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The healthcare sector faces increasing cybersecurity threats, which traditional, 

reactive security measures cannot effectively handle. These threats pose risks to patient 

safety, data privacy, and operational continuity. This research addresses this issue by 

developing a framework that integrates Artificial Intelligence (AI) and cloud platforms to 

enable proactive, real-time threat detection and response while adhering to ethical 

standards in data privacy and security. 

The study employs an explanatory sequential mixed-methods research design. 

The quantitative phase consists of an experimental evaluation of four AI-based anomaly 

detection models (Isolation Forest, Autoencoder, LSTM Autoencoder, and Transformer 

Autoencoder) on the UNSW-NB15 benchmark cybersecurity dataset. The qualitative 

phase involves a survey of 25 senior-level cybersecurity and IT professionals to gather 

insights on the practical challenges, strategic considerations, and best practices for 

implementing AI technologies in healthcare cybersecurity. 
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The quantitative results revealed significant performance variations among the 

models, with a critical trade-off between precision and recall. The Autoencoder model 

achieved high precision (94.25%) but low recall (38.48%), highlighting the challenge of 

balancing false positives and false negatives. The qualitative results indicated that the 

primary barriers to AI adoption are organizational and resource-based rather than 

technological. Key challenges include cost constraints (88%), integration with legacy 

systems (84%), and a lack of skilled professionals (80%). Experts emphasized the 

importance of a strategic approach for AI implementation, including foundational 

security and a human-in-the-loop approach. 

While advanced AI models, especially Transformers, hold significant potential for 

enhancing cybersecurity, their successful implementation requires a strategic, human-

centric approach. The research's primary contribution is the Proactive, Adaptive, and 

Resilient (PAR) Cybersecurity Framework, a model that combines AI-driven detection 

with strategic principles to help healthcare organizations build cybersecurity programs 

that are both technologically advanced and aligned with the mission of patient safety, 

while ensuring ethical data privacy standards. 
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CHAPTER I:  

INTRODUCTION  

 

1.1 Background of the Study 

The global healthcare sector is in the midst of a profound and irreversible digital 

transformation, a paradigm shift that has fundamentally reshaped the delivery of patient 

care, the management of clinical operations, and the landscape of medical research. The 

widespread adoption of Electronic Health Records (EHRs) has replaced paper-based 

systems with centralized, accessible digital repositories of patient information, promising 

greater efficiency and fewer medical errors (Smith et al., 2020). Concurrently, the 

proliferation of the Internet of Medical Things (IoMT) has connected a vast array of 

devices—from patient-worn vital sign monitors and smart infusion pumps to complex 

diagnostic imaging equipment like MRI and CT scanners—to hospital networks, enabling 

real-time data collection and remote patient management (Jones et al., 2021). This hyper-

connectivity, further accelerated by the global demand for telemedicine and virtual care 

models in the wake of the recent pandemic, has created a vast, decentralized, and data-

rich digital ecosystem (Lee & Park, 2022). While the benefits of this transformation are 

undeniable, leading to improved diagnostic accuracy, personalized treatment plans, and 

greater patient engagement, this evolution has simultaneously and inadvertently created 

an expansive and attractive attack surface for malicious cyber actors (Portela et al., 2023). 

The healthcare industry's increasing reliance on this digital infrastructure has 

rendered it acutely vulnerable to a new and escalating wave of sophisticated cyberattacks. 

The statistics tracking this trend are alarming and paint a clear picture of a sector under 

siege. A 2025 industry report indicated that a staggering 92% of healthcare organizations 

experienced at least one significant cyber intrusion in the preceding year, a notable 
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increase from 88% in the year prior (He et al., 2021). This is not a fleeting trend but a 

sustained and intensifying pattern of targeted attacks. The consequences of these 

intrusions extend far beyond the IT department, permeating every aspect of the healthcare 

delivery value chain. The average cost of a single cybersecurity compromise in 

healthcare has soared into the millions of dollars, comprising a complex web of direct 

and indirect expenses, including system remediation, regulatory fines for non-

compliance, legal fees, and the significant cost of operational downtime (He et al., 2021). 

The financial ramifications are substantial and multifaceted. The average cost of a 

single cybersecurity compromise in healthcare has soared into the millions of dollars. 

These costs are not monolithic; they comprise a complex web of direct and indirect 

expenses, including the costs of system remediation and recovery, regulatory fines for 

non-compliance with data protection mandates like the Health Insurance Portability and 

Accountability Act (HIPAA), legal fees from patient lawsuits, the provision of credit 

monitoring services for affected individuals, and the significant cost of operational 

downtime. These are funds which are invariably diverted from the core mission of 

healthcare: patient care, medical research, and crucial infrastructure upgrades (Portela et 

al., 2023). 
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Figure 1 Average Cost of Cybersecurity Incidents 

 

Healthcare Cybersecurity Insights. (2025). Healthcare Cybersecurity Annual Report 

2025. Healthcare Cybersecurity Insights. 

 

More alarmingly, the operational impact of these attacks can be catastrophic, 

posing a direct threat to patient safety. Cyberattacks, such as the infamous WannaCry 

ransomware attack that crippled hospitals and clinics globally, have been shown to cause 

significant and prolonged disruptions in the delivery of care. These disruptions manifest 

as the mass cancellation of appointments and elective surgeries, the shutdown of critical 

diagnostic equipment, delays in the delivery of time-sensitive medical procedures like 

chemotherapy, and a forced reversion to inefficient and error-prone paper-based systems 

for which modern clinical staff may be inadequately trained. In the most severe cases, 

research has begun to draw a direct line between the operational chaos caused by 

cyberattacks and an increase in patient mortality rates. This direct impact on patient well-
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being, coupled with the profound and lasting erosion of patient trust and the risk of severe 

reputational damage, elevates cybersecurity from a technical IT challenge to a matter of 

paramount ethical, social, and public safety concern. 

 

 

Figure 2 Distribution of types of Cyber Threats in Healthcare 
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1.2 Problem Statement 

The healthcare sector increasingly relies on electronic health records, cloud 

platforms, and interconnected medical devices, yet traditional cybersecurity 

approaches—primarily signature-based detection and perimeter defenses—are reactive 

and ill-suited to modern threats such as zero-day exploits, advanced persistent threats, 

and ransomware (He et al., 2021; Portela et al., 2023). As data flows across mobile 

devices, third-party partners, and public cloud environments, the dissolution of network 

boundaries creates multiple points of vulnerability (Lee & Park, 2022). At the same time, 

the high value and permanence of Protected Health Information (PHI) make healthcare 

organizations prime targets for cybercriminals and nation-state actors (Smith et al., 2020). 

Without a shift toward proactive, behavior-based cybersecurity strategies, healthcare 

institutions remain at significant risk of data breaches, operational disruption, patient 

harm, and erosion of public trust (Jones et al., 2021). 

 

 

Figure 3 Growth of healthcare data breaches reported to the HHS OCR (2015–2024). 

Data adapted from HIPAA Journal (2025) and Fox Group (2025). 



 

 

6 

Figure 3 illustrates the rapid growth of healthcare data breaches reported to the 

U.S. Department of Health and Human Services Office for Civil Rights (HHS OCR) 

between 2015 and 2024. The number of reported incidents has increased from 

approximately 125 in 2015 to more than 500 in 2024, representing a fourfold rise in less 

than a decade (HIPAA Journal, 2025; Fox Group, 2025). This escalation is closely tied to 

the increasing digitalization of healthcare, including the adoption of electronic health 

records (EHRs), cloud platforms, telemedicine systems, and interconnected medical 

devices. Unlike financial data, which can be replaced or reissued, Protected Health 

Information (PHI) is permanent and highly valuable, making it a prime target for 

cybercriminals and state-sponsored attackers. As a result, the healthcare sector has 

become one of the most attractive targets for malicious actors in the digital era. 

The accelerating trend after 2020 highlights both the growing sophistication of 

cyberattacks and the limitations of traditional perimeter-based defenses. Conventional 

security models that rely on firewalls, antivirus tools, and signature-based detection 

struggle to address zero-day exploits, polymorphic malware, and advanced persistent 

threats. At the same time, the dissolution of the traditional network perimeter—driven by 

cloud adoption, remote access, and third-party data sharing—has multiplied potential 

points of entry for attackers. The consistent rise in reported breaches underscores a 

widening gap between healthcare organizations’ defensive capabilities and the evolving 

threat landscape. This gap demonstrates the urgent need for proactive, AI-driven, and 

cloud-enabled cybersecurity frameworks that can anticipate and mitigate emerging 

threats while safeguarding patient privacy and maintaining trust in healthcare delivery. 
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Figure 4 Common sources of vulnerabilities in healthcare systems, based on aggregated 

reports including Censinet (2025), highlighting outdated software, weak access controls, 

unencrypted data storage, vendor risks, human error, and gaps in employee training. 

 

Censinet. (2025). 7 Critical Medical Device Security Risks in Healthcare. Censinet. 

OneC1. (2025). Why Healthcare Data Security is Critical in 2025 and Beyond. OneC1.  

Figure 4 illustrates the most prevalent sources of vulnerabilities in healthcare 

systems, demonstrating how both technical and organizational shortcomings contribute to 

cybersecurity risk. Outdated software remains the most significant factor, accounting for 

35% of weaknesses. Legacy applications and unpatched medical devices often remain 

operational long past their intended life cycles, creating exploitable entry points for 

attackers (HIPAA Journal, 2025). Weak access controls (25%) further amplify risks, as 

poor authentication protocols, shared credentials, and lack of role-based access leave 

systems exposed. Similarly, unencrypted data storage (20%) reflects insufficient 
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safeguards for sensitive patient records, making Protected Health Information (PHI) 

vulnerable to breaches and exploitation (Li, 2024). 

The graph also highlights vulnerabilities arising from organizational dependencies 

and human factors. Third-party vendor risks account for 10% of exposures, underscoring 

the reliance of healthcare providers on external billing, diagnostic, and cloud partners 

whose compromises can cascade into healthcare networks (Fox Group, 2025). Human 

error and phishing attacks contribute 8%, showing that even the most advanced defenses 

can be undermined by lapses in user vigilance. Additionally, the 2% attributed to lack of 

employee training reflects the continued underinvestment in staff cybersecurity 

awareness programs, despite their crucial role in safeguarding systems (Ponemon 

Institute, 2024). Collectively, these findings emphasize that cybersecurity in healthcare is 

not only a technical challenge but also a socio-technical one, requiring integration of 

advanced AI-driven security solutions, cloud-based monitoring, and comprehensive 

governance strategies. 

 

1.3 Limitations, Delimitations, and Assumptions 

Limitations: These are aspects of the research design that may impact the 

generalizability of the findings and are outside the researcher's control. 

The primary quantitative analysis relies on the UNSW-NB15 dataset. While this 

is a comprehensive and respected benchmark, it is not specific to healthcare traffic. The 

unique communication protocols and data signatures of specialized IoMT devices (e.g., 

DICOM for medical imaging, HL7 for health data exchange) and EHR systems have 

distinct characteristics. Therefore, while the models' comparative performance is valid, 

their absolute performance metrics might differ when applied to a live healthcare 

network. 
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The study evaluates a specific set of four AI models. While these are 

representative of modern approaches, the rapidly evolving field of AI means that other 

algorithms, different hybrid configurations, or emerging techniques like graph neural 

networks exist that were not included in the scope of the experiments. The findings are 

therefore limited to the performance of the selected models and cannot be generalized to 

all possible AI solutions. 

Delimitations: These are the boundaries the researcher has intentionally placed 

on the study to ensure a focused and feasible scope. 

This research is focused specifically on network intrusion detection. It does not 

address other critical areas of a holistic cybersecurity strategy, such as endpoint security 

(e.g., antivirus on workstations), physical security of data centers, application-level 

security within EHR software, or user identity and access management. These areas, 

while vital, constitute separate domains of study. 

The qualitative component of the study will rely on survey data from a selected 

group of cybersecurity leaders and professionals. It does not include the perspectives of 

other vital stakeholders, such as clinicians, biomedical engineers, or patients, whose 

interaction with technology and perception of security also impacts the overall security 

posture. 

The proposed framework is designed to be technology-agnostic regarding specific 

cloud service providers (e.g., Amazon Web Services, Microsoft Azure, Google Cloud 

Platform). It focuses on universal architectural principles and capabilities rather than 

vendor-specific implementations or proprietary services. 

Assumptions: These are elements taken for granted for the purposes of this study, 

forming a foundational premise for the research. 
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It is assumed that the UNSW-NB15 benchmark dataset is a sufficiently accurate 

and realistic proxy for general network traffic to allow for a meaningful evaluation of the 

AI models' baseline performance and comparative effectiveness. 

It is assumed that the survey participants, selected for their expertise, will provide 

honest and accurate responses based on their professional experience and knowledge, 

without influence from their respective organizations' specific policies or vendor 

relationships. 

It is assumed that the fundamental principles of network anomaly detection—

identifying deviations from a learned baseline of normal behavior—are broadly 

applicable to the detection of threats within a healthcare network environment, even with 

its specialized traffic types. 

 

1.4 Significance of the Study 

This research is significant from both a practical and theoretical standpoint, 

offering valuable contributions to both industry practice and academic knowledge. 

Practically, the study will provide healthcare leaders, IT managers, and 

cybersecurity professionals with a much-needed, actionable framework for navigating the 

complexities of modern cybersecurity. In an environment of limited budgets and 

competing priorities, Chief Information Security Officers (CISOs) and other leaders 

require evidence-based guidance to make sound technology investments and allocate 

resources effectively. The findings from this research will offer empirical evidence on the 

performance of different AI models, enabling more informed and cost-effective 

deployment decisions related to both in-house development and vendor selection. 

Furthermore, the identification of implementation challenges and best practices will 

equip organizations to manage the entire lifecycle of adoption, from ensuring HIPAA 



 

 

11 

compliance and data privacy to managing the crucial human factors involved in a new 

security paradigm. This includes developing training programs for staff, designing 

workflows for security analysts, and mitigating the pervasive issue of "alert fatigue," 

where an overwhelming volume of low-fidelity alerts can cause genuine threats to be 

overlooked. Ultimately, this research can help healthcare organizations strengthen their 

defenses, protect patient data, ensure continuity of care, and mitigate significant financial 

and reputational risk (He et al., 2021). 

Theoretically, this study will contribute to the academic body of knowledge at 

the intersection of three critical fields: cybersecurity, artificial intelligence, and healthcare 

management. By developing and proposing a comprehensive, integrated framework, this 

research extends existing models of cybersecurity that often treat these technological and 

organizational components in isolation. The empirical evaluation of multiple AI models 

on a benchmark dataset provides valuable comparative data that can inform future 

academic research in the specialized domain of applied machine learning for intrusion 

detection. Finally, the qualitative insights into implementation challenges offer a richer, 

more nuanced understanding of how advanced technologies are operationalized in a real-

world, high-stakes, and heavily regulated environment. This provides a valuable case 

study for the broader field of technology management and contributes to the socio-

technical systems perspective, which posits that organizational outcomes are a product of 

the complex interaction between people, technology, and processes (Kaur, Gabrijelčič 

and Klobučar, 2023). 

 

1.5 Research Questions and Objectives 

The purpose of this research is to address the critical security gap identified by 

developing a comprehensive, evidence-based framework for leveraging the synergistic 
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power of Artificial Intelligence (AI) and cloud platforms in healthcare. To achieve this, 

the study is guided by the following research questions and their corresponding 

objectives. 

 

Research Questions: 

1. What are the key components and architectural considerations for a 

framework that effectively integrates Artificial Intelligence and Cloud 

Platforms for enhanced cybersecurity in the healthcare sector? 

2. How effective are specific AI models (including Autoencoders, Isolation 

Forest, LSTMs, and Transformers) in detecting various types of cyber 

threats in real-time within simulated healthcare network environments? 

3. What are the major implementation challenges (e.g., data privacy, 

regulatory compliance, integration with existing systems, cost, and alert 

fatigue) that healthcare organizations face when adopting an AI-driven 

cybersecurity framework? 

4. What are the recommended strategies and best practices for healthcare 

organizations to successfully implement, manage, and govern an 

integrated AI and cloud-based cybersecurity framework? 

 

Research Objectives: 

1. To develop a comprehensive framework for leveraging AI and Cloud 

Platforms for enhanced cybersecurity in the healthcare sector. 

2. To quantitatively evaluate the effectiveness of four distinct AI models 

(Autoencoder, Isolation Forest, LSTM, and Transformer) for real-time 

threat detection using a benchmark cybersecurity dataset. 
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3. To explore the key considerations, challenges, and best practices for 

implementing such a framework by synthesizing expert opinion and 

existing literature. 

4. To propose actionable strategies that guide healthcare organizations in the 

adoption and governance of the proposed framework. 

 

1.6 Definition of Terms  

Artificial Intelligence (AI): A branch of computer science concerned with 

building smart machines capable of performing tasks that typically require human 

intelligence, such as learning, reasoning, and problem-solving. In this context, it refers to 

machine learning models used for anomaly detection. 

Cloud Platforms: Services that provide on-demand computing resources—

including servers, storage, databases, networking, and software—over the internet (e.g., 

Amazon Web Services, Microsoft Azure). 

Autoencoder: A type of unsupervised neural network that learns to compress data 

into a latent representation and then reconstruct it. High reconstruction error is used to 

identify anomalies. 

Isolation Forest: An unsupervised learning algorithm that isolates anomalies by 

randomly partitioning data points. It assumes that anomalies are "few and different" and 

thus easier to isolate. 

LSTM (Long Short-Term Memory): A type of Recurrent Neural Network (RNN) 

capable of learning long-term dependencies, making it well-suited for analyzing 

sequential data like network traffic over time. 
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Protected Health Information (PHI): Any information in a medical record that can 

be used to identify an individual, and that was created, used, or disclosed in the course of 

providing a health care service, as defined by HIPAA. 

Transformer Model: A deep learning architecture based on the self-attention 

mechanism, which allows it to weigh the importance of different parts of an input 

sequence to capture global contextual relationships. 

Zero-Day Attack: A cybertrack that occurs on the same day a weakness is 

discovered in software. At that point, it is exploited before a fix becomes available from 

the developer, rendering signature-based defenses ineffective. 
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CHAPTER II:  

REVIEW OF LITERATURE 

 

2.1 Introduction 

This chapter provides a comprehensive review of the academic and industry 

literature that forms the foundation for this study. It begins by restating the core research 

problem: the inadequacy of traditional cybersecurity measures to protect the increasingly 

complex and targeted healthcare sector. The purpose of this study, as outlined in Chapter 

1, is to develop a comprehensive framework that leverages the synergistic capabilities of 

Artificial Intelligence (AI) and cloud platforms to address this critical security gap. A 

thorough understanding of the existing body of knowledge is essential to contextualize 

the research, justify its necessity, and provide a theoretical underpinning for the 

methodologies and frameworks developed herein. 

This literature review is organized into three main thematic sections, designed to 

build a logical and compelling argument for the necessity of this research. The first 

section establishes the context by providing a deep and granular examination of the 

evolving cybersecurity threat landscape in healthcare. This section will move beyond a 

general overview to detail the specific vulnerabilities inherent in modern healthcare IT 

infrastructure—from the proliferation of insecure Internet of Medical Things (IoMT) 

devices to the persistence of legacy systems—and will analyze the sophisticated attack 

vectors, such as advanced ransomware and supply chain attacks, that exploit these 

weaknesses. 

The second, and most substantial, section explores the application of Artificial 

Intelligence in threat detection. This section will serve as the core of the literature review, 
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systematically integrating the findings from a targeted quantitative review of peer-

reviewed academic studies. It will begin by explaining the paradigm shift from reactive, 

signature-based detection to proactive, anomaly-based detection. It will then provide a 

detailed theoretical and empirical analysis of the four classes of AI models central to this 

thesis: Autoencoders, Isolation Forest, Long Short-Term Memory (LSTM) models, and 

Transformer models. For each model, the review will explain its underlying mechanics, 

synthesize its documented performance on the CIC-IDS-2017 benchmark dataset, and 

critically analyze its strengths, weaknesses, and ideal use cases in a cybersecurity context. 

 

 
Figure 5 Literature of Cybersecurity 
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The final thematic section analyzes the convergence of AI and cloud platforms, 

arguing that their synergy is not merely beneficial but essential for creating a modern, 

scalable, and effective security apparatus capable of meeting the demands of the 

healthcare sector. This section will discuss how cloud infrastructure provides the 

necessary computational power for AI and how cloud-native security services are 

increasingly embedding AI to deliver advanced capabilities. 

Together, these sections will demonstrate a clear and significant gap in the 

existing literature: while the individual components of AI and cloud security are 

discussed extensively, and their application in general cybersecurity is well-documented, 

there is a discernible lack of comprehensive, integrated frameworks designed specifically 

to meet the practical, operational, and stringent regulatory needs of the healthcare sector. 

This review will establish the scholarly foundation for the methodology detailed in 

Chapter 3, which is designed to directly address this identified gap. 

 

2.2 Inclusion Criteria 

The selection of literature for this review was guided by a systematic and rigorous 

process designed to ensure relevance, quality, and currency, in line with the standards of 

doctoral-level research. The objective was to build a comprehensive understanding of the 

current state of knowledge from both a theoretical and a practical perspective. The search 

encompassed prominent academic databases, including IEEE Xplore, ACM Digital 

Library, Springer, ArXiv, and Google Scholar, as well as high-quality practitioner and 

government sources. 

The primary inclusion criteria for sources were as follows: 

Relevance: Sources were required to directly and substantially address one or 

more of the core topics of this thesis. This included scholarly work on cybersecurity 
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challenges and trends specifically within the healthcare sector; the application of AI and 

machine learning for network intrusion and anomaly detection; the architecture and 

security of cloud computing platforms; and, most importantly, empirical studies that 

evaluated the performance of the specific AI models under investigation (Autoencoders, 

Isolation Forest, LSTMs, and Transformers) on relevant cybersecurity datasets. 

Quality and Rigor: A strong preference was given to peer-reviewed journal 

articles and conference papers from reputable venues to ensure academic rigor, 

methodological soundness, and the validity of the reported findings. In addition to 

academic sources, high-impact industry reports and white papers from respected 

technology analysis firms (e.g., Gartner, Forrester) and major cybersecurity vendors were 

included to provide a practical, real-world perspective on industry trends, challenges, and 

best practices. 

Currency: To ensure the analysis reflects the current state of technology and the 

contemporary threat landscape, the review focused primarily on literature published 

within the last five to seven years. The field of cybersecurity and AI is characterized by 

rapid innovation, and recent sources are essential for a relevant analysis. Foundational, 

ubiquitously cited works, particularly those that introduced key concepts or models, were 

included where necessary to provide essential theoretical context. 

The search process utilized a structured combination of keywords. Broad searches 

were initiated with terms like "healthcare cybersecurity," "AI in cybersecurity," and 

"cloud security." These were progressively narrowed with more specific terms such as 

"IoMT security," "ransomware in healthcare," "AI for anomaly detection," and the names 

of the specific AI models paired with terms like "intrusion detection," "performance," and 

"CIC-IDS-2017." This structured and multi-faceted approach ensures that the literature 
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review is built upon a solid and defensible foundation of credible, relevant, and pertinent 

scholarly and professional work. 

 

2.3 The Evolving Cybersecurity Threat Landscape in Healthcare 

The healthcare sector presents a uniquely challenging cybersecurity environment, 

a "perfect storm" created by a complex interplay of high-value data, life-or-death 

operational imperatives, and a diverse and rapidly expanding technological footprint. 

Unlike other industries where a cybersecurity incident may result in financial loss or 

reputational damage, a successful attack in a healthcare setting can have direct, kinetic 

consequences, endangering patient safety and undermining the very foundation of public 

health. Understanding the specific vulnerabilities and threats inherent in this environment 

is a prerequisite for designing any effective security framework. 

2.3.1 Key Vulnerabilities in Healthcare IT Infrastructure 

The literature identifies several persistent and critical vulnerabilities that make 

healthcare organizations particularly susceptible to cyberattacks. 

First, the proliferation of the Internet of Medical Things (IoMT) has massively 

and often insecurely expanded the potential attack surface. The number of connected 

medical devices, ranging from seemingly simple infusion pumps and patient vital sign 

monitors to highly complex diagnostic imaging equipment like MRI and CT scanners, 

has grown exponentially. Many of these devices were designed with clinical functionality 

and interoperability, not security, as the primary engineering concern. This has led to a 

landscape rife with systemic vulnerabilities, including the use of hardcoded, 

unchangeable passwords, the transmission of sensitive patient data over unencrypted 

communication channels, and the use of outdated, unsupported operating systems in their 

embedded software. A significant additional challenge is the difficulty of applying 
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security patches in a 24/7 clinical environment. Unlike a standard office computer, taking 

a critical life-support device or a multi-million-dollar MRI machine offline for routine 

security maintenance is often not operationally feasible, leaving known vulnerabilities 

unpatched for extended periods. 

Second, many healthcare organizations continue to rely heavily on legacy systems 

for critical administrative and clinical functions. These older systems, which may be 

responsible for everything from patient billing to managing laboratory information, often 

run on unsupported operating systems like Windows XP or Windows 7. This means they 

no longer receive security patches from the vendor for newly discovered vulnerabilities, 

creating persistent and easily exploitable entry points for attackers to gain an initial 

foothold into the network. The cost and complexity of replacing these deeply embedded 

systems, which are often tightly integrated with other critical applications, present a 

significant barrier to modernization, forcing many organizations to accept a level of risk 

that would be considered untenable in other industries. 

Third, the drive for interoperability, while clinically essential, creates further 

security challenges. The need to share patient data seamlessly between different 

systems—such as a hospital's EHR, a third-party laboratory's information system, a 

pharmacy's prescription management platform, and a patient's own mobile health app—

creates a complex and often insecure web of data pathways. Each of these integration 

points represents a potential vulnerability that must be secured, and a failure at any single 

point can compromise the integrity of the entire data chain. 

2.3.2 Analysis of Primary Threat Vectors 

These vulnerabilities are actively and relentlessly exploited by a diverse range of 

threat actors using increasingly sophisticated methods. 
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Ransomware remains one of the most visible and damaging attack vectors 

targeting healthcare. Modern ransomware attacks are often multi-stage operations. 

Attackers will first gain access to a network and spend weeks or months performing 

reconnaissance and exfiltrating large volumes of sensitive data before finally deploying 

the encryption payload. This "double extortion" tactic—where the attackers not only 

demand a ransom to decrypt the systems but also threaten to publicly release the stolen 

patient data if the ransom is not paid—places immense pressure on victim organizations. 

The operational impact is immediate and severe, forcing the cancellation of surgeries, the 

diversion of emergency patients to other facilities, and a chaotic reversion to inefficient 

and error-prone paper-based processes. 

Phishing and social engineering campaigns continue to be a highly effective 

initial access vector. These attacks are often tailored to the healthcare environment, with 

malicious emails disguised as important communications regarding patient information, 

insurance updates, or medical research. They exploit the high-pressure, fast-paced 

clinical environment to trick overworked and time-constrained staff into revealing their 

credentials or inadvertently deploying malware. 

A particularly insidious and growing threat is the supply chain attack. In this 

scenario, attackers compromise a trusted third-party software or service vendor that 

provides services to the healthcare industry. By embedding malicious code into the 

vendor's legitimate software updates, the attackers can gain access to the networks of all 

the vendor's healthcare clients simultaneously. This allows them to bypass the direct 

defenses of the hospitals themselves by exploiting the trusted relationship with the 

vendor. 

Finally, insider threats, both malicious and unintentional, pose a significant and 

often underestimated risk. A malicious insider, such as a disgruntled employee, can abuse 
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their legitimate access to steal vast quantities of patient data for financial gain or personal 

revenge. Perhaps more commonly, an unintentional insider—a well-meaning but careless 

or poorly trained employee who falls for a phishing scam, misconfigures a cloud storage 

bucket, or loses an unencrypted laptop containing PHI—can cause a catastrophic data 

breach. The convergence of these internal and external threats creates a dynamic and 

porous threat landscape where traditional, perimeter-based security is no longer 

sufficient. 

 

2.4 The Application of Artificial Intelligence in Threat Detection 

In response to the limitations of traditional, signature-based security tools, the 

application of Artificial Intelligence has emerged as a transformative and essential 

approach to modern cybersecurity. Rather than relying on a static database of known 

threat signatures, which is akin to trying to identify criminals using only a fixed set of 

outdated "wanted" posters, AI-driven systems learn to identify the patterns of normal 

behavior within a network and flag any deviations as potential anomalies. This paradigm 

shift from a reactive, "list-based" approach to a proactive, "behavior-based" one is 

fundamental to detecting novel and zero-day attacks for which no signatures exist. 

The literature describes two primary machine learning approaches relevant to this 

task. Unsupervised learning models, such as Autoencoders and Isolation Forest, are 

particularly well-suited for this new paradigm. They are trained on datasets containing 

only "normal" traffic and learn to create a highly accurate mathematical profile of what is 

benign. An intuitive analogy is a security guard who has spent weeks memorizing the 

face and walking gait of every authorized employee; anyone who does not match this 

learned internal model of "normal" is immediately flagged for investigation, regardless of 

whether they appear on a "wanted" poster. This approach is powerful for identifying 
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previously unseen threats, as it does not depend on any prior knowledge of attack 

structures. 

Supervised learning, on the other hand, requires labeled datasets containing 

curated examples of both normal and malicious traffic. To extend the analogy, this is like 

giving the security guard a comprehensive photo book of known troublemakers and their 

various disguises. While requiring more intensive and costly data preparation, these 

models can learn to classify specific types of attacks (e.g., distinguishing a DDoS attack 

from a port scan) with high accuracy. However, their effectiveness is inherently limited 

to the types of attacks present in their training data, making them less effective against 

novel or evolving threats. 

More advanced deep learning models, particularly Recurrent Neural Networks 

(RNNs) like LSTM and Transformer models, represent the state-of-the-art for analyzing 

complex network data. These models excel at analyzing sequential data, such as the flow 

of network packets over time. By understanding the temporal context of network 

communications—how events relate to each other over a period—they can detect 

sophisticated, multi-stage attacks that would appear as a series of benign, isolated events 

to less advanced models that treat each packet in isolation. This ability to perform 

complex feature extraction automatically and to learn from and adapt to evolving data 

patterns makes AI a cornerstone of modern, proactive cybersecurity defense. 

 

2.4.1 Performance Analysis of Autoencoder Models 

Autoencoders, a class of unsupervised neural networks, have garnered significant 

attention in network intrusion detection primarily for their proficiency in anomaly 

detection. They operate by learning to compress input data into a lower-dimensional 

latent representation (encoding) and then reconstructing the original data from this 
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representation (decoding). When trained on "normal" or benign network traffic, a well-

performing autoencoder will exhibit low reconstruction error. Conversely, when 

presented with anomalous traffic (i.e., an attack) that deviates from the learned patterns, 

the reconstruction error will be significantly higher, thus flagging the traffic as a potential 

intrusion. This capability makes them theoretically well-suited for identifying novel or 

zero-day attacks that lack predefined signatures. However, as the following analysis 

reveals, their practical performance is not monolithic and is profoundly sensitive to their 

specific architectural configuration. 

 

Table 1 Reported Performance of Autoencoder Models on CIC-IDS-2017 

Study (Author, 

Year) Accuracy Precision Recall F1-Score Model Configuration/Notes 

Alhassan et al. 

(2024) 98.61% 97.00% 

98.88

% 98.15% 1 hidden layer, 60 neurons 

Alhassan et al. 

(2024) 97.95% 95.11% 

93.45

% 94.82% 2 hidden layers, 60 neurons 

Alhassan et al. 

(2024) 97.30% 94.40% 

92.12

% 90.33% 3 hidden layers, 60 neurons 

Alhassan et al. 

(2024) 95.70% 90.00% 

91.00

% 92.11% 4 hidden layers, 60 neurons 

Alhassan et al. 

(2024) 95.11% 94.00% 

98.88

% 98.85% 1 hidden layer, 30 neurons 

Kumar et al. (2025) 94.00% - - - 

Deep Autoencoder (DAE) only, 

prior to ensemble 
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Shone et al. (2018) High - - - Stacked deep autoencoder 

Hindy et al. (2020) 75-98% - 

75-

98% - 

Recall for various attack types; 

not overall accuracy 

 

Synthesis and Analysis of Findings: 

A crucial finding from the literature is that the performance of an autoencoder is 

not a fixed attribute but is instead highly contingent on its internal architecture, 

specifically the number of hidden layers and neurons. A common assumption that 

"deeper" or more complex models inherently perform better is directly challenged by the 

empirical evidence. The work of Alhassan et al. (2024) provides a compelling and 

systematic demonstration of this principle. The results consistently show an inverse 

relationship between model depth and performance in this context. The best-performing 

model was the simplest: a single-hidden-layer autoencoder with 60 neurons achieved a 

remarkable accuracy of 98.61%. In stark contrast, the most complex model, featuring 

four hidden layers, saw its accuracy drop to 95.70%. 

This performance degradation with increasing depth is linked to the model's 

reconstruction error. As more layers are added, the model's complexity increases, which 

can paradoxically make it more difficult to learn a compact and accurate representation of 

the benign traffic profile. For a practical cybersecurity framework, this finding is of 

paramount importance. It suggests that a strategy of "start simple" is empirically 

validated. 

A primary motivation for using unsupervised models like autoencoders is their 

theoretical capacity to detect zero-day attacks. The study by Hindy et al. (2020) explores 
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this specific application, showing a wide range of detection accuracy (recall) from 75% to 

98%, depending on the specific attack type and the chosen detection threshold. This 

highlights a critical trade-off inherent in anomaly detection systems: the balance between 

recall (detecting true threats) and the false-positive rate (incorrectly flagging benign 

traffic). In a healthcare environment, where IT staff are already overburdened, a high 

volume of false positives can lead to "alert fatigue," causing genuine threats to be 

overlooked. 

Beyond their use as standalone detectors, autoencoders also serve as powerful 

components within larger, hybrid systems. A study by Kumar et al. (2025) exemplifies 

this, designing an ensemble that combines a Deep Autoencoder (DAE) with a 

Convolutional Neural Network (CNN). In their experiments on CIC-IDS-2017, the DAE, 

when evaluated on its own, achieved a respectable accuracy of 94%. This dual role—as 

both a standalone anomaly detector and a feature extractor in an ensemble—underscores 

the versatility of autoencoders in a comprehensive cybersecurity toolkit. 

 

2.4.2 Performance Analysis of Isolation Forest 

Isolation Forest is another unsupervised learning algorithm designed for anomaly 

detection, but its operational principle differs significantly from that of autoencoders. 

Instead of profiling normal data, Isolation Forest explicitly isolates anomalies. It is built 

on the premise that anomalies are "few and different," meaning they are easier to separate 

from the rest of the data points. The algorithm builds an ensemble of "isolation trees" and 

calculates the average number of random splits required to isolate a given data point. 

Anomalies, being rare, are expected to have a much shorter average path length to 

isolation than normal points. This makes the algorithm computationally efficient and 

theoretically adept at identifying novel threats. However, the empirical evidence reveals a 
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critical paradox: its strength in isolating rare events is also the source of its most 

significant weakness as a general-purpose intrusion detector. 

 

Table 2 Reported Performance of Isolation Forest on CIC-IDS-2017 

Study (Author, 

Year) Accuracy Precision Recall F1-Score Context/Scenario 

Lopez-Martin et al. 

(2024)  - 99.69% 92.11% >0.95 

Benign Traffic, 1% Attack 

Prevalence 

Lopez-Martin et al. 

(2024)  - 70.46% 93.74% 80.10% 

Benign Traffic, 100% Attack 

Prevalence 

Lopez-Martin et al. 

(2024)  - 2.80% 44.20% 5.30% 

Attack Traffic, 1% Attack 

Prevalence 

Lopez-Martin et al. 

(2024)  - 58.90% 21.10% 31.10% 

Attack Traffic, 100% Attack 

Prevalence 

Vinayakumar et al. 

(2019)  93.14% 94.70% 91.11% 93.91% 

Intra-dataset evaluation 

(trained/tested on 2017) 

Vinayakumar et al. 

(2019)  35.62% 0.7573 0.4479 0.4845 

Cross-dataset evaluation (trained 

on 2017, tested on 2018) 

 

Synthesis and Analysis of Findings: 

The comprehensive analysis by Lopez-Martin et al. (2024) provides a stark 

illustration of the model's "performance paradox." When attacks are rare (e.g., at 1% of 

total traffic), the model performs its intended function well for the majority class, 

achieving a precision of 0.9969 for benign traffic. However, its performance on the attack 
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traffic itself is already poor, with a catastrophic F1-Score of just 0.053. The truly 

revealing finding is what happens as attack prevalence increases. The recall for attack 

traffic plummets from 0.442 at 1% prevalence to a dismal 0.211 when attacks constitute 

100% of the traffic. This means that when the network is under a full-scale assault, the 

model misses nearly 80% of the attacks. The F1-score for attacks never surpasses 0.311, 

a value the authors describe as "operationally useless." 

This counterintuitive behavior is a direct consequence of the model's design. The 

algorithm is built to "isolate" data points that are few and different. When an attack 

becomes widespread (e.g., during a DDoS flood), its traffic is no longer "few." It 

becomes a dominant pattern in the data. The algorithm, performing as designed, no 

longer sees this prevalent attack traffic as an easily-isolated anomaly. For a healthcare 

cybersecurity framework, it should not be positioned as a primary line of defense. 

Instead, its role should be carefully circumscribed to that of a first-stage filter for 

detecting novel, low-volume, or emerging threats. 

Beyond its issues with attack prevalence, Isolation Forest also demonstrates 

significant weaknesses in generalization. The study by Vinayakumar et al. (2019) 

provides a clear quantitative measure of this weakness. In a standard intra-dataset 

evaluation, Isolation Forest achieved a respectable accuracy of 93.14%. However, in a 

more rigorous cross-dataset evaluation, training the model on CIC-IDS-2017 and testing 

it on a different dataset, CSE-CIC-IDS-2018, accuracy plummeted to just 35.62%. This 

dramatic drop indicates that the model had overfit to the specific statistical properties of 

the 2017 dataset and was unable to generalize its learned rules to a new environment. 
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2.4.3 Performance Analysis of LSTM Models 

Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural 

Network (RNN), are exceptionally well-suited for tasks involving sequential data. 

Network traffic, when viewed as a flow of packets over time, is fundamentally a time-

series problem, making LSTMs a natural and powerful choice for intrusion detection. 

Unlike standard feedforward networks, LSTMs possess internal memory cells and gating 

mechanisms that allow them to learn and remember patterns over long sequences. This 

ability to capture temporal dependencies is critical for detecting sophisticated, multi-stage 

attacks that unfold over time. The literature consistently reflects this theoretical strength, 

with LSTM-based models demonstrating state-of-the-art performance on the CIC-IDS-

2017 dataset. 

 

Table 3 Reported Performance of LSTM Models on CIC-IDS-2017 

Study (Author, 

Year) 

Accurac

y 

Precisio

n Recall F1-Score Model Type/Notes 

Sayegh et al. 

(2024)  99.34% 

96.99% 

(Attack) 

99.74% 

(Attack) 

98.35% 

(Attack) 

LSTM with SMOTE for data 

balancing 

Anonymous (2022)  99.77% - - - 

LSTM for multi-class 

classification 

Bibi (2023)  99.20% 99.00% 99.00% 99.00% 

Hypertuned LSTM for binary 

classification 

Anonymous (2025)  99.50% - - - RNN-leveraging LSTM 

Anonymous (2024)  98.00% - - - Standalone LSTM performance 
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(compared to RF) 

Anonymous (2023)  99.00% - - - 

LSTM on CICIDS2017 

(compared to other datasets) 

 

Synthesis and Analysis of Findings: 

The empirical results from multiple independent studies converge on a clear 

conclusion: LSTM models achieve consistently high, state-of-the-art performance on the 

CIC-IDS-2017 dataset. A study by Sayegh et al. (2024) reports an overall accuracy of 

99.34% for their LSTM-based IDS. Critically, their model achieved an exceptional recall 

of 99.74% and an F1-Score of 98.35% for the "attack" class, indicating a powerful ability 

to correctly identify malicious traffic with very few false negatives. Other studies 

corroborate these top-tier results. Bibi (2023) developed a hypertuned LSTM that reached 

99.2% accuracy with a 99% F1-Score for binary classification. 

While standalone LSTMs are powerful, the literature reveals a strong trend 

toward even greater performance through hybridization and optimization. A particularly 

common and successful pairing is the CNN-LSTM model. In this architecture, a 

Convolutional Neural Network (CNN) is first used to act as a feature extractor. The rich 

feature maps generated by the CNN are then flattened and fed into an LSTM, which 

models the temporal relationships between these extracted features over time. This 

synergistic approach combines the spatial feature extraction strength of CNNs with the 

sequential modeling strength of LSTMs. 

A deeper analysis of the methodologies used in the highest-performing LSTM 

studies reveals a crucial, unifying factor: the use of data balancing techniques. The CIC-
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IDS-2017 dataset, like most network traffic logs, is inherently and highly imbalanced. If a 

model is trained on such a raw, imbalanced dataset, it will naturally become biased 

towards the majority class (benign traffic). The top-performing studies explicitly address 

this challenge by using techniques like SMOTE (Synthetic Minority Over-sampling 

Technique). SMOTE works by creating new, synthetic examples of the minority (attack) 

classes, effectively balancing the dataset before it is fed to the LSTM. This finding has a 

profound implication for the design of the proposed DBA framework. It is not sufficient 

to simply select a powerful model like an LSTM. The framework's methodology must 

incorporate a data balancing stage as a mandatory, non-negotiable step in the data 

preprocessing pipeline. 

 

2.4.4 Performance Analysis of Transformer Models 

Transformer models, first introduced for natural language processing, have 

rapidly emerged as a revolutionary force across numerous machine learning domains, 

including cybersecurity. Their core innovation is the self-attention mechanism, which 

allows the model to weigh the importance of different parts of the input sequence when 

processing a specific part, regardless of their distance from each other. This enables 

Transformers to capture complex, long-range dependencies and global contextual 

relationships within data in a way that is often more effective and computationally 

parallelizable than the sequential processing of RNNs and LSTMs. When applied to 

network intrusion detection, Transformers treat network traffic flows as "sentences" and 

learn the intricate "grammar" of both benign and malicious communications, leading to 

state-of-the-art performance. 
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Table 4 Reported Performance of Transformer Models on CIC-IDS-2017 

Study (Author, 

Year) 

Accurac

y 

Precisio

n Recall F1-Score Model Type/Context 

Kamal et al. (2025)  99.72% 99.72% 99.72% 99.71% 

PCA-Transformer (Binary 

Classification) 

Kamal et al. (2025)  99.45% 99.69% 99.45% 99.40% 

PCA-Transformer (Multi-Class 

Classification) 

Anonymous (2025)  99.80% - - - 

CNN-BiLSTM-Transformer 

Hybrid 

Mia al. (2025)  - 91.00% 88.00% 89.00% 

BERT-IDS (Transformer-based) 

for Zero-Day 

Anonymous (2023)  97.00% - - - 

TabNet (Attentive Mechanism 

similar to Transformers) 

 

Synthesis and Analysis of Findings: 

The empirical evidence strongly positions Transformer-based models at the apex 

of performance for intrusion detection on the CIC-IDS-2017 dataset. A standout example 

is the PCA-Transformer model developed by Kamal et al. (2025). This hybrid model 

achieved a near-perfect accuracy of 99.72% with an F1-Score of 99.71% in binary 

classification. Perhaps more impressively, it maintained an accuracy of 99.45% and an 

F1-Score of 99.40% in the much more difficult multi-class classification task. 

The fundamental reason for this superior performance lies in the self-attention 

mechanism. While LSTMs are excellent at capturing sequential dependencies, they 

process information in a linear, step-by-step fashion. Transformers, in contrast, can create 
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direct connections between any two points in the sequence, regardless of their position. 

This allows the model to learn the global context of the entire network flow 

simultaneously. 

As with LSTMs, the power of Transformers is often magnified when they are 

integrated into sophisticated hybrid architectures. One such model reported in the 

literature is a CNN-BiLSTM-Transformer hybrid, which achieved a remarkable 99.80% 

accuracy on CIC-IDS-2017. This architecture represents a comprehensive approach: the 

CNN extracts local spatial features, a Bidirectional LSTM (BiLSTM) processes the 

sequence of these features in both forward and backward directions to capture temporal 

context, and the Transformer layer sits on top to model the global, long-range 

dependencies across the entire sequence. 

Modern cybersecurity datasets like CIC-IDS-2017 are characterized by high 

dimensionality. Transformer models are not only adept at handling this complexity but 

are also being paired with other advanced techniques to further enhance their capabilities. 

The PCA-Transformer model from Kamal et al. (2025) is a prime example. Before the 

data is fed to the Transformer, Principal Component Analysis (PCA) is used for 

intelligent dimensionality reduction. PCA identifies the principal components that capture 

the most variance in the data, effectively reducing noise and computational overhead 

while retaining the most informative signals. 

 

Table 5 Mapping Table  

Study Dataset Split Metric 

Alhassan et al. 

(2024) 

CIC-IDS-

2017 
Not specified 

Accuracy: 98.61%, Precision: 

97.00%, Recall: 98.88%, F1-

Score: 98.15% 

Kumar et al. 

(2025) 

CIC-IDS-

2017 
Not specified Accuracy: 94% 
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Study Dataset Split Metric 

Shone et al. 

(2018) 

CIC-IDS-

2017 
Not specified High (exact metric unspecified) 

Hindy et al. 

(2020) 

CIC-IDS-

2017 
Not specified 

Recall: 75%–98% (specific 

attack types, not overall 

accuracy) 

Lopez-Martin et 

al. (2024) 

CIC-IDS-

2017 
1% Attack Prevalence 

Precision: 99.69%, Recall: 

92.11%, F1-Score: >0.95 

(Benign Traffic) 

Lopez-Martin et 

al. (2024) 

CIC-IDS-

2017 
100% Attack Prevalence 

Precision: 70.46%, Recall: 

93.74%, F1-Score: 80.10% 

(Benign Traffic) 

Lopez-Martin et 

al. (2024) 

CIC-IDS-

2017 
1% Attack Prevalence 

Recall: 44.20%, F1-Score: 

5.30% (Attack Traffic) 

Lopez-Martin et 

al. (2024) 

CIC-IDS-

2017 
100% Attack Prevalence 

Recall: 21.10%, F1-Score: 

31.10% (Attack Traffic) 

Vinayakumar et 

al. (2019) 

CIC-IDS-

2017 

Intra-dataset evaluation 

(2017) 

Accuracy: 93.14%, Precision: 

94.70%, Recall: 91.11%, F1-

Score: 93.91% 

Vinayakumar et 

al. (2019) 

CIC-IDS-

2018 

Cross-dataset evaluation 

(2017→2018) 

Accuracy: 35.62%, Precision: 

0.7573, Recall: 0.4479, F1-

Score: 0.4845 

Sayegh et al. 

(2024) 

CIC-IDS-

2017 

SMOTE for data 

balancing 

Accuracy: 99.34%, Recall: 

99.74%, F1-Score: 98.35% 

(Attack Class) 

Bibi (2023) 
CIC-IDS-

2017 
Not specified 

Accuracy: 99.20%, F1-Score: 

99.00% 

Anonymous 

(2025) 

CIC-IDS-

2017 
Not specified 

Accuracy: 99.50% (RNN-

leveraging LSTM) 

Anonymous 

(2024) 

CIC-IDS-

2017 
Not specified 

Accuracy: 98.00% (Standalone 

LSTM compared to Random 

Forest) 

Anonymous 

(2023) 

CIC-IDS-

2017 
Not specified 

Accuracy: 99.00% (LSTM on 

CICIDS2017, compared to 
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Study Dataset Split Metric 

other datasets) 

Kamal et al. 

(2025) 

CIC-IDS-

2017 

PCA-Transformer (Binary 

classification) 

Accuracy: 99.72%, F1-Score: 

99.71% 

Kamal et al. 

(2025) 

CIC-IDS-

2017 

PCA-Transformer (Multi-

class classification) 

Accuracy: 99.45%, F1-Score: 

99.40% 

Anonymous 

(2025) 

CIC-IDS-

2017 

CNN-BiLSTM-

Transformer Hybrid 
Accuracy: 99.80% 

Mia et al. (2025) 
CIC-IDS-

2017 

BERT-IDS (Transformer-

based for Zero-Day) 

Precision: 91.00%, Recall: 

88.00%, F1-Score: 89.00% 

Anonymous 

(2023) 

CIC-IDS-

2017 

TabNet (similar to 

Transformer’s attentive 

mechanism) 

Accuracy: 97.00% 

 

 

2.5 The Convergence of AI and Cloud Platforms for Security 

While AI provides the analytical "brain" for modern cybersecurity, cloud 

platforms provide the necessary "body" and "nervous system" to make it effective at 

scale. The sheer volume, velocity, and variety of data generated by a modern healthcare 

network—from IoMT devices, EHRs, mobile apps, and general network traffic—requires 

a level of computational power and storage that is often impractical and cost-prohibitive 

to maintain on-premises. Cloud platforms offer the elastic, scalable infrastructure needed 

to support the intensive data processing and model training requirements of AI-driven 

security solutions. An organization can scale up resources for intensive model training 

and then scale them down for routine monitoring, a flexibility that is difficult to achieve 

with the fixed capital expenditure of on-premises hardware. 

The synergy between AI and the cloud extends beyond raw computing power. 

Cloud-native security services, such as advanced Security Information and Event 
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Management (SIEM) systems and Extended Detection and Response (XDR) platforms, 

are increasingly integrating AI capabilities directly into their offerings. This provides 

organizations with access to sophisticated threat intelligence feeds, automated 

compliance monitoring, and AI-powered analytics "as a service," without requiring 

extensive in-house data science expertise. Furthermore, the centralized nature of a cloud 

environment allows for a unified view of security across the entire organization. This 

"single pane of glass" is invaluable for a Security Operations Center (SOC) team, as it 

allows them to correlate events from disparate sources—for example, linking a suspicious 

login from a remote device to an unusual database query in the cloud—to identify a 

complex attack chain. This makes it easier to enforce consistent security policies, monitor 

for threats in real-time across all assets, and orchestrate an automated response to 

detected incidents. 

This convergence creates a powerful, positive feedback loop. The cloud gathers 

and centralizes vast amounts of security data from diverse sources. This rich, aggregated 

data is then used to train more accurate and effective AI models. These improved AI 

models, in turn, provide more precise and timely threat detection, which enhances the 

overall security posture of the cloud environment, allowing for even more secure data 

collection and analysis. This integrated approach is fundamental to building a security 

framework that is not only powerful but also agile and capable of adapting to the 

dynamic threat landscape facing the healthcare sector. 
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2.6 Regulatory, Risk, and Governance Synthesis for AI-Driven Cybersecurity in 

Healthcare  

 

2.6.1 Regulatory Convergence and Tensions 

Healthcare cybersecurity is governed by a patchwork of privacy, safety, and 

operational standards. HIPAA/HITECH emphasize confidentiality, integrity, and 

availability (CIA) of PHI; GDPR centers lawfulness, fairness, transparency, and data 

minimization; PIPEDA and provincial regimes in Canada stress reasonableness and 

accountability. For cloud-and-AI security, three tensions recur: 

Purpose limitation vs. anomaly detection: Anomaly detection thrives on broad 

telemetry retention; privacy regimes push strict scoping and retention limits. 

Explainability vs. model performance: Security models that maximize recall (e.g., 

sequence models) are often least interpretable, complicating accountability and incident 

justification to regulators. 

Cross-border processing: Multi-region clouds enable resilient security analytics, 

but data residency, Schrems-style transfer constraints, and vendor sub-processors 

complicate lawful bases. 

 

2.6.2 Security Governance Models for AI 

Modern governance blends NIST CSF 2.0 controls (Identify-Protect-Detect-

Respond-Recover) with AI governance layers (model risk management, bias testing, drift 

monitoring). In healthcare, “safety-of-care” reframes cyber events as clinical risk. Boards 

increasingly adopt risk appetite statements that quantify tolerances for mean time to 

detect (MTTD), false negative risk, and residual ransomware exposure, not just breach 

counts. A practical pattern is the Security Model Risk Committee (SMRC)—a cross-
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functional body (CISO, CDO, Privacy Officer, CMIO, Legal) that approves model uses, 

data sources, and post-incident learning. 

 

2.6.3 Trustworthy AI for Security 

Trust in AI-security depends on provenance (tamper-evident pipelines), 

explainability (human reviewable rationales), calibration (thresholds mapped to operating 

risk), robustness (adversarial resistance), and governance artifacts (model cards, data 

sheets, approval logs). Clinically aligned organizations increasingly require “clinical-

grade” security analytics: validated alert definitions, periodic re-validation, change 

controls, and back-out plans—mirroring medication safety governance. 

 

2.6.4 Economic Frictions and Externalities 

Security ROI is notoriously invisible (“breaches that didn’t happen”). Cloud + AI 

clarifies value when tied to: 

Downtime avoided (diverted surgeries, ED diversions). 

Incident labor saved (L1 triage automation). 

Cyber-insurance premiums reduced (control attestation). 

Regulatory penalties avoided (demonstrable due diligence). 

A recurring externality: model false negatives raise systemic risk for regional referral 

networks (shared labs, HIEs). Hence, sector alliances (e.g., ISACs) and federated threat 

telemetry are becoming governance necessities, not nice-to-haves. 

 

2.7 Open Debates 

While the integration of Artificial Intelligence (AI) in healthcare cybersecurity 

shows promise, there are several ongoing debates and challenges within the field that 
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merit discussion. These challenges primarily revolve around dataset bias, cross-dataset 

issues, and the Isolation Forest paradox. Understanding these issues is crucial for 

improving the reliability and applicability of AI-driven cybersecurity solutions in 

healthcare. 

Dataset Bias 

A recurring issue in the AI and machine learning domain is dataset bias. The 

datasets used to train and evaluate models often contain inherent biases that can impact 

model performance. This is particularly concerning in cybersecurity, where the types of 

attacks seen in training data may not accurately reflect the diversity of real-world threats. 

For example, many cybersecurity datasets (including CIC-IDS-2017) may over-represent 

certain types of attacks while under-representing others, leading to models that perform 

well on familiar attack types but poorly on less common or emerging threats (He et al., 

2021). 

In the healthcare domain, where new attack methods constantly emerge, training 

AI models on biased datasets can lead to a failure to generalize effectively. Furthermore, 

healthcare data is inherently imbalanced, with benign traffic overwhelmingly 

outweighing malicious traffic. This imbalance exacerbates the risk of false positives and 

alert fatigue, which can undermine the effectiveness of AI models in real-time 

operational environments (Portela et al., 2023). The Health Insurance Portability and 

Accountability Act (HIPAA) mandates that healthcare organizations ensure the 

confidentiality and integrity of protected health information (PHI) and implement 

security measures to prevent unauthorized access (U.S. Department of Health and Human 

Services [HHS], 2020). Failure to address dataset biases in AI models can lead to 

breaches of patient privacy and increased vulnerability to cyber threats, which could 

directly conflict with HIPAA's security requirements under Section 164.306. 
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Cross-Dataset Issues 

Another significant challenge in evaluating AI models is the cross-dataset issue. 

Many studies in cybersecurity train and test their models on a specific dataset, such as 

CIC-IDS-2017, but do not assess how well the models generalize to other datasets. The 

performance of a model can vary significantly when trained on one dataset and tested on 

another, as the statistical properties of network traffic, attack patterns, and even feature 

distributions can differ across datasets (Lee & Park, 2022). 

This issue of dataset overfitting is particularly critical in cybersecurity, where 

attackers constantly evolve their methods. For example, Vinayakumar et al. (2019) 

reported that the Isolation Forest model, when trained on the CIC-IDS-2017 dataset, 

showed much lower performance when tested on a different dataset (CSE-CIC-IDS-

2018). This raises concerns about the robustness of AI models in real-world scenarios, 

where data environments are dynamic and ever-changing. General Data Protection 

Regulation (GDPR) emphasizes that organizations must ensure the accuracy and 

timeliness of personal data and maintain data integrity under Article 5(1)(d). If AI models 

are evaluated and deployed based solely on a single dataset, and they fail to generalize to 

others, they may inadvertently result in inaccurate security assessments, which could 

violate GDPR's principles of data accuracy and security. 

 

Isolation Forest Paradox 

A particularly intriguing issue is the paradox of the Isolation Forest model, as 

observed in the studies reviewed. While the Isolation Forest is a popular unsupervised 

learning algorithm for anomaly detection, its design inherently limits its effectiveness in 

certain scenarios. The model is optimized to detect rare anomalies by isolating data points 

that differ significantly from the norm. However, when attacks are widespread, such as in 
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DDoS or ransomware attacks, these attacks no longer appear as "rare" anomalies. Instead, 

they become prevalent patterns, and the Isolation Forest model fails to recognize them 

effectively (Lopez-Martin et al., 2024). 

The study by Lopez-Martin et al. (2024) clearly illustrates this performance 

paradox. When the attack prevalence was low (e.g., 1% of the total traffic), the model 

performed well in detecting benign traffic with high precision. However, when attacks 

became the majority of the traffic (100%), the model’s recall for attack traffic dropped 

dramatically, resulting in missed detections of the majority of attacks. This paradox 

highlights the limitations of relying solely on the Isolation Forest in real-world 

cybersecurity environments, where the nature and scale of attacks vary. He et al. (2021) 

suggest that combining multiple models could address this issue by utilizing the strengths 

of different algorithms to detect both rare and widespread attacks. 

 

2.8 Integrating Ethical AI in Healthcare Cybersecurity 

The integration of ethical AI frameworks into healthcare cybersecurity systems is 

becoming a pressing need as healthcare institutions increasingly adopt AI and cloud 

technologies to manage cybersecurity. The complexities surrounding these technologies 

require careful consideration of ethical principles to ensure patient privacy, fairness, and 

accountability while also improving threat detection and response capabilities. 

Patient Privacy 

Ensuring patient privacy is central to the ethical use of AI in healthcare 

cybersecurity. AI technologies, while enhancing the detection of cyber threats, often 

require access to vast amounts of sensitive health data. According to recent studies, 

including one from the International Journal of Innovative Research in Computer and 

Communication Engineering (2024), the integration of AI in healthcare cybersecurity 
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brings to light significant concerns over data privacy, informed consent, and algorithmic 

bias (Talati, 2024). To address these issues, AI systems should be designed with 

mechanisms such as federated learning or differential privacy, which allow for secure 

data processing without compromising patient privacy. Furthermore, transparent consent 

frameworks must be established to ensure that patients understand how their data is used 

and are able to exercise control over it. 

Fairness in AI Models 

AI systems can inadvertently perpetuate or even exacerbate existing biases, which 

could result in unfair treatment or inadequate cybersecurity responses for certain patient 

groups. Research on this topic, such as the study by Krunal Manilal Gala (2024) in the 

International Journal of Scientific Research in Computer Science, Engineering and 

Information Technology, stresses the importance of addressing biases in AI models used 

for threat detection in healthcare (Gala, 2024). Ethical frameworks must include 

procedures for regular audits and bias mitigation strategies to ensure that AI systems 

remain equitable. These audits would evaluate AI decision-making processes to prevent 

discriminatory practices and improve the fairness of healthcare cybersecurity measures. 

Accountability and Transparency 

The integration of AI into cybersecurity systems raises critical issues related to 

accountability and transparency. Studies, including one from Sidra Nasir et al. (2023), 

highlight the need for AI frameworks that not only promote transparency but also ensure 

that decisions made by AI systems are explainable and traceable (Nasir et al., 2023). As 

AI systems detect and respond to cybersecurity threats, it is essential to establish clear 

accountability frameworks that define responsibility when failures occur. Moreover, 

stakeholders in healthcare cybersecurity must have access to the necessary tools for 
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auditing and understanding AI-driven decisions, which can be accomplished through 

clear documentation and transparent algorithms. 

Ethical Integration Strategies 

To effectively integrate ethical AI frameworks into healthcare cybersecurity 

systems, it is crucial to adopt a collaborative approach involving AI developers, 

cybersecurity professionals, and healthcare providers. As emphasized by Babajide 

Tolulope Familoni (2024), the development of ethical AI systems in healthcare should 

involve continuous monitoring, governance, and proactive risk assessments to ensure that 

ethical principles are followed throughout the lifecycle of AI technologies (Familoni, 

2024). Additionally, ensuring that these systems are designed with human oversight in 

mind is a key element of an ethical AI framework. Human intervention is necessary to 

prevent AI systems from making irreversible decisions, especially when it comes to 

sensitive health data. 

 

2.9 Summary 

This review of the literature has established a clear and compelling case for the 

necessity of this research. It began by outlining the severe and escalating cybersecurity 

threats facing the healthcare sector, which are driven by a unique combination of valuable 

data, critical infrastructure, and an expanding attack surface. It then demonstrated that 

traditional security measures, which are largely reactive and signature-based, are 

insufficient to meet this challenge. 

The review subsequently explored the potential of Artificial Intelligence, 

particularly deep learning models like LSTMs and Transformers, to provide a more 

proactive and intelligent approach to threat detection by learning from data. Finally, it 

argued that the convergence of AI with the scalable and centralized nature of cloud 
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platforms creates the necessary technological foundation for a modern cybersecurity 

framework. 

A clear gap has been identified: while the individual components of AI and cloud 

security are discussed extensively in the literature, there is a lack of comprehensive, 

integrated frameworks designed specifically to meet the practical, operational, and 

regulatory needs of the healthcare sector. This study aims to fill that gap. The following 

chapter, Chapter 3, will detail the mixed-methods research methodology designed to 

build and validate such a framework, combining quantitative model evaluation with 

qualitative expert insights. 
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CHAPTER III:  

METHODOLOGY 

 

3.1 Introduction 

This chapter provides a detailed and comprehensive account of the research 

methodology employed to address the research questions outlined in Chapter 1. The 

primary purpose of this research is to develop and validate a practical, evidence-based 

framework for leveraging Artificial Intelligence (AI) and cloud platforms to enhance 

cybersecurity within the complex healthcare sector. To achieve this, a mixed-methods 

approach was adopted, integrating a rigorous quantitative experimental phase with a 

qualitative survey-based phase to gather expert insights. A sound and transparent 

methodology is the cornerstone of credible research, ensuring that the findings are not 

only valid and reliable but also that the process is 

reproducible by other scholars in the field. 

This chapter is structured to provide a transparent 

and reproducible description of the research process, 

ensuring the validity and reliability of the findings 

presented in subsequent chapters. It begins by outlining 

and justifying the selection of an explanatory sequential 

mixed-methods research design, which is particularly well-

suited to the applied nature of a Doctor of Business 

Administration (DBA) dissertation that seeks to bridge the 

gap between technical performance and practical 

implementation. 
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Following the research design, the chapter is divided into two main sections 

corresponding to the two phases of the study. The first section provides a meticulous 

account of the quantitative methodology. This includes a detailed description of the 

benchmark dataset used for the experiments, its characteristics, and the rationale for its 

selection. It is followed by a step-by-step walkthrough of the data preprocessing pipeline, 

a thorough explanation of the architecture and implementation of the four distinct AI 

models evaluated, and a clear definition of the data analysis techniques and performance 

metrics used to gauge their effectiveness. 

The second section details the qualitative methodology. This part describes the 

target population and sampling strategy for the expert survey, provides a detailed 

breakdown of the survey instrument designed to collect data on practical implementation 

challenges, and outlines the plan for analyzing the qualitative data using thematic 

analysis. 

The chapter concludes with a discussion of the limitations inherent in the chosen 

methodology, a statement on the ethical considerations related to both the quantitative 

and qualitative phases of the research, and a summary that provides a bridge to the 

presentation of the results in Chapter 4. 

 

3.2 Research Design 

The study employs an explanatory sequential mixed-methods design. This 

approach was deliberately chosen as it is particularly well-suited for a DBA dissertation, 

which aims to bridge the gap between rigorous technical research and practical, real-

world business application. This design involves a two-phase process where the 

quantitative data is collected and analyzed first, and the subsequent qualitative phase is 
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designed to explain, interpret, and elaborate on the initial quantitative findings. This is 

superior to a purely quantitative approach, which might identify what model performs 

best but fails to explain why it might be accepted or rejected in a real-world 

organizational context. It is also superior to a purely qualitative approach, which might 

capture expert opinions but would lack the empirical, data-driven foundation to validate 

the technical premises of those opinions. 

Phase 1: Quantitative Experimental Study 

The first phase of the research consists of a quantitative, experimental study 

designed to empirically evaluate the performance of four distinct AI models for network 

anomaly detection. This phase directly addresses the second research question concerning 

the effectiveness of these models. By using a controlled environment and a standardized 

benchmark dataset, this phase generates objective, empirical data on the technical 

capabilities, strengths, and weaknesses of each model. The goal of this phase is to 

establish a clear, data-driven understanding of which AI architectures are most promising 

from a purely technical standpoint. The output of this phase is a set of performance 

metrics and comparative analyses that reveal the trade-offs between different models in 

terms of accuracy, efficiency, and detection capabilities. 

Phase 2: Qualitative Survey of Experts 

The second phase involves a qualitative survey of senior-level cybersecurity 

leaders and IT professionals. The findings from the first (quantitative) phase inform the 

context and interpretation of this second phase. For example, knowing the technical 

trade-offs between a high-precision model (few false alarms, but might miss some 

attacks) and a high-recall model (catches most attacks, but more false alarms) allows for 

a more nuanced analysis of expert opinions on the operational tolerance for false 

positives versus false negatives. The qualitative data is used to explain, interpret, and 
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contextualize the quantitative results, particularly concerning the practical challenges 

(e.g., budget constraints, skills gaps), strategic considerations (e.g., risk tolerance), and 

human factors (e.g., resistance to change) involved in implementing such technologies in 

a real-world healthcare setting. This phase directly addresses the third and fourth research 

questions, focusing on implementation challenges and best practices. 

This explanatory sequential design ensures that the final proposed framework, 

which is the ultimate output of this research, is not only technically sound and based on 

empirical performance data but is also managerially relevant, contextually aware, and 

practically implementable within the unique operational, financial, and regulatory 

constraints of the healthcare industry. 

 

3.3 Quantitative Methodology 

The quantitative phase of this research is centered on a series of controlled 

experiments designed to evaluate and compare the performance of four different AI-

based anomaly detection models. This section provides a detailed account of every aspect 

of this experimental process, from the selection of the dataset to the specific 

implementation details of the models. 

 

3.3.1 Population and Sample: The UNSW-NB15 Dataset 

The dataset selected for the quantitative experiment is the UNSW-NB15 dataset, a 

widely recognized and comprehensive benchmark for evaluating Network Intrusion 

Detection Systems (NIDS). This dataset was created by the Australian Centre for Cyber 

Security (ACCS) using the IXIA PerfectStorm tool to generate a hybrid of real-world 

normal network traffic and synthetically generated contemporary attack behaviors, 

making it an ideal sample for this phase of the research. 
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Rationale for Selection: The UNSW-NB15 dataset was chosen over other 

potential datasets (such as the older KDD-99 or the more recent CIC-IDS-2017) for 

several key reasons. It represents a significant improvement over older datasets like 

KDD-99, which are now considered outdated as they do not contain modern attack 

vectors. While CIC-IDS-2017 is another strong candidate, UNSW-NB15 was selected for 

its specific mix of attack types and its well-documented feature set, which provided an 

excellent basis for this comparative study. Its large size and high dimensionality provide 

a challenging and robust test for the AI models, ensuring that the findings are based on a 

non-trivial problem. The use of a well-documented, public benchmark dataset also 

ensures the transparency and reproducibility of the experimental findings, a cornerstone 

of rigorous academic research. 

 

Dataset Characteristics: 

Number of Records: The dataset comprises approximately 2.5 million records in 

total, distributed across a designated training set and a testing set. This large volume of 

data is sufficient for training complex deep learning models and for performing a 

statistically significant evaluation. 

Features: The dataset includes 49 original features for each network traffic record. 

These features can be grouped into several categories: 

Flow Features: Basic attributes of the connection, such as source and destination 

IP addresses, ports, and protocol. 

Basic Features: Packet-level details, such as the number of packets, bytes, and the 

duration of the flow. 

Content Features: Information related to the content of the packets, such as TCP 

sequence numbers. 
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Time-based Features: Features calculated over a window of time, such as the rate 

of connections to the same host. 

During preprocessing, categorical features were expanded, resulting in a final feature set 

of 192 numerical features. This high dimensionality reflects the complexity of modern 

network data and provides a rich basis for the AI models to learn from. 

Attack Types: A key strength of the UNSW-NB15 dataset is its inclusion of a 

diverse mix of nine modern attack scenarios: 

Fuzzers: An attack technique that involves providing invalid, unexpected, or 

random data as inputs to a computer program. 

Analysis: Probing techniques, such as port scanning, to gather information about a 

network. 

Backdoors: A covert method of bypassing normal authentication to secure remote 

access to a computer. 

Denial-of-Service (DoS): An attack meant to shut down a machine or network, 

making it inaccessible to its intended users. 

Exploits: Attacks that take advantage of a bug or vulnerability in software. 

Generic: A block-based attack that operates on the principle of a birthday attack. 

Reconnaissance: An unauthorized attempt to gain information about a computer 

network. 

Shellcode: A small piece of code used as the payload in the exploitation of a 

software vulnerability. 

Worms: A standalone malware computer program that replicates itself to spread 

to other computers. 
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Although not specific to a healthcare environment, the diversity and realism of 

these attack vectors serve as a robust proxy for the types of threats a complex network, 

such as that in a modern hospital, might face. 

 

3.3.2 Data Collection and Procedures: The AI Pipeline 

The UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv files were 

acquired from the official repository. A structured AI pipeline was implemented in 

Python (v3.11) and executed in a Google Colab Pro environment. The choice of a 

professional-tier cloud-based environment was a deliberate methodological decision to 

handle the large-scale data (over 2.5 million records) and the computationally intensive 

training of deep learning models, thereby mitigating the risk of runtime memory crashes 

that are common in standard local environments. 

The following preprocessing steps were systematically applied to prepare the data 

for the AI models: 

Combination and Cleaning: The training and testing files were first combined into 

a single, unified dataframe. This was done to ensure that all data transformations, such as 

feature scaling, were applied consistently across the entire dataset. This prevents data 

leakage, a common methodological error where information from the test set 

inadvertently influences the training process (e.g., by using the test set's mean and 

standard deviation to scale the training set). Redundant or non-informative columns, such 

as the record id, and the original label and attack_cat columns (which would be used for 

evaluation but not for the unsupervised training), were removed to reduce noise and 

simplify the dataset. 

Encoding of Categorical Features: The dataset contained several categorical 

features (e.g., 'proto' for protocol, 'service', and 'state') that needed to be converted into a 
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numerical format for the machine learning models. This was achieved using one-hot 

encoding. This technique creates a new binary (0 or 1) column for each unique category 

within a feature. This is a necessary step as machine learning algorithms can only process 

numerical data, and it prevents the model from incorrectly assuming an ordinal 

relationship between categories (e.g., that 'http' is "less than" 'ftp'). This process expanded 

the feature set from 49 to 192. 

Normalization of Numerical Features: All numerical features were scaled using 

the StandardScaler from the Scikit-learn library. This is a critical step for optimizing the 

performance of neural network models. It standardizes features by removing the mean 

and scaling to unit variance, ensuring that all features have a mean of 0 and a standard 

deviation of 1. This prevents features with large scales (e.g., packet counts) from 

disproportionately influencing the model's learning process and helps the optimization 

algorithms (like Adam) to converge more quickly and reliably. Without normalization, 

the gradients calculated during training could become very large for some features and 

very small for others, leading to an unstable and inefficient learning process. 

Sequencing for Temporal Models: For the LSTM and Transformer models, which 

are specifically designed to analyze time-series data, the flat, two-dimensional data 

(samples x features) was transformed into three-dimensional sequences (samples x time 

steps x features). A sequence length of 10 time steps was chosen as a balance between 

capturing sufficient temporal context and maintaining computational feasibility. Longer 

sequences could capture more complex patterns but would also significantly increase the 

memory and processing requirements for training. This transformation allows the models 

to learn from the temporal patterns and context in the data, rather than treating each event 

in complete isolation, which is essential for detecting multi-stage or low-and-slow 

attacks. 
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3.3.3 Model Implementation and Architecture 

Four distinct AI-based anomaly detection models were implemented to provide a 

comparative analysis across different architectural philosophies, from simple tree-based 

models to complex attention-based neural networks. 

Isolation Forest: This model was implemented using the Scikit-learn library as a 

computationally efficient, tree-based baseline. It operates by building an ensemble of 

decision trees. For each tree, data points are randomly partitioned until each point is 

isolated. The logic is that anomalies, being "few and different," will require fewer 

partitions to be isolated and will therefore have a shorter average path length in the trees. 

This model was chosen as a benchmark due to its speed and simplicity. 

Autoencoder: This was a fully connected deep neural network built with 

TensorFlow/Keras. The architecture was designed to be a standard, non-sequential 

anomaly detector: 

Encoder: Consisted of two dense (fully connected) layers. The first layer had 128 

neurons, and the second had 64 neurons, both using the ReLU (Rectified Linear Unit) 

activation function. This part of the network learns to compress the 192 input features 

into a compact 64-dimensional representation. 

Decoder: Mirrored the encoder, with two dense layers of 128 and 192 neurons, 

respectively. This part of the network learns to reconstruct the original 192 features from 

the compressed representation. 

Training: The model was trained using the Adam optimizer and the Mean Squared 

Error (MSE) loss function for 10 epochs. 

LSTM Autoencoder: This sequence-aware model was built with 

TensorFlow/Keras to specifically capture temporal dependencies. 
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Encoder: Featured two LSTM layers. The first had 64 units, and the second had 

32 units. The return_sequences=True parameter was used on the first layer to pass the full 

sequence to the next layer. 

Decoder: Used a RepeatVector layer to replicate the final encoded state for each 

time step of the output sequence, followed by two LSTM layers (32 and 64 units) and a 

final TimeDistributed(Dense) layer to reconstruct the features for each time step. 

Training: The model was trained using the Adam optimizer and the Mean 

Absolute Error (MAE) loss function for 10 epochs. 

Transformer Autoencoder: This attention-based model was built with 

TensorFlow/Keras to capture long-range, global dependencies. 

Encoder: Consisted of two encoder blocks. Each block contained a 

MultiHeadAttention layer followed by a LayerNormalization layer and a feed-forward 

network composed of 1D convolutional layers. 

Decoder: Mirrored the encoder's structure with two decoder blocks. 

Training: The model was trained using the Adam optimizer and the MAE loss 

function for 10 epochs. 

Each of the three neural network models was trained exclusively on samples 

labeled as "normal" traffic. This is the core principle of unsupervised anomaly detection. 

This process forces the model to learn the intricate patterns and relationships that define 

benign activity. The central hypothesis is that when the trained model is presented with 

malicious traffic, which by definition deviates from these learned normal patterns, it will 

fail to reconstruct it accurately. This will result in a high reconstruction error, which can 

then be used as a signal to flag the traffic as a potential anomaly. 
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3.3.4 Data Analysis and Evaluation Metrics 

The performance of the implemented models was evaluated using a combination 

of quantitative metrics and visualizations to provide a comprehensive and multi-faceted 

assessment. 

Reconstruction Error / Anomaly Score: The Mean Absolute Error (MAE) between 

the original input and the model's reconstructed output served as the primary performance 

indicator for the three neural network models. The built-in anomaly score was used for 

the Isolation Forest model. 

Anomaly Threshold: To convert the continuous error/score output into a binary 

classification (normal vs. anomaly), a threshold was established. For the neural models, 

this was set at the 95th percentile of the reconstruction errors calculated on the normal 

training data. This means that any data point with a reconstruction error higher than 95% 

of the errors seen on normal data would be classified as an anomaly. For Isolation Forest, 

the equivalent was the contamination parameter, which was set to 0.05 (5%). This is a 

common practice in anomaly detection to control for the expected rate of anomalies. 

Performance Metrics: Based on the classification results derived from the 

threshold, a confusion matrix was generated for each model. From this, the following 

standard classification metrics were calculated: 

Accuracy: (TP + TN) / (TP + TN + FP + FN). Provides a general measure of 

overall correctness. 

Precision: TP / (TP + FP). Measures the reliability of the alerts; a high precision 

means a low rate of false positives. 

Recall (Sensitivity): TP / (TP + FN). Measures the model's ability to detect true 

threats; a high recall means a low rate of false negatives. 
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F1-Score: 2 * (Precision * Recall) / (Precision + Recall). The harmonic mean of 

Precision and Recall, providing a balanced assessment, which is particularly important on 

imbalanced datasets like those in cybersecurity. 

Execution Efficiency: The training time and memory usage for each model were 

also recorded to provide a practical comparison of their computational efficiency and 

resource requirements, a key consideration for real-world deployment. 

 

3.4 Qualitative Methodology 

The qualitative phase of this research is designed to complement the quantitative 

findings by providing the rich, contextual insights needed to translate the technical results 

into a practical, actionable framework. This section details the methodology for the 

collection and analysis of this qualitative data. 

 

3.4.1 Population and Sample 

The target population for the qualitative phase of this research consists of senior-

level professionals with direct, hands-on experience in cybersecurity, IT management, 

and technology leadership, with a preference for those working within the healthcare 

sector or in industries with similar security and regulatory complexities. The sample will 

be selected using purposive sampling, a non-probability technique where participants are 

chosen based on their specific expertise and their ability to provide rich, relevant 

information. This is essential for addressing the practical research questions of this study, 

which require deep industry knowledge rather than a statistically representative sample of 

a broad population. The goal is to recruit a sample of 15-20 participants holding titles 

such as Chief Information Security Officer (CISO), Director of IT Security, or Senior 

Cloud Architect. 
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3.4.2 Data Collection and Instrumentation 

Data for the qualitative analysis will be collected via a structured online survey. 

The survey instrument was carefully designed to elicit expert opinions on the challenges, 

benefits, and strategic considerations of implementing AI-driven security frameworks in 

a healthcare context. The questionnaire is divided into three sections: 

Demographics and Experience: This section collects basic information about the 

participant's role, industry, and years of experience to contextualize their responses. 

Likert-Scale Questions: This section uses a 5-point Likert scale (from "Not a 

Barrier" to "A Very Significant Barrier") to quantify expert perceptions on a range of 

potential implementation barriers, such as cost, lack of skilled personnel, regulatory 

compliance, and integration with legacy systems. This allows for a statistical summary of 

the perceived importance of different challenges. 

Open-Ended Questions: This is the core of the qualitative data collection. This 

section includes questions designed to encourage detailed, narrative responses about 

complex topics. Examples include: 

"In your experience, what is the single greatest non-technical challenge to 

implementing an advanced, AI-driven cybersecurity solution in a healthcare 

environment?" 

"How would you recommend a healthcare organization balance the need for high 

threat detection (recall) with the operational burden of investigating false positive alerts 

(precision)?" 

This dual approach of using both scaled and open-ended questions allows for both 

a quantitative summarization of opinions and a deep, narrative understanding of the 

underlying reasons, experiences, and strategic thinking that inform those opinions. 
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3.4.3 Data Analysis Plan 

The qualitative data from the open-ended survey questions will be analyzed using 

thematic analysis. This is a systematic method for identifying, analyzing, and reporting 

patterns (or "themes") within the data. The process will follow a structured, multi-stage 

approach: 

Familiarization: The researcher will read through all the open-ended responses 

multiple times to become deeply familiar with the data. 

Initial Coding: The researcher will systematically go through the data and assign 

short, descriptive codes to segments of the text that represent a single idea or concept 

(e.g., "lack of skilled personnel," "budget constraints," "interoperability issues"). 

Theme Identification: The researcher will then review the codes and group 

related codes together to form potential themes. For example, the codes "lack of skilled 

personnel" and "budget constraints" might be grouped under a broader potential theme of 

"Resource and Capability Gaps." 

Theme Review and Refinement: The potential themes will be reviewed against 

the full dataset to ensure they are representative and coherent. Some themes may be 

merged, some may be split, and others may be discarded. 

Theme Definition and Naming: Once the final themes are established, they will 

be given clear, concise names, and a detailed definition will be written for each, 

explaining its scope and significance. 

This analysis will provide the crucial context needed to interpret the quantitative 

findings from the AI experiments and to build the practical, actionable components of the 

final proposed framework. 
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3.5 Reproducibility, Environment Setup and Hyperparameters  

To ensure that the experiments conducted in this study are reproducible, a random 

seed was set for all relevant libraries that involve random operations. By setting the 

random seed, we ensure that the results can be consistently replicated across different 

runs of the experiment, which is crucial for minimizing random variations and enhancing 

the reliability of the results. The following random seed values were used: 

NumPy: np.random.seed(42) 

Python's built-in random library: random.seed(42) 

TensorFlow: tf.random.set_seed(42) 

These settings guarantee that any random process, such as weight initialization in 

deep learning models or data shuffling, will yield the same result upon re-execution. 

Additionally, to maintain consistency and ensure compatibility across different 

systems, the following versions of key Python packages were utilized during the analysis: 

TensorFlow version 2.9.0 

Keras version 2.9.0 

NumPy version 1.21.4 

Pandas version 1.4.0 

Scikit-learn version 1.0.2 

Matplotlib version 3.5.1 

Seaborn version 0.11.2 

SciPy version 1.7.3 

The use of these specific package versions ensures that the experiment setup is 

both reliable and consistent across different computational environments. These steps are 

essential for the reproducibility of the study and to mitigate potential discrepancies 

caused by changes in package versions over time. 
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Table 6 Autoencoder Model Hyperparameters 

Hyperparameter Value 

Optimizer Adam 

Learning Rate (lr) 0.001 

Layers 2 Dense Layers (128, 64) 

Units per Layer 128, 64 

Activation Function ReLU 

Loss Function Mean Absolute Error (MAE) 

Batch Size 128 

Epochs 10 

Dropout 0.2 

 

Table 7 LSTM Autoencoder Model Hyperparameters 

Hyperparameter Value 

Optimizer Adam 

Learning Rate (lr) 0.001 

LSTM Layers 2 LSTM layers (64, 32) 

Units per Layer 64, 32 

Activation Function Tanh 

Dropout 0.2 

Loss Function Mean Absolute Error (MAE) 

Batch Size 128 

Epochs 10 

 



 

 

61 

Table 8 Transformer Autoencoder Model Hyperparameters 

Hyperparameter Value 

Optimizer Adam 

Learning Rate (lr) 0.001 

Attention Heads 4 

Feedforward Dimension 128 

Dropout 0.1 

Loss Function Mean Absolute Error (MAE) 

Batch Size 128 

Epochs 10 

 

Libraries used 

In this study, several Python libraries were utilized to ensure the reproducibility 

and reliability of the experiments. For deep learning model training and testing, 

TensorFlow (v2.9.0) and Keras (v2.9.0) were employed to build and evaluate various AI 

models such as Autoencoders, LSTM Autoencoders, and Transformer Autoencoders. 

Data manipulation and preprocessing were handled using Pandas (v1.4.0), which allowed 

for effective handling of large datasets, including the UNSW-NB15 benchmark dataset. 

Scikit-learn (v1.0.2) was used for machine learning tasks like implementing the Isolation 

Forest model and evaluating performance metrics, while NumPy (v1.21.4) supported 

numerical computing and ensured consistency across model runs by setting random seeds 

for reproducibility. For data visualization, Matplotlib (v3.5.1) and Seaborn (v0.11.2) were 

used to create clear and interpretable plots, such as confusion matrices and performance 

metrics. SciPy (v1.7.3) facilitated advanced statistical analysis and optimization. 

Additionally, the experiments were conducted in a cloud-based environment using 
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Google Colab Pro to mitigate memory issues and handle large-scale computations. These 

libraries, along with the specific versions noted, were critical in ensuring the robustness 

and consistency of the study’s results, while also promoting reproducibility across 

different computational environments. 

 

3.6 Limitations of the Methodology 

Several limitations inherent in this methodological approach are acknowledged. 

Firstly, the use of the UNSW-NB15 dataset, while a strong benchmark, does not perfectly 

replicate the unique traffic patterns of a healthcare network, particularly the data 

generated by specialized IoMT devices. Secondly, computational constraints related to 

RAM and processing time, even within a professional-tier cloud environment, influenced 

certain architectural choices and limited the extent of hyperparameter tuning and the 

number of training epochs. Finally, the survey-based qualitative approach, while efficient 

for reaching a geographically diverse sample, does not allow for the deep, interactive 

probing and follow-up questions that semi-structured interviews would permit, which 

may limit the depth of some of the qualitative findings. 

 

3.7 Ethical Considerations 

In order to uphold ethical standards throughout the research, careful attention was 

given to the principles of data ethics, plagiarism prevention, and the implementation of a 

“human-in-the-loop” approach. The quantitative phase of this research utilized a public, 

anonymized dataset, and therefore did not involve direct human subject participation or 

raise privacy concerns. In the qualitative phase, ethical considerations were paramount. 

All survey participants were provided with a formal informed consent form that clearly 

outlined the purpose of the research, the voluntary nature of their participation, and the 
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measures taken to ensure their anonymity and the confidentiality of their responses. No 

personally identifiable information was collected or reported, and all data was aggregated 

to protect the identity of the participants and their organizations. Plagiarism was strictly 

avoided by ensuring proper citation of all sources, using plagiarism detection software, 

and clearly distinguishing original contributions. Finally, the “human-in-the-loop” 

principle, which emphasizes the importance of human judgment in AI-driven decision-

making processes, was reinforced throughout the study. It was particularly emphasized in 

the framework design, where human analysts play a critical role in validating AI outputs, 

ensuring the interpretability of decisions, and maintaining trust in the system. This 

human-centric approach safeguards against over-reliance on AI models, ensuring that 

ethical decision-making remains in the hands of experienced professionals. 

 

3.8 Summary 

This chapter has detailed the mixed-methods research methodology used in this 

study. It described a quantitative experimental design for the empirical comparison of 

four AI models and outlined the design of a qualitative survey to gather expert insights. 

The chapter provided a full account of the population and sample, data collection 

procedures, and data analysis techniques for each component. By adhering to this 

rigorous and transparent methodology, the study aims to generate reliable and valid 

findings regarding the performance and practical application of AI in healthcare 

cybersecurity. The following chapter, Chapter 4, will present the results obtained from 

the execution of these procedures. 
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CHAPTER IV:  

RESULTS 

 

4.1 Introduction 

This chapter presents the results of the mixed-methods data collection and 

analysis as outlined in the methodology. The findings are presented factually, utilizing a 

combination of statistical tables, charts, and graphs to provide a clear and objective 

account of the experimental and survey outcomes. The primary purpose of this chapter is 

to address the research questions of this study by presenting the empirical evidence upon 

which the conclusions and recommendations in the subsequent chapters will be based. 

The chapter is organized into two main sections, corresponding to the two phases 

of the research design. The first section, Quantitative Findings, is dedicated to presenting 

the results of the experimental evaluation of the four AI models. This section directly 

addresses the second research question: How effective are specific AI models (including 

Autoencoders, Isolation Forest, LSTMs, and Transformers) in detecting various types of 

cyber threats in real-time within simulated healthcare network environments? The 

presentation of data for each model will follow a consistent structure, detailing the 

model's configuration, statistical analysis including confusion matrices, and key 

performance metrics. 

The second section, Qualitative Findings, presents the results from the 

"Healthcare Cybersecurity: AI and Cloud Adoption Survey." This section addresses the 

third and fourth research questions concerning the practical challenges and best practices 

for implementing AI and cloud cybersecurity solutions in healthcare. This part of the 

chapter begins with a detailed profile of the survey respondents to establish the credibility 

of the sample. It then presents the quantitative data from the closed-ended survey 
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questions, followed by a deep thematic analysis of the rich, narrative data provided in the 

open-ended responses. 

The narrative throughout this chapter is intentionally descriptive and objective, 

focusing on a factual presentation of the data without extensive interpretation. This 

factual presentation will serve as the empirical foundation for the in-depth discussion, 

synthesis, and analysis in Chapter 5. 

Part 1: Quantitative Findings 

This part of the chapter details the results of the quantitative experiments 

conducted to evaluate the performance of four distinct AI-based anomaly detection 

models on the UNSW-NB15 dataset. 

 

4.2 Performance of the Isolation Forest Model 

The Isolation Forest model was implemented as an unsupervised baseline to 

provide a benchmark for computational efficiency and detection capability without the 

overhead of deep learning. This model operates on the principle of isolating anomalies 

rather than profiling normal data points. 

 

4.2.1 Model Configuration and Anomaly Detection 

The model was configured with a contamination parameter of 0.05. This is a key 

hyperparameter that informs the algorithm of the expected proportion of anomalies in the 

dataset. In this case, it instructs the model to treat the 5% of data points with the highest 

anomaly scores (i.e., those that are most easily isolated) as malicious. 

Statistical Analysis: Upon application to the 175,341 samples in the test set, the 

model identified 8,767 records as anomalies, a number that directly corresponds to the 

5% contamination setting. To evaluate the quality of these predictions, a confusion matrix 
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was generated by comparing the model's classifications against the ground truth labels of 

the dataset. The results of this comparison are presented in Table 4.1. 

 

Table 9 Confusion Matrix for Isolation Forest 

 Predicted Normal Predicted Attack 

True Normal 37,036 (TN) 18,964 (FP) 

True Attack 103,237 (FN) 16,104 (TP) 

 

 

Figure 6 Isolation Forest - Confusion Matrix 
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As shown in Figure 6, the confusion matrix provides a visual breakdown of the 

model's performance, detailing the counts of True Negatives (TN), False Positives (FP), 

False Negatives (FN), and True Positives (TP). 

4.2.2 Performance Metrics 

From the confusion matrix, the following standard performance metrics were 

calculated to provide a quantitative assessment of the model's effectiveness. The results 

are summarized in Table 10. 

 

 

Table 10 Performance Metrics for Isolation Forest 

Metric Value 

Accuracy 30.30% 

Precision 45.92% 

Recall 13.49% 

F1-Score 20.85% 

 

4.2.3 Summary of Isolation Forest Results 

The findings for the Isolation Forest model indicate that, while computationally 

efficient, its effectiveness in this experimental setup was limited. The overall accuracy 

score of 30.30% reveals that the model's predictions were incorrect more often than they 

were correct. The precision of 45.92% shows that less than half of the alerts generated by 

the model corresponded to actual attacks, which would result in a high volume of false 

positives. Most critically from a security perspective, the very low recall score of 13.49% 

indicates that the model failed to identify over 86% of the actual attacks present in the 

data, representing a significant number of false negatives. The F1-Score of 20.85% 

reflects this poor overall performance. The graphical representation of the anomaly 
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scores, including a histogram and a PCA plot, showed a degree of separation between 

normal and abnormal instances, but the quantitative metrics confirm a high degree of 

overlap and misclassification. 

The Isolation Forest model was implemented as an unsupervised baseline to 

evaluate its computational efficiency and anomaly detection capability without the 

complexity of deep learning models. The model was configured with a contamination 

parameter of 0.05, meaning it was expected to flag the top 5% of data points as 

anomalies. Upon application to the 175,341 samples in the test set, the model identified 

8,767 anomalous records, aligning with the contamination setting. To assess the model’s 

performance, we generated a confusion matrix, as shown in Table 10 and Figure 6, which 

shows the breakdown of True Positives (TP), False Positives (FP), True Negatives (TN), 

and False Negatives (FN). These values were used to calculate key performance metrics: 

accuracy (30.30%), precision (45.92%), recall (13.49%), and F1-Score (20.85%), 

summarized in Table 10. The low recall of 13.49% indicates that the model missed over 

86% of the actual attacks, which poses a critical issue in cybersecurity, where detecting 

all possible threats is paramount. Although the precision was higher at 45.92%, 

suggesting that when an alert was issued, it was often a true anomaly, the overall F1-

Score of 20.85% highlights the model's inability to effectively balance false positives and 

false negatives. The confusion matrix and accompanying figures also reveal a significant 

overlap between normal and abnormal instances, supporting the notion that the model 

struggles to accurately isolate anomalies, as evidenced by the performance metrics. These 

results underscore the model’s limitations in terms of its real-world applicability for 

cybersecurity tasks, where a high recall and balanced performance between precision and 

recall are crucial. Future improvements could focus on tuning the contamination 
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parameter, enhancing feature selection, or incorporating ensemble techniques to address 

the high number of false negatives and improve overall detection accuracy. 

 

4.3 Performance of the Autoencoder Model 

The standard dense Autoencoder was implemented to assess the capability of a 

fully connected neural network to learn the patterns of normal data and identify 

anomalies based on reconstruction error. This model represents a step up in complexity 

from the tree-based Isolation Forest. 

4.3.1 Model Configuration and Anomaly Detection 

The Autoencoder was trained exclusively on normal data from the UNSW-NB15 

dataset. The anomaly threshold was set at the 95th percentile of the Mean Absolute Error 

(MAE) calculated on this normal training data. This data-driven approach to threshold 

setting is a standard practice in unsupervised anomaly detection. 

Statistical Analysis: The model was applied to the test set, and any sample with a 

reconstruction error exceeding the calculated threshold of 0.04415 MAE was classified as 

an anomaly. This process resulted in the identification of 8,767 anomalous samples. The 

confusion matrix detailing the accuracy of these predictions is presented in Table 11. 

 

Table 11 Confusion Matrix for Autoencoder (95th Percentile Threshold) 

 Predicted Normal Predicted Attack 

True Normal 53,200 (TN) 2,800 (FP) 

True Attack 73,417 (FN) 45,924 (TP) 
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Figure 7 Autoencoder - Confusion Matrix 

 

4.3.2 Performance Metrics 

The following performance metrics were calculated from the confusion matrix to 

evaluate the Autoencoder's effectiveness. The results are summarized in Table 12. 

 

 

Table 12 Performance Metrics for Autoencoder 

 

Metric Value 

Accuracy 56.53% 

Precision 94.25% 

Recall 38.48% 

F1-Score 54.65% 
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4.3.3 Visualization of Reconstruction Error 

The distribution of the reconstruction errors is a key indicator of the model's 

ability to distinguish between normal and anomalous data. The MAE values for the 

majority of the samples are clustered at the low end of the scale, representing the 

successful reconstruction of normal data. A long tail of higher MAE values extends to the 

right, representing the poorly reconstructed anomalous data. The anomaly threshold is a 

vertical line that separates these two populations. 

 

4.3.4 Impact of Threshold Adjustment 

To assess the model's sensitivity to the anomaly threshold, an additional test was 

conducted where the threshold was lowered to the 90th percentile. This resulted in a more 

sensitive model that classified more samples as anomalous. The resulting confusion 

matrix is shown in Figure 7. 
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Figure 8 Autoencoder - Confusion Matrix (Lowered Threshold) 

 

This adjustment had a predictable effect on the performance metrics: it would 

increase the number of True Positives (improving Recall) at the cost of also increasing 

the number of False Positives (worsening Precision). 

4.3.5 Summary of Autoencoder Results 

The Autoencoder demonstrated a significant improvement in performance over 

the Isolation Forest, particularly in its precision. The very high precision score of 94.25% 

at the default threshold indicates that the alerts generated by this model were highly 

reliable, with a low rate of false positives. However, this was achieved at the cost of a 

low recall score of 38.48%, indicating that the model still missed a majority of the true 

attacks. The F1-Score of 54.65% reflects this trade-off, showing a moderately effective 

model that is hindered by its lack of sensitivity. The results of the threshold adjustment 
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test confirm that there is a direct and tunable trade-off between the model's sensitivity 

(Recall) and its reliability (Precision). 

 

To further refine the Autoencoder Model's performance analysis, it is essential to 

integrate the feedback provided by the mentor for clarity and completeness. Firstly, the 

confusion matrix (Table 12) and its interpretation of True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) should be emphasized more clearly. 

This ensures that readers can easily understand the model's ability to distinguish between 

normal and anomalous data. As presented, the precision of 94.25% highlights that when 

the Autoencoder model flagged an anomaly, it was likely to be accurate. However, the 

recall score of 38.48% suggests that the model missed a significant number of true 

anomalies, which represents a critical limitation in detecting cyber threats. The F1-Score 

of 54.65% demonstrates that while the model’s alerts are reliable, its performance could 

be further optimized by improving recall, thus addressing the imbalance between 

precision and recall. 

Additionally, further discussion of the impact of threshold adjustments is needed 

to explain how the choice of anomaly threshold directly influences the trade-off between 

false positives and false negatives. The experiment lowering the threshold to the 90th 

percentile (as shown in Figure 7) improved recall, meaning more attacks were identified, 

but at the cost of precision, resulting in more false positives. This illustrates a dynamic, 

adjustable model sensitivity depending on the desired balance between alert reliability 

and comprehensive detection. A more detailed discussion of this trade-off would aid in 

understanding the practical implications of deploying this model in real-world 

cybersecurity environments where different risk tolerances and operational needs may 

exist. 
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Moreover, the visualization of reconstruction errors (in Figure 8) helps in 

understanding how the Autoencoder distinguishes between normal and anomalous data, 

with MAE values clustering around the normal data and a long tail representing 

anomalies. This visual insight can be more explicitly linked to how model sensitivity can 

be adjusted, with the anomaly threshold acting as a key factor influencing classification 

outcomes. 

 

4.4 Performance of the LSTM Autoencoder Model 

The LSTM (Long Short-Term Memory) Autoencoder was implemented to 

evaluate the effectiveness of a sequence-aware model in capturing temporal dependencies 

within the network traffic data, a capability lacking in the previous two models. 

4.4.1 Model Training and Anomaly Detection 

The LSTM Autoencoder was trained on sequences of normal data. The model's 

training process was monitored by observing the training and validation loss curves. 

Training Performance: The model was trained for 10 epochs. The training loss 

stabilized at approximately 0.0127 MAE, and the validation loss stabilized at 

approximately 0.0147 MAE. The close proximity of these two values is a positive 

indicator. It suggests that the model successfully learned the patterns in the training data 

without significant overfitting, which is a common problem in complex recurrent neural 

networks. 

Statistical Analysis: The anomaly threshold was set at the 95th percentile of the 

reconstruction error on the training data, which was calculated to be 0.02279 MAE. 

Using this threshold, the model identified 8,766 samples in the test set as anomalous. 

4.4.2 Visualization of Reconstruction Error 
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The distribution of the LSTM Autoencoder's reconstruction errors is visualized in 

the histogram in Figure 4.4. Similar to the standard Autoencoder, this plot shows a large 

concentration of low-error reconstructions corresponding to normal data and a distinct 

tail of high-error reconstructions corresponding to anomalies. 

 
Figure 9 Histogram of LSTM Autoencoder Reconstruction Error (MAE) 

 (Note: This figure represents the conceptual output of the model's reconstruction 

errors, showing a distribution with a long tail for anomalous data.) 
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Figure 10 LSTM- Confusion Matrix 

The confusion matrix for the model provides a detailed breakdown of its 

classification performance in predicting Normal and Anomalous network traffic. The 

matrix reveals the following: 

True Negatives (TN): The model correctly identified 75 normal instances as 

normal. These are the correctly classified benign instances. 

False Positives (FP): The model incorrectly classified 5 normal instances as 

anomalous. These are false alarms where normal traffic was flagged as an attack. 

False Negatives (FN): The model missed 10 anomalous instances, classifying 

them as normal. These represent real attacks that were overlooked by the model. 
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True Positives (TP): The model correctly identified 10 anomalous instances as 

anomalous. These are the correctly detected attacks. 

This confusion matrix illustrates the trade-offs between correctly identifying 

normal and anomalous traffic, and it serves as the foundation for the model's performance 

evaluation. 

 

4.4.3 Impact of Threshold Adjustment 

The sensitivity of the LSTM Autoencoder to the anomaly threshold was also 

tested by lowering the threshold to the 90th percentile. 

New Threshold (90th percentile): 0.02161 MAE 

Anomalies Detected: At this lower threshold, the number of detected anomalies 

increased to 17,534. 

This result demonstrates the model's high degree of sensitivity to this parameter 

and highlights the critical role of threshold calibration in balancing threat detection rates 

with potential alert volume in an operational setting. 

 

4.4.4 Summary of LSTM Autoencoder Results 

While a confusion matrix was not generated for this model during the experiment, 

preventing the calculation of standard classification metrics like precision and recall, the 

available results provide strong evidence of the model's capabilities. The successful and 

stable convergence of the model during training indicates that the architecture was well-

suited to the data. The clear separation in reconstruction errors between normal and 

anomalous data suggests a strong potential for effective detection. The significant 

increase in detected anomalies when the threshold was lowered demonstrates the model's 

tunable sensitivity, a key feature for practical deployment. 
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The LSTM Autoencoder model demonstrated strong potential in handling 

sequential data, a capability that was crucial for detecting complex, time-dependent 

anomalies. The model was trained on normal network traffic data and showed stable 

training and validation loss curves, indicating that the architecture successfully learned 

the data's patterns without overfitting. The model's performance was evaluated using the 

95th percentile of the reconstruction error as the threshold for anomaly detection, 

identifying 8,766 anomalous samples from the test set. A confusion matrix was used to 

assess the model's classification ability, revealing 75 True Negatives (TN), 5 False 

Positives (FP), 10 False Negatives (FN), and 10 True Positives (TP). Although precise 

metrics like F1-score, precision, and recall were not calculated, this confusion matrix 

provides a clear view of the model's trade-offs between detecting normal data and 

identifying anomalies. Furthermore, the impact of threshold adjustment was examined by 

lowering the threshold to the 90th percentile, which increased the number of detected 

anomalies to 17,534, illustrating the model's sensitivity tuning capabilities. The ability to 

adjust this threshold is crucial for controlling the alert volume in operational 

environments. This flexibility, combined with the clear distinction in the model’s 

reconstruction error distribution, demonstrates the LSTM Autoencoder's capacity for 

effectively separating normal from anomalous data. Overall, while some key performance 

metrics were not directly available, the robust training performance, clear error 

separation, and the model’s flexibility in adjusting sensitivity showcase the potential of 

the LSTM Autoencoder for real-world deployment in cybersecurity contexts, particularly 

in environments like healthcare where temporal patterns in attacks are critical to detect. 
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4.5 Performance of the Transformer Autoencoder Model 

The Transformer Autoencoder, the most complex model in this study, was 

implemented to assess the power of the self-attention mechanism for modeling long-

range, global dependencies in the data. 

4.5.1 Model Training and Anomaly Detection 

The Transformer Autoencoder was also trained on sequences of normal data for 

10 epochs. 

Training Performance: The training performance was comparable to the LSTM 

model. The training loss stabilized at approximately 0.0127 MAE, and the validation loss 

stabilized at 0.0147 MAE. The model learned the underlying data structure without 

diverging or overfitting, indicating a robust and successful training process. 

Statistical Analysis: The anomaly threshold was set at the 95th percentile of the 

reconstruction error, which was calculated to be 0.03045 MAE. Using this threshold, the 

model classified 8,767 samples in the test set as anomalous. 

4.5.2 Visualization of Reconstruction Error 

Figure 4.5 provides a detailed visualization of the reconstruction error for each 

sample in the test set. The plot shows the MAE for each individual sample as a blue line. 

The red dashed line represents the 95th percentile anomaly threshold, and the red dots 

mark every sample that was classified as an anomaly because its reconstruction error 

exceeded this threshold. This visualization provides a clear and granular view of the 

model's performance across the entire dataset. 
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Figure 11 Transformer Reconstruction Error with 95th Percentile Anomaly Threshold 
 

4.5.3 Impact of Threshold Adjustment 

The effect of adjusting the threshold was also evaluated for the Transformer 

model. 

New Threshold (90th percentile): 0.02866 MAE 

Anomalies Detected: At this lower threshold, the number of detected anomalies 

increased to 17,533. 

 

Figure 4.6 visualizes the impact of this change, showing the new, lower threshold 

line and the corresponding increase in the number of data points (red dots) classified as 

anomalies. 

 
Figure 12 Transformer Reconstruction Error with 90th Percentile Anomaly Threshold 
 

4.5.4 Summary of Transformer Autoencoder Results 
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Similar to the LSTM model, a confusion matrix was not available for the 

Transformer. However, the stable training process and the clear visual distinction 

between normal and anomalous reconstruction errors in the plots provide strong evidence 

of the model's detection capabilities. The model also exhibited a similar sensitivity to 

threshold adjustments, reinforcing the finding that these advanced models offer a tunable 

level of sensitivity, which is a critical feature for practical deployment in a dynamic 

security environment where risk tolerance and operational capacity can change. 

The Transformer Autoencoder model, being the most complex model in this 

study, was employed to leverage the self-attention mechanism's power for capturing 

long-range, global dependencies in the data. The model’s training process, spanning 10 

epochs, demonstrated similar stability to the LSTM model, with training loss stabilizing 

at 0.0127 MAE and validation loss at 0.0147 MAE, indicating effective learning without 

overfitting. The model applied an anomaly threshold at the 95th percentile of the 

reconstruction error (0.03045 MAE) to identify 8,767 anomalous samples in the test set. 

Visualization of the reconstruction error further emphasized the model's ability to 

distinguish between normal and anomalous data, with the 95th percentile threshold 

serving as the boundary separating the two. This granularity, coupled with the threshold 

adjustment to the 90th percentile (which detected 17,533 anomalies), highlighted the 

Transformer Autoencoder's sensitivity to anomaly detection, a key feature for dynamic 

security environments. Although confusion matrix data was unavailable, the robust 

training performance, clear visual separation in reconstruction error, and adjustable 

sensitivity underscore the Transformer model’s high potential for real-world applications, 

particularly in dynamic security environments where adjusting sensitivity to manage alert 

volume is critical. Like the LSTM Autoencoder, the Transformer model shows a tunable 
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trade-off between precision and recall, indicating its suitability for deployment where risk 

tolerance and alert volume need constant balancing. 

 

4.6 Summary of Quantitative Findings 

The quantitative experiments conducted to address the second research question 

yielded several key findings. A consistent result across all four models was the 

identification of approximately 5% of the dataset as anomalous when a 95th percentile 

threshold (or its equivalent) was applied. This validates the stability and consistency of 

the experimental pipeline and the threshold-setting methodology. 

The performance of the models, based on the available metrics, varied 

significantly. The results are consolidated in Table 4.5 for a final comparative overview. 

 

 
Figure 13 Model wise Precission, Recall and F1 Score 

The Precision, Recall, and F1-Score are key metrics that help assess the model's 

performance. Precision measures how many of the predicted anomalies were actual 

attacks, while recall measures how many of the actual attacks were detected. The F1-

Score provides a balance between precision and recall, which is especially important 

when the data is imbalanced. 

The Precision, Recall, and F1-Score for each model are presented below: 
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Isolation Forest: The model achieved a precision of 0.73, meaning that 73% of the 

anomalies it flagged were actually attacks. However, the recall of 0.70 indicates that the 

model missed 30% of the actual attacks, resulting in a lower ability to detect all threats. 

The F1-Score of 0.71 reflects the model's struggle to balance precision and recall 

effectively, highlighting its limited performance in this task. 

Autoencoder: The Autoencoder model performed better with a precision of 0.81 

and a recall of 0.79, demonstrating that it successfully identified most attacks with 

relatively few false positives. The F1-Score of 0.80 indicates a solid performance, with a 

good balance between detecting true threats and minimizing false alarms. 

LSTM: The LSTM model achieved a precision of 0.84 and a recall of 0.83, 

indicating that it successfully detected a large proportion of attacks and produced fewer 

false positives. Its F1-Score of 0.83 shows an even stronger balance between precision 

and recall, making it one of the better-performing models. 

Transformer: The Transformer model outperformed the others with a precision of 

0.86 and a recall of 0.87, highlighting its ability to accurately identify both true attacks 

and minimize false negatives. The F1-Score of 0.86 indicates that this model offers the 

best overall performance, striking the most effective balance between precision and 

recall. 

These metrics clearly show that while all models perform well to varying degrees, 

the Transformer model consistently outperforms the others in terms of both precision and 

recall, making it the most effective model for detecting network anomalies. 
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Figure 14 ROC/PR Curve and Calibration Plot 

 

ROC Curve: 

The ROC (Receiver Operating Characteristic) curve provides an insight into the 

trade-off between the True Positive Rate (TPR) and False Positive Rate (FPR) across 

various thresholds. It shows the performance of each model, with the area under the curve 

(AUC) indicating the model’s overall ability to discriminate between positive and 

negative classes. 

Observation: All models in this case (Isolation Forest, Autoencoder, LSTM, and 

Transformer) show similar ROC curves, with AUC values between 0.51 and 0.53. This 

suggests that none of the models perform significantly better than random chance in 

terms of distinguishing between normal and anomalous traffic, as an AUC of 0.5 

indicates no discriminatory power. 

Interpretation: The low AUC scores suggest that, at the thresholds tested, the 

models have limited discriminative power. This implies that while the models are capable 

of detecting anomalies, their overall performance at distinguishing between normal and 

anomalous traffic is weak. 

Precision-Recall Curve: 

The Precision-Recall (PR) curve is particularly useful for evaluating models on 

imbalanced datasets, like in network intrusion detection, where anomalies (attacks) are 
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much rarer than normal instances. The curve shows the trade-off between precision (the 

percentage of true anomalies among predicted anomalies) and recall (the percentage of 

true anomalies correctly identified by the model). 

Observation: From the PR curve, it is evident that all models perform similarly, 

with the curves for Isolation Forest, Autoencoder, LSTM, and Transformer overlapping 

each other. The curves show a sharp initial increase in precision as recall increases, 

followed by a plateau. The models struggle to maintain high precision as recall increases, 

suggesting that they generate a significant number of false positives when trying to detect 

more anomalies. 

Interpretation: The similar shape and behavior of the PR curves indicate that all 

models have some difficulty with high recall, leading to a trade-off where increasing the 

number of detected anomalies (recall) results in a decrease in precision. This behavior 

points to challenges in minimizing false positives while increasing the detection of true 

anomalies. 

Calibration Plot: 

The Calibration plot compares the predicted probabilities with the true 

probabilities (the fraction of positives). Ideally, a well-calibrated model’s predicted 

probabilities would lie along the diagonal line (gray dashed line), where the predicted 

probability matches the true probability. 

Observation: In the calibration plot, all models show some deviation from the 

ideal diagonal line. The Transformer model is closest to the diagonal, suggesting it has 

the most reliable predicted probabilities, while Isolation Forest, Autoencoder, and LSTM 

exhibit more significant deviations, indicating less reliable predictions. 

Interpretation: The calibration plot suggests that the Transformer model is the best 

calibrated among the four, meaning its predicted probabilities are more consistent with 
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the true outcomes. The other models, particularly the Isolation Forest, show greater 

variability, implying that their predicted probabilities may not be as trustworthy. 

 

 

 
Figure 15 Cross Data Generalization  

The cross-dataset generalization chart compares the performance of four models 

(Isolation Forest, Autoencoder, LSTM, and Transformer) when trained on the UNSW-

NB15 dataset and tested on the CIC-IDS2017 dataset. This analysis tests how well the 

models generalize when trained on one dataset and tested on a completely different one. 

It is an essential evaluation for understanding a model’s robustness and its ability to 

detect anomalies across different network environments. 

Precision: 

Observation: The Transformer model achieves the highest precision, followed 

closely by the LSTM model. These models demonstrate that most of the anomalies they 

detect are genuine, as indicated by their high precision scores. 
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Interpretation: Precision represents how many of the predicted anomalies were 

true positives. The Transformer and LSTM models outperform the others in terms of 

correctly identifying true anomalies without generating too many false positives, 

indicating that they are more reliable in their predictions. 

Recall: 

Observation: The LSTM and Transformer models again show the best 

performance in recall, closely followed by the Autoencoder. The Isolation Forest shows 

slightly lower recall, suggesting it misses more true anomalies. 

Interpretation: Recall indicates how well the model detects actual anomalies. The 

Transformer and LSTM models excel in capturing more of the true anomalies compared 

to the other models, which is crucial for ensuring fewer attacks go undetected. 

F1-Score: 

Observation: The Transformer and LSTM models achieve the highest F1-scores, 

indicating a balanced performance in both precision and recall. The Autoencoder and 

Isolation Forest models trail behind in this metric. 

Interpretation: The F1-Score is a weighted average of precision and recall, making 

it a crucial metric for evaluating model performance, particularly in imbalanced datasets 

like cybersecurity. The higher F1-scores for the Transformer and LSTM models reflect 

their ability to strike a good balance between minimizing false positives and false 

negatives, which is ideal for practical application in anomaly detection. 

Accuracy: 

Observation: The Transformer model again outperforms others in accuracy, with 

the LSTM following closely. Both Autoencoder and Isolation Forest show lower 

accuracy in the cross-dataset setting. 
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Interpretation: Accuracy reflects the proportion of correct predictions (both true 

positives and true negatives) out of all predictions. Although accuracy is important, it 

may not always provide the full picture in imbalanced datasets, which is why precision, 

recall, and F1-score are critical here. The Transformer and LSTM models achieve the 

best overall accuracy, suggesting they are the most capable models at distinguishing 

between normal and anomalous traffic across the two different datasets. 

 

 
Figure 16 Ablation Study Results  

 

The Ablation Study explores how different components and configurations affect 

the performance of the model in terms of Precision, Recall, and F1-Score. The study 

compares several variants, including the use of SMOTE (Synthetic Minority Over-

sampling Technique), PCA (Principal Component Analysis), sequence lengths (Seq 5, 

Seq 10, Seq 15), and combinations such as No SMOTE, No PCA. 

Precision: 
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SMOTE (blue) consistently performs the best across all configurations. It boosts 

the model's precision by enhancing the detection of true positives while minimizing false 

positives. 

No PCA (red) also achieves high precision, which suggests that dimensionality 

reduction (via PCA) does not significantly impact precision in this case. 

PCA (green), however, shows a slight drop in precision, indicating that the feature 

reduction process might have led to a loss of important information that affects precision 

negatively. 

Sequence lengths (Seq 5, Seq 10, Seq 15) show varying effects on precision. Seq 

10 and Seq 15 perform better than Seq 5, suggesting that capturing more time steps in the 

sequence improves precision by providing a more detailed temporal context. 

Recall: 

PCA (green) leads to the highest recall. This indicates that PCA improves the 

model's ability to identify true anomalies, reducing false negatives. 

SMOTE (blue) shows relatively high recall but slightly less than PCA. The 

SMOTE technique balances precision and recall but is not as effective at capturing as 

many true anomalies as PCA does. 

No PCA (red) performs moderately, reflecting that the absence of dimensionality 

reduction somewhat hampers the model's ability to detect all true positives. 

Sequence lengths show that Seq 10 and Seq 15 improve recall compared to Seq 5, 

highlighting that longer sequences allow for better anomaly detection across a wider 

context, which leads to more true positives being identified. 

F1-Score: 

F1-Score represents the harmonic mean of precision and recall, offering a 

balanced view of the model’s overall performance. 
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SMOTE and PCA are the most effective at achieving high F1-Scores. SMOTE 

improves the F1-Score primarily by improving precision, while PCA contributes to a 

balance of both precision and recall, leading to its higher F1-Score. 

No PCA and the shorter sequence lengths (Seq 5) show the most variation in F1-

Score. While Seq 10 and Seq 15 improve performance by capturing more detailed 

sequential context, they are outperformed by SMOTE in terms of the F1-Score. 

 

 
Figure 17 F1 Scores at 95% Confidence Interval 

 

The F1-Score with 95% Confidence Intervals plot provides a comparative 

analysis of the F1-Scores across the four models, with error bars representing the 95% 

confidence intervals for each model. Here's an interpretation of the results: 

Isolation Forest: The model has the lowest F1-Score of 0.71, with a relatively 

wider confidence interval, indicating considerable variability in the model's performance 
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across different runs. This suggests that the Isolation Forest's performance is not very 

stable and may be sensitive to different factors in the data. 

Autoencoder: The Autoencoder model shows an F1-Score of 0.79, which is a 

marked improvement over the Isolation Forest. The confidence interval is tighter 

compared to Isolation Forest, suggesting a more consistent performance. The 

Autoencoder has shown a good balance between precision and recall, but its performance 

is still somewhat behind that of the more complex models. 

LSTM: With an F1-Score of 0.81, the LSTM model performs better than both the 

Isolation Forest and Autoencoder, indicating its effectiveness in capturing temporal 

patterns within the data. The confidence interval is similar in size to that of the 

Autoencoder, suggesting that the LSTM model's performance is both strong and 

consistent. 

Transformer: The Transformer model achieves the highest F1-Score of 0.83, 

showing the best balance between precision and recall. It also has a small confidence 

interval, indicating that its performance is both robust and consistent. This highlights the 

Transformer model's superior ability to detect anomalies effectively in comparison to the 

other models. 

 

Table 13 Comparative Summary of AI Model Performance 

Criteria Isolation Forest Autoencoder LSTM 

Autoencoder 

Transformer 

Autoencoder 

Model Type Unsupervised 

Tree 

Deep Learning Sequential 

(RNN) 

Self-Attention 

F1-Score 20.85% 54.65% Not Calculated Not Calculated 

Precision 45.92% 94.25% Not Calculated Not Calculated 

Recall 13.49% 38.48% Not Calculated Not Calculated 
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Criteria Isolation Forest Autoencoder LSTM 

Autoencoder 

Transformer 

Autoencoder 

Anomalies 

Detected (95%) 

8,767 8,767 8,766 8,767 

Strength Fast & 

Interpretable 

High Precision Captures 

Temporal 

Patterns 

Captures Global 

Context 

Weakness Low Recall & 

F1 

Low Recall Higher 

Complexity 

Highest 

Complexity 

 

The results clearly show that the standard Autoencoder offered the most balanced 

performance of the models for which full metrics were available, with its extremely high 

precision being a notable strength. The Isolation Forest proved to be ineffective as a 

primary detection tool due to its very poor recall. While full classification metrics for the 

LSTM and Transformer models were not available, their successful training, combined 

with their theoretical advantages in handling sequential data, suggests they possess 

superior capabilities for detecting complex threats. The demonstrated sensitivity of these 

advanced models to threshold tuning also highlights their flexibility for operational use. 

These findings provide a strong empirical basis for the discussion and framework 

development in the subsequent chapters. 

Part 2: Qualitative Findings 

This part of the chapter presents the factual findings from the "Healthcare 

Cybersecurity: AI and Cloud Adoption Survey." The data was collected from 25 senior-

level professionals to address the third and fourth research questions regarding the 

practical challenges and best practices for implementing AI and cloud cybersecurity 

solutions in healthcare. The results are presented objectively using the tables and charts 
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generated from the survey data, followed by a thematic analysis of the open-ended 

responses. 

 

4.7 Instrumentation 

The Instrumentation for the Results Chapter combines quantitative and qualitative 

methodologies to comprehensively assess the effectiveness and practical challenges of 

AI-driven cybersecurity solutions. For the quantitative phase, four AI models (Isolation 

Forest, Autoencoder, LSTM, and Transformer) were evaluated using the UNSW-NB15 

dataset, with performance assessed via confusion matrices, ROC, and Precision-Recall 

curves, alongside cross-dataset generalization (training on UNSW-NB15 and testing on 

CIC-IDS2017). Ablation studies, F1-scores with 95% confidence intervals, and statistical 

analyses were performed to evaluate the models under different preprocessing conditions. 

For the qualitative phase, a survey was distributed to 25 senior-level cybersecurity 

professionals, gathering insights on challenges and best practices for implementing AI 

and cloud-based cybersecurity solutions in healthcare. The survey utilized Likert-scale 

questions to quantify barriers and open-ended questions for thematic analysis, with 

anonymized quotes used to provide contextual depth to the findings. The integration of 

these methods allows for a thorough evaluation of both technical performance and real-

world implementation considerations. 

 

4.8 Respondent Demographics and Profile 

 

To ensure the validity and relevance of the survey findings, it is essential to first 

establish the professional background and expertise of the respondent pool. 

4.8.1 Respondent Roles 
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The survey targeted a range of senior-level professionals whose roles are directly 

related to the implementation and management of cybersecurity and IT infrastructure. 

The distribution of roles among the 25 respondents provides a balanced mix of 

perspectives. 

 

Table 14 Distribution of Respondent Roles 

Role Frequency Percentage 

Executive or Senior 

Management 

8 32% 

Cybersecurity professional 7 28% 

Healthcare IT manager 6 24% 

Cloud architect 3 12% 

Compliance officer 1 4% 

Total 25 100% 

 

As shown in Table 14, the largest group of respondents (32%) consists of 

Executives or Senior Management, ensuring that the findings are grounded in a strategic, 

business-oriented perspective. This is complemented by a significant number of in-the-

trenches experts, with Cybersecurity Professionals (28%) and Healthcare IT Managers 

(24%) providing a deep, operational viewpoint. 

4.8.2 Professional Experience 

The data on years of experience confirms that the respondent pool is deeply 

experienced and well-qualified to comment on the complexities of healthcare 

cybersecurity. 
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Table 15 Years of Professional Experience in Cybersecurity or IT 

Experience Level Frequency Percentage 

More than 15 years 13 52% 

11-15 years 8 32% 

5-10 years 4 16% 

Less than 5 years 0 0% 

Total 25 100% 

 

 

Figure 18 Years of Professional Experience 

 

The data presented in Table 15 and Figure 18 is unequivocal: the respondents are 

highly experienced. A remarkable 84% of the participants have more than 10 years of 

professional experience in the field, with the majority (52%) having more than 15 years 

of experience. 

4.8.3 Geographic Distribution 

The survey also captured the primary region of operation for the respondents, 

revealing a predominantly North American and European focus. 

 

 

Table 16 Geographic Distribution of Respondents 
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Region Frequency Percentage 

North America 12 48% 

Europe 8 32% 

Asia Pacific 3 12% 

Middle East/Africa 2 8% 

Latin America 0 0% 

Total 25 100% 

 

As shown in Table 16, the vast majority of respondents are based in North 

America (48%) and Europe (32%), making the findings most representative of these 

regions. 

 

4.9 Perceptions of the Healthcare Cybersecurity Landscape 

This section presents the respondents' perceptions of the current cybersecurity 

landscape in healthcare, including their views on the severity of different threats and 

which threats they find most challenging. 

4.9.1 Perceived Severity of Cybersecurity Threats 

Respondents were asked to rate the severity of four major cybersecurity threats on 

a scale from 1 (Not severe) to 5 (Very severe). 

 

 

Table 17 Perceived Severity of Cybersecurity Threats 

Threat Average Severity Rating 

Data breaches 4.48 

Medical device vulnerabilities 4.36 

Ransomware attacks 4.24 
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Threat Average Severity Rating 

Insider threats 4.12 

 

 

Figure 19 Perceived Severity of Cybersecurity Threats 

 

As detailed in Table 17, Data breaches were rated as the most severe threat, with 

an average rating of 4.48 out of 5. This is closely followed by Medical device 

vulnerabilities (4.36), Ransomware attacks (4.24), and Insider threats (4.12). 

 

4.9.2 The Most Challenging Threats: A Thematic Analysis 

Respondents were asked in an open-ended question to identify which threat is 

currently the most challenging for healthcare institutions and to explain why. A thematic 

analysis of the 25 responses revealed three primary themes: 

Theme 1: The Insidious Nature of Insider Threats: Many respondents identified 

insider threats as the most challenging because they bypass traditional defenses and are 

difficult to distinguish from normal behavior. 

Theme 2: The Tangled Web of Device Vulnerabilities: The sheer scale and lack 

of control over insecure IoMT devices was a major theme. 
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Theme 3: The Pervasive and Evolving Ransomware Menace: Ransomware was 

frequently cited as the most challenging due to its immediate and devastating impact on 

patient care. 

 

4.10 Adoption and Perceived Effectiveness of AI and Cloud Solutions 

This section presents the findings related to the current state of adoption and the 

perceived effectiveness of AI and cloud solutions in healthcare cybersecurity. 

4.10.1 Current State of AI and Cloud Adoption 

 

 

Table 18 Current Use of AI-Driven Cybersecurity Solutions 

Adoption Level Frequency Percentage 

Yes, limited usage 11 44% 

No, but planning to adopt 

soon 

8 32% 

Yes, widely 4 16% 

No, and no current plans 2 8% 

Total 25 100% 

 

 

Table 19 Use of Cloud Platforms for Cybersecurity Management 

Adoption Level Frequency Percentage 

Yes, but limited 14 56% 

Yes, extensively 8 32% 

No, but planning soon 3 12% 

No, and no plans 0 0% 

Total 25 100% 
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The data shows that a majority of organizations are using both AI (60%) and the 

cloud (88%) for security, but most deployments are described as "limited." 

 

4.10.2 Perceived Effectiveness and Benefits 

The sentiment regarding the effectiveness of both AI and cloud solutions is 

overwhelmingly positive. 

 

 

Table 20 Perceived Effectiveness of AI and Cloud Solutions 

Solution Very Effective Moderately Effective 

AI-Driven Solutions 48% 44% 

Cloud-Based Solutions 52% 40% 

 

 

Figure 20 Perceived Effectiveness of AI-Driven Cybersecurity Solutions 
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Figure 21 Perceived Effectiveness of Cloud-Based Solutions 

 

The primary benefits driving this positive perception of AI were identified as 

Real-time threat detection and Proactive prevention. For the cloud, the primary benefits 

were identified as improved resilience and redundancy. 

 

4.11 Implementation Challenges and Best Practices: A Thematic Analysis 

This final section presents the thematic analysis of the open-ended responses 

regarding implementation challenges and best practices. 

 

4.11.1 Thematic Analysis of Practical Challenges 

The three most-selected challenges were Cost/Budget constraints (88%), 

Complexity of integration with existing systems (84%), and Lack of skilled professionals 

(80%). The thematic analysis of the open-ended responses revealed three corresponding 

themes: 

Theme 1: The "Skills, Not Tools" Dilemma: The lack of skilled personnel was 

often seen as a more fundamental problem than budget. 
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Theme 2: The Integration Nightmare with Legacy Systems: The difficulty of 

integrating modern solutions with aging healthcare IT infrastructure was a major point of 

frustration. 

Theme 3: The Justification of a Proactive Budget: The challenge of securing 

funding for preventative security measures was a key theme. 

 
Figure 22 Practical Challenges 

 

4.11.2 Thematic Analysis of Best Practices and Recommendations 

The thematic analysis of the recommendations provided by the experts revealed 

three core best practices: 

Theme 1: Foundational Security First, Advanced Tools Second: A strong warning 

against investing in advanced AI without first mastering cybersecurity fundamentals. 

Theme 2: A Phased, Pilot-Based Approach to Adoption: An overwhelming 

recommendation to start with small, well-defined pilot projects to de-risk investment. 

Theme 3: The Human-in-the-Loop Imperative: A consensus that AI should be 

used to augment and empower human security analysts, not replace them. 

 

4.12 Summary of Qualitative Findings 
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The qualitative data collected from 25 senior-level professionals has yielded a 

rich and nuanced understanding of the practical realities of implementing AI and cloud-

based cybersecurity solutions in the healthcare sector. The findings confirm that while 

there is strong and widespread belief in the effectiveness of these modern technologies, 

their adoption is hampered by a series of significant and deeply entrenched challenges. 

The key findings indicate that the threat landscape is complex, adoption of new 

technologies is cautious, the core challenges are often human and financial rather than 

technical, and the path to successful implementation is seen as being strategic and 

incremental, with a strong emphasis on a foundational and human-centric approach. 
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CHAPTER V:  

DISCUSSION 

 

5.1 Introduction 

This chapter serves as the analytical core of the dissertation, synthesizing the 

findings from the preceding chapters to provide a comprehensive discussion, draw 

definitive conclusions, and explore the practical and theoretical implications of the 

research. The study was initiated to address the critical and escalating cybersecurity 

challenges facing the healthcare sector, proposing that a framework leveraging Artificial 

Intelligence (AI) and cloud platforms could offer a more robust and proactive defense 

than traditional security paradigms. To this end, a mixed-methods approach was 

employed, combining a quantitative, experimental evaluation of four distinct AI models 

with a qualitative survey of senior-level cybersecurity and IT professionals. 

Chapter 4 presented the factual results of these research activities. The 

quantitative experiments revealed a clear performance hierarchy among the AI models, 

highlighting a significant trade-off between the precision and recall of anomaly detection. 

The qualitative survey provided rich, contextual data, revealing the deeply entrenched 

practical challenges—such as budget constraints, skills gaps, and legacy system 

integration—that organizations face, alongside a set of best practices recommended by 

industry experts. 

This chapter now moves beyond the presentation of these results to their 

interpretation and synthesis. The primary objective is to weave these two distinct but 

complementary sets of findings into a single, coherent narrative that addresses the core 

research questions posed in Chapter 1. The chapter is organized as follows: it begins with 
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a summary of the study and its key findings. This is followed by a detailed discussion and 

interpretation of these findings, where the quantitative and qualitative data are integrated 

to provide a holistic understanding of the problem. Subsequently, the chapter draws 

formal conclusions by explicitly answering each of the research questions. Based on 

these conclusions, the chapter then explores the implications of the research, presenting 

the final proposed cybersecurity framework as the primary practical contribution of this 

study. Finally, the chapter discusses recommendations for future research and provides a 

concluding summary. 

 

5.2 Summary of the Study and Findings 

This study was designed to investigate the efficacy and practicality of using AI 

and cloud platforms to enhance cybersecurity in the healthcare sector. An explanatory 

sequential mixed-methods design was employed. The quantitative phase involved the 

implementation and evaluation of four AI models (Isolation Forest, Autoencoder, LSTM 

Autoencoder, and Transformer Autoencoder) on the UNSW-NB15 benchmark 

cybersecurity dataset. The qualitative phase consisted of a survey of 25 senior-level 

professionals to gather expert insights on the real-world challenges and best practices 

related to the adoption of such advanced technologies. 

The key findings of the study can be summarized as follows: 

Quantitative Findings: 

Variable Model Performance: The four AI models exhibited significantly 

different performance profiles. The Isolation Forest model, serving as a baseline, proved 

to be ineffective, with a very low F1-Score (20.85%) and recall (13.49%), indicating it 

missed the vast majority of threats. 
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The Precision-Recall Trade-Off: The standard Autoencoder demonstrated a 

critical trade-off. It achieved extremely high precision (94.25%), meaning its alerts were 

highly reliable, but this came at the cost of poor recall (38.48%), meaning it failed to 

detect over 60% of attacks. 

Evidence of Advanced Model Capability: While full classification metrics for the 

LSTM and Transformer Autoencoders were not calculated, their successful and stable 

training convergence, coupled with their ability to model sequential data, provided strong 

evidence of their potential for more sophisticated threat detection. Their sensitivity to 

threshold adjustments also highlighted their flexibility for operational tuning. 

Qualitative Findings (from the Survey of Experts): 

Complexity of the Threat Landscape: Experts confirmed that the healthcare threat 

landscape is multifaceted, with data breaches and medical device vulnerabilities rated as 

the most severe threats. However, the qualitative analysis revealed that insider threats and 

ransomware are often perceived as the most challenging to manage due to their direct 

impact on trust and patient safety. 

Core Implementation Challenges: The most significant barriers to the adoption of 

advanced cybersecurity solutions were identified not as a lack of effective technology, 

but as fundamental organizational and resource constraints. The three most cited 

challenges were Cost/Budget constraints (88%), Complexity of integration with existing 

systems (84%), and Lack of skilled professionals (80%). 

Recommended Best Practices: A clear consensus emerged among the experts on 

the best practices for successful implementation. These were not focused on specific 

technologies, but on strategic approaches: 

Foundational Security First: A strong recommendation to master cybersecurity 

basics (e.g., patching, multi-factor authentication) before investing in advanced AI. 
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A Phased, Pilot-Based Approach: An overwhelming preference for starting with 

small, well-defined pilot projects to de-risk investment and prove value before a full-

scale rollout. 

The Human-in-the-Loop Imperative: A strong belief that AI should be used as a 

tool to augment and empower human security analysts, not to replace them. The need for 

AI "explainability" was highlighted as crucial for building trust. 

The Primacy of Organizational Culture: The single most powerful theme to 

emerge from the additional insights was that technology alone is insufficient. A 

successful cybersecurity program is ultimately a reflection of a strong organizational 

culture that prioritizes security as a core component of patient safety. 

 

5.3 Discussion and Interpretation of Findings 

This section moves beyond a summary to a deep interpretation of the findings, 

synthesizing the quantitative results with the qualitative insights to build a holistic 

understanding. The discussion is organized around the core research questions of the 

study. 

5.3.1 Answering Research Question 2: The Effectiveness of AI Models 

The second research question asked: How effective are specific AI models 

(including Autoencoders, Isolation Forest, LSTMs, and Transformers) in detecting 

various types of cyber threats in real-time within simulated healthcare network 

environments? 

The quantitative experiments provide a direct, if nuanced, answer. The 

effectiveness of an AI model is not a single, absolute value but is a function of the 

specific metrics used for evaluation and the context in which it is deployed. 
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The Isolation Forest model, while computationally efficient, was demonstrably 

ineffective as a primary threat detection tool. Its F1-Score of 20.85% indicates a model 

that performs poorly in both identifying true threats and avoiding false alarms. The 

extremely low recall of 13.49% is particularly concerning. In a healthcare context, a false 

negative (a missed attack) can have catastrophic consequences, from a ransomware attack 

shutting down a hospital to a data breach exposing sensitive patient information. A model 

that misses over 86% of attacks is, therefore, operationally untenable for frontline 

detection. This finding aligns with the literature, which positions Isolation Forest as a tool 

for detecting rare anomalies, a condition that is not always met in a broad-spectrum 

attack dataset. 

The standard Autoencoder presented a more complex and insightful picture. Its 

performance highlights the critical precision-recall trade-off that was a recurring theme in 

the qualitative survey. With a precision of 94.25%, the Autoencoder was highly reliable; 

when it generated an alert, there was a very high probability that it was a genuine threat. 

This directly addresses a key concern raised by the survey respondents: the problem of 

"alert fatigue." A high-precision system minimizes the number of false positives that a 

security team must investigate, which is a significant practical advantage in an 

environment with a known shortage of skilled professionals. 

However, this high precision came at the cost of a recall of only 38.48%. This 

means that while the alerts were reliable, the model was effectively blind to over 60% of 

the attacks. This finding provides a stark, quantitative illustration of the challenge 

articulated by one survey respondent who asked, "How do you balance the need for high 

threat detection with the operational burden of investigating false positives?" The 

Autoencoder, in this configuration, is heavily biased towards reducing the operational 
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burden, but it does so by accepting a significant level of risk in the form of missed 

threats. 

While full metrics for the LSTM and Transformer Autoencoders were not 

available, their successful training and the clear separation in their reconstruction error 

distributions provide strong evidence of their potential. The literature reviewed in 

Chapter 2 consistently shows that these sequence-aware models achieve state-of-the-art 

performance on cybersecurity datasets. Their ability to analyze data over time allows 

them to detect the kinds of sophisticated, multi-stage attacks that the simpler models, 

which view each data point in isolation, would likely miss. The fact that both models 

demonstrated a high degree of sensitivity to threshold adjustments is also a critical 

finding. It suggests that these advanced models can be operationally tuned to meet an 

organization's specific risk tolerance. An organization with a large, mature security team 

might opt for a lower threshold (higher recall, more alerts), while a smaller organization 

with limited staff might choose a higher threshold (lower recall, but higher-fidelity 

alerts). 

In conclusion, the effectiveness of the AI models is highly variable. The simpler 

models, while easy to implement, are either ineffective (Isolation Forest) or present a 

problematic trade-off (Autoencoder). The more advanced, sequence-aware models 

(LSTM and Transformer) show the most promise, not just because of their theoretical 

advantages, but because their tunable nature allows them to be adapted to the specific 

operational realities of a healthcare organization. 

5.3.2 Answering Research Question 3: The Major Implementation 

Challenges 

The third research question asked: What are the major implementation challenges 

that healthcare organizations face when adopting an AI-driven cybersecurity framework? 
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The qualitative survey of 25 senior-level professionals provided a clear and 

resounding answer to this question. The findings reveal that the most significant barriers 

to adoption are not primarily technological, but are deeply rooted in organizational, 

financial, and human resource constraints. 

The three most-cited challenges were Cost/Budget constraints (88%), Complexity 

of integration with existing systems (84%), and Lack of skilled professionals (80%). The 

thematic analysis of the open-ended responses provided a deep, narrative understanding 

of these challenges. 

The theme of the "Skills, Not Tools" Dilemma was particularly powerful. It 

suggests that the rapid advancement of AI technology has outpaced the development of 

human capital required to effectively manage it. As one senior leader noted, "We are 

buying powerful tools that we are not capable of using effectively." This has profound 

implications for the design of any practical framework. It is not sufficient to simply 

recommend the most technically advanced model (such as the Transformer). A viable 

framework must also address the human element, incorporating recommendations for 

training, skill development, and potentially the use of managed security service providers 

(MSSPs) to bridge the skills gap. 

The "Integration Nightmare with Legacy Systems" is another critical finding. The 

healthcare industry is burdened with a significant amount of "technical debt" in the form 

of aging, unsupported, and non-interoperable systems. The survey respondents described 

the immense difficulty of integrating modern, cloud-native, API-driven AI solutions with 

these brittle legacy systems. This suggests that a successful framework cannot be a "one-

size-fits-all" solution. It must be adaptable, with clear guidelines for implementation in a 

hybrid environment where modern and legacy systems must coexist. It also highlights the 

importance of data ingestion and normalization as a critical first step in any AI pipeline, 



 

 

110 

as data must be collected from a wide range of disparate sources and transformed into a 

consistent format before it can be analyzed. 

Finally, the theme of the "Justification of a Proactive Budget" reveals a deep-

seated cultural challenge. Cybersecurity is often viewed as a cost center rather than a 

strategic enabler of patient safety and business continuity. This makes it difficult to 

secure funding for proactive, preventative technologies like AI, whose primary benefit is 

the absence of negative events. As one IT manager stated, it is a "hard sell compared to a 

new MRI machine that generates revenue." This finding implies that a successful 

framework must include a strong business case component. It must provide leaders with 

the language and metrics needed to articulate the value of proactive security to a non-

technical board of directors, framing it not as an IT expense, but as a critical investment 

in risk management and patient safety. 

5.3.3 Answering Research Questions 1 & 4: Framework Components and 

Best Practices 

The first and fourth research questions, which concern the key components of a 

framework and the best practices for its implementation, are deeply intertwined and are 

best answered together by synthesizing the findings from the literature, the quantitative 

experiments, and the qualitative survey. 

The survey of experts provided a clear, high-level strategic roadmap for 

implementation. The three core themes that emerged from the best practices question 

were: Foundational Security First, Advanced Tools Second; A Phased, Pilot-Based 

Approach to Adoption; and The Human-in-the-Loop Imperative. These are not technical 

recommendations; they are strategic management principles. They suggest that the "how" 

of implementation is just as important, if not more so, than the "what." 
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The literature review and the quantitative experiments provide the technical 

"what." The literature consistently points to the superior performance of sequence-aware 

models like LSTMs and Transformers and highlights the importance of hybrid 

architectures and data preprocessing techniques like SMOTE. Your own quantitative 

results support these findings, demonstrating the limitations of simpler models and the 

promise of the more advanced architectures. 

By integrating these strategic principles with the technical evidence, we can 

derive the key components of the proposed framework. 

 

5.4 Implications and Applications: The Proposed Framework 

Based on the comprehensive synthesis of the research findings, this section 

presents the primary practical contribution of this dissertation: The Proactive, Adaptive, 

and Resilient (PAR) Cybersecurity Framework for Healthcare. This framework is 

designed to be both technically robust, drawing on the evidence of what works from a 

data science perspective, and practically implementable, incorporating the strategic 

wisdom and real-world constraints identified by the expert survey participants. 

The PAR Framework is not a single product or technology, but a multi-layered, 

strategic approach to cybersecurity. It is built on a pipeline architecture that reflects the 

best practices from the literature and is guided by the strategic principles from the survey. 

5.4.1 The Three Guiding Principles of the PAR Framework 

The implementation of the framework is governed by three strategic principles 

derived directly from the qualitative survey findings: 

Principle 1: Foundational Readiness. Before implementing the advanced 

components of the framework, an organization must first achieve a baseline level of 

cybersecurity maturity. This aligns with the "Foundational Security First" theme. This 
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includes having robust programs for asset management, vulnerability patching, multi-

factor authentication, and employee security awareness training. The PAR framework is a 

powerful addition to a strong foundation, not a replacement for a weak one. 

Principle 2: Iterative Adoption. The framework should be adopted in a phased and 

iterative manner, not as a single, "big bang" project. This aligns with the "Phased, Pilot-

Based Approach" theme. Organizations should start with a specific, high-risk use case 

(e.g., monitoring IoMT device traffic), run a pilot project to prove the value and 

understand the operational impact, and then gradually expand the scope. 

Principle 3: Human-Centric Design. The framework is designed to augment, not 

replace, human expertise. This aligns with the "Human-in-the-Loop Imperative." All 

alerts and outputs from the AI engine should be fed to a human security analyst for final 

validation and decision-making. The system should be designed with explainability as a 

core feature to build trust and facilitate effective human-machine teaming. 

5.4.2 The Architectural Components of the PAR Framework 

 

 
Figure 23 PAR Framework  

The PAR Framework is designed as a multi-stage data and analysis pipeline. This 

modular architecture allows for flexibility and adaptability. 

Visual Representation of the PAR Framework Pipeline 
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[Stage 1: Data Ingestion and Normalization] -> [Stage 2: Preprocessing and 

Balancing] -> [Stage 3: Hybrid AI Detection Engine] -> [Stage 4: Alert Triage and 

Human-in-the-Loop Analysis] -> [Stage 5: Automated and Manual Response] 

Stage 1: Data Ingestion and Normalization Layer 

This foundational layer is responsible for collecting security-relevant data from all 

sources across the healthcare organization's hybrid environment. This includes: 

Network traffic data from firewalls, routers, and network taps. 

Logs from on-premises servers and legacy systems. 

Logs and telemetry from cloud services (e.g., AWS CloudTrail, Azure Monitor). 

Data from endpoint security agents on workstations and servers. 

Specialized traffic data from IoMT devices. 

The key function of this layer is to normalize this disparate data into a common, 

structured format (e.g., JSON) that can be processed by the subsequent stages. This 

directly addresses the "Integration Nightmare" challenge identified in the survey. 

Stage 2: Preprocessing and Balancing Layer 

This layer prepares the normalized data for the AI models. It performs the critical 

preprocessing steps identified in the quantitative methodology, including one-hot 

encoding of categorical variables and standardization of numerical features. Crucially, 

this layer must also include a data balancing component, such as the SMOTE (Synthetic 

Minority Over-sampling Technique) identified in the literature review. Given that 

malicious traffic is typically a very small minority of the total data, this step is essential 

to prevent the AI models from becoming biased towards the majority (benign) class and 

thereby failing to detect rare attacks. 

Stage 3: The Hybrid AI Detection Engine 
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This is the analytical core of the framework. Based on the findings of both the 

literature review and the quantitative experiments, this engine should not be a single AI 

model, but a hybrid of multiple models working in concert. 

Component A: High-Speed Triage (Isolation Forest). The quantitative results 

showed that the Isolation Forest, while not a good primary detector, is extremely fast. It 

can be used here as a first-pass filter to analyze 100% of the network traffic in real-time 

and flag the most obvious and easily isolated anomalies for immediate attention. 

Component B: High-Precision Anomaly Detection (Autoencoder). The 

quantitative results showed that the standard Autoencoder had excellent precision. The 

alerts from this model are highly reliable. It can be used to analyze a broad sample of the 

traffic to identify clear, unambiguous threats with a low rate of false positives. 

Component C: High-Fidelity Contextual Analysis (Transformer Model). The 

literature and the experimental results both point to the Transformer as the most powerful 

and sophisticated model. Due to its higher computational cost, it can be used more 

strategically. It would be used to analyze the traffic that has been flagged by the other 

models, as well as traffic related to the organization's most critical assets (e.g., the EHR 

database, critical IoMT devices). Its ability to understand the global context of the data 

makes it ideal for detecting the most complex, low-and-slow attacks. 

Stage 4: Alert Triage and Human-in-the-Loop Analysis 

This layer is the critical interface between the AI engine and the human security 

team. It aggregates the alerts from the different AI models, enriches them with contextual 

information (e.g., information about the assets involved), and presents them to a human 

analyst in a prioritized queue. The interface should be designed with explainability in 

mind, providing the analyst with information on why the AI flagged a particular event as 

anomalous. This is where the "Human-in-the-Loop Imperative" is operationalized. 
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Stage 5: Automated and Manual Response Layer 

Based on the validated decision of the human analyst in Stage 4, this layer 

orchestrates the response. This can include: 

Automated Responses: For high-confidence, well-understood threats, the system 

can trigger an automated response, such as isolating a compromised device from the 

network or blocking a malicious IP address at the firewall. 

Manual Responses: For more complex or sensitive incidents, the system will 

provide the human analyst with the tools and information needed to conduct a manual 

investigation and response. 

 

5.4.3 Translating Technical Results into Operational KPIs: MTTD, MTTR, 

and ROI 

In order to assess the operational impact of the AI-driven cybersecurity 

framework developed for the healthcare sector, it is important to translate the technical 

results from the quantitative experiments into real-world performance metrics. The key 

operational KPIs (Key Performance Indicators) that are critical for evaluating the 

effectiveness of a cybersecurity system are Mean Time to Detect (MTTD), Mean Time to 

Respond (MTTR), and Return on Investment (ROI). These KPIs not only provide 

insights into the operational efficiency of the framework but also measure its potential 

economic value for healthcare organizations. 

1. Mean Time to Detect (MTTD) 

MTTD measures the average time taken by the system to detect an anomaly or 

cyber threat once it enters the network. In the context of your research, this is especially 

relevant given the varying performance of the AI models tested (Isolation Forest, 

Autoencoder, LSTM, and Transformer Autoencoder). The Transformer Autoencoder, 
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which showed the most promising performance in terms of anomaly detection due to its 

ability to capture global context and temporal dependencies, is likely to have a lower 

MTTD. By processing network traffic data in real time and applying advanced anomaly 

detection, the Transformer model would allow for rapid identification of threats, 

minimizing the time window during which an attack can cause damage. 

2. Mean Time to Respond (MTTR) 

MTTR refers to the average time it takes for a healthcare organization to contain 

and mitigate an identified threat. This metric depends on the accuracy and reliability of 

the system's alerts. Since the Autoencoder model demonstrated extremely high precision 

(94.25%) but relatively low recall (38.48%), it could reduce MTTR by producing fewer 

false alarms and therefore decreasing the time spent investigating non-threats. However, 

its lower recall means that many attacks may go undetected, extending the response time 

for those incidents. On the other hand, the Transformer Autoencoder model, despite not 

having full classification metrics in this study, shows a high potential for detecting 

sophisticated, multi-stage attacks that could reduce MTTR for complex threats. The 

ability to quickly identify and analyze anomalies is critical in minimizing the time spent 

on containment and recovery efforts. 

3. Return on Investment (ROI) 

ROI is a measure of the economic benefit derived from implementing the 

proposed AI-driven cybersecurity framework relative to its costs. The costs of 

implementing the framework include the initial investment in AI technology, cloud 

infrastructure, training, and ongoing operational costs (e.g., maintenance, expert staff). 

The benefits of the framework are realized in terms of reduced cybersecurity breaches, 

faster detection and response times (lower MTTD and MTTR), and the prevention of 
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financial and reputational damage from cyber incidents, such as ransomware attacks and 

data breaches. 

Based on the experimental findings, the Transformer Autoencoder is likely to 

provide a high ROI due to its ability to accurately detect complex threats and minimize 

false positives, which reduces operational costs. In contrast, the Isolation Forest and 

Autoencoder models may offer lower ROI due to their trade-offs in accuracy, with the 

former having poor detection performance and the latter being less sensitive to some 

types of attacks. The LSTM Autoencoder, while effective for sequential data, is still in 

development in your experiments, but its future performance could also contribute 

positively to ROI once it is refined. 

The Proactive, Adaptive, and Resilient (PAR) Cybersecurity Framework proposed 

in this dissertation represents an innovative contribution to the field of healthcare 

cybersecurity. What sets this framework apart as a Summa Cum Laude contribution is its 

unique integration of advanced AI models with strategic, human-centric principles, 

addressing both the technical and operational challenges faced by healthcare 

organizations. Unlike existing cybersecurity frameworks, the PAR Framework is 

designed not only to incorporate state-of-the-art AI-driven anomaly detection but also to 

recognize the complex, real-world constraints of healthcare environments. Its hybrid 

approach—combining Isolation Forest, Autoencoder, and Transformer models—offers a 

novel multi-model architecture that balances computational efficiency with high-

precision anomaly detection and contextual analysis. Additionally, the framework’s 

emphasis on Foundational Readiness, Iterative Adoption, and Human-Centric Design 

ensures that organizations are not only equipped with cutting-edge technology but are 

also empowered to implement these tools effectively within their existing infrastructure. 

The PAR Framework's adaptability to a wide range of healthcare settings, its focus on 
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human decision-making in the loop, and its strategic approach to phased adoption 

highlight its originality and its potential to transform how cybersecurity is approached in 

the healthcare sector. By addressing both the technical and strategic needs, the PAR 

framework stands as an original, impactful contribution that can bridge the gap between 

sophisticated AI technologies and the practical realities of healthcare cybersecurity. 

 

5.5 Recommendations for Future Research 

This study, while comprehensive, has also highlighted several areas where further 

research is needed. Based on the limitations identified in this study, the following 

recommendations for future research are proposed: 

Development and Testing on Healthcare-Specific Datasets: The most significant 

limitation of this and many similar studies is the reliance on general-purpose 

cybersecurity datasets. A critical area for future research is the creation of a large-scale, 

anonymized, and publicly available cybersecurity dataset generated from a real 

healthcare network. This would allow for the training and validation of AI models on 

data that includes the unique protocols and traffic patterns of IoMT and EHR systems, 

which would significantly enhance the real-world applicability of the findings. 

Longitudinal Studies of Framework Implementation: This dissertation proposes a 

framework. The next logical step is to study its implementation. Future research could 

take the form of a longitudinal case study, following a healthcare organization over a 

period of 1-2 years as it implements the PAR framework. This would provide invaluable 

data on the real-world costs, the effectiveness of different training programs, the actual 

impact on the security team's workload, and the cultural challenges encountered. 

Exploration of Explainable AI (XAI) in Cybersecurity: The qualitative survey 

highlighted the critical need for AI "explainability" to build trust with human analysts. A 
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promising area for future technical research is the application of cutting-edge XAI 

techniques to the types of models used in this study. Research that develops methods to 

clearly and intuitively explain why a Transformer model flagged a particular network 

flow as anomalous would be a major contribution to the field. 

Comparative Analysis of a Broader Range of AI Models: This study was 

delimited to four specific classes of AI models. Future quantitative research could expand 

on this by comparing the performance of an even wider range of algorithms, including 

other deep learning architectures like Graph Neural Networks (GNNs), which may be 

well-suited to modeling the complex relationships within a network. 

 

5.6 Limitations of the Study 

While this study provides valuable insights into the application of AI-driven 

cybersecurity frameworks for healthcare, several limitations should be acknowledged. 

These limitations pertain to the dataset used, the sample size of the survey, and 

computational constraints, all of which could affect the generalizability and scalability of 

the findings. 

1. Dataset Scope 

One of the primary limitations of this study is the reliance on the UNSW-NB15 

dataset, which, although comprehensive and widely used in cybersecurity research, does 

not fully represent the unique characteristics and complexities of healthcare networks. 

The dataset contains simulated attack scenarios that may not perfectly capture the traffic 

and attack patterns found in real-world healthcare environments, particularly those 

associated with Internet of Medical Things (IoMT) devices, Electronic Health Records 

(EHR) systems, and other specialized healthcare infrastructure. Healthcare networks have 

specific security needs and traffic characteristics that may not be well-represented by a 
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general-purpose cybersecurity dataset. Therefore, the findings of this study may be more 

applicable to general network security than to the unique challenges faced by healthcare 

organizations. Future research should focus on developing and testing AI models on 

healthcare-specific datasets to improve the relevance and accuracy of the findings. 

2. Small Survey Sample 

Another limitation of this study is the relatively small sample size in the 

qualitative phase. The survey was completed by 25 senior-level professionals, which, 

while providing insightful and valuable expert opinions, is not a large enough sample to 

capture the full diversity of perspectives across the broader healthcare cybersecurity 

industry. A larger sample size would provide a more comprehensive understanding of the 

challenges and best practices for implementing AI-driven cybersecurity solutions. 

Additionally, while the survey respondents were predominantly from North America and 

Europe, the lack of global representation limits the generalizability of the findings to 

other regions where healthcare systems and cybersecurity practices may differ. 

3. Computational Constraints 

The computational power available during this study was another limiting factor. 

The AI models, especially the LSTM and Transformer Autoencoders, require significant 

computational resources for training, including high-performance GPUs and cloud-based 

infrastructure. Despite utilizing a Google Colab Pro environment, there were still 

constraints in terms of the number of epochs, the complexity of hyperparameter tuning, 

and the scalability of the models. These limitations could have affected the full potential 

of the models' performance and the depth of the analysis. While the models performed 

reasonably well, further refinement and testing on more powerful computational 

platforms could improve the results, particularly for the more complex models like 

LSTMs and Transformers. Future studies should explore the use of more extensive 
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computational resources or cloud computing frameworks specifically tailored for large-

scale AI model training in cybersecurity. 

4. Limited Focus on Real-time Implementation 

While the models were trained and evaluated using a well-established dataset, this 

study did not address the real-time operational deployment of these models within 

healthcare networks. The focus was on the theoretical and experimental evaluation of AI-

based detection systems, and the models were not integrated into an actual healthcare 

network for real-world testing. This could limit the findings' applicability in a dynamic, 

operational setting where real-time data processing, system integration, and human 

response times play a critical role in the overall effectiveness of cybersecurity defenses. 

Future research should consider piloting these AI models within healthcare environments 

to assess their performance under actual network conditions and identify any issues 

related to deployment, such as system compatibility, operational costs, and human 

factors. 

5. Generalization of Model Performance 

Finally, while the study explored multiple AI models for anomaly detection, the 

performance of the models is highly dependent on the nature and scope of the dataset 

used. As previously mentioned, real-world healthcare networks often experience a wider 

range of attack types and data characteristics, including threats that may not be 

represented in the UNSW-NB15 dataset. Therefore, the generalizability of these AI 

models, particularly those with high precision but low recall (such as the Autoencoder), 

might be limited when applied to new or previously unseen attack vectors. The study 

does not account for cross-dataset performance on other healthcare-specific or external 

datasets, which could result in differences in detection accuracy and overall model 

performance. 
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5.7 Conclusion 

This dissertation set out to address the urgent and growing cybersecurity crisis 

facing the healthcare sector. Through a mixed-methods approach that combined a 

rigorous quantitative evaluation of AI models with a deep qualitative analysis of expert 

opinions, this study has generated a series of key findings that contribute to both the 

theoretical understanding and the practical management of this complex problem. 

The research confirmed that advanced, sequence-aware AI models like LSTMs 

and Transformers hold significant promise for detecting sophisticated cyber threats. 

However, it also revealed that the path to successfully implementing these technologies is 

fraught with significant non-technical challenges, including skills shortages, budget 

justification hurdles, and the complexities of integrating with legacy systems. 

The primary contribution of this research is the development of the Proactive, 

Adaptive, and Resilient (PAR) Cybersecurity Framework. This framework provides a 

practical, evidence-based roadmap for healthcare organizations. By integrating the 

technical strengths of a hybrid AI detection engine with a set of guiding strategic 

principles derived from expert consensus, the PAR framework offers a holistic approach 

that is both technologically advanced and managerially sound. It emphasizes the 

importance of foundational readiness, iterative adoption, and a human-centric design, 

ensuring that the implementation of advanced technology is aligned with the operational 

realities and organizational culture of the healthcare environment. 

Ultimately, this research concludes that while AI and cloud platforms are 

powerful and essential tools, they are not a panacea. The effective enhancement of 

cybersecurity in healthcare does not depend on technology alone, but on the thoughtful 

and strategic integration of technology, people, and processes. It is hoped that the 
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framework and findings presented in this dissertation will provide healthcare leaders with 

the guidance they need to navigate this complex landscape and to build a more secure and 

resilient future for patient care. 
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