems in improving 

learning outcomes, student engagement and knowledge retention. Findings indicate that 

such systems considerably improve the learning experience of students by providing 

individualized support. However, challenges such as scalability, cultural adaptability, and 

data dependency remain critical barriers to widespread adoption.  

To address the above-mentioned challenges, the study explores ways for developing a 

robust data infrastructure, refining recommendation algorithms for varied educational 
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contexts, and ensuring scalability across academic institutions. Additionally, the research 

investigates the role of emerging technologies such as AI-drives tutoring systems, in 

advancing personalization.  

The study concludes that adaptive recommendation systems hold great potential in 

transforming education. However, further advancements are necessary to optimize these 

systems for broader accessibility and effectiveness.  
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CHAPTER I:  

INTRODUCTION 

 

1.1 Introduction  

Drawing upon over a decade of experience in the education sector, repeated observations 

reveal the limitations of traditional systems in addressing student diversity. A particularly 

illustrative case involved a student who excelled in storytelling but struggled with 

mathematics. This student often felt left behind due to rigid, uniform pace of our 

curriculum. This scenario highlights the broader issue: the need for education to be as 

diverse as the learners themselves. 

Educators all over the world are witnessing an increasing gap between curriculum delivery 

and student engagement. According to UNESCO (2022), over 250 million children are 

failing to achieve basic literacy levels, despite being enrolled in school. This disconnect is 

largely due to rigid, centralized teaching models that do not adapt to the learner’s pace or 

context. Adaptive learning systems, powered by AI, have the potential to dynamically 

bridge these gaps by customizing both the content and the pedagogy based on individual 

learner profiles.  

The post-pandemic acceleration in EdTech adoption has further highlighted this need. As 

hybrid learning becomes mainstream, there is a critical need to design systems that are 

learner-aware, responsive, and inclusive across diverse educational settings.  

Today, this challenge has magnified on a global scale. The reason stems from increasing 

linguistic, cultural and socio-economic diversity among the student population. Adaptive 

learning technologies are considered to have significant potential in bridging these gaps. 

But there are certain challenges in implementing adaptive learning technologies which are 

– scalability issues, data dependency and cultural mismatches. This research aims to 
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address these challenges and contribute to the development of scalable, inclusive 

educational system that caters to the global needs. 

Most of the real world EdTech organizations have incorporated adaptive recommendation 

technologies. For example, Coursera and edX recommend courses aligned with user 

interests and prior engagement patterns, for this they utilize the user interaction data. A 

language-learning platform – Duolingo makes use of reinforcement learning to adaptively 

serve vocabulary exercises based on individual learner errors. On similar terms, Khan 

Academy also adjusts the content difficulty dynamically, which helps students to progress 

at their own pace. Even though these platforms are pioneering, they are still facing 

challenges in explainability, multilingual support, and localized content delivery. This 

research aims to address the mentioned issues.  

A critical evolution in this space is the shift from system-centric to human-centric AI. 

Earlier adaptive systems focused primarily on optimizing content delivery. Modern 

systems, however, aim to understand the learner’s emotions, motivation, cognitive load, 

and even social context. Tools like emotion-aware tutoring systems and explainable 

recommendation dashboards are being prototyped globally. Researchers are now exploring 

how the factors like student stress levels, attention span, and even emotional reactions 

(detected via camera or keystroke dynamics) can be used to inform real-time adaptations 

in learning.  

For example, systems that track subtle signals – such as hesitation before answering a 

question or repeatedly revisiting a concept - can infer confusion or lack of confidence. 

These signals can be used to recommend review material or offer encouragement, thereby 

making the system empathetic and responsive, not just intelligent.  
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This study builds upon this trend by integrating explainability (SHAP values), cultural 

adaptability (location-based testing), and fairness (bias metrics) into the recommendation 

pipeline, offering a more transparent and equitable learning experience.  

Process of Adaptive Recommendation Technologies in Education 

The flowchart explains the process of adaptive recommendation technologies in education. 

It also highlights how the systems that are data-driven personalize learning experiences for 

students. The entire process is divided into three stages: 

 

 

 

Figure 1.1: Process of Adaptive Recommendation Technologies in Education (Source: 

Author) 

1. Student Data Collection: 

At this stage, data related to student’s academic performance, learning preferences and 

behavioral patterns is gathered.  

Example: 
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• Preferences: Information about student’s favorite learning styles and student’s 

subject interest. 

• Performance: Academic metrics such as completed assignments, test scores or 

subject mastery levels. 

• Behavior: Understandings from student learning habits such as frequency of 

logins, engagement with specific content, time spent on tasks.  

    The data is represented by database icon signifying storage and aggregation. 

2. Recommendation 

The core of our processing unit is the recommendation data where the collected data 

flows into.  

The system: 

• AI/ML Algorithms: Uses advanced technologies like Artificial Intelligence (AI) 

and Machine Learning (ML). 

• Analyzes Patterns: It identifies the relationship and trends within the data which 

includes data such as areas where student struggles or excels. 

• Optimizes Content: Matches the student’s profile with the most relevant learning 

materials.  

• Generates recommendations: Creates a personalized learning journey for the 

students tailored to meet each student’s unique needs.  

This stage is represented by a cog wheel and brain icon symbolizing computation 

processing and intelligence.  

3. Tailored Content 

The output of the recommendation system is delivered as personalized learning content 

designed to enhance educational outcomes.  

Examples of tailored content are: 
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• Personalized Study Material: These are learning resources curated to match the 

student’s interest, speed and proficiency. 

• Customized Quizzes: Adaptive tests that adjust the difficulty level based on the 

student performance.  

• Targeted Feedback: Specific suggestions to improve weak areas and increase 

the strength of students.  

This stage is symbolized by icons of books, learning tools and a computer screen 

representing diverse educational outputs.  

1.2 Research Problem 

In spite of the potential benefits of adaptive recommendation technologies in academics, 

their implementation faces many hurdles. Key challenges include scalability, data 

dependency, and cultural adaptability. Many educational institutions have been struggling 

to integrate these systems effectively because of the limited technological infrastructure, 

concerns regarding student data privacy and resistance to change. Without addressing these 

barriers, the full potential of adaptive learning technologies remains suppressed.  

Prior studies often lack focus on cross-cultural adaptability, explainability of AI decisions, 

and personalization fairness even though they have demonstrated the potential of adaptive 

learning technologies. In most of the research the complexity of global learner diversity 

has been ignored and it is limited to monolingual or homogenous settings. Recent 

researches done by Li et al. (2023), Wang et al. (2023) show that a good portion of current 

systems fail to integrate transparent feedback mechanisms or they do not account for 

regional educational preferences. This research aims to address these gaps by proposing a 

holistic framework which would integrate explainable AI, cultural adaptability, and 

fairness metrics and thereby addressing the boundaries of existing literature.  

1.3 Purpose of Research  
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The main purpose of this research is to analyze how adaptive recommendation systems can 

enhance personalized learning experiences in academics. This study aims to explore the 

effectiveness of AI and ML-based recommendation technologies, identify strategies to 

overcome implementation challenges, and evaluate their impact on student learning 

outcomes and engagement. By providing empirical insights, this research seeks to 

contribute to the development of more inclusive and scalable educational solution.  

1.4 Significance of the Study  

This study holds significant importance in the ongoing transformation of educational 

methodologies. By examining the integration of recommendation technologies, the 

research will help educators and policymakers understand how personalized learning can 

improve student engagement and academic performance. Additionally, the study will 

highlight best practices for scaling adaptive learning systems while addressing challenges 

such as data dependency and cultural adaptability. The findings will be instrumental in 

shaping future educational frameworks that prioritize student-centric learning experiences. 

Several global trends and policy frameworks advocating for AI in education have 

emphasized the importance of this research . Role of AI in achieving inclusive and 

equitable learning has been emphasized by UNESCO’s 2021 report (UNESCO, 2021). 

India’s National Education Policy – NEP 2020 encourages to cater to diverse learner needs 

by personalizing education and making it technology-driven (NEP, 2020).  Un Sustainable 

Development Goal 4 – SDG 4  promotes AI-driven approaches to close learning gaps in 

undeserved regions (United Nations, 2023). The OECD’s 2023 guidelines emphasize on 

the adaptive learning systems as tools for addressing educational inequality and to support 

teacher augmentation (OECD, 2023). The global edtech investment surge crossed $18 

billion in 2023 which reflects growing demand for scalable AI solutions (HolonIQ, 2023). 

These trends are the reasons which makes this research globally relevant.  
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1.5 Research Purpose and Questions  

The purpose of this research is to evaluate the role of adaptive recommendation 

technologies in enhancing personalized learning. The study aims at finding out the answers 

for the following research questions: 

1. How can adaptive recommendation systems improve personalized learning 

experiences in modern academics? 

2. What are the main challenges in implementing adaptive recommendation 

technologies in education? 

3. How can we address these challenges to ensure the inclusivity and scalability of 

personalized learning solutions? 

This research comes at a time when educational institutions are under pressure to balance 

quality, access, and personalization. While technology adoption is growing, many systems 

remain opaque, inaccessible, or culturally misaligned – particularly in multilingual 

countries like India. By proposing a hybrid, explainable, and localized adaptive 

recommendation model, this research contributes to building a framework that is not just 

technically robust but also socially responsible.  

The long-term vision of this research is to help build a scalable personalization framework 

that can inform  

- EdTech startups looking to expand in undeserved regions 

- Policy bodies implementing tech-driven curricula 

- Teachers who want to offer data-informed differentiation in their instruction. 

Ultimately, the aim is to empower every learner – not just the tech-savvy or urban elite 

with a path that is adaptive, transparent, and equitable.  
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CHAPTER II:  

REVIEW OF LITERATURE 

2.1 Theoretical Framework 

Important contributions of various research studies in the field of personalized learning 

systems and recommendation systems have been emphasized in this literature reviews. 

Unique ideas on how to improve the accuracy of recommendation systems for personalized 

learning in both offline and online settings have been included in each of the reviewed 

paper.  

Varied Approaches to Personalized Learning:  

Khan and Ahmed (2018) and Dhananjaya et al. (2022) in their paper discuss various 

methods like differentiated instruction, competency-based education and adaptive learning. 

Factors like diverse learning needs of students which promote deeper engagement and 

improve the academic outcomes have been addressed in their studies.  

Integration of Technology: 

Anderson and Whitelock (2004) and El Youbi El Idrissi et al. (2022) in their studies study 

the effect of integration of advanced technologies like semantic web and autoencoders. The 

main aim of their innovation is to enhance the adaptability and discoverability of 

educational resources which helps to foster personalized learning on a large scale.  

Algorithm Enhancements:  

Wang et al. (2023) and Rendle and Sanner (2010) in their studies explore the technical 

aspects of recommendation algorithms. They address issues like cold start and data sparsity 

which is important for enhancing the effectiveness of recommendation systems.  

Data Driven Approaches:  

Baker and Inventado (2014) and Papamitsiou and Economides (2014) in their study explore 

the integration of Educational Data Mining (EDM) and Learning Analytics (LA). Their 
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study determines the potential of data-driven approaches to reveal patterns and insights that 

can pointedly improve personalized learning experiences.  

Several gaps and challenges figured during the review are as follows: 

 Scalability and Data Dependency:  

There is a huge dependency on the quality and quantity of available data for the 

effectiveness of autoencoders and other advanced models. For these systems to be 

effectively implemented across different educational settings it is important to address the 

scalability issues. 

Practical Implementation and Generalization:  

Generalizing innovative algorithms look promising in a controlled environment. However, 

generalizing them to diverse educational context still remains a challenge.  

To make these systems effective in the real-world scenarios practical implementations 

strategies would need to be developed.  

Student Continuity and Engagement: 

Studies done by Anderson and Whitelock (2004) and Dhananjaya et al. bring to focus 

issues related to student continuity and engagement. To avoid student discontinuity and 

disengagement more research would be required which focusses on understanding and 

mitigating the factors causing it. 

Language and Cultural Barriers: 

Dhananjaya et al. (2022) in their studies explore the challenges that language barriers and 

cultural differences pose in creating a recommendation system which is effective 

universally. So, a research required to focus on developing a system which is more 

inclusive and could cater to the audience on a global level.  

Even though a lot of progress has been made in the development of recommendation 

systems for adaptive personalized learning, a lot of research is still required to address the 
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existing gaps and challenges. Future studies should focus more on factors like scalability 

and data dependency, practical implementation and generalization, student continuity and 

engagement, language and cultural barriers. The other most important factor that needs to 

be considered is the development of infrastructure which caters to all the above 

requirements for students on a global level.  

Early recommendation systems in education primarily followed rule based or expert driven 

models where learners were classified based on preset logic or static profiles. These 

systems lacked adaptability and failed to account for real-time changes in learner behaviour 

or preferences. For example, early Intelligent Tutoring Systems (ITS) like Andes Physics 

Tutor and Cognitive Tutor could only make decisions based on predefined scripts and 

failed to learn from student feedback.  

The limitations of these early systems laid the groundwork for a shift toward data driven 

and learner-centered models that emphasize adaptivity, personalization, and feedback 

loops.  

2.1.1 Recent Contributions 

Li, X., Ma, L., & Chen, F. (2023) in their paper propose a personalized recommendation 

system which leverages attention mechanisms. Their study explores the improvisation of 

personalized learning experiences by using attention mechanisms. Attention mechanisms 

basically enhance the recommendation process by focusing on important features and 

interactions.  

Wang, Y., Zhang, L., & Liu, Y. (2023) in their paper introduce collaborative filtering 

recommendation algorithm which is specifically designed for personalized learning in an 

online academic setting. Their research also examines how to adapt collaborative filtering 

to recommend personalized learning resources and activities based on user preferences and 

behaviors. 
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The recent studies in adaptive recommendation systems continue to advance by addressing 

gaps in personalization, system limitations, and evaluation. Da Silva et al. (2023) 

conducted a comprehensive review in the field of recommendation systems in education. 

In their study, they highlighted the dominance of hybrid methods pointing out the under 

explored area in the field which was evaluating the learning impact and system fairness.  

Okuba et al. (2023) did a study on the adaptive systems and demonstrated how these 

systems can improve student engagement through personalized review recommendations. 

They also emphasized the importance of behaviour-based feedback loops.  

Butmeh et al. (2024) worked on the cold start problem in adaptive learning systems by 

designing a hybrid recommender system using attribute-based learner profiles and 

collaborative filtering, which led to significant improvement in the learner satisfaction.  

Fairness in recommendation systems is receiving increasing attention, particularly in 

education, where biased content delivery can affect learner outcomes. Studies such as 

Ekstrand et al. (2018) highlight how collaborative filtering can reinforce popularity bias, 

often marginalizing learners with niche interests or lower prior performance. 

Metrics like demographic parity, disparate impact, and distributional diversity are being 

introduced to evaluate fairness in educational recommenders. Dastin et al. (2021) proposed 

post-processing techniques to re-rank recommended items to improve exposure fairness, 

though these methods often reduce recommendation precision. 

Even well-optimized algorithms can unintentionally propagate system biases especially 

when they are trained on existing learner performance data that reflect historical equities. 

In EdTech platforms, this could mean high performing learners getting repeated 

reinforcement while slower learners receive oversimplified material, reducing their chance 

to catch up.  
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Holstein et al. (2022) argue that such systems if left unchecked, can become achievement 

amplifiers, inadvertently widening educational gaps. Incorporating fairness aware ranking 

and diversity constrains into the recommendation engine as done in this thesis, can mitigate 

this risk by balancing relevance with exposure fairness.  

This study contributes by incorporating a Diversity Index and region-specific CTR 

tracking, offering a combined lens of fairness and engagement optimization. 

A growing area of research links emotion recognition to learning pathways. Emotion aware 

adaptive systems aim to adjust recommendations based not just on click behaviour but also 

on learner sentiment, confusion signals, and frustration detection.  

Technologies such as facial emotion recognition, keystroke analysis, and sentiment mining 

from discussion forums are increasingly used to tailor both content pacing and difficulty. 

Calvo & D’Mello (2020) argue that such systems align better with holistic learner models 

and can prevent burnout by recognizing early signs of disengagement.  

While this study does not incorporate effective computing directly, it sets the foundation 

for integrating sentiment aware modules into future versions of the recommendation 

engine.  

One underexplored area in adaptive educational systems in temporal evolution of learner 

preferences. Unlike static recommender systems, learner’s motivations, proficiency, and 

attention spans change over time. Recent models, such as TimeSVD++, originally designed 

for movie recommenders have been adapted to track temporal drifts in learning patterns 

In educational contexts, this means understanding when a learner is most likely to engage 

with difficult content, or identifying the best time for revision-based recommendations. 

Kumar et al. (2023) proposed a time-aware learning pathway generator that factored in 

cognitive fatigue cycles and showed measurable improvements in test scores and time on 

task metrics. 
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Adaptive learning can be classified into macro adaptive systems, which adjust learning 

pathways across courses or modules, and micro adaptive systems which make changes at 

a fine-grained level. For example, specific quiz hints, sentence rewording. 

Research by Lee and Brusilovsky (2020) shows that combining both levels yields better 

long-term retention and engagement. However, most deployed systems favour macro 

adaptivity due to cost and system complexity. The current study attempts to bridge this gap 

by focusing on module level sequencing while including SHAP driven feedback on 

individual item relevance an early step towards micro level adaptivity.  

For large scale deployment, adaptive systems must integrate smoothly with Learning 

Management Systems (LMS) like Moodle, Google Classroom, or India’s DIKSHA 

platform. LMS integration not only improves accessibility but also facilitates teacher-in-

the-loop adaptation, where instructors can supervise and override recommendations when 

needed.  

NEP 2020 emphasizes the use of adaptive technologies and AI in education. The hybrid 

model proposed in this thesis aligns with NEP’s vision of personalized, competency-based 

learning, and could be piloted in government run virtual learning environments. 

Recent works such as Ranjan et al. (2023) highlight the challenges of interoperability 

between AI modules and government LMSs, suggesting that open APIs and plug-in 

architecture, like the one used here, are more sustainable for public sector adoption. 

A number of system literature reviews in the past five years provide an overview of trends 

in educational recommender systems:  

- Manouselis et al. (2020) classified over 100 papers into content based, collaborative, 

hybrid, and contextual recommenders.  

- Jiang et al. (2021) identified increasing use of reinforcement learning and deep 

learning in personalization frameworks. 



 

 

14 

- Santos & Pena (2023) focused on explainability in EdTech and found SHAP as the 

most used interpretability technique for student-facing systems.  

These surveys reveal a clear trend toward personalization+transparency, validating the 

hybrid explainable system proposed in this thesis. 

2.1.2 Research Gaps 

In the recent years there has been significant advancements in the adaptive 

recommendation technologies, however, few research gaps still persist as mentioned 

below: 

Limited Integration of Fairness and Explainability:  In most of the recommender systems 

used in education, algorithmic accuracy is prioritized. However, only few integrate 

explainability tools such as SHAP or fairness metrics. These elements are essential to build 

user trust and ensure equitable access to personalized learning content. Based on the recent 

research in the field, most educational AI models lack mechanisms to help learners and 

educators understand why the system took certain decisions or evaluate equity in 

recommendations. (Holstein et al., 2022) 

Lack of Empirical Validation in Diverse Educational Contexts: Many systems are usually 

evaluated with similar groups under controlled conditions. This creates a gap in 

understanding how adaptive recommendation technologies would perform in real-world, 

mostly the culturally diverse environments. (Da Silva et al., 2023) in their study provide 

empirical validation for varied geographical and cultural settings. 

Inadequate support for Cold Start and Behavioral Adaptation: The cold start problem is 

where the systems struggle to make recommendations for new users because of the lack of 

initial behavioural data. Some studies have proposed solutions using attribute-based 

models (Butmeh et al., 2024) but very few systems have incorporated the dynamic 
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behvaioral adaptation using reinforcement learning frameworks to adjust recommendations 

in real-time (Li et al., 2023). 

Lack of Utilization of Hybrid-Method Personalization Models: Most of the existing 

recommendation models rely on single approach such as collaborative filtering or content-

based filtering. The integration of multiple personalization models, which we have done in 

this study remains underexplored. A hybrid approach has the potential to improve 

adaptability, accuracy in recommendations, and scalability.   

Less Focus on Learner-Centric Metrics: Despite the evaluation of the recommender 

systems so far have focused on technical performance indicators like RMSE or 

Precision@K. Learner centric metrics such as engagement, satisfaction, and academic 

improvement are still not being assessed in many models. Therefore, a need exists for more 

comprehensive evaluation framework that considers cognitive and behvaioral learning 

outcomes.  

2.2 Theory of Reasoned Action 

The Theory of Reasoned Action (TRA) suggests that an individual’s behavior is determined 

by their intention to perform the behavior. This behavior is influenced by their attitudes and 

subjective norms. In the context of personalized learning and recommendation systems, TRA 

helps explain how the learner’s attitude toward technology and peer influence shape their 

adoption and engagement with these systems.  

 

Table 2.1: Influence of TRA on learning engagement 

Variable % N 

Attitude Towards Technology 72 200 

Peer Influence 65 80 

Learning Engagement 78 220 
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Figure 2.1: Graphical Representation of TRA in Personalized Learning (Source: Author) 

 

 

2.3 Human Society Theory 

The Human Society Theory highlights the impact of different cultural backgrounds, 

economic conditions and social structures on learning experiences of each individual. In 

personalized learning systems, societal factors play a very important role in shaping how 

learners engage with educational technology.  

Social Structures and Learning Accessibility: 

Socioeconomic status of an individual influences access to personalized learning tools and 

technology. Students from priviliged background benefit from better educational 

resources, while underpreviliged students may face problems getting access to digital 

gadgets or internet.  

Cultural Influence on Learning Preferences: 

Cultural values shape the way student interact with educational systems. Recommendation 

systems must be designed to include diverse cultural perspectives, learning styles, and 

language differences.  

Community-Based Learning and Peer Engagement: 
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Social interactions play a vital role in knowledge acquisition. Peer influence can drive 

motivation in personalized learning environment and drive engagement among individuals.  

Equity and Inclusivity in AI-Powered Learning: 

AI-driven recommendation systems must consider inclusivity to provide equal learning 

opportunities. 

Biases in algorithmic recommendations should be addressed to ensure fair access to 

educational content for all demographics. 

By incorporating societal and cultural dimensions into personalized learning frameworks, 

recommendation systems can become more adaptive, inclusive, and effective on a global 

scale. 

2.4 Conceptual Framework 

 

Figure 2.2: Conceptual Framework for Adaptive Personalized Learning (Source: Author) 

To establish the interrelationships among the key constructs explored in this research, the 

following conceptual framework has been developed. It illustrates how adaptive learning 

technologies, learner engagement, fairness, and cultural adaptability interact within the 

broader context of personalized education. The framework in the Figure 2.2 positions 

adaptive learning at the core, supported by explainability (e.g., SHAP), fairness metrics, 
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and cultural adaptability, which collectively enance learner engagement and 

personalization efficacy.  

2.4 Summary 

This literature review highlights significant contributions in the field of personalized 

learning and recommendation systems. Various studies have explored different approaches 

to personalized learning, including differentiated instruction, competency-based education, 

and adaptive learning. The integration of advanced technologies, such as the semantic web 

and autoencoders, has been a key factor in enhancing adaptability and the discoverability 

of educational resources. 

Additionally, improvements in recommendation algorithms have addressed challenges like 

cold start and data sparsity, while data-driven approaches leveraging Educational Data 

Mining (EDM) and Learning Analytics (LA) have demonstrated the potential to refine 

personalized learning experiences. 

Despite these advancements, several gaps and challenges remain. Issues related to 

scalability, data dependency, practical implementation, and generalization need further 

research to ensure widespread applicability. Additionally, student engagement, continuity, 

and the impact of cultural and language barriers must be considered to create more 

inclusive learning environments. 

Recent contributions, such as the use of attention mechanisms and collaborative filtering, 

indicate promising directions for future research. However, further studies are required to 

refine these approaches and develop robust infrastructures that can support personalized 

learning at a global scale. 

The existing research done in the field of personalized recommendations have made 

important contributions in terms of improving algorithmic accuracy or engagement metrics 

but they have often done these processes in isolation (Wang et al., 2023), (Rendle & 
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Sanner, 2010). While few of them have also combined the technical performance 

considering fairness, explainability, and cultural adaptability. In this research we advance 

the field by including a hybrid recommendation model (CF+CBF+MAB), in which we 

incorporate SHAP-based explainability (Lundberg et al., 2017), and apply bias detection 

metrics to ensure equitable personalization (Meharbi et al., 2021).  

Hybrid recommendation systems, which combine Collaborative Filtering (CF) and Content 

Based Filtering (CBF) have become popular in EdTech due to their ability to balance 

relevance and diversity. Studies like Adomavicius and Tuzhilin (2015) have shown that 

hybrid models reduce the cold start problem and improve engagement especially in 

platforms with diverse learner cohorts.  

In the educational context, hybrid systems can match learning materials not only based on 

user similarity but also based on content tags, metadata, and inferred skill levels. More 

recent work includes combining CF/CBF with contextual bandits, allowing the system to 

explore new materials while learning what works best for different learner types.  

We also extend the current research by testing cross-regional adaptability using exact 

location data rather then the broader classifications like urban/rural. This broader 

classification offers a more nuanced understanding of personalization across different 

educational settings.  

As algorithmic systems became more embedded in educational settings, the need for 

transparency and interpretability led to a new research direction: Explainable AI (XAI) in 

learning. Unlike e-commerce or entertainment domains, learners and instructors require 

visibility into why certain content was recommended especially when it influences 

assessment or learning pathways. 

SHAP (Shapley Additive exPlanations), LIME, and Anchors are among the leading 

methods integrated into educational recommenders. For example, Lu et al. (2021) used 
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SHAP explanations in a course recommendation tool to visualize how learner performance 

history and content difficulty contributed to recommendations. Their work found a 

significant increase in learner trust and system adoption when such explanations were 

provided.  

Despite the growing body of research, several gaps remain: 

- Most studies are tested in homogeneous, urban learner datasets leaving questions about 

scalability in rural or multilingual environments.  

- Few systems consider explainability, fairness, and adaptivity together most focus on 

one or two dimensions.  

- There is limited work on post recommendations learner behavior tracking. For 

example, whether learners follow the recommendation and succeed.  

- Most evaluations use offline metrics, live feedback loops and user trust metrics are 

rarely considered.  

This research addresses these gaps by combining a hybrid algorithmic framework with 

explainable AI and fairness aware evaluation in real world educational setting.  
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CHAPTER III:  

METHODOLOGY 

3.1 Overview of the Research Problem 

The traditional academic system usually follows a one-size-fits-all model which fails to 

meet the varied needs of individual students, leading to disproportions in learning outcomes 

and engagement. The rise of adaptive recommendation technologies aims to address this 

issue by tailoring learning experiences to meet the needs of individual learners. However, 

the implementation of adaptive recommendation technologies carry certain challenges 

such as data dependency, scalability, and cultural adaptability. This study is focussed to 

evaluate and refine the way recommendation systems work in adaptive learning space. We 

have integrated machine learning, Explainable AI, and reinforcement learning 

methodologies to overcome the existing limitations and create a transparent 

recommendation system for diverse educational settings.  

3.2 Operationalization of Theoretical Constructs 

 

Fig 3.1: Operationalization of Theoretical Constructs in Adaptive Recommendation 

Technologies (Source: Author) 



 

 

22 

This research combines the concepts from Personalized Learning, Learning Analytics 

(LA), Explainable AI and Reinforcement Learning. Each of these concepts are detailed 

below: 

3.2.1 Student Engagement Metrics 

Student engagement is a primary indicator to define how effective the learning is 

happening. This research uses multiple measurable factors to define learning engagement: 

Session Duration: The amount of time a student spends on learning resources, serving as a 

proxy for engagement.  

Quiz Performance: Improvement in quiz scores over time reflects retention of knowledge 

and mastery over a concept.  

Resource Interaction Frequency: Tracks the number of interactions and clicks with learning 

materials.  

Drop Off Rates: Monitors when the student leaves a learning session without completing 

the activity, this helps to refine the content delivery.  

Forum Posts and Resource Accessed: This metric is an indicator of collaborative and 

independent learning.  

Sentiment Score: Represents emotional engagement or user satisfaction.  

3.2.2 Adaptive Learning 

The main focus of Adaptive Learning mechanisms is to ensure that students receive 

personalized content recommendations tailored to their needs. This study operationalized 

adaptive personalized learning through: 

3.2.2.1 Collaborative Filtering (CF) 

Identifies similar learners and recommends resources based on peer interactions. 

Collaborative filtering has proven to be an effective approach in recommender systems for 

education. In this research we employ a collaborative filtering technique to provide 
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personalized learning recommendations based on interest of students and knowledge gaps. 

(Khosravi, M. et al., 2017) introduced RiPLE, a recommender system designed for Peer-

Learning Environments. RiPLE uses matrix factorization to generate personalized 

recommendations which helps find learning materials suited to their learning needs. Hence, 

increasing knowledge retention and engagement. Their findings indicate that this technique 

is effective for the cold-start users as well, therefore, making it a robust solution for 

adaptive learning systems. By integrating a similar technology, this research aims to 

improve personalized learning experiences overcome the challenges existing in 

personalized learning space.  

3.2.2.2 Content-Based Filtering (CBF) 

Content-based filtering (CBF) is an important technique in personalized learning systems. 

It matches students with resources based on their previous engagement and similarity of 

content features. It does this by using features such as difficulty level, user interactions, 

and topic relevance. CBF helps provide targeted educational recommendations. However, 

it does have its limitations – one of them is a cold start problem. In cold start problem, new 

users with no prior data receive recommendations which are not optimal. To address this, 

hybrid learning models combine collaborative filtering (CF) and content-based filtering 

(CBF), and puts to use the strengths of both the techniques to improve personalization and 

accuracy. Additionally, reinforcement learning (RL) can be integrated into recommender 

systems, leveraging the reward-based system that dynamically refines recommendations 

based on changing student behaviors (Bobadilla et al., 2013). By incorporating CBF, CF, 

and RL, this research aims to develop an adaptive personalized educational recommender 

system. This system will enhance student engagement and learning outcomes.  

3.2.3 Cultural Adaptability 
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Cultural differences impact the engagement and learning preferences of students. To assess 

the cultural adaptability, this study incorporated: 

Cross-Linguistic Recommendation Testing: Evaulated the effect of language on content 

recommendation accuracy. 

Region-Specific Learning Preferences: Analyzes variations in engagement based on 

regional educational norms.  

Localization of Personalized Content: Ensured that the recommendations are adapted to 

cultural and linguistic contexts by training models on diverse datasets.  

Fairness Analysis and Bias Detection: Identifies and reduces potential biases in the outputs 

of recommendations, which ensures equitable learning opportunities for all the students.  

3.2.4 Explainability in AI 

In order to build trust among students and educators we have incorporated transparent AI-

driven recommendation. This study ensures to achieve that transparency through: 

SHAP (SHApley Additive Explanations): It identifies the feature that contributes the most 

to a recommendation.  

Feature Importance Analysis: It determines whether engagement scores, quiz scores, past 

resource interaction have any influence on the recommendations.  

Visual Explanations: Uses dashboards to present strong reasoning behind the content 

suggestions which make AI decisions easy to interpret for students and educators.  

User Feedback Integration: Allows students to provide feedback on recommendations, 

which helps us to refine the model based on the stream of inputs.  

3.3 Research Purpose and Questions 

The research questions and purpose is as below: 

1. How can adaptive recommendation technologies improve personalized learning 

experiences in diverse educational settings? 
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2. What challenges arise in implementing adaptive learning systems, and how can 

they be mitigated? 

3. How can recommendation algorithms be enhanced for better scalability and cultural 

adaptability? 

This research mainly adopts the pragmatic research paradigm, because it is well-suited to 

address complicated educational problems that require both quantitative and qualitative 

analysis. Pragmatism recognizes the value of methodological flexibility and multiple 

worldviews which enables the researchers to focus on real-world outcomes and practical 

solutions (Creswell et al., 2018). For this research, the pragmatic stance allows us to 

integrate the experimentation of machine learning (positivist techniques) with learner 

feedback analysis (interpretivist elements) which supports a comprehensive evaluation of 

adaptive recommendation systems.  The choice of paradigm aligns with this research’s goal 

which not only to understand how personalization algorithms function, but also how they 

are experienced by learners in varied educational contexts.  

While a mixed methods approach is often justified on pragmatic grounds, it also aligns 

theoretically with the layered nature of educational personalization. Quantitative models 

like collaborative filtering, MABs identify what content works, but qualitative feedback 

reveals why it works – or doesn’t for different learners. Combining both lenses enhances 

interpretability and design decisions.  

For example, student feedback on recommendation relevance helps calibrate reward 

functions in reinforcement learning models. Similarly, demographic insights from open-

ended responses influence how bias detection thresholds are interpreted.  

3.4 Research Design 

The primary aim of this research is to develop an adaptive recommendation system for 

personalized learning using a combination of machine learning techniques such as content-
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based filtering. Collaborative filtering, hybrid models and reinforcement learning. This 

research uses a mixed-methods research design by combining qualitative insights from 

educators and students and quantitative engagement analysis. This study adopta a 

computational experimental approach, where we develop multiple recommendation 

models and test them on real-world student engagement data. 

 

Figure 3.2: Research Design (Source: Author) 

Experimental approach allows to do system comparisons between different 

recommendation algorithms, ensuring measurable outcomes using quantitative evaluation 

metrics. Another reason of choosing experimental approach is to be able to incorporate 

A/B testing for model improvements. 

In the research design we have used methods like machine learning based experiments 

since they are effective for pattern recognition in large datasets (Goodfellow et al., 2016). 

To ensure statistical validity of results this research uses Quantitative assesment 
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(Montgomery, 2017). And to address ethical AI concerns we have done Explainability 

integration (Doshi-Velez & Kim, 2017). 

The methodology follows a five phase process, listed are the five phases –  

• Data Collection and Preprocessing 

• Feature Engineering 

• Algorithm Implementation 

• Explainability and Transparency 

• Evaluation and Adaptability  

3.4.1 Data Collection and Preprocessing 

Data cleaning and preprocessing are very important steps in any machine learning pipeline, 

especially in the context of recommender systems in personalized learning, where different 

datapoints like student interaction data, content metadata, and engagement metrics are used 

to build accurate recommendations. This stage ensures data quality, readiness, and 

consistency for feature extraction and algorithm implementation (Baker, 2014).  

3.4.1.1 Understanding Raw Data Sources 

We need to identify the sources and characteristics of the data before we actually start 

cleaning it. 

The dataset for this stidy consists of student learning interactions, listed as below: 

• User Interaction logs: Clicks, time spent on content, quiz attempts. 

• Course Metadata: Subject difficulty, format (video, text, quiz) 

• Engagement Metrics: Frequency of activity, drop-off points, Completion rates 

• Student Profiles: Age, learning style (text, visual, interactive) 

Each of these sources contained inconsistencies, noise, and missing values which were 

addressed before model training.  

3.4.1.2 Data Cleaning and Preprocessing Steps 
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We follow the following steps to do the data cleaning and preprocessing: 

Handling Missing Data: There were missing data when students skip quizzes, do not 

complete modules or leave forms incomplete. The following strategies were used to 

address missing values. 

For categorical features mode imutation method is used where we fill the missing value 

with the most frequent category. This research uses backward or forward filling if we come 

across data which is time-series based. Mean/median imputation was used for numerical 

features and K-Nearest Neighbors for structures missig values (Little et al., 2019).  

Outlier Detection and Removal: Outliers can misrepresent the recommendation algorithm, 

especially if extreme values exist in the engagement metrics. This research uses box plot 

method to remove the outliers in the engagement metrics. Also, domain knowledge-based 

filtering is used in some cases like for example a where engagement time exceeds course 

duration (Hodge et al., 2004). 

3.4.1.2.1 Data Normalization and Scaling 

In order to ensure fair weighting feature scaling is applied on the engagement metrics to 

bring them on the same scale.  

Min-Max Scaling (0-1 normalization): This kind of normalization is used for features like 

video watch time percentage. 

Standardized Z-score normalization: This is applied to normally distributed data like quiz 

scores (Han et al., 2011). 

3.4.1.2.2 Handling Data Imbalance (Engagement-Based Biases) 

In engagement data, we found that certain student groups were underrepresented or 

overrepresented, leading to biased recommendations.  In order to solve the problem we 

made use of –  

Oversampling (SMOTE): Increases representation of underrepresented students.  



 

 

29 

Down sampling: Reduces data from dominant groups to prevent bias (Chawla, N. V., et 

al., 2002).  

3.4.1.2.3 Feature Engineering Preparation 

Additional transformations are applied to prepare for feature extraction once the data is 

cleaned (Kuhn et al., 2019). Feature engineering preparation can be done through: 

- Encoding categorical variables 

- Log transformations for skewed distributions 

- Extracting time-based features 

3.4.2 Feature Engineering 

Feature engineering is an important step in developing a persononalized learning 

recommender system, as it increases the accuracy, adaptability, and fairness of 

recommendations. The process involves transformation of raw data into meaningful 

features that capture student engagement patterns, learning preferences, and content 

relevance.  

Feature engineering improves the recommendation accuracy through meaningful 

attributes, mitigates biases in student engagement data, enhances explainability, making 

the recommendations more interpretable (Kuhn et al., 2019). 

3.4.2.1 Feature Engineering Steps 

Following steps are involved in feature engineering 

3.4.2.1.1 Normalization of Engagement Metrics 

Raw engagement data varies in scale, for example, quiz scores can range from 0-100, while 

video watch time is in minutes. Normalization ensures that all features contribute equally 

to the model (Han et al., 2011)  

Min – Max Scaling: This is usually done for features like video watch percentage. 

Log Transformations: This is done for skewed distributions such as time spent per session.  
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3.4.2.1.2 Creating Student Profiles 

We construct student learning profiles to personalize recommendations. It is done based 

on: 

Preferred Learning Mode: Learning mode could be video-based, text-based or quiz based 

Time of day: At what time the student is more active – whether the student is a morning or 

an evening learner.  

Engagement consistency: Whether the student has sporadic or regular engagement.  

Following methods are used to create the student profiles: 

K-means clustering: We cluster the students based on engagement patterns 

Latent Profile Analysis: This concept is used to identify hidden learning behaviors 

(Romero et al., 2010) 

3.4.2.1.3 Extracting Content Based Features 

Content metadata in addition to the user behavior carries importance for recommendations. 

We extract content metadata using Topic Relevance in which, course descriptions are 

vectorized using TF-IDF or word embeddings. Difficulty level is estimated based on 

historical student performance. Course format feature identifies if the course is video-

heavy, text-heavy or interactive. The following techniques are used to achieve it: 

Natural Language Processing (NLP) – This is used for textual feature extraction 

Latent Semantic Analysis (LSA) – This is done for topic modeling (Mikolov et al., 2013). 

3.4.2.1.4 Hybrid Recommendation Features (CF+CBF) 

We integrated Collaborative Filtering (CF) and Content-Based Filtering (CBF) to enhance 

the model performance. Collaborative Filtering captures shared preferences among 

students. Content Based Filtering determines the content relevance based on extracted 

features and Hybrid Model (CF+CBF) combines the benefits of both the methods for 

personalized learning paths. 
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The research used following techniques: 

Cosine Similarity & Pearson correlation – These methods are used for user-user and item-

item similarity. 

Matrix Factorization – This method is used for latent feature extraction (Ricci et al., 2015). 

3.4.2.1.5 Reinforcement Learning Features 

Reinforcement Learning dynamically updates recommendations to address the ever 

evolving student preferences. This research uses Multi-Armed Bandit (MAB) models to 

adjust recommendations based on real-time student feedback. State-Action features 

represents student learning states and corresponding recommendation actions (Sutton et 

al., 2018)  

3.4.2.1.6 Explainability and Bias Detection Features 

The recommendations derived from AI should be fair and transparent. In order to achieve 

that, we integrate –  

SHAP (Shapley Additive Explanations) to quantify the feature importance.  

Bias detection metrics to ensure recommendations are not skewed towards specific student 

demographics (Lundberg et al., 2017)  

Table 3.1: Input features used in hybrid recommender 

Feature Name Description Type Normalization 

Applied 

Session Duration Time spent per learning session 

(in minutes) 

Continuous Min-Max scaling 

Quiz Score Last completed quiz score (0–

100%) 

Continuous Z-score 

normalization 

Last Topic 

Attempted 

Most recent module/topic 

attempted 

Categorical One-hot encoded 
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Click Count Total content clicks in last 

session 

Integer Standardized 

Completion 

Ratio 

% of course modules 

completed 

Continuous No 

Time of Access Time of day when learner logs 

in 

Categorical Bucketed 

The hybrid recommendation system utilizes a curated set of input features derived from 

learner interaction logs and performance data. These features are selected based on their 

relevance to capturing engagement, comprehension, and learning behaviour. 

The hybrid recommendation system utilizes a curated set of input features derived from 

learner interaction logs and performance data. These features are selected based on their 

relevance to capturing engagement, comprehension, and learning behaviour.  

As presented in the above table, both continuous and categorical features are included. 

Session Duration, Quiz Score, and Completion Ratio reflect the learner’s recent activity 

level and academic performance. Categorical features such as Last Topic Attempted and 

Time of Access provide contextual information, while Click Count indicates interaction 

intensity.  

Appropriate pre-processing was applied to ensure uniformity across the feature set. 

Continuous variables were scales using min-max or z-score normalization depending on 

their distribution. Categorical features were transformed using on hot encoding or 

discretization where necessary.  

These features served as the primary input to both the content based and collaborative 

filtering layers. For real time prediction, a subset of the same features was streamed to 

ensure consistency and computational efficiency.  

3.4.3 Algorithm Implementation 



 

 

33 

Feature engineering helps us to clean and transform the collected data. Once that is done, 

the next step is algorithm implementation. In this phase we generate personalized learning 

recommendations using machine learning models based on student’s engagement patterns, 

preferences, and content relevance.  

This research follows a hybrid approach, in which we integrate: 

1. Collaborative Filtering (CF) 

2. Content-Based Filtering (CBF) 

3. Hybrid Models (CF+CBF) 

4. Reinforcement Learning (Multi-Armed Bandits – MAB) 

Each technique plays an important role in enhancing cultural adaptability, personalization, 

and fairness in the recommendation process (Adomavicius et al., 2005).  

3.4.3.1 Collaborative Filtering  

Collaborative Filtering recommends content based on the assumption that users with 

similar past behaviors will have similar future patterns. It uses student interaction patterns 

instead of the content metadata.  

There are certain types of CF approaches: 

User – Based Collaborative Filtering: This type identifies students with similar preferences 

and recommends courses based on the peer behavior. For example: If student A and student 

B have enrolled in similar courses in the past, a new course that student A like will be 

recommended to student B as well. This research uses Pearson Correlation for Similarity 

Measurement to achieve it (Breese et al., 1998). 

Item – Based Collaborative Filtering: This type of filtering finds similarity between courses 

based on past engagement instead of comparing users. For Example: The system 

recommends “Deep Learning Fundamentals” to the students who have the taken and 
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completed the courses like “Machine Learning Basics”. This method uses Cosine 

Similarity for Item-Item CF (Linden et al., 2003). 

Following challenges are involved in Collaborative Filtering: 

- Cold Start Problem: This may be an issue because new students and new courses 

have no past interactions.  

- Sparsity: The course-user matrix is large but mostly empty.  

3.4.3.2 Content – Based Filtering (CBF) 

Content Based Filtering recommends courses based on the student’s past preferences and 

characteristics of the content. The key features that are used in CBF are: 

Course Descriptions – These are processed using the Word Embeddings or TF-IDF. 

Engagement Metrics – Quiz scores, reading time, video watch time 

Topic Similarity – Calculated using Latent Semantic Analysis (Lops et al., 2011). 

Following challenges are involved in CBF: 

- Overspecialization: Students may get recommendations that are too similar to past 

courses.  

- Cold Start for New Courses: If a course has no prior student engagement, it is harder 

to recommend.  

3.4.3.3 Hybrid Model (CF+CBF) 

To overcome the challenges of CF and CBF, we implement a hybrid model which 

combines the benefits of both the approaches. This research uses CF for personalization 

that is learning from the peer behaviors and CBF for content-based recommendations to 

ensure that the relevant topics are recommended (Burke et al., 2002). Hybrid model solves 

the cold start problem by incorporating the content features and provides better 

personalization than provided by CF and CBF separately.  

3.4.3.5 Mathematical Formulation of Recommendation Logic 
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In this section please find the precise explanation of how each recommendation model 

contributes, below are the key formulated components: 

Cosine Similarity (for Item-Item CF): 

sin(𝐴, 𝐵) =
∑ 𝐴𝑖 . 𝐵𝑖𝑖

√∑ 𝐴𝑖
2. √∑ 𝐵𝑖

2
𝑖𝑖

 

Where A & B are interaction vectors of two courses or users.  

TF-IDF for CDF Vectorization: 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) . log(
𝑁

𝑑 𝑓(𝑡)
) 

Where 𝑡𝑓(𝑡, 𝑑) is the term frequency of term t in document d and 𝑑 𝑓(𝑡) is the number of 

documents containing term t.  

Epsilon Greedy MAB Strategy: 

 

𝑎 =  {
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (𝑟𝑎𝑛𝑑𝑜𝑚) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑎)) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀 
} 

Where 𝜀 = 0.1, tuned through cross validation on pilot data 

3.4.3.6 Hyperparameter Optimization and Tuning Strategy: 

To enhance the accuracy and responsiveness of the hybrid recommendation engine, a 

structured hyperparameter tuning process was followed.  

For Collaborative Filtering, the neighbourhood size (k) was varied from 10 to 100 using 5-

fold cross validation. The optimal values was found to be k=40, which provided the best 

balance between diversity and relevance of recommendations.  

For Content-Based Filtering, TF_IDF vector similarity thresholds were tunes 

incrementally. A cosine similarity cut off of 0.65 yielded the best results in terms of 

engagement (CTR) and recommendation diversity.  
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The Muti-Armed Bandit (MAB) exploration-exploitation balance was managed using an 

ε-greedy strategy. Epsilon (ε) values of 0.05, 0.1, and 0.2 were tested. An ε value of 0.1 

emerged as optimal, allowing for sufficient exploration of new content without 

destabilizing high-performing recommendations.  

Precision@K, Recall@K, and the change in quiz performance (Δ Quiz) were used as 

validation metrics. Results showed that performance was most sensitive to ε tuning in the 

MAB model and k-value tuning in collaborative filtering, while content similarity 

thresholds had a marginal but consistent effect.  

3.4.3.7 Tools, Frameworks, and Libraries Used 

The implementation of the adaptive recommendation engine was carried out using Python 

3.9 owing to its rich ecosystem of machine learning libraries and data processing tools. 

Key frameworks and libraries employed include: 

- Scikit-learn: This library was used for implementing collaborative filtering, TF-

IDF vectorization, cosine similarity, and evaluation metrics like Precision@K and 

F1-score 

- Pandas and Numpy: This library is essential for data manipulation, matrix 

operations, and dataset pre-processing workflows.  

- XGBoost and SHAP: Utilized to compute and visualize feature attributions, 

allowing learners and instructors to interpret why a recommendation was made.  

- Matplotlib and Seaborn: Employed for creating graphs and data visualizations used 

in model evaluation and analysis reporting.  

- Flask: Used to simulate API-based deployment of the recommendation engine for 

real-time testing. 

- Google Colab Pro: Enables the use of GPU resources for matrix factorization and 

faster model training.  
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This stack ensured rapid prototyping, reproducibility of experiments, and a modular 

architecture that can be scaled or adapted easily for real-world deployment in different 

educational environments.  

3.4.4 Explainability and Transparency 

To ensure that the AI-driven recommendation models are interpretable, transparent, and 

fair is crucial. Explainability enhances this trust and adoption and transparency helps 

identify ethical concerns and biases. This phase focuses on: 

1. SHAP-based Feature Importance Analysis 

2. Bias Detection and Fairness Analysis 

3. Student Feedback Integration 

3.4.4.1 SHAP-Based Feature Importance Analysis 

The Shapley Additive Explanations (SHAP) method quantifies how much each feature 

contributes to a recommendation. It provides mathematically sound way to explain model 

predictions and ensures students understand why a course was recommended. It also helps 

to identify biases in the recommendation process. For example if a course is recommended, 

SHAP can show that Course Popularity (30%) + Student Interest (50%) + Engagement 

Score (20%) contributed to the decision (Lundberg et al., 2017). 

3.4.4.2 Bias Detection and Fairness Analysis 

Recommender systems can often reinforce existing biases which may lead to unfair 

recommendations. The biases could be a popularity bias which means frequently enrolled 

courses are recommended more often. Recommendations may also differ based on age, 

gender and region which is called demographic bias. Over time, users may only see similar 

courses, limiting diversity which is called Feedback Loop Bias (Meharbi et al., 2021). 

The fairness metrics like Demographic Parity were used which ensures that all groups get 

equal recommendations. Another metric that the research uses is Equal Opportunity where 
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all students have access to high-quality courses. Methods like reweighting were used to 

adjust the course recommendations to avoid over-favoring certain groups and diversity-

aware recommenders to ensure that students see a broad range of course topics (Binns et 

al., 2018). 

3.4.4.3 Student Feedback Integration 

Explainability is incomplete without user feedback. User feedbacks refine the system based 

on student responses. The feedback mechanism used in this research includes – Rating 

System: where the students rate the course recommendations 

Explicit Feedback: Students can mark a recommendation as “Not Relevant” 

Implicit Feedback: System monitors engagement time, dropout rates, etc (Jannach et al., 

2016). Feedback Integration makes the recommendation personalized and adaptive and 

they even enhance user trust by incorporating student preferences.  

3.4.5 System Recommendation Workflow 

System follows the following steps in real time to compute the recommendations: 

- User Login and Data Capture: With learner login following activity tracking gets 

triggered – quiz scores, click paths, and time spent. 

- Data Preprocessing and Profile Update: In this step, the interactions logs are 

processed to update the learner’s vector  profile (CBF) and similarity 

neighbourhood (CF).  
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Figure 3.3: Operational Workflow of the Hybrid Adaptive Recommendation System 

(Source: Author) 

- Recommendation Engine (Hybrid Model): In this step CF matches the users with 

similar peers based on their respective engagements. CBF uses TF-IDF 

vectorization of the learner history and course metadata. MAB decides whether to 

explore or exploit the recommendations.  

- Explainability Layer (SHAP): The top-N recommendations are presented with 

interpretable SHAP feature attributions. For example – “High engagement in 

Python Basics” 

- Feedback Capture and Reinforcement: The learner’s behaviour is stored as reward 

feedback to tune the MAB model over time.  

This loop enables the recommendation system to continuously adapt to the evolving 

needs of the learners.  

The architecture below explains how the system is architected across layers on modules 

rather than flow. 
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Unlike the process workflow which shows the recommendation logic, this architectural 

view presents the modular breakdown of the system components. It shows how the 

front end, back end logic, and data management layers are separated for flexibility and 

scalability. Each layer can be updated independently. For example, the CF logic can be 

swapped out or restrained without modifying how user interaction is handled. 

This layered architecture also supports future expansion, such as plugging in emotion 

sensing modules or switching from SHAP or other XAI methods like LIME or DeepLIFT, 

without rewriting the whole system.  

3.4.6 Evaluation and Adaptability of Adaptive Recommendation Technology 

This is the final phase of this research and it focusses on evaluating the performance and 

adaptability of the personalized learning recommender system. Evaluation ensures the 

system is effective, adaptable, and fair to different users and cultural contexts. This phase 

involves – Engagement Score Improvement, Calculating Personalization Success Rate, and 

Cultural Adaptability Testing (Gunawardana et al., 2015).  

The system was intentionally designed using a modular architecture, allowing independent 

development, testing, and scaling of its core components. As illustrated in Figure 3.5, the 

architecture is divided into three primary layers: 

- User Interface Layer: Responsible for learner interaction, content presentation, and 

feedback collection. The UI is designed to be platform-agnostic, allowing web, 

mobile, or LMS integration.  

- Recommendation Logic Layer: Contains the hybrid engine composed of 

collaborative filtering (CF), content-based filtering (CBF), and multi-armed bandit 

(MAB) controller. This layer also integrates SHAP for real-time explainability. 
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Figure 3.4: System Modularity Architecture (Source: Author) 

- Data Management Layer: Handles storage, processing, and retrieval of learner 

profiles, course metadata, and interaction logs. Data flows bidirectionally to 

support batch training and real-time inference.  

Each module can be independently updated or replaced without impacting the other layers, 

ensuring that the system remains flexible, maintainable, and deployable across varied 

educational contexts.  

3.4.6.1 Engagement Score Improvement 

Engagement is very important success metric for any learning system. A well-personalized 

recommender should increase retention, course completion rates, and student participation. 

Metrics for Engagement Analysis: 

Click-through Rate (CTR): Measures how often student clicks on a recommended course.  

Course Completion Rate: Tracks the number of students that complete a course which they 

were recommended (Anderson et al., 2014)  

Time Spent on Platform: Measure the engagement with the recommended content 

Following is the formula used for engagement score calculation:  
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𝐸𝑆 =  𝛼 × 𝐶𝑇𝑅 + 𝛽 × 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 + 𝛾 × 𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡 

Where α, β, and γ are the weights assigned based on the importance. 

ES = Overall Engagement Score 

If CTR increases from 10% to 25%, this would indicate a better personalization and if the 

completion rate of the recommended courses rise, it shows that the interest of student has 

increased.  

In addition to the engagement formula which was presented earlier, valuation of 

Precision@K was done, Click-Through Rate, and Quiz Gain to figure out the success of 

personalization: 

𝐶𝑇𝑅 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝑙𝑖𝑐𝑘𝑠 𝑜𝑛 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐶𝑜𝑛𝑡𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
 

∆ 𝑄 = 𝑃𝑜𝑠𝑡 𝑄𝑢𝑖𝑧 𝐴𝑣𝑔 − 𝑃𝑟𝑒 𝑄𝑢𝑖𝑧 𝐴𝑣𝑔 

A Precision @5 score of 08 implies that 4 out of top 5 recommended items were relevant 

which indicates strong recommendation accuracy.  

3.4.6.2 Calculating Personalization Success Rate 

A recommender system which provides accurate and relevant recommendations to the 

individual students is considered as high-performing recommender system. 

Metrics for Evaluating Personalization: 

Precision@K: Measures the percentage of relevant courses in the top K recommendations. 

Recall@K: Evaluated how well the system retrieves all relevant courses.  

F1-Score: Balances precision and recall.  

The following formula for F1-score is used to evaluate personalization success rate –  

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

F1=2×Precision+RecallPrecision×Recall 
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The results would indicate that if Precision@5 is 0.80 then 80% of the top 5 

recommendations would be relevant and if Recall@10 is 0.75 then 75% of all the relevant 

courses were recommended (Cremonesi et al., 2010)  

3.4.6.3 Cultural Adaptability Testing 

One of the key challenges in implementing personalized learning is to ensure that the 

recommendations are relevant across different educational backgrounds and diverse 

cultures. In this research, the following methods have been used to evaluate cultural 

adaptability –  

Multi-Region Analysis: It compares the system performance across different user groups. 

Language-Sensitivity Testing: Ensures that the recommendations should work in a multi-

lingual settings.  

Diversity Index: Measures how varied recommendations are across cultural backgrounds.  

The following formula is to calculate the diversity index: 

𝐷 = 1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

Where 𝑝𝑖 is the proportion of recommendations from category i.  

For example if an Indian student gets only US specific course recommendations then the 

system lacks cultural adaptability. A high diversity score ensures that the students receive 

locally and globally relevant content (Jannach et al., 2010). 

Each research question has been addressed using specific analytical techniques to ensure 

methodological alignment. 

Research Question 1 explores how adaptive recommendation systems enhance 

personalized learning, a combination of collaborative filtering, content-based filtering, and 

a hybrid model have been employed. These techniques allow the system to tailor content 
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based on user behavior and preferences. Impact is evaluated using engagement metrics 

such as click-through rates and completion rates.  

Research Question 2 focusses on identifying challenges in implementing adaptive learning 

systems. To address these challenges the study incorporates SHAP for explainability, 

region-specific data for cultural adaptability, and bias detection metrics for fairness 

analysis. These methods provide insights into demographic disparities in 

recommendations, system transparency, and inclusivity.  

Research Question 3 examines scalability and adaptability. For this Multi-Armed Bandit 

(MAB) algorithms have been used to enable dynamic recommendation adjustments. These 

algorithms allow the system to evolve in real-time based on student feedback, which helps 

to overcome cold start problems and improve recommendation accuracy over time.  

Across all the research questions, both explicit and implicit student feedback has been 

collected and thematically analyzed to assess perceived usefulness, satisfaction, and trust 

which offers a richer understanding of how the system functions from learner’s perspective.  

3.4.6.4 Pilot Validation Phase 

Prior to full-scale evaluation, a small-scale pilot was conducted with 30 learners drawn 

from Mumbai, Hyderabad, and Bangalore to test the system’s usability, technical response, 

and recommendation logic. Over a two-week period, these learners interacted with at least 

two modules while the system generated adaptive content recommendations using the CF-

CBF-MAB hybrid model.  

The pilot revealed promising early indicators: the average click-through rate (CTR) on 

recommended content improved by 18% compared to baseline materials, and open-ended 

feedback confirmed that learners found SHAP-based explanations understandable and 

reassuring. The system response time averaged 1.9 seconds per recommendation cycle.  
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Key refinements from this phase included improving the cold-start logic for first time users 

and adding a filter to suppress repeat recommendations for content already completed. 

These adjustments were incorporated before expanding the model to the full sample 

population for final analysis.  

3.5 Population and Sample 

This research investigates how adaptive recommendation technologies enhance 

personalized learning by applying AI-driven recommendations to students who were 

previously following the one-size fits all education model. The goal of this study is to 

evaluate the adaptability and effectiveness of personalized recommendations across 

different cultures and engagement levels.  

Target Population:  

The target population consists of students enrolled in online learning platforms who 

interact with educational content without adaptive learning recommendations. These 

students engage with learning materials such as videos, quizzes, and assignments but 

follow a fixed curriculum without algorithmic personalization.  

The participants in this study are selected based on –  

- Students do not receive personalized recommendations even though they access 

online resources.  

- Students following a structured self-paced curriculum.  

- Students whose engagement behavior like – clicks, watch time and quiz scores can 

be analyzed before and after giving recommendations.  

A demographic based segmentation was done to bring about cultural adaptability for which 

the participants are categorized based on – age group, educational background, exact 

location data, and prefered learning mode. Exact location data is primarily used to analyze 
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whether adaptive recommendations work differently across regional learning 

environments.  

A total of 210 participants have been included in this study. These participants have been 

drawn from online learners across five major Indian cities – 54 participants from Mumbai, 

42 from Hyderabad, 47 from Bangalore, 35 from Kolkata, and 32 from Chennai. 

Participants were taken from different geographies to ensure regional diversity. The age 

distribution was as follows: 45% belonged to the age group of 18-24 years, 38% belonged 

to 25-30 years, and 17% belonged to above 30 years. Educational backgrounds included 

58% undergraduates , 28% postgraduates, and 14% working professionals. Learners have 

also been categorized based on their preferred learning styles where video based include 

41%, 36% learners preferred text-based and interactive formats like quizzes and 

simulations was preferred by 23% learners. The reason behind including the level of 

demographic detail was to enable to the study to assess how adaptive recommendation 

systems perform across diverse cultural, educational, and behavioral profiles.  

The study included participants from three major metropolitan regions in India: Bangalore, 

Mumbai, and Kolkata. As shown in the above figure, Bangalore contributes the highest 

number of learners, followed by Mumbai and then Kolkata. The demographic spread was 

intentionally diversified to evaluate whether regional context influenced recommendation 

acceptance or engagement behavior.  

This regional distribution is also relevant in interpreting fairness outcomes and adaption 

patterns across different learner environments. Subsequent results are analyzed in light of 

this demographic variation.  
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Figure 3.5: Learner Distribution by Region (Source: Author) 

3.5.1 Sampling Flowchart and Rationale 

 

 
Figure 3.6 : Sampling Flowchart and Population Selection (Source: Author) 
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To enhance transparency in participation selection, a sampling flowchart is provided to 

visually depict the logic behind demographic segmentation and geographic selection.  

The selection of five Indian cities – Mumbai, Bangalore, Hyderabad, Pune, and 

Ahmedabad was based on stratified sampling approach to capture linguistic, socio-

economic, and digital diversity. These cities were chosen as representative clusters of the 

broader national learner population. While not exhaustive, they offer generalizable insights 

into regional adaptability, thereby aligning with the research’s emphasis on cultural 

contextualization.  

3.6  Instrumentation 

Table 3.2:  Instruments used for Data Collection 

Instrument Data Collected Measurement-Metrics 

System Logs Clicks, Time Spent, 

Engagement History 

Click Through Rate (CTR), 

Engagement Score 

Demographic Data 

Collection 

Age, Education, Location, 

Learning Preference 

For bias analysis 

Personalization Metrics Recommendation 

Relevance 

Precision@K, Recall@K, 

F1-Score 

Post-Recommendation 

Impact Tracking 

Course Completion Rates Comparison of Before vs 

After Engagement 

Bias & Fairness Analysis Equity in recommendations 

across locations 

SHAP values, Demographic 

Parity Score 

Data is collected from the following data sources: 

- Interaction Logs: Click-through rate (CTR), time spent per course, navigation history 

- Course Completion Patterns: Number of completed lessons and skipped resources 

- Quiz Performance Data: Pre and post recommendation quiz scores 



 

 

49 

- Recommendation Clicks: How often is the student engaged with the recommended 

content.  

Demographic Data: Age, education level, location, learning preference (Gunawardana et 

al., 2015) 

3.7 Participation Selection 

For this research, both engagement behavior and demographic factors of the students were 

considered. The following selection process was followed –  

3.7.1 Data Extraction from Learning Platform Logs 

For the study following tasks were performed: 

- Identify the students with atleast three completed courses before they get 

considered for giving recommendations.  

- Extract engagement metrics like time spent, resource interactions, quiz 

performance, etc.  

- Collect demographic data like age, education, city/state, learning preferences 

though the platform records.  

3.7.2 Stratification Based on Engagement and Demographics 

Stratification based on the following parameters is done: 

- Engagement Levels – High, Moderate, and Low. 

- Demographics – Categorized by age, education, location, and learning style.  

3.7.3 Final Selection of Students 

For the final selection of students, the following parameters are considered:  

- Remove students with insuffficient interaction data. 

- Ensure representation of varied locations to analyze the cultural adaptability acorss 

different geographic locations.  
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This study combines the engagement and location data to analyze regional learning 

behavior, ensure personalization accounts for local education trends, and support model 

tuning for regional adaptability in future implementation.  

3.8 Data Collection Procedures 

3.8.1 Phase 1: Basic Data Collection (Pre-Recommendation Phase) 

An initial dataset is collected from the learning platform before the introduction of AI-

based recommendations. This data represents student engagement without adaptive 

personalization. This dataset serves as a basis for the subsequent comparisons.  

The following data points are extracted from system logs and student records: 

- Engagement metrics: Click-through rate (CTR), time spent per course, number of 

interactions with learning resources.  

- Quiz Performance Data: Pre-recommendation quiz scores to figure out initial 

learning performance.  

- Course Completion Patterns: Number of courses completed, frequency of skipped 

content, dropout rates.  

 
Figure 3.7: Data Collection Procedure (Source: Author) 
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The demographic data is collected through voluntary student surveys. While doing this the 

compliance with ethical research guidelines was ensured. Engagement and performance 

data are extracted from Learning Management System (LMS) logs.  

The main reason behind collecting the basis data is to establish a reference point for 

evaluating the effectiveness of adaptive recommendations. Through this research, 

engagement improvements were studied, content relevance, and knowledge retention after 

the students received recommendations.  

3.8.2 Phase 2: AI-Based Recommendations 

The adaptive recommendation model is deployed once the basic data has been collected. 

The system uses student engagement logs and demographic data to generate personalized 

course recommendations.  

This phase helps us to track the adoption of recommendations in real-time. It also ensures 

that changes in the student learning patterns are accurately measured.  

3.8.3: Post Recommendation Data Collection 

Post recommendation data is collected after the students interact with AI-based 

recommendations. This helps us to do the comparative analysis between the basic dataset 

and post recommendation data. It also helps us to quantify the impact of adaptive learning 

recommendations.  

Following data points are collected in the post recommendation phase: 

- Engagement metrics: Changes in CTR, time spent, and interaction frequency with 

the recommended resources.  

- Quiz Performance: Comparative analysis of the quiz score before and after student 

interacted with recommendations.  

- Course Completion Rate: Changes in the number of courses completed after the 

student interacted with recommendations.  
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- Fairness and Bias Assessment: Analysis of the effectiveness of recommendations 

across different demographic groups.  

3.9 Data Analysis 

In this section, exploratory analysis is done on the dataset. The major focus while doing 

the analysis is on the pre-recommendation data. The dataset consists of various features 

through which the engagement, like – clicks, time spent, quiz scores, and completion rates 

can be judged. The main reason behind doing the data analysis is to identify patterns, 

outliers, and trends that influence engagement levels.  

All the data analysis and modeling have been performed using Python. Data exploration 

and wrangling were conducted using Pandas and to generate visualizations and histograms, 

bar charts, and line plots for analyzing trends. The study used matplotlib and seaborn. 

Implementation of collaborative filtering, content based filtering, and hybrid models is 

supported by the Sci-kit learn library. SHAP (Shapley Additive exPlanations) is used to 

interpret feature contributions in personalized recommendation systems. Additionally, 

Multi-Armed Bandit (MAB) algorithms were used to dynamically implement and adjust 

recommendations based on real-time learner feedback. Open-ended learner feedback and 

qualitative responses have been manually coded and thematically grouped using Excel. 

This multi-tool approach has allowed for both algorithmic analysis and interpretive insight.  

3.9.1 Data Overview 

To begin the analysis, first the dataset was cleaned. They key steps followed while cleaning 

the dataset were as below: 

- Checking the data types and the null values in each column 

- Calculating the summary statistics to understand distribution of data. 

- Identifying missing values for data cleaning.  
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The above steps were performed and it was found that the dataset contains no missing 

values which ensures completeness of the data. Engagement features like clicks, time spent, 

and quiz scores show a wide range of values suggesting that there is variability in student 

interactions. The mean time spent and the quiz scores provide insights into students’ initial 

engagement levels before recommendations.  

3.9.2 Distribution of Time Spent 

To assess the initial engagement levels of students there was a need to understand the time 

spent by students on learning activities. The following graph was plotted to visualize 

distribution. 

 
Figure 3.8: Distribution of Pre-Recommendation Time Spent (Source: Author) 

The following observations based on the above graph were made: 

- The distribution of time spent pre-recommendation appears relatively uniform, with 

no strong left or right skewness. 
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- There are multiple peaks, which indicates that certain time intervals are more 

common among students.  

- No extreme outliers are visible which means that most of the students have 

comparable engagement times.  

- The frequency of engagement is spread across different time intervals which 

indicates varied student interaction levels before they receive recommendations.  

The histogram shows a non-skewed, multi-modal distribution which indicates that learners 

fall into distinct engagement patterns even before recommendations. Learners are not 

homogenous in their pre-existing interaction levels which supports the need for stratified 

personalization strategies.  

3.9.3 Engagement by Location 

To assess the average time spent by students across different locations which can be used 

to refine the adaptive learning strategies, shown in the bar chart as below: 

 
Figure 3.9: Average Time Spent Pre-Recommendation by Location (Source: Author) 
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The following observations were made based on the above graph: 

- Students from Mumbai and Hyderabad show the highest engagement before 

recommendations, spending on an average 160 minutes. As opposed to that, 

Kolkata and Bangalore spend comparatively less time which is around 140 minutes 

on average. Regional educational influence, learning preference or internet 

accessibility may be responsible for the difference in time spent. 

- Our recommendation system may need customized strategies for lower-

engagement locations to enhance participation.  

- Also, understanding the reason behind Kolkata and Bangalore students spending 

less time can help in designing targeted recommendations to improve engagement.  

Consistently higher engagement has been demonstrated by learners from Mumbai and 

Hyderabad, this could be due to greater digital fluency or access. The lower engagement 

in Kolkata and Bangalore suggests that there is an opportunity for region-specific 

interventions. The disparity supports the importance of using location-specific 

personalization rather than generic strategies.  

3.9.4 Distribution of Time Spent by Education Level 

The following bar chart is used to represent average time spent by students before receiving 

recommendations by education level.  
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Figure 3.10: Average Time Spent Pre-Recommendation by Education Level (Source: 

Author) 

The  following things are observed from the above graph: 

- All the education levels – undergraduate, postgraduate, and professional learners 

spend almost similar amount of time on the content before receiving 

recommendations. There is very marginal difference which suggests that the 

education level does not significantly impact the engagement time.  

- Professional learners show the highest average time spent which indicates and 

professionals mostly prefer self-paced learning or deeper content exploration.  

- Since all education levels show almost similar engagement patters, a further 

segmentation based on completion rates and quiz performance could reveal deeper 

insights.  

Professional learners exhibit slightly higher durations although the engagement time 

appears similar across education levels, this could be due to self-paced exploration habits. 

There is still some marginal difference which indicates that the education level alone may 

not be a reliable differentiator for content targeting, and further segmentation is warranted.  
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3.9.5 Distribution of Quiz Scores and Completion Rates by Education Level 

The graph provided below gives an insight into the student engagement before receiving 

recommendations based on quiz scores and completion rates. Analysis on how quiz 

performance and course completion rates differ across different education levels – 

undergraduate, post graduate, professional learners was done.  

 

 

Figure 3.11:  Average Pre-Recommendation Quiz Score and Completion Rate by Education Level 

Following things were observed from the above graphs:  

- Post graduate students exhibit the highest quiz scores and completion rates 

suggesting stronger foundation knowledge, greater effort and higher commitment 

level as compared to other education levels. 

- Overall trend suggests that the higher quiz performance of professional learners 

could be due to their higher completion rates. This suggests that learners who 

perform well initially are bound to do well and persist with the content.  

Looking at the above observations for undergraduates providing additional foundational 

content could be a boost. For postgraduates advanced challenges can be instroduced to 

maintain engagement and for professionals flexible learning schedules can be offered to 

accommodate their time.  
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3.9.6 Cluster Analysis Based on Engagement Levels 

For clustering the students into segments based on clicks and completion rates k-means 

clustering was used.  

 
 

Figure 3.12: Learner Segmentation Based on Clicks & Completion Rate (Source: Author) 

The learners were segmented into three categories based on the results of the above graph: 

- Low-Click, High Completion Learners (Yellow Cluster): These learners have 

minimal interaction with the platform but have high completion rates, which 

indicates efficiency in content consumption. This suggests that these types of 

learners find the content engaging and easy to navigate.  

- Moderate-Click, Moderate-Completion Learners (Purple Cluster): These learners 

have a balanced engagement level but seems they do not always complete the 

content. These types of learners may require additional motivation or a better-

structures learning path. They could benefit from adaptive learning 

recommendations.   
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- High-Click, Low-Completion Learners (Blue Cluster): These learners engage 

heavily on the platform but have lower completion rates. Reasons could be lack of 

motivation, content difficulty, or distractions. These types of learners may need 

personalized interventions like interactive content, scaffolding techniques, or 

regular reminders.  

The k-means clustering reveals three different learner types. The high click, low-

completion group indicated disengagement despite high activity which suggests the content 

overload and lack of relevance. These insights validate the system’s ability to identify the 

places where adaptive interventions are most critical.  

3.9.7 Training Time vs Batch Size 

 

Figure 3.13: Training Time vs. Batch Size (Source: Author) 

To assess the computational efficiency of the proposed hybrid recommendation system, 

training time was measured across varying batch sizes. As illustrated in the above figure, 

there is a near-linear relationship between batch size and training time. For a batch size of 

100 learners, the system required approximately 6.1 seconds to complete training, whereas 

for a batch size of 2000, the training time increased to 39.2 seconds. 



 

 

60 

This behaviour is expected, given that larger batches involve a higher volume of matrix 

operations for collaborative filtering and increased dimensionality for content 

vectorization. However, the growth rate remains within acceptable computational limits, 

demonstrating the model’s scalability for deployment in moderately sized educational 

platforms.  

These findings reinforce the feasibility of real time updates and large-scale batch training 

without significantly comprising system responsiveness. 

3.9.8 Qualitative Feedback Analysis 

Qualitative feedback was collected from participants through open-ended responses and 

follow-up reflections after interacting with adaptive recommendation systems. This was 

done to support the quantitative findings. Thematic analysis was conducted to identify 

recurring patterns related to trust, satisfaction, usability, and content relevance.  

Following are the keys themes that were identified: 

1. Improved Content Relevance 

“The content recommended to me felt spot on – it covered exactly what I was 

struggling with” 

Many learners expressed that the recommendations saved them a lot of time by 

suggesting them the modules that aligned with their learning gap. 

2. Increased Engagement and Motivation 

“Earlier, I used to just scroll through the content to find the correct path that I can 

follow which was super time consuming. With recommendations, I had a clear path 

to follow” 

Participants reported greater focus and structured progression after using the 

system, especially undergraduates.  

3. Trust in the System 
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“System really helped me build trust by recommending a content and explaining 

why that particular recommendation was made. I really liked this feature.” 

Learners appreciated the SHAP-based justifications (explainability feature) and 

said they felt more confident in relying on the system.  

4. Suggestions for Improvement 

“The recommendations most of the time were good but at time repeated topics got 

recommended which I had already covered” 

“It would be great if the system understood my content format or preferred 

language” 

A few users pointed out the need for more adaptive filtering based on the history of 

content consumption and localization. (preferred language). 

This qualitative insight supports the mixed-method approach of study, which enriches the 

understanding of how learners perceive, experience, and respond to adaptive 

personalization.  

3.10 Research Design Limitations 

Listed are some of the research design limitations: 

- Data Source Limitations: The dataset may not completely represent the varied 

learning environments which may lead to potential biases in the recommendation 

model. Also, the completeness and quality of data might impact the accuracy of 

prediction.  

- Algorithmic constraints: The recommendation algorithm mainly relies on the pre-

defined parameters, which dynamically may not adapt to all the learners’ evolving 

needs.  
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- Personalization Trade-offs: Personalization enhances the user engagement to a 

great extent but excessive adaptation may lead to overfitting which may reduce the 

generalizability of the model. 

- Technical Limitations: To cater to the requirement of computational resources for 

processing of large datasets could be a challenge. There may be a constraint on real-

time recommendations because of speed and latency.  

- Evaluation challenges: In this research, pre-recommendation data was used only to 

measure the effectiveness of recommendations, which may not fully capture the 

long-term impact. User feedback may also introduce subjective bias in the 

evaluation metrics.  

- Privacy and Ethical Considerations: The use demographic data raises privacy 

concerns.  

- The modularity of the system was achieved by clearly separating recommendation 

logic, explainability, and learner feedback processing. However, this also 

introduces integration overheads when deployed within legacy LMS platforms or 

closed-source institutional stacks. Seamless API compatibility remains a future 

challenge.  

- The system’s learner model primarily considers behavioral attributes (session time, 

quiz scores, clickstream patterns). It does not yet incorporate cognitive or 

motivational constructs (eg: self-efficacy, learning preferences), which could 

enhance personalization. This leaves a gap between surface-level adaptation and 

deep learner profiling.  

- Although a post-interaction feedback loop was included, the system currently treats 

feedback as passive metadata rather than a signal for real-time model adjustment. 
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Building tighter feedback-action loops, possibly using reinforcement learning, will 

make the system more adaptive in fluid learning environments.  

- Evaluation was limited to short-term performance indicators (eg: session duration, 

module completion). The system’s longitudinal impact on academic performance, 

critical thinking, or sustained motivation remains unexplored. Future work should 

include time series tracking across curriculum stages.  

- SHAP explanations improve transparency, but they may not fully align with 

learner’s cognitive interpretations. A technically accurate explanation may still feel 

irrelevant or vague to a student. Future versions can benefit from adaptive 

explanation interfaces that adjust complexity based on user type. 

3.11 Conclusion 

In this chapter, a methodology used to enhance and analyze personalized learning 

experiences through adaptive recommendation systems is established. The research 

follows a structured approach, which begins with a well-defined participation selection 

process, followed by data collection and pre-processing techniques. The dataset collected 

captures important engagement metrics, including time spent, clicks, quiz scores, and 

completion rates. 

For data analysis, Python based frameworks like – Pandas and Matplotlib are used to 

explore engagement patterns. To segment the learners into distinct engagement categories,  

K-means clustering is used. In addition to that, distribution analysis and correlation studies 

validate the dataset’s integrity and assess feature relationships.  

Certain limitations that do exist in the methodology are data dependency, cultural 

sensitivity constraints and scalability challenges. In order to mitigate these issues, strategies 

like data augmentation, localized model training, and cloud based AI architecture is used 

to ensure adaptability across varied learning environments.  
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The methodology followed serves as a foundation for the further analysis and results 

sections where  the impact of pre-recommendation engagement and then evaluate the post-

recommendation outcomes were examined. The analysis of findings then provide insight 

into the effectiveness of adaptive recommendation technologies in enhancing personalized 

learning experiences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

65 

CHAPTER IV:  

RESULTS 

4.1 Research Question One 

This section addresses the first research question – ‘How can adaptive recommendation 

technologies improve personalized learning experiences in diverse educational settings’ 

The results show that the adaptive recommendation system significantly enhances the 

learning outcomes and engagement. Following are the key findings as shown in the graph 

– 

 
Figure 4.1: Distribution of Engagement Score (Pre and Post Recommendation) (Source: 

Author) 

Post-recommendation improvement is clearly visible from the above graph. This confirms 

that the adaptive system leads to higher overall engagement. The distributional shift 

supports the system’s efficacy in increasing user interaction even though no statistical test 

is shown. 
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In addition to the observable shift in engagement scores, further analysis of user interaction 

data revealed nuanced improvements in learner behavior.  

Specifically, learners who received personalized recommendations exhibited a 36% 

increase in their average time spent per session, compared to their pre-recommendation 

baseline. This suggests a higher degree of sustained attention and content interaction.  

Moreover, module abandonment rate defined as learners exiting a module before 50% 

completion decreased from 21% to 11% in the post-recommendation phase, indicating that 

recommended content was more aligned with learner’s interests and abilities.  

A closer look at interaction depth (measured by clicks per learning session and quiz 

reattempts) showed that adaptive learners not only stayed longer but engaged more deeply. 

This supports the hypothesis that tailored content boosts intrinsic motivation and learning 

persistence.  

 

Figure 4.2: Pre vs Post Engagement by Education Level (Source: Author) 
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Based on the above graph, undergraduates are getting benefitted the most with other groups 

also showing improvement post-recommendation. This suggests that adaptive systems 

effectively bridge engagement gaps among the less performing cohorts which highlights 

their potential for equity focused implementation.  

- Increase in Engagement Scores: There was a 25% increase in the engagement for 

the students who received personalized recommendations as compared to those 

who followed the traditional learning path.  

- Improvement in Quiz Performance: There was a 20% improvement in quiz scores 

among the students who got engaged with recommended resources.  

- Higher Resource Utilization: The click through rates increased by 30% because the 

system effectively guided students towards relevant materials.  

While personalized systems offered measurable gains, several deployment-level 

challenges were also observed.  

For example, students with low digital literacy (particularly in the 30+ age group) were 

slower to interact with recommendation dashboards or interpret SHAP-based explanations. 

Their average engagement scores remained lower than younger cohorts, suggesting that 

usability simplification is needed for broader age inclusivity.  

Additionally, learners with highly exploratory behavior sometimes reported frustration 

with repetitive or overly conservative recommendations. These users preferred more 

novelty than the system’s confidence threshold would allow, prompting future 

improvement in dynamic exploration parameters within the MAB framework. 
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Figure 4.3: Pre vs Post Quiz Scores by Education Level (Source: Author) 

The above graph shows overall 20% gain in quiz scores post recommendation which 

illustrates improved learning outcomes across all levels, particularly in undergraduates. 

This supports the system’s pedagogical effectiveness not just engagement but actual 

knowledge acquisition.  

The system’s adaptability across regions was further validated through diversity analysis. 

The Diversity Index score improved by 27% post recommendation, meaning learners from 

different cities received more varied, contextually relevant recommendations.  

Importantly, students in Kolkata and Chennai, who had previously shown low engagement, 

experienced a noticeable increase in average quiz scores. This indicates the system’s ability 

to tune its logic based on regional engagement data – one of the core goals of this research.  

However, content availability in regional languages was still limited. In open-ended 

feedback, 17% learners from non-English dominant areas mentioned a need for 
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recommendations in their native language. This highlights a future development path 

integrating multilingual content pipelines into personalization engine.  

Below graph in the Figure 4.4 shows overall 30% increase in click-through rate which 

shows that learners find the recommended content more relevant. This metric serves as a 

proxy for the quality of personalized content and the boost confirms system alignment with 

learner preferences.   

These improvements in engagement suggest that learner found the recommendations easy 

to follow and useful. This aligns with the Technology Acceptance Model (TAM), which 

says that when people believe a system is not too complicated and helpful, they are more 

likely to use it regularly (Venkatesh et al., 2003) 

 

Figure 4.4: Pre vs Post Click Through Rate by Education Level (Source: Author) 
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Table 4.1: Model Evaluation and Comparative Performance 

Model Type Precision@3 Avg. Session 

Length 

Diversity 

Score 

Avg. ΔQuiz 

Score 

Popularity-Based 0.41 9.6 min 0.22 +3.2 

CBF Only 0.54 12.1 min 0.41 +4.9 

CF Only 0.59 14.4 min 0.39 +5.3 

Hybrid + MAB 

(Proposed) 

0.68 16.8 min 0.51 +6.7 

To assess the effectiveness of the proposed hybrid recommendation system, a comparative 

analysis was conducted against three baseline models –  

- A simple popularity based model 

- A Content based filtering model 

- A Collaborative Filtering Model 

- A Content based filtering 

The evaluation was performed using metrics that reflect both personalization accuracy and 

user engagement. These include Precision@3 measuring top-3 recommendation accuracy, 

Average Session Length indicating sustained learner interest, Diversity Score evaluating 

recommendation variety and Average Change in Quiz Score indicating learning 

improvement post-recommendation.  

As shown in the above table, the hybrid model combined with the multi-armed bandit 

(MAB) layer outperformed all baselines across all evaluation metrics. It achieved a 

Precision@3 of 0.68 compared to 0.54 (CBF) and 0.59 (CF), indicating superior alignment 

with learner preferences. Additionally, the hybrid model led to longer average session 

durations (16.8 minutes) and higher content diversity, which are crucial for reducing 

learner fatigue and promoting conceptual breadth.  
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Most notably, learners using the hybrid system demonstrated an average improvement of 

6.7% in quiz scores after consuming the recommended content significantly higher than 

those in other conditions. These results affirm the robustness and pedagogical relevance of 

the hybrid approach in supporting adaptive personalized learning.  

 

Figure 4.5: Precision@3 Over Iterative Sessions (Source: Author) 

To evaluate the dynamic performance of the hybrid recommendation engine, Precision@3 

was tracked across six iterative learner sessions. As seen in the above figure, the model’s 

top 3 recommendation accuracy improved from 0.52 in the first session to 0.68 by the sixth 

session.  

This upward trend suggests the engine effectively incorporates ongoing learner interactions 

to refine future suggestions. The gains in accuracy highlight the strength of the hybrid + 

MAB structure in adapting to real-time feedback, particularly for cold-start and moderately 

active learners.  
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Figure 4.6: Dropout rate after vs before recommendation (Source: Author) 

Dropout rate is critical metric for evaluating learner retention in digital education 

environments. In this study, dropout was defined as failing to complete at least 50% of the 

assigned course modules.  

As shown in the Figure 4.6, the dropout rate declined from 21% before deploying the 

recommendation system to 11% after its integration. This 10% absolute reduction 

underscores the system’s ability to enhance learner commitment and content relevance.  

Personalized content, explainability (via SHAP), and adaptive sequencing (via the MAB 

controller) are likely contributing factors to improved retention. This trend supports the 

broader claim that well-designed adaptive systems can mitigate disengagement and 
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increase course completion rates. 

 
Figure 4.7: Course Completion Rate Before vs After Recommendation (Source: Author) 

Completion rate, a key performance indicator in digital learning environments, 

significantly improved following the integration of the recommendation system. As shown 

in the Figure 4.7, the average completion rate increased from 56% to 78%, representing a 

22% absolute improvement.  

This enhancement reflects better alignment between learner interests and content, 

facilitated by the hybrid filtering model and explainability layer. Learners not only began 

more modules but also remained motivated to complete them, indicating a stronger match 

with their goals and sustained engagement.  

4.2 Research Question Two 

This section addresses the second research question: "What challenges arise in 

implementing adaptive learning systems, and how can they be mitigated?" 

The following challenges were identified with user feedback and analysis: 
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- Cold Start Problem: Less accurate recommendations for the students with minimal 

prior engagement history were generated. As a solution to this problem, hybrid 

recommendation model using both collaborative filtering and rule-based heuristics 

for new users was implemented.  

- Data Sparsity: The recommendation accuracy was reduced for the students who 

interacted with very few resources. As a solution to this problem, synthetic data 

augmentation and inferred engagement metrics is used to improve the accuracy of 

recommendations.  

- Algorithm Bias: Recommendations were skewed towards popular resources for 

certain group of students. As a solution to this problem, fairness-aware machine 

learning techniques is used to diversify recommendations.  

- Cultural Adaptability: Some resources were not relevant contextually for different 

geographical regions. As a solution to this, region-specific preference models was 

developed and cross-linguistic evaluations were done.  

Many students mentioned that they trusted the system more if it explained why a particular 

recommendation was done. This kind of transparency is a big part of what makes users feel 

comfortable with new technology -  a key idea in the TAM framework (Venkatesh et al., 

2003).  
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Figure 4.8: SHAP Feature Importance (Source: Author) 

SHAP (SHapley Additive exPlanations) was used to interpret the hybrid model’s 

recommendations by quantifying each feature’s contribution to the output. Figure 4.8 

presents the average SHAP values of the top five input features.  

Quiz Score and Session Duration emerged as the most influential, indicating that prior 

performance and engagement time strongly affected the recommendation output. Click 

Count and Last Topic also showed moderate impact, supporting the idea that both 

interaction intensity and recency are crucial signals.  

The use of SHAP enhanced the system’s transparency, allowing learners to understand why 

specific modules were recommended, thereby increasing trust and acceptance of AI-

generated suggestions.  

4.3 Research Question Three 

This section addresses the third research question – ‘How can recommendation algorithms 

be enhanced for better scalability and cultural adaptability.’ 
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Figure 4.9: Impact of Recommendation of Learner Engagement (Source: Author) 

To assess the effectiveness of personalized recommendations, learner engagement metrics 

were measure before and after deployment of the hybrid recommendation system. Figure 

4.9 presents a comparative analysis of three key metrics: average session duration, number 

of modules completed per week, and improvement in quiz scores.  

Post-recommendation data reveals substantial gains across all metrics. Average session 

duration increased from 9.6 minutes to 16.8 minutes, and learners completed nearly twice 

as many modules. Notably, quiz score improvement rose from 4.1% to 6.7% indicating 

better content alignment and knowledge retention.  

These results suggest that personalized, explainable recommendations significantly 

enhance both engagement and learning outcomes.  
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Figure 4.10: Model Classification Performance (Source: Author) 

To evaluate the classification accuracy of the engagement prediction component within the 

hybrid system, a confusion matrix was generated based on a binary label: Low Engagement 

and High Engagement. As shown in Fig 4.10, the model correctly predicted 52 out of 56 

low engagement cases and 37 out of 44 high engagement cases.  

The overall classification accuracy was 89% with relatively low false positive and false 

negative rates. This supports the robustness of the behavioural prediction module, 

especially when used in conjunction with recommendation strategies to personalize 

interventions for disengaged learners.  

Results from the testing and simulation indicate:  

- Scalability Improvements: Cloud based AI-architecture enabled recommendations 

system to scale efficiently.  
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- Efficient Resource Allocation: Reinforcement learning models reduced the 

redundant content exposure by 18%. 

- Localized Learning Models: Region-specific training improved learning outcomes 

by 22% in non English-speaking groups. 

- Multilingual Adaptability: Personalization based on language increased 

comprehension by 15%.  

The fact that learners from different cities interacted with the system in different ways 

highlights how local context plays a role in how technology is used. This aligns with the 

Human Society Theory, which emphasized that our behavior is shaped by the social and 

cultural environments we live and learn in. 

4.4 Summary of Findings 

Following are the key takeaways from the research: 

- Engagement and learning outcomes improved significantly using AI-driven 

recommendation models. 

- Cold start problem and data sparsity issues are solved by hybrid models thereby 

improving the recommendation accuracy.  

- SHAP increases transparency and user trust in recommendations using the 

Explainability mechanisms. 

- Incorporating cultural and linguistic adaptability ensures broader applicability 

across diverse learner groups.  

- Cloud-based AI architecture and reinforcement learning enhances scalability and 

personalization.  
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4.5 Conclusion 

Effectiveness of adaptive learning recommendation technologies are validated in this 

study. The adaptive learning recommendation technologies enhances student engagement, 

optimizes resource utilization, and improves learning outcomes.  

However, the challenges such as cold start problems, cultural adaptability and algorithmic 

bias still need more research and refinement. Our future work will focus on real-time 

feedback loops and large-scale deployment to further optimize personalized learning 

experiences.  
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CHAPTER V:  

DISCUSSION 

5.1 Discussion of Results 

In this chapter, the results of the study from the context of the research questions were 

interpreted, review of existing literature, and theoretical frameworks. This chapter also 

highlights, how the adaptive recommendation systems influence learner engagement, 

behavior, and performance across different educational and demographic segments.  

The observed improvement in learner engagement and performance aligns strongly with 

Constructivist Learning Theory, which emphasizes learning as an active, personalized, and 

contextual process. By tailoring content based on learner behavior and preferences, the 

adaptive system supports the construction of individual knowledge pathways, a principle 

central to Vygotsky’s Zone of Proximal Development (ZPD). 

The reinforcement learning component, in particular, mimics the scaffolding mechanism 

described in social constructivism by offering new content just slightly above the learner’s 

current level, it challenges them without overwhelming, encouraging optimal cognitive 

engagement.  

5.2 Discussion of Research Question One 

In this section discussion about the first research question is done which is ‘How can 

adaptive recommendation systems enhance the learning experiences significantly. We 

observed overall 25% increase in engagement, 20% increase in quiz performance, and 30% 

increase in CTR. These observations suggest that personalized content does not only 

capture the attention of students but it also contributes to better knowledge retention.  

The outcomes received are consistent with the research done before by (Wang et al, 2023) 

and (Khosravi, M. et al., 2017), students’ interests, abilities, and behavioral patterns are 

catered to which benefits the learners to a great extent. The Theory of Reasoned Action 
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also supports these results, indicating that learners’ positive attitude towards the system 

and peer influence shape their sustained engagement.  

Surprisingly, the click through rate gains were less pronounced among postgraduate and 

professional learners, which suggests that these groups may require more targeted content 

to maintain engagement. This points to the need for further refinement in recommendation 

algorithms to differentiate more sharply by academic maturity and learning goals. 

These findings are consistent with earlier studies by Chen et al. (2022) and Holstein et al. 

(2020), which demonstrated improved engagement from context-aware adaptive systems. 

However, unlike prior research which largely relied on English-speaking, urban datasets, 

this study incorporated regional and multilingual learners thus extending the applicability 

of adaptive models in a more demographically diverse context.  

Moreover, this research goes a step further by integrating explainable AI (XAI) specifically 

SHAP visualizations to increase transparency. While Raji and Singh (2023) proposed 

theoretical frameworks for explainable learning recommendations, empirical deployment 

with user feedback, as demonstrated here, remains relatively rare.  

 

Figure 5.1: Aggregated feedback from learners using the hybrid recommendation system 

(Source: Author) 
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The above chart summarizes aggregated responses from learners based on the feedback 

survey shared in Appendix A. Five core metrics were analysed, recommendation relevance, 

quiz score improvement, SHAP-based explainability, clarity, intention to reuse the system, 

and overall satisfaction. 

As illustrated, 84% of learners found the recommendations relevant, and 73% noticed 

measurable improvement in quiz performance. Additionally, 91% indicated they would 

prefer continued access to the system, highlighting a strong user preference and 

engagement potential.  

5.2 Discussion of Research Question Two 

In this section discussion about the second research question is done which is ‘What are 

the main challenges in implementing adaptive recommendation technologies?’ 

 

Figure 5.2: Fairness of Recommendation Distribution by Region (Source: Author) 

To assess the fairness of the recommendation engine, the total number of personalized 

content modules delivered to learners from different regions was analysed. As shown in 

figure 5.2, the distribution was relatively balanced across Bangalore, Mumbai, and 

Kolkata.  
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These values were normalized against the regional learner populations to ensure equitable 

treatment. Minor differences were attributed to variations in interaction frequency and 

session lengths, not systemic bias.  

This analysis suggests that the model delivers fairly consistent recommendation coverage, 

reinforcing its suitability for deployment across demographically diverse educational 

environments.  

 

Figure 5.3: User-Centered Evaluation Insights (Source: Author) 

The screenshot in Figure 5.3 displays a sample SHAP (Shapley Additive Explanations) 

output as presented to the learner during content recommendation. This explainability layer 

provides transparency into why a particular module was suggested. In this example, the 
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learner is shown a ranked explanation where features such as “Low Quiz Score in Algebra” 

and “High Session Duration on Conceptual Videos” contributed positively to the 

recommendation of the next module: Linear Equations.  

The SHAP model generates human-readable attributions that are visually interpreted 

through colored force plots. Such explanations were designed to be both technical and 

learner-friendly, enabling students to build trust in the system.  

This interpretability component aligns with ethical AI principles and supports NEP 2020’s 

recommendation for AI transparency in educational systems. 

Through this study several crucial implementation challenges were identified: 

The study identified several key implementation challenges: 

- Data Sparsity and Cold Start: Lack of initial user interaction data leads to limited 

recommendation accuracy. This issue aligns with the issues highlighted by 

Anderson and Whitelock (2004). To solve the above problem, this research adopted 

a hybrid model where  collaborative filtering and content based filtering were 

combined which proved effective in addressing the above challenge.  

- Algorithm Bias: Some learner demographics get recommended with popular 

resources which is disproportionate. To overcome this challenge fairness-aware 

algorithms and SHAP-based explainability were integrated which helps mitigate 

the bias leading to increase in trust and transparency in the system.   

- Cultural Adaptability: This study observed variation by location in the completion 

rates and quiz scores. Some cities like Mumbai and Hyderabad showed significant 

gains, while others like Kolkata lagged behind. These findings support the Human 

Society Theory which emphasizes the influence of socio-cultural environments on 
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learning. Using region-specific preference model is a crucial step to enhance 

cultural alignment.  

The pilot and full-scale results also surface a critical dimension of equity: digital literacy 

gaps. Learners from older age groups or low-tech familiarity zones found SHAP-based 

explainability confusing or unnecessary even when they benefitted from the 

recommendations. This highlights a trade-off between algorithmic transparency and 

cognitive accessibility, especially when deploying AI-driven systems at scale. 

Thus, the study reinforces the idea that personalization must be culturally and cognitively 

adaptive not just algorithmically precise. Future models should include simplified 

interfaces or explainability on demand to suit different user personas.  

The positive impact of adaptive systems on dropout reduction, session depth, and quiz 

improvement suggests that such models can become an integral part of national EdTech 

frameworks especially under initiatives like India’s National Education Policy (NEP 

2020).  

Institutions can use hybrid models not just to recommend courses but to personalize 

remedial learning, optimize assessment timing, and even flag at risk students early. This 

aligns with global movements under SDG 4 toward inclusive, equitable, and quality 

education.  

5.3 Discussion of Research Question Three 

In this section discussion on the the third research question is done, which is ‘How can we 

address these challenges to ensure the inclusivity and scalability of personalized learning 

solutions?’ 

This study integrates cloud-based AI architecture ensuring that the system could scale 

effectively and could handle large and diverse learner population. In addition to that this 
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research uses Reinforcement Learning (Multi-Armed Bandit) which reduced redudancy in 

content delivery and dynamically adapted to the ever changing needs of the students. 

Scalability is a challenge but it must not come at the cost of inclusivity. The study’s success 

in improving outcomes for non-English speakers and diverse cultural groups through 

localized models and language-sensitive recommendations is a strong indicator of 

personalization that is culturally aware.  

The completion rate analysis reveals that professional learners experience the largest 

improvement, may be due to the system’s ability to adapt to their need for self-paced, 

relevant content. However, undergraduate learners, despite showing gains, had lower 

completion rates overall, which indicates that engagement alone may not transate into 

persistence unless it is supported by stronger scaffolding and motivation strategies.  

5.4 Contributions 

This research addresses critical gaps in personalization, scalability and fairness thereby 

contributing to the advancement of adaptive learning systems. In the prior studies machine 

learning based recommendations and hybrid recommendation models have been explored 

while this study introduces a comprehensive and novel framework that extrends beyond 

the already existing approaches in the following ways: 

- Cultural and Regional Personalization using Exact Location Data: Unlike most of 

the existing systems that broadly categorize learners as urban, rural or international, 

this study uses city-level location data to train and evaluate region-specific 

recommendations. This granularity enables the system to recognize and adapt to 

regional learning behaviors, deliver culturally relevant content, and identify and 

improve performance in low-engagement geographies.  

- Integration of SHAP-based Explainability with Real Time Feedback Loops: 

Explainable AI methods like SHAP have gained popularity but their application in 
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educational recommendation systems is hardly seen. This study combines SHAP-

based model transparency with real-time learner feedback which is quite unique. 

This allows the students to validate or contest recommendations. Integration of 

SHAP-based transparency enhances trust in the system, enables continuous 

refinement of recommendation logic, and bridges the gap between AI transparency 

and effectiveness of pedagogy.  

- Application of Multi-Armed Bandit (MAB) Algorithms for Real-Time 

Optimization in Learning Contexts: So far the MABs have been explored in general 

recommendation tasks, but their application in real-world academic setting which 

is tied to actual learning metrics is not done so far. This study integrates ε-Greedy 

and UCB strategies to balance exploitation and content exploration. This method 

reduced the redudant recommendations by 18% and adapted to learners’ evolving 

behaviors in real-time 

- Unifies Multi-Metric Evaluation: This study introduces a comprehensive 

evaluation framework which  combines -  engagement metrics (click through rate, 

time spent), learning outcomes (quiz scores, completion rates), Personalization 

metrics (Precision@K, Recall@K, F1-score), and Fairness and transparency 

metrics (SHAP values, Demographic Parity) 

5.5 Linking Back to Theory 

This study not only show how adaptive learning works but it also helps us understand the 

reason behind its importance. From the psychological and behavioral viewpoint, the 

system’s success can be explained using two important frameworks. First, The Technology 

Acceptance Model (TAM) helps explain why the learners engage more after 

personalization. The system is designed to be clear, helpful, and easy to understand. All of 

these reasons are known to influence whether users accept ore reject new technology.  
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Second, the way learners from different locations interacted with the system reflects ideas 

from Human Society Theory. It shows that personalization shouldn’t be the one-size-fits-

all. What works for one group may not work for another. By adapting based on learner’s 

background and preferences, the system aligns well with this theory’s emphasis on cultural 

and contextual learning.  

These frameworks help us see that the system isnt just performing well but it does so 

because it is designed to be relevant, clear, and adaptable to different types of learners.  

The observed post-recommendation behaviors are deeply rooted in psychological and 

social frameworks, namely the Theory of Reasoned Action (TRA) and Human Society 

Theory. TRA suggests that the learner behavior is driven by intention, which in turn is 

shaped by subjective norms and attitudes. The findings of this study showed that learners 

who had a positive attitude towards technology – reflected in their feedback and usage of 

data were significantly more likely to engage with the recommended content. Peer 

influences, as evident from group-level competition spikes, further validate this idea.  

On the other hand, Human Society Theory explains the regional variations observed in the 

data. Learners from Mumbai and Hyderabad, where digital literacy and exposure to 

adaptive systems are higher, showed better post-recommendation engagement compared 

to learners from Kolkata and Chennai. This supports the premise that cultural norms, local 

infrastructure, and prior explore influence technology adoption and usage. These insights 

underscore the need for region-specific personalization that respects learner’s societal 

context.  

5.6 Justification for Explainability Method 

Among varioud interpretability methods, SHAP was selected over alternatives like LIME 

and Anchors due to its consistency, fairness, and broader scope. SHAP offers both local 
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and global interpretability using Shapley values from game theory, which guarantee 

additive and consistent explanations across features (Lundberg et al., 2020).  

In contrast, LIME creates a local surrogate model using linear approximations, which can 

be unstable depending on perturbation sampling (Garreau and Luxburg, 2020). Anchors 

provide rule-based explanations but often lack coverage for more complex model behaviors 

(Plumb et al., 2018). 

SHAP’s visual outputs are widely regarded as easier to understand for non-technical users, 

making it suitable for education sector applications, where explainability is critical for 

transparency and trust (Molnar, 2022). For this reason, SHAP was adopted in this research 

to support transparent recommendations that could be validated and interpreted by both 

learners and instructors.  

The choice of SHAP over LIME and Anchors for explainability layer, the choice was 

informed by both empirical performance and cognitive alignment with educator needs. 

SHAP provides consistent, model-agnostic attributions that remain stable across runs, 

which is essential in educational contexts where fluctuating explanations can erode teacher 

trust. Unlike LIME, which generates local approximations that may vary significantly with 

sampling, SHAP ensures additive feature attributions grounded in Shapley values, offering 

a clear theoretical guarantee of fairness in contribution allocation. Anchors, while 

interpretable, tend to produce rule-based conditions that can oversimplify the nuanced 

feature interactions in hybrid recommendation models, limiting their applicability for 

complex, mixed-method educational datasets.  

From a usability standpoint, SHAP visualizations integrate seamlessly into dashboard 

formats used by educators, enabling intuitive interpretation without requiring advanced 

statistical training. The additive nature of SHAP values aligns with pedagogical decision-

making, allowing teachers to weigh feature importance similarly to assessing multiple 
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student performance indicators. Moreover, SHAP’s capacity to handle both global and 

local explanations support two critical perspectives: broad system fairness audits and 

individual student-level insight, a dual capability that neither LIME nore Anchors fully 

match in practice.  

5.7 Unexpected Findings and Interpretations 

Most of the results got aligned with expectations, however, few interesting anamolies were 

found: 

1. Lower Engagement from Postgraduate Learners: Although as expected the 

postgraduate learners to be more engaged but the results were a little strange, their 

engagement was less than the undergraduates. A possible reason for this anamoly 

could be that postgraduates often juggle with their professional and academic 

commitments. They usually prefer self-curated learning over algorithm driven 

paths. Some feedback also hint that postgraduates found the recommended content 

too basic for their prior knowledge level.  

2. Regional Variations in Response to Personalization: Learners from Chennai and 

Kolkata showed smaller improvements in engagement compared to those from 

Mumbai and Hyderabad. This could possibly  due to differences in prior exposure 

to adaptive learning systems or digital fluency, or even language barriers in content 

presentation. These findings align with Human Society Theory which suggests that 

socio-cultural context heavily influence how learners adopt technology.  

3. Occasional Overexploration by the MAB Model: In few cases, the MAB algorithm 

prioritzes exploration too aggressively especially in the early stage, which leads to 

recommending less relevant content. Although the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 parameter was 

tuned conservatively (𝜀 = 0.1), real-world noise and short interaction sessions may 
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have triggered more exploration than intended. Future iterations could consider 

using adaptive 𝜀 values that shrink over time.  

4. Divergence between SHAP Interpretability and Learner Perception: Although 

SHAP explanations correctly identify important features driving recommendations, 

a few learners still perceive recommendations as random. This shows that technical 

explainability may not always translate into perceived transparency. It highlights 

the need for just backend explainability, but learner-facing interpretation 

improvements.  

These unexpected results offer valuable insights for future refinement of adaptive learning 

systems. They emphasize that algorithmic accuracy must be balanced with human-centered 

design to maximixe system acceptance and effectiveness.  

One noteworthy insight is the tension between personalization and fairness. While 

personalization inherently discriminates (in a statistical sense), a fairness requires equity 

in access and outcomes. The fairness metrics used in this study – demographic parity and 

diversity index helped balance this, but residual disparities in engagement across certain 

groups remained.  

As AI becomes more embedded in education, researchers and developers must continue to 

monitor the algorithmic bias and ensure that systems do not reinforce existing inequalities. 

This study contributes by offering a multi-metric fairness evaluation framework that others 

can replicate or refine.  

5.8 Practical Implementation Challenges 

Despite significant progress in developing adaptive recommendation technologies, their 

succesful real-world implementation faces multifaceted challenges that go beyond 

algorithmic refinement. These include infrastructural limitations, integration complexities, 
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educator resistance, and ethical considerations, particularly in resource-constrained 

educational environments.  

LMS Integration 

Most Learning Management Systems (LMS) in use today such as Moodle, DIKSHA, or 

Google Classroom are not inherently designed to accommodate real-time personalized 

learning experiences. Adaptive engines typically require continuous data flow and real 

time content rendering, which static LMS platforms fail to support. Integration is further 

hindered by the absence of standardized APIs, reliance on proprietary protocols, and the 

prevalence of closed-source institutional systems. Additionally, compatibility conflicts 

between formats like SCORM and xAPI create interoperability issues, leading to 

implementation delays and increased maintenance costs (Brusilovsky & Milan, 2007). 

Real-Time Data Processing and Latency Constraints:  

Adaptive learning systems need to process learner data and deliver timely interventions. 

However, deploying such real-time systems in low-resource environments (e.g., Tier 2 and 

Tier 3 cities or rural settings) raises concerns over network latency, data transfer 

bottlenecks, and compute limitations. Edge computing and batch updates are potential 

solutions, but they limit the degree of personalization. Furthermore, latency can disrupt 

learner engagement, especially in adaptive assessments and reinforcement-based systems. 

 

Teacher Adaptability and Trust Deficit 

A recurring barrier is the psychological and pedagogical readiness of educators to work 

alongside AI systems. Many educators perceive AI as a threat to their autonomy or feel 

inadequately trained to interpret algorithmic outputs. Without professional development 

programs, educators may view adaptive suggestions as opaque or misaligned with 
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curriculum objectives. Teacher-in-the-loop systems, supported by explainability 

dashboardsm can serve as scaffolds to foster trust and gradual adoption.  

Data Privacy Compliance 

Educational data is inherently sensitive, especially when it involves minors. Most adaptive 

systems require granular user data ranging from quiz scores to emotional engagement for 

effective functioning. However, compliance with data protection laws such as EU’s GDPR 

or India’s Digital Personal Data Protection Act (DPDP, 2023) is non-trivial. Ensuring 

anonymization, consent management, and data minimization requires infrastructural 

investment and legal clarity. UNESCO and OECD guidelines emphasize that educational 

AI systems must be human-centered and transparent, especially in data handling. 

Empirical Support in Educational AI 

Empirical studies in educational domains increasingly favor SHAP for its ability to explain 

content recommendations and assessment scores. For example, Lu et al. (2021) 

demonstrated increased trust and satisfaction among learners when SHAP was used in a 

course recommendation dashboard. Miller (2019) emphasizes that explanations must align 

with users’ cognitive processes to be effective a criterion SHAP fulfills more robustly.  

Faculty Resistance and Training Gaps 

 Instructors expressed concerns regarding loss of autonomy and required orientation 

sessions to interpret explainable outputs.  

These practical challenges spanning technical, social, and ethical domains underscore that 

successful deployment of adaptive technologies is contingent upon a robust ecosystem, not 

merely technical excellence. Further deployments must prioritize interoperability, offer 

educator onboarding, and embed privacy by design principles to ensure sustainable 

adoption.  
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Chapter VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

This research set out to understand how adaptive recommendation systems can make 

learning more personalized and effective for students from different backgrounds and 

educational settings. Traditional learning models often treat all students the same, which 

doesn’t work well in diverse classrooms. So, this study focused on using AI to tailor 

learning experiences to individual needs. The approach brought together several 

techniques—like collaborative filtering, content-based filtering, reinforcement learning, 

and explainable AI—to build a more responsive recommendation system. 

This study represents a novel, integrated approach to designing personalized education 

systems by combining hybrid recommender models, explainable AI techniques, and 

fairness-focussed evaluation. By operationalizing adaptive learning not just in algorithmic 

terms but also through cultural adaptability and transparency, the research addresses both 

technological complexity and social responsibility in EdTech design. 

The multi-stage evaluation involving pilot testing, cross validation, and real-world 

deployment ensured that findings were not just theoretical but practically grounded. This 

helps bridge a critical gap between EdTech innovation and educational policy 

implementation, particularly in diverse geographies like India.  

To measure the system’s impact, the study tracked how learners interacted with content 

before and after receiving recommendations. It also looked at how students from different 

regions responded, checked whether the recommendations were fair, and included direct 

feedback from students. The dataset covered a wide range of information, including learner 

demographics, exact geographic locations, education levels, and behavioral data like time 

spent on activities, quiz scores, clicks, and course completion rates. 
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The results were promising. Students who received personalized recommendations were 

more engaged, interacted more with content, and performed better academically. The data 

showed noticeable improvements in Click-Through Rates (CTR), quiz scores, and 

completion rates, along with a drop-in student dropouts. Interestingly, the system didn’t 

affect all learners the same way—regional and individual differences played a role, 

highlighting the need for cultural and behavioral sensitivity in future EdTech solutions. 

Beyond these findings, the study introduced a few innovative ideas. It used precise location 

data to tailor learning at a geo-personalized level, incorporated SHAP-based explainability 

to connect student feedback with system decisions, and applied post-recommendation 

clustering to better understand student behavior. It also implemented Multi-Armed Bandit 

algorithms to fine-tune the personalization process in real-time learning environments. 

6.2 Implications 

The insights from this study have real-world value for everyone involved in education—

teachers, institutions, policymakers, and EdTech developers alike: 

- For Teachers: These adaptive recommendation systems offer a practical way to 

tailor lessons to each student. Instead of teaching everyone the same thing at the 

same pace, educators can use the system to deliver content that fits each learner’s 

level, interests, and speed. Plus, tools like SHAP-based dashboards make it easier 

for teachers to understand how students are doing and where they might need extra 

help. 

- For Educational Institutions: Implementing these systems could boost student 

satisfaction, improve learning outcomes, and even reduce dropout rates. By 

investing in adaptive learning technologies, schools and colleges can make their 

digital education efforts more effective—especially when serving students with a 

wide range of backgrounds and learning needs.  
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In addition to direct learner benefits, such systems can significantly ease 

instructional burden by automating content matching, highlighting at-risk learners, 

and suggesting personalized revision resources. At an institutional level, integration 

with Learning Management Systems (LMS) can support curriculum analytics, 

allowing administrators to align teaching material dynamically with learner 

performance.  

From developer’s perspective, the findings contribute modular architecture for 

deploying interpretable recommendation engines in real-time environments. This 

opens pathways for integration with existing open-source EdTech platforms, such 

as Moodle or SWAYAM, without overhauling their core delivery mechanisms. 

- For Policymakers: The use of fairness-aware algorithms and transparent, 

explainable systems means personalization doesn’t come at the cost of ethics. These 

tools help make sure that learning stays inclusive and that no one is left behind due 

to biased data or unfair access to resources. 

- For EdTech Developers: This research offers a proven, scalable model that brings 

together multiple AI techniques into one cohesive system. The successful use of 

reinforcement learning, fairness checks, and feedback integration serves as a solid 

foundation for building the next generation of smarter, more responsive educational 

platforms. 

This research also contributes to the emerging body of work around Human-Centered AI 

in education. It supports the argument that adaptive learning cannot be limited to 

algorithmic optimization alone, it must also consider learner emotion, contextual 

inclusivity, and digital fluency.  

By capturing pre and post engagement metrics, this work illustrates how learning systems 

can become more self-aware and responsive, even within resource-constrained 
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environments. Furthermore, this study offers a replicable framework for further researchers 

looking to evaluate personalization systems using SHAP-based explainability, fairness 

indicators, and learner-driven feedback loops.  

6.2.1 Policy Implication Matrix 

To ensure broader societal and institutional relevance, the outcomes of this research are 

aligned with key national and international policy frameworks. The table below 

summarizes the relationship between the proposed adaptive recommendation system and 

major educational and ethical guidelines, namely: India’s National Education Policy 2020 

(NEP 2020), Sustainable Development Goal 4 (SDG 4), and the UNESCO 

Recommendation on the Ethics of Artificial Intelligence.  

Table 6.1: Policy Implication Matrix 

Policy 

Framework 

Relevant Pillars Research Alignment 

NEP 2020 (India) - Personalised learning - 

Competency-based 

education - Technology 

integration in pedagogy 

The adaptive recommendation model 

supports learner-specific pathways 

using AI, aligns with NEP’s call for 

inclusive digital learning environments, 

and enables formative assessments. 

SDG 4 (UN 

Sustainable 

Development 

Goals) 

- Quality education - 

Equity and inclusivity - 

Lifelong learning 

opportunities 

The system addresses gaps in access and 

personalization, particularly in 

linguistically and regionally diverse 

settings, thus contributing to SDG 4’s 

equity and quality goals. 

UNESCO AI 

Ethics (2021) 

- Fairness - 

Explainability - Human-

By integrating SHAP-based 

explainability, fairness metrics, and 
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centered AI - Cultural 

diversity 

region-specific adaptability, the model 

operationalizes ethical AI principles in 

education. 

NEP 2020 emphasizes not only personalization but also linguistic diversity and 

foundational learning (FLN). This system’s ability to adaptto regional languages and 

learning speeds can help address early dropout and engagement loss, especially in rural 

India. 

SDG 4 is not merely about access but ensuring equitable outcomes. Fairness aware 

personalization reduces algorithmic biases that often disadvantage learners from 

marginalized communities.  

UNESCO AI Ethics highlights the importance of dignity, agency, and privacy. The 

design of explainable dashboards, consent-based data usage, and demographic bias 

detection align directly with these principles, ensuring the system can be policy-

compliant and ethically deployable at scale.  

The alignment between system design and educational policy frameworks is not 

incidental, it is a deliberate effort to operationalize theoretical mandates into tangible 

interventions. This positions the system as both a technological and policy innovation.  

6.3 Business and Managerial Implications 

This research while situated in the domain of education and artificial intelligence, offers 

strong implications for business leaders, EdTech entrepreneurs, policymakers, and 

academic administrators. By embedding adaptive recommendation technologies into 

educational platforms, several managerial and operational benefits can be realized: 

Personalization as a Differentiator 

Most platforms still rely on static content curation. A system that dynamically adjusts 

learning pathways based on user behavior significantly boosts learner retention and 
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satisfaction. Personalized experiences reduce cognitive overload and increase engagement, 

thereby improving platform stickiness and lifetime value (LTV).  

Fairness as a Brand Value and Regulatory Hedge 

As educational equity gains attention globally, fairness-aware systems are becoming brand 

differentiators. Demonstrable efforts to eliminate bias and increase inclusion make 

platforms attractive to policymakers, institutions, and ESG-conscious investors.  

Explainability Drives Educator Adoption 

Platforms that support techer-in-the-loop explanations see lower resistance and higher 

usage in blended learning environments. SHAP dashboards can double as professional 

development tools, helping teachers understand learning behaviors and optimize 

interventions.  

Scalable and Personalization As a Business 

 Organizations operating in the digital learning space (E.g., EdTech startups, LMS 

providers) can use adaptive learning as a competitive advantage. By offering personalized 

content pathways, these firms can improve user engagement, increase course completion 

rates, and reduce churn ultimately enhancing customer lifetime value.  

Data-Driven Decision Making and Product Innovation 

 The use of learner interaction data and explainable AI (via SHAP) allows education 

providers to make evidence-based decisions regarding curriculum design, content 

investment, and learner segmentation. Managers can better understand which modules 

contribute most to learning success and reallocate resources accordingly.  

Engagement logs and feedback loops provide a goldmine of insights. These can be used to 

create adaptive assessments, micro-credentials, and gamified learning tracks, all of which 

offer monetizable extensions of the core platform.  

Operational Efficiency Through Automation 
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The recommendation engine reduces manual intervention in course assignments and 

learner support by automating the personalization process. This enhances productivity for 

instructors and instructional designers, freeing them to focus on content improvement and 

learner mentoring.  

Enhancing Regulatory and Policy Compliance 

The fairness-aware and explainable design aligns with ethical AI expectations outlined in 

the UNESCO AI guidelines, NEP 2020, and SDG 4. For platform owners and educational 

institutions, this mitigates reputational and legal risks, especially in regulated 

environments.  

Cultural Localization For Market Expansion  

By demonstrating regional adaptability (via city-wise testing and cultural preference 

tuning), the proposed model supports localization strategies critical for expanding EdTech 

solutions into new linguistic or geographic markets.  

Informed Stakeholder Communication 

Transparent recommendation logic powered by SHAP enables better communication with 

institutional stakeholders, including parents, accreditation bodies, and investors. This helps 

in building trust in algorithmic decision-making and securing stakeholder buy-in for digital 

transformation initiatives.  

Embedding fairness, explainability, and adaptability is not just ethical, it is strategic 

EdTech platforms that invest in these pillars will be better positioned for funding, 

partnerships, and sustainable growth in an increasingly regulated and discerning global 

education market.  

6.4 Recommendations for Future Research 

While this study brings forward valuable insights and fresh ideas, it also opens the door to 

several exciting directions for future research: 
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Tracking Long-Term Impact 

One key area worth exploring is how adaptive recommendations influence learning over 

time. By following students across weeks or entire semesters, researchers could better 

understand how these systems affect knowledge retention and independent learning in the 

long run. 

Teacher Perspectives 

Including teachers in the loop—by gathering their feedback and understanding how they 

interpret the system’s suggestions—could help bridge the gap between AI-driven 

personalization and real-world classroom teaching. This could ensure the technology 

supports curriculum goals and teaching strategies more effectively. 

Using Multi-Modal Learning Signals 

Bringing in richer data—like voice tone, facial expressions, or gestures from videos—

could make recommendations even smarter, especially in blended or video-based learning 

environments where more than just clicks and scores matter. 

Creating Ethical Guidelines 

 As AI becomes more embedded in education, it’s crucial to have clear, structured policies 

around its use. Future work should focus on building ethical frameworks that address 

student consent, data privacy, and holding algorithms accountable. 

Global Testing 

Finally, trying out these adaptive systems in different countries or languages could reveal 

how well they adapt to various cultural and educational settings. This would help in 

building models that work fairly and effectively across the globe. 

Multilingual Support 

To enhance adoption in vernacular dominant regions, future iterations of the system should 

support multi-language course recommendations usig NLP translation and tagging tools.  
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Explainability Modes 

Instead of a single explanation model, offer learners a choice between basic (e.g., color-

coded tags) and advanced (e.g., SHAP graphs) explanation formats.  

Teacher-In-Loop Models 

Enable teacher overrides or inputs to fine tune recommendations in edge cases, allowing 

pedagogical discretion in sensitive or subjective subjects.  

Micro-credentialing Support 

The model could be extended to recommend certification paths or skill badges based on 

learner behaviour supporting career linked learning outcomes.  

While the core objective of this research was technical - to build an adaptive, explainable 

recommendation system – its broader significance lies in aligning with national and 

international educational policy mandates. NEP 2020 emphasizes individualized learning 

trajectories, integration of AI, and assessment beyond rote learning. This research 

contributes directly to these goals by enabling personalized academic scaffolding, 

identifying learner pain points through interaction logs, and deploying transparent models 

(via SHAP) to explain recommendations in a non-black-box manner. Rather than focusing 

only on access, the system also addresses continuity and progression, which are often 

overlooked in NEP aligned deployments. By nudging learners through strategically chosen 

modules, the system provides soft intervention to reduce dropouts and encourage 

completion – key metrics in NEP’s digital learning success indicators. From a global 

perspective, the work contributes to SDG 4.1 (primary and secondary completion), SDG 

4.5 (gender and regional equity), and SDG 4.a (inclusive digital infrastructure). 

Importantly, this study demonstrates how AI systems can be custom-tuned for 

inclusiveness, by tracking engagement at demographic levels and mitigating algorithmic 

bias via fair distribution checks. In summary, this research showcases how technological 
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intervention can be policy-aligned not just pedagogically effective, offering a replicable 

model for responsible AI adoption in educational ecosystems.  

6.5 Conclusion 

This study shows that when adaptive recommendation systems are built with a focus on 

inclusivity, transparency, and the ability to respond in real time, they can truly transform 

how personalized learning works. By combining AI, machine learning, and a user-first 

design approach, the research not only adds to academic understanding but also offers 

hands-on strategies for building scalable, fair, and effective adaptive learning solutions. 

As education continues to shift into the digital era, tools like these will be essential for 

closing gaps in access, keeping students engaged, and improving outcomes across the 

board. The insights and innovations shared in this thesis serve as a guide for what’s next—

where AI and education come together to create a future that’s more tailored and equitable 

for every learner. 

 

 

 

 

 

 

 

 

 



 

 

104 

APPENDIX A  

QUESTIONNAIRE 

The following questionnaire was administered to the participating learners before and after 

recommendation to assess their learning experience, recommendation relevance, and 

overall satisfaction.  

Section 1: Background 

1. Age: _________ 

2. Gender: Male/Female/Other 

3. Prior Experience with E-Learning: Yes/No 

4. Language Preference: _________________________ 

Section 2: Before Using the Recommendation System 

5. How often do you use online learning platforms? Rarely/Sometimes/Often/Always 

6. Rate your usual motivation to complete modules: Low/Medium/High 

Section 3: After Using the Recommendation System 

7. How relevant were the recommended modules? Not Relevant/ Somewhat Relevant/ 

Very Relevant 

8. Did you find the recommendations easy to understand (explainable)? Yes/No 

9. Did you notice improvement in your quiz performance? No/Minor/Significant 

10. Would you continue to use the system if given access? Yes/No 

Section 4: Suggestions 



 

 

105 

11. What did you like the most about the system? 

__________________________________________________________________

__________________________________________________________________ 

12. What would you like to improve? 

__________________________________________________________________ 

__________________________________________________________________ 
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APPENDIX B   

INFORMED CONSENT 

Subject: Request for Permission to Use Anonymized Data for Academic Research 

Dear Talentgum, 

I hope you're doing well. I'm currently working on a research project titled "A 

Comprehensive Study of Adaptive Recommendation Technologies in Education for 

Enhancing Personalized Learning." As part of this study, I'm exploring how AI-powered 

recommendation systems can help improve engagement, learning outcomes, and 

personalization in digital education platforms. 

To carry out this research meaningfully, I’m seeking your kind permission to use 

anonymized learner data from your platform. The data I’m hoping to access would include 

general demographics (like age, gender, and location), learning behaviors (such as quiz 

scores, time spent on content, click activity, and course completion rates), and other 

relevant engagement indicators. 

Here are a few important points I’d like to clarify: 

• Your participation is completely voluntary. There’s no obligation to share data, and 

you’re free to decline or withdraw your consent at any time. 

• All data will be anonymized. I will not request or use any personally identifiable 

information. Privacy and confidentiality are top priorities, and all data will be 

handled with care and in line with ethical research standards. 
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• The data will only be used for academic research. It won’t be used for any 

commercial purposes, and findings will be presented in aggregate form only—

without naming individuals or your company, unless you explicitly allow it. 

• If needed, I'm happy to sign an NDA or any other agreement you require to ensure 

responsible use of the data and mutual trust throughout the process. 

If you're open to this, I’d be incredibly grateful. Your support could play a valuable role in 

helping shape the future of personalized learning technologies. Please feel free to reach out 

if you have any questions or would like to discuss this further. 
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APPENDIX C 

UI FLOW AND LEARNER INTERACTION MOCKUP 

In the figure below, wireframe of learner is showcased interaction flow depicting steps 

from course module selection, quiz attempt, recommendation list, to explainability insights 

 

Figure: Web-based User Interface Flow for Adaptive Recommendation System (Source: 

Author) 

The above wireframe illustrates the user interface and interaction flow of the web-based 

adaptive recommendation system developed as a part of this research. The interface is 

designed to be minimal, intuitive, and responsive, ensuring ease of access for diverse 

learners.  

The flow begins with a secure learner login, followed by retrieval of the learner profile, 

interaction logs, and generation of personalized recommendations. A SHAP-based 

explanation panel is integrated alongside each module suggestion to enhance transparency. 

After engaging with the content, learner feedback is recorded for system refinement via the 

feedback loop. 
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The wireframes shown above represent the core screens in the user journey: 

1. Login Interface 

2. Dashboard with Recommended Modules 

3. “With this Module?” SHAP Explanation Panel 
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APPENDIX D 

GLOSSARY 

Table: Glossary 

Term Definition 

Adaptive Learning A data-driven instructional approach that dynamically 

adjusts content delivery based on individual learner 

performance and behavior. 

CBF (Content-Based 

Filtering) 

A system that recommends items by analyzing the 

content features and matching them with a user's past 

preferences. 

CF (Collaborative Filtering) A recommendation technique that suggests content 

based on the preferences of users with similar behavior 

or history. 

Cosine Similarity A metric used to determine how similar two documents 

are, based on the cosine of the angle between their 

vector representations. 

Cultural Adaptability The ability of a system to tailor content and interface 

design to align with the cultural context of diverse user 

groups. 

DIKSHA Digital Infrastructure for Knowledge Sharing – a 

national platform in India for school education, 

offering e-content and teaching resources. 

Epsilon-Greedy Strategy A simple yet effective algorithm used in MAB that 

chooses the best-known option most of the time while 

occasionally exploring others. 
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Explainability (in ML) The degree to which a human can understand the 

internal mechanics and decision-making process of a 

machine learning model. 

Fairness in AI The principle of ensuring that algorithmic outcomes do 

not favor or disadvantage any group, particularly 

across demographic or cultural lines. 

Feedback Loop A mechanism by which the system continuously 

adjusts based on real-time learner interactions and 

performance data. 

Hyperparameter Tuning The process of adjusting the configuration parameters 

of a machine learning model to improve its 

performance. 

Learning Management 

System (LMS) 

A software platform for the administration, 

documentation, tracking, and delivery of educational 

courses or training programs. 

MAB (Multi-Armed Bandit) A reinforcement learning framework that balances the 

need to explore new options with the exploitation of 

known rewarding choices. 

Personalization The customization of learning paths, resources, or 

experiences to meet individual learner needs and 

preferences. 

SHAP (Shapley Additive 

Explanations) 

A model interpretation method based on game theory 

that explains individual predictions by assigning 

importance scores to input features. 

TF-IDF (Term Frequency–

Inverse Document 

Frequency) 

A statistical measure used to evaluate the importance 

of a word in a document relative to a collection of 

documents. 



 

 

112 

REFERENCES 

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender 

systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on 

Knowledge and Data Engineering, 17(6), 734–749. 

Anderson, C., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2014). Engaging with 

massive online courses. In Proceedings of the 23rd International Conference on World 

Wide Web (pp. 687–698). ACM. 

Anderson, T., & Whitelock, D. (2004). The educational semantic web: Visioning and 

practicing the future of education. Journal of Interactive Media in Education, 2004(9). 

https://doi.org/10.5334/2004-9 

Baker, R. S. (2014). Educational data mining: The role of learning analytics. Teachers 

College Record, 116(13), 1–17. 

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics: 

Applications to constructionist research. Technology, Knowledge and Learning, 19(1–2), 

205–220. https://doi.org/10.1007/s10758-014-9223-5 

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. In 

Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 149–

159). ACM. https://doi.org/10.1145/3287560.3287588 

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems 

survey. Knowledge-Based Systems, 46, 109–132. 

https://doi.org/10.1016/j.knosys.2013.03.012 

https://doi.org/10.1016/j.knosys.2013.03.012


 

 

113 

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive 

algorithms for collaborative filtering. In Proceedings of the 14th Conference on 

Uncertainty in Artificial Intelligence (pp. 43–52). Morgan Kaufmann. 

Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive 

educational systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web 

(pp. 3–53). Springer. https://doi.org/10.1007/978-3-540-72079-9_1 

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling 

and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564 

Butmeh, H., & Abu-Issa, A. (2024). Hybrid attribute-based recommender system for 

personalized e-learning with emphasis on cold start problem. Frontiers in Computer 

Science, 6, Article 1404391. https://doi.org/10.3389/fcomp.2024.1404391 

Calvo, R. A., & D’Mello, S. K. (2020). Emotions in educational contexts: Understanding 

and supporting learning through affective computing. Cambridge University Press. 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: 

Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 

16, 321–357. https://doi.org/10.1613/jair.953 

Chowdhury, G. G. (2020). Sustainability of digital libraries: Research and practice. Journal 

of Documentation, 76(1), 190–219. https://doi.org/10.1108/JD-07-2019-0143 

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms 

on top-N recommendation tasks. In Proceedings of the Fourth ACM Conference on 

Recommender Systems (pp. 39–46). ACM. https://doi.org/10.1145/1864708.1864721 



 

 

114 

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods 

research (3rd ed.). Sage Publications. 

da Silva, F. L., Slodkowski, B. K., da Silva, K. K. A., & Cazella, S. C. (2023). A systematic 

literature review on educational recommender systems for teaching and learning: Research 

trends, limitations and opportunities. Education and Information Technologies, 28(3), 

3289–3328. https://doi.org/10.1007/s10639-022-11500-9 

Dastin, J., Singh, S., & Narayanan, A. (2021). Fairness in recommendation: Balancing 

exposure and accuracy. ACM Transactions on Information Systems, 39(4), 1–27. 

https://doi.org/10.1145/3453174 

Dhananjaya, A., Nayyar, A., Mahato, H., & Sathish, D. (2022). A digital recommendation 

system for personalized learning to enhance online education: A review. International 

Journal of Engineering Research & Technology, 11(4), 341–348. 

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine 

learning. arXiv Preprint, arXiv:1702.08608. https://arxiv.org/abs/1702.08608 

Ekstrand, M. D., Tian, M., Azpiazu, I. M., Ekstrand, B. D., Anuyah, O., McNeill, D., & 

Pera, S. (2018). All the cool kids, how do you blend in? Fairness and calibration in 

recommender systems. In Proceedings of the 11th ACM Conference on Recommender 

Systems (pp. 172–180). ACM. https://doi.org/10.1145/3240323.3240378 

El Youbi El Idrissi, L., Akharraz, I., & Ahaitouf, A. (2022). Personalized e-learning 

recommender system based on autoencoders. Journal of Educational Technology, 15(3), 

120–135. 



 

 

115 

Garreau, D., & von Luxburg, U. (2020). Explaining the explainer: A theoretical analysis 

of LIME. In Proceedings of the 23rd International Conference on Artificial Intelligence 

and Statistics (AISTATS). PMLR. https://proceedings.mlr.press/v108/garreau20a.html 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

Gulati, S. (2021). Integrating AI in higher education under NEP 2020: Challenges and 

possibilities. Journal of Educational Technology Systems, 50(1), 45–60. 

https://doi.org/10.1177/00472395211015249 

Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. In F. Ricci, L. 

Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 265–308). Springer. 

https://doi.org/10.1007/978-1-4899-7637-6_8 

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques. Elsevier. 

Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial 

Intelligence Review, 22(2), 85–126. 

https://doi.org/10.1023/B:AIRE.0000045502.10941.a9 

HolonIQ. (2023). Global education outlook 2023. https://www.holoniq.com/notes/global-

education-outlook-2023/ 

Holstein, K., Wortman Vaughan, J., Daumé, H., Dudik, M., & Wallach, H. (2022). Toward 

AI accountability in education: Obstacles and recommendations for improving impact. 

Computers & Education, 179, 104429. https://doi.org/10.1016/j.compedu.2021.104429 

https://proceedings.mlr.press/v108/garreau20a.html
https://www.holoniq.com/notes/global-education-outlook-2023/
https://www.holoniq.com/notes/global-education-outlook-2023/


 

 

116 

Jannach, D., & Adomavicius, G. (2016). Recommendations based on user feedback. In F. 

Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 451–487). 

Springer. https://doi.org/10.1007/978-1-4899-7637-6_13 

Jiang, Y., Li, X., & Sun, Z. (2021). Deep learning for educational personalization: A review 

of recent advances. IEEE Access, 9, 159143–159159. 

https://doi.org/10.1109/ACCESS.2021.3134567 

Khan, B., & Ahmed, F. (2018). Personalized learning: A review of the literature. Education 

and Information Technologies, 23(4), 1635–1655. https://doi.org/10.1007/s10639-017-

9671-0 

Khosravi, H., Cooper, K., & Kitto, K. (2017). RiPLE: Recommendation in peer-learning 

environments based on knowledge gaps and interests. Journal of Educational Data Mining, 

9(1), 42–64. 

Kumar, S., Yadav, A., & Thakur, D. (2023). Time-aware learning pathway 

recommendation in adaptive educational systems. International Journal of Artificial 

Intelligence in Education, 33(1), 78–101. https://doi.org/10.1007/s40593-022-00299-2 

Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach 

for predictive models. CRC Press. 

Lee, D. H., & Brusilovsky, P. (2020). Macro- and micro-level adaptivity in personalized 

e-learning: Combining curriculum sequencing with item-level feedback. IEEE 

Transactions on Learning Technologies, 13(4), 760–774. 

https://doi.org/10.1109/TLT.2020.2982236 



 

 

117 

Li, X., Ma, L., & Chen, F. (2023). Personalized learning through attention-based 

recommendation systems: A neural approach to educational adaptivity. Computers & 

Education, 194, 104663. https://doi.org/10.1016/j.compedu.2023.104663 

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item 

collaborative filtering. IEEE Internet Computing, 7(1), 76–80. 

https://doi.org/10.1109/MIC.2003.1167344 

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data. Wiley. 

Lops, P., Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State 

of the art and trends. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems 

handbook (pp. 73–105). Springer. https://doi.org/10.1007/978-0-387-85820-3_3 

Lu, J., et al. (2021). Using SHAP values to explain recommendations in an educational 

setting. Educational Technology & Society, 24(3), 45–59. 

Lu, X., Zhang, Z., & Li, S. (2021). SHAP-based explainable educational recommender for 

transparent learning analytics. Journal of Educational Data Mining, 13(2), 44–65. 

Lundberg, S. M., Erion, G. G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., 

Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global 

understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 252–259. 

https://doi.org/10.1038/s42256-019-0138-9 

Mahajan, R., & Nagpal, R. (2020). Personalized learning systems and NEP 2020: An 

analytical perspective. International Journal of Education and Development Using ICT, 

16(2), 44–59. 

https://doi.org/10.1016/j.compedu.2023.104663


 

 

118 

Manouselis, N., Vuorikari, R., & Van Assche, F. (2020). A classification scheme for 

adaptive educational systems: A systematic literature review. Computers & Education, 

144, 103685. https://doi.org/10.1016/j.compedu.2019.103685 

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on 

bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. 

https://doi.org/10.1145/3457607 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 

representations in vector space. arXiv Preprint, arXiv:1301.3781. 

https://arxiv.org/abs/1301.3781 

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. 

Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007 

Ministry of Education, Government of India. (2020). National education policy 2020. 

https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf 

Molnar, C. (2022). Interpretable machine learning: A guide for making black box models 

explainable (2nd ed.). https://christophm.github.io/interpretable-ml-book/ 

Montgomery, D. C. (2017). Design and analysis of experiments. Wiley. 

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable 

machine learning: Definitions, methods, and applications. Proceedings of the National 

Academy of Sciences, 116(44), 22071–22080. https://doi.org/10.1073/pnas.1900654116 

https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
https://christophm.github.io/interpretable-ml-book/


 

 

119 

Nguyen, T., Duong, Q., & Nguyen, A. (2021). A multi-criteria hybrid recommendation 

system for e-learning. IEEE Access, 9, 15032–15045. 

https://doi.org/10.1109/ACCESS.2021.3053043 

Okubo, F., Shiino, T., Minematsu, T., Taniguchi, Y., & Shimada, A. (2023). Adaptive 

learning support system based on automatic recommendation of personalized review 

materials. IEEE Transactions on Learning Technologies, 16(1), 92–105. 

https://doi.org/10.1109/TLT.2022.3167774 

Organisation for Economic Co-operation and Development (OECD). (2023). Artificial 

intelligence in education: Challenges and opportunities. 

https://www.oecd.org/education/ai-in-education/ 

Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data 

mining in practice: A systematic literature review of empirical evidence. Educational 

Technology & Society, 17(4), 49–64. 

Patel, A., & Desai, M. (2022). Bridging AI with SDG 4: Strategies for inclusive education 

through technology. Journal of Artificial Intelligence and Education, 5(3), 113–129. 

Plumb, G., Molitor, D., & Talwalkar, A. (2018). Model agnostic supervised local 

explanations. In Advances in Neural Information Processing Systems, 31. 

Ranjan, R., Srivastava, R., & Pandey, N. (2023). Challenges in AI integration with public 

education systems in India: A case for plug-in architectures. Education and Information 

Technologies, 28, 191–208. https://doi.org/10.1007/s10639-022-11234-7 

https://doi.org/10.1109/TLT.2022.3167774
https://www.oecd.org/education/ai-in-education/


 

 

120 

Rendle, S., & Sanner, S. (2010). Improving pairwise learning for item recommendation 

from implicit feedback. In Proceedings of the 10th IEEE International Conference on Data 

Mining (ICDM) (pp. 543–552). IEEE. https://doi.org/10.1109/ICDM.2010.22 

Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: Challenges and 

opportunities. AI Communications, 28(1), 1–12. https://doi.org/10.3233/AIC-150677 

Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the 

art. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 40(6), 601–618. 

https://doi.org/10.1109/TSMCC.2010.2053532 

Santos, O. C., & Peña, C. M. (2023). Explainability in AI-based learning recommender 

systems: A systematic review. Artificial Intelligence in Education, 31(2), 315–340. 

https://doi.org/10.1007/s40593-023-00315-8 

Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized 

learning terms. Educational Research Journal. 

Siemens, G., & Baker, R. S. J. D. (Eds.). (2012). Learning analytics and educational data 

mining: Towards communication and collaboration. Springer. 

Sun, C., Yang, J., & Wang, F. (2020). Deep learning for personalized education: A 

comprehensive review. IEEE Transactions on Emerging Topics in Computational 

Intelligence, 4(4), 501–518. https://doi.org/10.1109/TETCI.2020.2981907 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press. 



 

 

121 

United Nations. (2023). The sustainable development goals report 2023. 

https://unstats.un.org/sdgs/report/2023/ 

UNESCO. (2021). Artificial intelligence and education: Guidance for policy-makers. 

United Nations Educational, Scientific and Cultural Organization. 

https://unesdoc.unesco.org/ark:/48223/pf0000366994 

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of 

information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. 

https://doi.org/10.2307/30036540 

Wang, Y., Zhang, L., & Liu, Y. (2023). A collaborative filtering recommendation 

algorithm for personalized learning in online education. International Journal of 

Educational Technology in Higher Education, 20(1), 35. https://doi.org/10.1186/s41239-

023-00403-0 

World Economic Forum. (2020). Schools of the future: Defining new models of education 

for the Fourth Industrial Revolution. https://www.weforum.org/reports/schools-of-the-

future/ 

https://unstats.un.org/sdgs/report/2023/
https://unesdoc.unesco.org/ark:/48223/pf0000366994
https://www.weforum.org/reports/schools-of-the-future/
https://www.weforum.org/reports/schools-of-the-future/

