CYBERSECURITY IN HEALTHCARE: Al AND CLOUD ADOPTION

Kamaljit Bawa

DISSERTATION
Presented to the Swiss School of Business and Management Geneva
In Partial Fulfillment
Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

September, 2025



CYBERSECURITY IN HEALTHCARE: Al AND CLOUD ADOPTION

By

Kamaljit Bawa

Supervised by

Hemant Palivela

APPROVED BY
dr. Jaka Vadnjal

Dissertation chair

RECEIVED/APPROVED BY:
e %ﬁ%@% Oainee

Admissions Director




Dedication

To my dearest parents: KS BAWA and JK BAWA



Acknowledgements

I must thank the participants (ICMR and Google employees) in the research for their time

and patience with me for questionnaires/surveys. Without their sincere support, I could

never finish the research work.

v



ABSTRACT

CYBERSECURITY IN HEALTHCARE: AI AND CLOUD ADOPTION

Kamaljit Bawa
2025

Dissertation Chair: Anna Provodnikova
Co-Chair: Jaka Vadnjal

The healthcare sector faces increasing cybersecurity threats, which traditional,
reactive security measures cannot effectively handle. These threats pose risks to patient
safety, data privacy, and operational continuity. This research addresses this issue by
developing a framework that integrates Artificial Intelligence (Al) and cloud platforms to
enable proactive, real-time threat detection and response while adhering to ethical
standards in data privacy and security.

The study employs an explanatory sequential mixed-methods research design.
The quantitative phase consists of an experimental evaluation of four Al-based anomaly
detection models (Isolation Forest, Autoencoder, LSTM Autoencoder, and Transformer
Autoencoder) on the UNSW-NBI15 benchmark cybersecurity dataset. The qualitative
phase involves a survey of 25 senior-level cybersecurity and IT professionals to gather
insights on the practical challenges, strategic considerations, and best practices for

implementing Al technologies in healthcare cybersecurity.



The quantitative results revealed significant performance variations among the
models, with a critical trade-off between precision and recall. The Autoencoder model
achieved high precision (94.25%) but low recall (38.48%), highlighting the challenge of
balancing false positives and false negatives. The qualitative results indicated that the
primary barriers to Al adoption are organizational and resource-based rather than
technological. Key challenges include cost constraints (88%), integration with legacy
systems (84%), and a lack of skilled professionals (80%). Experts emphasized the
importance of a strategic approach for Al implementation, including foundational
security and a human-in-the-loop approach.

While advanced Al models, especially Transformers, hold significant potential for
enhancing cybersecurity, their successful implementation requires a strategic, human-
centric approach. The research's primary contribution is the Proactive, Adaptive, and
Resilient (PAR) Cybersecurity Framework, a model that combines Al-driven detection
with strategic principles to help healthcare organizations build cybersecurity programs
that are both technologically advanced and aligned with the mission of patient safety,

while ensuring ethical data privacy standards.
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CHAPTER I:
INTRODUCTION

1.1 Background of the Study

The global healthcare sector is in the midst of a profound and irreversible digital
transformation, a paradigm shift that has fundamentally reshaped the delivery of patient
care, the management of clinical operations, and the landscape of medical research. The
widespread adoption of Electronic Health Records (EHRs) has replaced paper-based
systems with centralized, accessible digital repositories of patient information, promising
greater efficiency and fewer medical errors (Smith et al., 2020). Concurrently, the
proliferation of the Internet of Medical Things (IoMT) has connected a vast array of
devices—from patient-worn vital sign monitors and smart infusion pumps to complex
diagnostic imaging equipment like MRI and CT scanners—to hospital networks, enabling
real-time data collection and remote patient management (Jones et al., 2021). This hyper-
connectivity, further accelerated by the global demand for telemedicine and virtual care
models in the wake of the recent pandemic, has created a vast, decentralized, and data-
rich digital ecosystem (Lee & Park, 2022). While the benefits of this transformation are
undeniable, leading to improved diagnostic accuracy, personalized treatment plans, and
greater patient engagement, this evolution has simultaneously and inadvertently created
an expansive and attractive attack surface for malicious cyber actors (Portela et al., 2023).

The healthcare industry's increasing reliance on this digital infrastructure has
rendered it acutely vulnerable to a new and escalating wave of sophisticated cyberattacks.
The statistics tracking this trend are alarming and paint a clear picture of a sector under
siege. A 2025 industry report indicated that a staggering 92% of healthcare organizations

experienced at least one significant cyber intrusion in the preceding year, a notable



increase from 88% in the year prior (He et al., 2021). This is not a fleeting trend but a
sustained and intensifying pattern of targeted attacks. The consequences of these
intrusions extend far beyond the I'T department, permeating every aspect of the healthcare
delivery value chain. The average cost of a single cybersecurity compromise in
healthcare has soared into the millions of dollars, comprising a complex web of direct
and indirect expenses, including system remediation, regulatory fines for non-
compliance, legal fees, and the significant cost of operational downtime (He et al., 2021).

The financial ramifications are substantial and multifaceted. The average cost of a
single cybersecurity compromise in healthcare has soared into the millions of dollars.
These costs are not monolithic; they comprise a complex web of direct and indirect
expenses, including the costs of system remediation and recovery, regulatory fines for
non-compliance with data protection mandates like the Health Insurance Portability and
Accountability Act (HIPAA), legal fees from patient lawsuits, the provision of credit
monitoring services for affected individuals, and the significant cost of operational
downtime. These are funds which are invariably diverted from the core mission of
healthcare: patient care, medical research, and crucial infrastructure upgrades (Portela et

al., 2023).
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Figure I Average Cost of Cybersecurity Incidents
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More alarmingly, the operational impact of these attacks can be catastrophic,
posing a direct threat to patient safety. Cyberattacks, such as the infamous WannaCry
ransomware attack that crippled hospitals and clinics globally, have been shown to cause
significant and prolonged disruptions in the delivery of care. These disruptions manifest
as the mass cancellation of appointments and elective surgeries, the shutdown of critical
diagnostic equipment, delays in the delivery of time-sensitive medical procedures like
chemotherapy, and a forced reversion to inefficient and error-prone paper-based systems
for which modern clinical staff may be inadequately trained. In the most severe cases,
research has begun to draw a direct line between the operational chaos caused by

cyberattacks and an increase in patient mortality rates. This direct impact on patient well-



being, coupled with the profound and lasting erosion of patient trust and the risk of severe
reputational damage, elevates cybersecurity from a technical IT challenge to a matter of

paramount ethical, social, and public safety concern.

Figure 1.2: Types of Cyber Threats in Healthcare
Malware DDoS Attacks
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Ransomware
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Figure 2 Distribution of types of Cyber Threats in Healthcare



1.2 Problem Statement

The healthcare sector increasingly relies on electronic health records, cloud
platforms, and interconnected medical devices, yet traditional cybersecurity
approaches—primarily signature-based detection and perimeter defenses—are reactive
and ill-suited to modern threats such as zero-day exploits, advanced persistent threats,
and ransomware (He et al., 2021; Portela et al., 2023). As data flows across mobile
devices, third-party partners, and public cloud environments, the dissolution of network
boundaries creates multiple points of vulnerability (Lee & Park, 2022). At the same time,
the high value and permanence of Protected Health Information (PHI) make healthcare
organizations prime targets for cybercriminals and nation-state actors (Smith et al., 2020).
Without a shift toward proactive, behavior-based cybersecurity strategies, healthcare
institutions remain at significant risk of data breaches, operational disruption, patient

harm, and erosion of public trust (Jones et al., 2021).

Figure 1.3: Growth of Healthcare Data Breaches (2015-2024)
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Figure 3 Growth of healthcare data breaches reported to the HHS OCR (2015-2024).
Data adapted from HIPAA Journal (2025) and Fox Group (2025).



Figure 3 illustrates the rapid growth of healthcare data breaches reported to the
U.S. Department of Health and Human Services Office for Civil Rights (HHS OCR)
between 2015 and 2024. The number of reported incidents has increased from
approximately 125 in 2015 to more than 500 in 2024, representing a fourfold rise in less
than a decade (HIPAA Journal, 2025; Fox Group, 2025). This escalation is closely tied to
the increasing digitalization of healthcare, including the adoption of electronic health
records (EHRs), cloud platforms, telemedicine systems, and interconnected medical
devices. Unlike financial data, which can be replaced or reissued, Protected Health
Information (PHI) is permanent and highly valuable, making it a prime target for
cybercriminals and state-sponsored attackers. As a result, the healthcare sector has
become one of the most attractive targets for malicious actors in the digital era.

The accelerating trend after 2020 highlights both the growing sophistication of
cyberattacks and the limitations of traditional perimeter-based defenses. Conventional
security models that rely on firewalls, antivirus tools, and signature-based detection
struggle to address zero-day exploits, polymorphic malware, and advanced persistent
threats. At the same time, the dissolution of the traditional network perimeter—driven by
cloud adoption, remote access, and third-party data sharing—has multiplied potential
points of entry for attackers. The consistent rise in reported breaches underscores a
widening gap between healthcare organizations’ defensive capabilities and the evolving
threat landscape. This gap demonstrates the urgent need for proactive, Al-driven, and
cloud-enabled cybersecurity frameworks that can anticipate and mitigate emerging

threats while safeguarding patient privacy and maintaining trust in healthcare delivery.



Figure 1.4: Common Sources of Vulnerabilities in Healthcare Systems
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Figure 4 Common sources of vulnerabilities in healthcare systems, based on aggregated
reports including Censinet (2025), highlighting outdated software, weak access controls,
unencrypted data storage, vendor risks, human error, and gaps in employee training.

Censinet. (2025). 7 Critical Medical Device Security Risks in Healthcare. Censinet.
OneCl. (2025). Why Healthcare Data Security is Critical in 2025 and Beyond. OneCl.

Figure 4 illustrates the most prevalent sources of vulnerabilities in healthcare
systems, demonstrating how both technical and organizational shortcomings contribute to
cybersecurity risk. Outdated software remains the most significant factor, accounting for
35% of weaknesses. Legacy applications and unpatched medical devices often remain
operational long past their intended life cycles, creating exploitable entry points for
attackers (HIPAA Journal, 2025). Weak access controls (25%) further amplify risks, as
poor authentication protocols, shared credentials, and lack of role-based access leave

systems exposed. Similarly, unencrypted data storage (20%) reflects insufficient



safeguards for sensitive patient records, making Protected Health Information (PHI)
vulnerable to breaches and exploitation (Li, 2024).

The graph also highlights vulnerabilities arising from organizational dependencies
and human factors. Third-party vendor risks account for 10% of exposures, underscoring
the reliance of healthcare providers on external billing, diagnostic, and cloud partners
whose compromises can cascade into healthcare networks (Fox Group, 2025). Human
error and phishing attacks contribute 8%, showing that even the most advanced defenses
can be undermined by lapses in user vigilance. Additionally, the 2% attributed to lack of
employee training reflects the continued underinvestment in staff cybersecurity
awareness programs, despite their crucial role in safeguarding systems (Ponemon
Institute, 2024). Collectively, these findings emphasize that cybersecurity in healthcare is
not only a technical challenge but also a socio-technical one, requiring integration of
advanced Al-driven security solutions, cloud-based monitoring, and comprehensive

governance strategies.

1.3 Limitations, Delimitations, and Assumptions

Limitations: These are aspects of the research design that may impact the
generalizability of the findings and are outside the researcher's control.

The primary quantitative analysis relies on the UNSW-NB15 dataset. While this
is a comprehensive and respected benchmark, it is not specific to healthcare traffic. The
unique communication protocols and data signatures of specialized IoMT devices (e.g.,
DICOM for medical imaging, HL7 for health data exchange) and EHR systems have
distinct characteristics. Therefore, while the models' comparative performance is valid,
their absolute performance metrics might differ when applied to a live healthcare

network.



The study evaluates a specific set of four AI models. While these are
representative of modern approaches, the rapidly evolving field of Al means that other
algorithms, different hybrid configurations, or emerging techniques like graph neural
networks exist that were not included in the scope of the experiments. The findings are
therefore limited to the performance of the selected models and cannot be generalized to
all possible Al solutions.

Delimitations: These are the boundaries the researcher has intentionally placed
on the study to ensure a focused and feasible scope.

This research is focused specifically on network intrusion detection. It does not
address other critical areas of a holistic cybersecurity strategy, such as endpoint security
(e.g., antivirus on workstations), physical security of data centers, application-level
security within EHR software, or user identity and access management. These areas,
while vital, constitute separate domains of study.

The qualitative component of the study will rely on survey data from a selected
group of cybersecurity leaders and professionals. It does not include the perspectives of
other vital stakeholders, such as clinicians, biomedical engineers, or patients, whose
interaction with technology and perception of security also impacts the overall security
posture.

The proposed framework is designed to be technology-agnostic regarding specific
cloud service providers (e.g., Amazon Web Services, Microsoft Azure, Google Cloud
Platform). It focuses on universal architectural principles and capabilities rather than
vendor-specific implementations or proprietary services.

Assumptions: These are elements taken for granted for the purposes of this study,

forming a foundational premise for the research.



It is assumed that the UNSW-NB15 benchmark dataset is a sufficiently accurate
and realistic proxy for general network traffic to allow for a meaningful evaluation of the
Al models' baseline performance and comparative effectiveness.

It is assumed that the survey participants, selected for their expertise, will provide
honest and accurate responses based on their professional experience and knowledge,
without influence from their respective organizations' specific policies or vendor
relationships.

It is assumed that the fundamental principles of network anomaly detection—
identifying deviations from a learned baseline of normal behavior—are broadly
applicable to the detection of threats within a healthcare network environment, even with

its specialized traffic types.

1.4 Significance of the Study

This research is significant from both a practical and theoretical standpoint,
offering valuable contributions to both industry practice and academic knowledge.

Practically, the study will provide healthcare leaders, IT managers, and
cybersecurity professionals with a much-needed, actionable framework for navigating the
complexities of modern cybersecurity. In an environment of limited budgets and
competing priorities, Chief Information Security Officers (CISOs) and other leaders
require evidence-based guidance to make sound technology investments and allocate
resources effectively. The findings from this research will offer empirical evidence on the
performance of different Al models, enabling more informed and cost-effective
deployment decisions related to both in-house development and vendor selection.
Furthermore, the identification of implementation challenges and best practices will

equip organizations to manage the entire lifecycle of adoption, from ensuring HIPAA

10



compliance and data privacy to managing the crucial human factors involved in a new
security paradigm. This includes developing training programs for staff, designing
workflows for security analysts, and mitigating the pervasive issue of "alert fatigue,"
where an overwhelming volume of low-fidelity alerts can cause genuine threats to be
overlooked. Ultimately, this research can help healthcare organizations strengthen their
defenses, protect patient data, ensure continuity of care, and mitigate significant financial
and reputational risk (He et al., 2021).

Theoretically, this study will contribute to the academic body of knowledge at
the intersection of three critical fields: cybersecurity, artificial intelligence, and healthcare
management. By developing and proposing a comprehensive, integrated framework, this
research extends existing models of cybersecurity that often treat these technological and
organizational components in isolation. The empirical evaluation of multiple AI models
on a benchmark dataset provides valuable comparative data that can inform future
academic research in the specialized domain of applied machine learning for intrusion
detection. Finally, the qualitative insights into implementation challenges offer a richer,
more nuanced understanding of how advanced technologies are operationalized in a real-
world, high-stakes, and heavily regulated environment. This provides a valuable case
study for the broader field of technology management and contributes to the socio-
technical systems perspective, which posits that organizational outcomes are a product of
the complex interaction between people, technology, and processes (Kaur, Gabrijel¢i¢

and Klobucar, 2023).

1.5 Research Questions and Objectives
The purpose of this research is to address the critical security gap identified by

developing a comprehensive, evidence-based framework for leveraging the synergistic

11



power of Artificial Intelligence (Al) and cloud platforms in healthcare. To achieve this,
the study is guided by the following research questions and their corresponding

objectives.

Research Questions:

1. What are the key components and architectural considerations for a
framework that effectively integrates Artificial Intelligence and Cloud
Platforms for enhanced cybersecurity in the healthcare sector?

2. How effective are specific AI models (including Autoencoders, Isolation
Forest, LSTMs, and Transformers) in detecting various types of cyber
threats in real-time within simulated healthcare network environments?

3. What are the major implementation challenges (e.g., data privacy,
regulatory compliance, integration with existing systems, cost, and alert
fatigue) that healthcare organizations face when adopting an Al-driven
cybersecurity framework?

4. What are the recommended strategies and best practices for healthcare
organizations to successfully implement, manage, and govern an

integrated Al and cloud-based cybersecurity framework?

Research Objectives:
1. To develop a comprehensive framework for leveraging Al and Cloud
Platforms for enhanced cybersecurity in the healthcare sector.
2. To quantitatively evaluate the effectiveness of four distinct Al models
(Autoencoder, Isolation Forest, LSTM, and Transformer) for real-time

threat detection using a benchmark cybersecurity dataset.

12



3. To explore the key considerations, challenges, and best practices for
implementing such a framework by synthesizing expert opinion and
existing literature.

4. To propose actionable strategies that guide healthcare organizations in the

adoption and governance of the proposed framework.

1.6 Definition of Terms

Artificial Intelligence (AI): A branch of computer science concerned with
building smart machines capable of performing tasks that typically require human
intelligence, such as learning, reasoning, and problem-solving. In this context, it refers to
machine learning models used for anomaly detection.

Cloud Platforms: Services that provide on-demand computing resources—
including servers, storage, databases, networking, and software—over the internet (e.g.,
Amazon Web Services, Microsoft Azure).

Autoencoder: A type of unsupervised neural network that learns to compress data
into a latent representation and then reconstruct it. High reconstruction error is used to
identify anomalies.

Isolation Forest: An unsupervised learning algorithm that isolates anomalies by
randomly partitioning data points. It assumes that anomalies are "few and different" and
thus easier to isolate.

LSTM (Long Short-Term Memory): A type of Recurrent Neural Network (RNN)
capable of learning long-term dependencies, making it well-suited for analyzing

sequential data like network traffic over time.

13



Protected Health Information (PHI): Any information in a medical record that can
be used to identify an individual, and that was created, used, or disclosed in the course of
providing a health care service, as defined by HIPAA.

Transformer Model: A deep learning architecture based on the self-attention
mechanism, which allows it to weigh the importance of different parts of an input
sequence to capture global contextual relationships.

Zero-Day Attack: A cybertrack that occurs on the same day a weakness is
discovered in software. At that point, it is exploited before a fix becomes available from

the developer, rendering signature-based defenses ineffective.
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CHAPTER II:
REVIEW OF LITERATURE

2.1 Introduction

This chapter provides a comprehensive review of the academic and industry
literature that forms the foundation for this study. It begins by restating the core research
problem: the inadequacy of traditional cybersecurity measures to protect the increasingly
complex and targeted healthcare sector. The purpose of this study, as outlined in Chapter
1, is to develop a comprehensive framework that leverages the synergistic capabilities of
Artificial Intelligence (AI) and cloud platforms to address this critical security gap. A
thorough understanding of the existing body of knowledge is essential to contextualize
the research, justify its necessity, and provide a theoretical underpinning for the
methodologies and frameworks developed herein.

This literature review is organized into three main thematic sections, designed to
build a logical and compelling argument for the necessity of this research. The first
section establishes the context by providing a deep and granular examination of the
evolving cybersecurity threat landscape in healthcare. This section will move beyond a
general overview to detail the specific vulnerabilities inherent in modern healthcare IT
infrastructure—from the proliferation of insecure Internet of Medical Things (IoMT)
devices to the persistence of legacy systems—and will analyze the sophisticated attack
vectors, such as advanced ransomware and supply chain attacks, that exploit these
weaknesses.

The second, and most substantial, section explores the application of Artificial

Intelligence in threat detection. This section will serve as the core of the literature review,

15



systematically integrating the findings from a targeted quantitative review of peer-
reviewed academic studies. It will begin by explaining the paradigm shift from reactive,
signature-based detection to proactive, anomaly-based detection. It will then provide a
detailed theoretical and empirical analysis of the four classes of AI models central to this
thesis: Autoencoders, Isolation Forest, Long Short-Term Memory (LSTM) models, and
Transformer models. For each model, the review will explain its underlying mechanics,
synthesize its documented performance on the CIC-IDS-2017 benchmark dataset, and

critically analyze its strengths, weaknesses, and ideal use cases in a cybersecurity context.
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Figure 5 Literature of Cybersecurity
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The final thematic section analyzes the convergence of Al and cloud platforms,
arguing that their synergy is not merely beneficial but essential for creating a modern,
scalable, and effective security apparatus capable of meeting the demands of the
healthcare sector. This section will discuss how cloud infrastructure provides the
necessary computational power for Al and how cloud-native security services are
increasingly embedding Al to deliver advanced capabilities.

Together, these sections will demonstrate a clear and significant gap in the
existing literature: while the individual components of AI and cloud security are
discussed extensively, and their application in general cybersecurity is well-documented,
there is a discernible lack of comprehensive, integrated frameworks designed specifically
to meet the practical, operational, and stringent regulatory needs of the healthcare sector.
This review will establish the scholarly foundation for the methodology detailed in

Chapter 3, which is designed to directly address this identified gap.

2.2 Inclusion Criteria

The selection of literature for this review was guided by a systematic and rigorous
process designed to ensure relevance, quality, and currency, in line with the standards of
doctoral-level research. The objective was to build a comprehensive understanding of the
current state of knowledge from both a theoretical and a practical perspective. The search
encompassed prominent academic databases, including IEEE Xplore, ACM Digital
Library, Springer, ArXiv, and Google Scholar, as well as high-quality practitioner and
government sources.

The primary inclusion criteria for sources were as follows:

Relevance: Sources were required to directly and substantially address one or

more of the core topics of this thesis. This included scholarly work on cybersecurity
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challenges and trends specifically within the healthcare sector; the application of Al and
machine learning for network intrusion and anomaly detection; the architecture and
security of cloud computing platforms; and, most importantly, empirical studies that
evaluated the performance of the specific AI models under investigation (Autoencoders,
Isolation Forest, LSTMs, and Transformers) on relevant cybersecurity datasets.

Quality and Rigor: A strong preference was given to peer-reviewed journal
articles and conference papers from reputable venues to ensure academic rigor,
methodological soundness, and the validity of the reported findings. In addition to
academic sources, high-impact industry reports and white papers from respected
technology analysis firms (e.g., Gartner, Forrester) and major cybersecurity vendors were
included to provide a practical, real-world perspective on industry trends, challenges, and
best practices.

Currency: To ensure the analysis reflects the current state of technology and the
contemporary threat landscape, the review focused primarily on literature published
within the last five to seven years. The field of cybersecurity and Al is characterized by
rapid innovation, and recent sources are essential for a relevant analysis. Foundational,
ubiquitously cited works, particularly those that introduced key concepts or models, were
included where necessary to provide essential theoretical context.

The search process utilized a structured combination of keywords. Broad searches
were initiated with terms like "healthcare cybersecurity," "Al in cybersecurity," and
"cloud security." These were progressively narrowed with more specific terms such as

nmn

"IoMT security," "ransomware in healthcare," "Al for anomaly detection," and the names

nn

of the specific Al models paired with terms like "intrusion detection," "performance," and

"CIC-IDS-2017." This structured and multi-faceted approach ensures that the literature
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review is built upon a solid and defensible foundation of credible, relevant, and pertinent

scholarly and professional work.

2.3 The Evolving Cybersecurity Threat Landscape in Healthcare

The healthcare sector presents a uniquely challenging cybersecurity environment,
a "perfect storm" created by a complex interplay of high-value data, life-or-death
operational imperatives, and a diverse and rapidly expanding technological footprint.
Unlike other industries where a cybersecurity incident may result in financial loss or
reputational damage, a successful attack in a healthcare setting can have direct, kinetic
consequences, endangering patient safety and undermining the very foundation of public
health. Understanding the specific vulnerabilities and threats inherent in this environment
is a prerequisite for designing any effective security framework.

2.3.1 Key Vulnerabilities in Healthcare I'T Infrastructure

The literature identifies several persistent and critical vulnerabilities that make
healthcare organizations particularly susceptible to cyberattacks.

First, the proliferation of the Internet of Medical Things (IoMT) has massively
and often insecurely expanded the potential attack surface. The number of connected
medical devices, ranging from seemingly simple infusion pumps and patient vital sign
monitors to highly complex diagnostic imaging equipment like MRI and CT scanners,
has grown exponentially. Many of these devices were designed with clinical functionality
and interoperability, not security, as the primary engineering concern. This has led to a
landscape rife with systemic vulnerabilities, including the use of hardcoded,
unchangeable passwords, the transmission of sensitive patient data over unencrypted
communication channels, and the use of outdated, unsupported operating systems in their

embedded software. A significant additional challenge is the difficulty of applying
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security patches in a 24/7 clinical environment. Unlike a standard office computer, taking
a critical life-support device or a multi-million-dollar MRI machine offline for routine
security maintenance is often not operationally feasible, leaving known vulnerabilities
unpatched for extended periods.

Second, many healthcare organizations continue to rely heavily on legacy systems
for critical administrative and clinical functions. These older systems, which may be
responsible for everything from patient billing to managing laboratory information, often
run on unsupported operating systems like Windows XP or Windows 7. This means they
no longer receive security patches from the vendor for newly discovered vulnerabilities,
creating persistent and easily exploitable entry points for attackers to gain an initial
foothold into the network. The cost and complexity of replacing these deeply embedded
systems, which are often tightly integrated with other critical applications, present a
significant barrier to modernization, forcing many organizations to accept a level of risk
that would be considered untenable in other industries.

Third, the drive for interoperability, while clinically essential, creates further
security challenges. The need to share patient data seamlessly between different
systems—such as a hospital's EHR, a third-party laboratory's information system, a
pharmacy's prescription management platform, and a patient's own mobile health app—
creates a complex and often insecure web of data pathways. Each of these integration
points represents a potential vulnerability that must be secured, and a failure at any single
point can compromise the integrity of the entire data chain.

2.3.2 Analysis of Primary Threat Vectors

These vulnerabilities are actively and relentlessly exploited by a diverse range of

threat actors using increasingly sophisticated methods.
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Ransomware remains one of the most visible and damaging attack vectors
targeting healthcare. Modern ransomware attacks are often multi-stage operations.
Attackers will first gain access to a network and spend weeks or months performing
reconnaissance and exfiltrating large volumes of sensitive data before finally deploying
the encryption payload. This "double extortion" tactic—where the attackers not only
demand a ransom to decrypt the systems but also threaten to publicly release the stolen
patient data if the ransom is not paid—places immense pressure on victim organizations.
The operational impact is immediate and severe, forcing the cancellation of surgeries, the
diversion of emergency patients to other facilities, and a chaotic reversion to inefficient
and error-prone paper-based processes.

Phishing and social engineering campaigns continue to be a highly effective
initial access vector. These attacks are often tailored to the healthcare environment, with
malicious emails disguised as important communications regarding patient information,
insurance updates, or medical research. They exploit the high-pressure, fast-paced
clinical environment to trick overworked and time-constrained staff into revealing their
credentials or inadvertently deploying malware.

A particularly insidious and growing threat is the supply chain attack. In this
scenario, attackers compromise a trusted third-party software or service vendor that
provides services to the healthcare industry. By embedding malicious code into the
vendor's legitimate software updates, the attackers can gain access to the networks of all
the vendor's healthcare clients simultaneously. This allows them to bypass the direct
defenses of the hospitals themselves by exploiting the trusted relationship with the
vendor.

Finally, insider threats, both malicious and unintentional, pose a significant and

often underestimated risk. A malicious insider, such as a disgruntled employee, can abuse

21



their legitimate access to steal vast quantities of patient data for financial gain or personal
revenge. Perhaps more commonly, an unintentional insider—a well-meaning but careless
or poorly trained employee who falls for a phishing scam, misconfigures a cloud storage
bucket, or loses an unencrypted laptop containing PHI—can cause a catastrophic data
breach. The convergence of these internal and external threats creates a dynamic and
porous threat landscape where traditional, perimeter-based security is no longer

sufficient.

2.4 The Application of Artificial Intelligence in Threat Detection

In response to the limitations of traditional, signature-based security tools, the
application of Artificial Intelligence has emerged as a transformative and essential
approach to modern cybersecurity. Rather than relying on a static database of known
threat signatures, which is akin to trying to identify criminals using only a fixed set of
outdated "wanted" posters, Al-driven systems learn to identify the patterns of normal
behavior within a network and flag any deviations as potential anomalies. This paradigm
shift from a reactive, "list-based" approach to a proactive, "behavior-based" one is
fundamental to detecting novel and zero-day attacks for which no signatures exist.

The literature describes two primary machine learning approaches relevant to this
task. Unsupervised learning models, such as Autoencoders and Isolation Forest, are
particularly well-suited for this new paradigm. They are trained on datasets containing
only "normal" traffic and learn to create a highly accurate mathematical profile of what is
benign. An intuitive analogy is a security guard who has spent weeks memorizing the
face and walking gait of every authorized employee; anyone who does not match this
learned internal model of "normal" is immediately flagged for investigation, regardless of

whether they appear on a "wanted" poster. This approach is powerful for identifying
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previously unseen threats, as it does not depend on any prior knowledge of attack
structures.

Supervised learning, on the other hand, requires labeled datasets containing
curated examples of both normal and malicious traffic. To extend the analogy, this is like
giving the security guard a comprehensive photo book of known troublemakers and their
various disguises. While requiring more intensive and costly data preparation, these
models can learn to classify specific types of attacks (e.g., distinguishing a DDoS attack
from a port scan) with high accuracy. However, their effectiveness is inherently limited
to the types of attacks present in their training data, making them less effective against
novel or evolving threats.

More advanced deep learning models, particularly Recurrent Neural Networks
(RNNs) like LSTM and Transformer models, represent the state-of-the-art for analyzing
complex network data. These models excel at analyzing sequential data, such as the flow
of network packets over time. By understanding the temporal context of network
communications—how events relate to each other over a period—they can detect
sophisticated, multi-stage attacks that would appear as a series of benign, isolated events
to less advanced models that treat each packet in isolation. This ability to perform
complex feature extraction automatically and to learn from and adapt to evolving data

patterns makes Al a cornerstone of modern, proactive cybersecurity defense.

2.4.1 Performance Analysis of Autoencoder Models

Autoencoders, a class of unsupervised neural networks, have garnered significant
attention in network intrusion detection primarily for their proficiency in anomaly
detection. They operate by learning to compress input data into a lower-dimensional

latent representation (encoding) and then reconstructing the original data from this
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representation (decoding). When trained on "normal" or benign network traffic, a well-

performing autoencoder will exhibit low reconstruction error. Conversely, when

presented with anomalous traffic (i.e., an attack) that deviates from the learned patterns,

the reconstruction error will be significantly higher, thus flagging the traffic as a potential

intrusion. This capability makes them theoretically well-suited for identifying novel or

zero-day attacks that lack predefined signatures. However, as the following analysis

reveals, their practical performance is not monolithic and is profoundly sensitive to their

specific architectural configuration.

Table 1 Reported Performance of Autoencoder Models on CIC-IDS-2017

Study (Author,

Year) Accuracy | Precision | Recall |F1-Score| Model Configuration/Notes
Alhassan et al. 98.88

(2024) 98.61% | 97.00% % 98.15% 1 hidden layer, 60 neurons
Alhassan et al. 93.45

(2024) 97.95% | 95.11% % 94.82% 2 hidden layers, 60 neurons
Alhassan et al. 92.12

(2024) 97.30% | 94.40% % 90.33% 3 hidden layers, 60 neurons
Alhassan et al. 91.00

(2024) 95.70% | 90.00% % | 92.11% 4 hidden layers, 60 neurons
Alhassan et al. 98.88

(2024) 95.11% | 94.00% % | 98.85% 1 hidden layer, 30 neurons

Deep Autoencoder (DAE) only,
Kumar et al. (2025)| 94.00% - - - prior to ensemble
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Shone et al. (2018) High - - - Stacked deep autoencoder

Hindy et al. (2020) | 75-98% - 98% - not overall accuracy

Synthesis and Analysis of Findings:

A crucial finding from the literature is that the performance of an autoencoder is
not a fixed attribute but is instead highly contingent on its internal architecture,
specifically the number of hidden layers and neurons. A common assumption that
"deeper" or more complex models inherently perform better is directly challenged by the
empirical evidence. The work of Alhassan et al. (2024) provides a compelling and
systematic demonstration of this principle. The results consistently show an inverse
relationship between model depth and performance in this context. The best-performing
model was the simplest: a single-hidden-layer autoencoder with 60 neurons achieved a
remarkable accuracy of 98.61%. In stark contrast, the most complex model, featuring
four hidden layers, saw its accuracy drop to 95.70%.

This performance degradation with increasing depth is linked to the model's
reconstruction error. As more layers are added, the model's complexity increases, which
can paradoxically make it more difficult to learn a compact and accurate representation of
the benign traffic profile. For a practical cybersecurity framework, this finding is of
paramount importance. It suggests that a strategy of "start simple" is empirically
validated.

A primary motivation for using unsupervised models like autoencoders is their

theoretical capacity to detect zero-day attacks. The study by Hindy et al. (2020) explores
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this specific application, showing a wide range of detection accuracy (recall) from 75% to
98%, depending on the specific attack type and the chosen detection threshold. This
highlights a critical trade-off inherent in anomaly detection systems: the balance between
recall (detecting true threats) and the false-positive rate (incorrectly flagging benign
traffic). In a healthcare environment, where IT staff are already overburdened, a high
volume of false positives can lead to "alert fatigue," causing genuine threats to be
overlooked.

Beyond their use as standalone detectors, autoencoders also serve as powerful
components within larger, hybrid systems. A study by Kumar et al. (2025) exemplifies
this, designing an ensemble that combines a Deep Autoencoder (DAE) with a
Convolutional Neural Network (CNN). In their experiments on CIC-IDS-2017, the DAE,
when evaluated on its own, achieved a respectable accuracy of 94%. This dual role—as
both a standalone anomaly detector and a feature extractor in an ensemble—underscores

the versatility of autoencoders in a comprehensive cybersecurity toolkit.

2.4.2 Performance Analysis of Isolation Forest

Isolation Forest is another unsupervised learning algorithm designed for anomaly
detection, but its operational principle differs significantly from that of autoencoders.
Instead of profiling normal data, Isolation Forest explicitly isolates anomalies. It is built
on the premise that anomalies are "few and different," meaning they are easier to separate
from the rest of the data points. The algorithm builds an ensemble of "isolation trees" and
calculates the average number of random splits required to isolate a given data point.
Anomalies, being rare, are expected to have a much shorter average path length to
isolation than normal points. This makes the algorithm computationally efficient and

theoretically adept at identifying novel threats. However, the empirical evidence reveals a
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critical paradox: its strength in isolating rare events is also the source of its most

significant weakness as a general-purpose intrusion detector.

Table 2 Reported Performance of Isolation Forest on CIC-IDS-2017

Study (Author,
Year) Accuracy | Precision | Recall |F1-Score Context/Scenario
Lopez-Martin et al. Benign Traffic, 1% Attack
(2024) - 99.69% [92.11% | >0.95 Prevalence
Lopez-Martin et al. Benign Traffic, 100% Attack
(2024) - 70.46% |93.74% | 80.10% Prevalence
Lopez-Martin et al. Attack Traffic, 1% Attack
(2024) - 2.80% |44.20% | 5.30% Prevalence
Lopez-Martin et al. Attack Traffic, 100% Attack
(2024) - 58.90% [21.10% | 31.10% Prevalence
Vinayakumar et al. Intra-dataset evaluation
(2019) 93.14% | 94.70% |91.11% | 93.91% (trained/tested on 2017)
Vinayakumar et al. Cross-dataset evaluation (trained
(2019) 35.62% | 0.7573 | 0.4479 | 0.4845 on 2017, tested on 2018)

Synthesis and Analysis of Findings:

The comprehensive analysis by Lopez-Martin et al. (2024) provides a stark

illustration of the model's "performance paradox." When attacks are rare (e.g., at 1% of

total traffic), the model performs its intended function well for the majority class,

achieving a precision of 0.9969 for benign traffic. However, its performance on the attack
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traffic itself is already poor, with a catastrophic F1-Score of just 0.053. The truly
revealing finding is what happens as attack prevalence increases. The recall for attack
traffic plummets from 0.442 at 1% prevalence to a dismal 0.211 when attacks constitute
100% of the traffic. This means that when the network is under a full-scale assault, the
model misses nearly 80% of the attacks. The F1-score for attacks never surpasses 0.311,
a value the authors describe as "operationally useless."

This counterintuitive behavior is a direct consequence of the model's design. The
algorithm is built to "isolate" data points that are few and different. When an attack
becomes widespread (e.g., during a DDoS flood), its traffic is no longer "few." It
becomes a dominant pattern in the data. The algorithm, performing as designed, no
longer sees this prevalent attack traffic as an easily-isolated anomaly. For a healthcare
cybersecurity framework, it should not be positioned as a primary line of defense.
Instead, its role should be carefully circumscribed to that of a first-stage filter for
detecting novel, low-volume, or emerging threats.

Beyond its issues with attack prevalence, Isolation Forest also demonstrates
significant weaknesses in generalization. The study by Vinayakumar et al. (2019)
provides a clear quantitative measure of this weakness. In a standard intra-dataset
evaluation, Isolation Forest achieved a respectable accuracy of 93.14%. However, in a
more rigorous cross-dataset evaluation, training the model on CIC-IDS-2017 and testing
it on a different dataset, CSE-CIC-IDS-2018, accuracy plummeted to just 35.62%. This
dramatic drop indicates that the model had overfit to the specific statistical properties of

the 2017 dataset and was unable to generalize its learned rules to a new environment.
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2.4.3 Performance Analysis of LSTM Models

Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural

Network (RNN), are exceptionally well-suited for tasks involving sequential data.

Network traffic, when viewed as a flow of packets over time, is fundamentally a time-

series problem, making LSTMs a natural and powerful choice for intrusion detection.

Unlike standard feedforward networks, LSTMs possess internal memory cells and gating

mechanisms that allow them to learn and remember patterns over long sequences. This

ability to capture temporal dependencies is critical for detecting sophisticated, multi-stage

attacks that unfold over time. The literature consistently reflects this theoretical strength,

with LSTM-based models demonstrating state-of-the-art performance on the CIC-IDS-

2017 dataset.

Table 3 Reported Performance of LSTM Models on CIC-IDS-2017

Study (Author, | Accurac | Precisio
Year) y n Recall |F1-Score Model Type/Notes
Sayegh et al. 96.99% | 99.74% | 98.35% | LSTM with SMOTE for data
(2024) 99.34% | (Attack) | (Attack) | (Attack) balancing
LSTM for multi-class
Anonymous (2022) | 99.77% - - - classification
Hypertuned LSTM for binary
Bibi (2023) 99.20% | 99.00% | 99.00% | 99.00% classification
Anonymous (2025) | 99.50% - - - RNN:-leveraging LSTM
Anonymous (2024) | 98.00% - - - Standalone LSTM performance
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(compared to RF)

LSTM on CICIDS2017

Anonymous (2023) | 99.00% - - - (compared to other datasets)

Synthesis and Analysis of Findings:

The empirical results from multiple independent studies converge on a clear
conclusion: LSTM models achieve consistently high, state-of-the-art performance on the
CIC-IDS-2017 dataset. A study by Sayegh et al. (2024) reports an overall accuracy of
99.34% for their LSTM-based IDS. Critically, their model achieved an exceptional recall
of 99.74% and an F1-Score of 98.35% for the "attack" class, indicating a powerful ability
to correctly identify malicious traffic with very few false negatives. Other studies
corroborate these top-tier results. Bibi (2023) developed a hypertuned LSTM that reached
99.2% accuracy with a 99% F1-Score for binary classification.

While standalone LSTMs are powerful, the literature reveals a strong trend
toward even greater performance through hybridization and optimization. A particularly
common and successful pairing is the CNN-LSTM model. In this architecture, a
Convolutional Neural Network (CNN) is first used to act as a feature extractor. The rich
feature maps generated by the CNN are then flattened and fed into an LSTM, which
models the temporal relationships between these extracted features over time. This
synergistic approach combines the spatial feature extraction strength of CNNs with the
sequential modeling strength of LSTMs.

A deeper analysis of the methodologies used in the highest-performing LSTM

studies reveals a crucial, unifying factor: the use of data balancing techniques. The CIC-
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IDS-2017 dataset, like most network traffic logs, is inherently and highly imbalanced. If a
model is trained on such a raw, imbalanced dataset, it will naturally become biased
towards the majority class (benign traffic). The top-performing studies explicitly address
this challenge by using techniques like SMOTE (Synthetic Minority Over-sampling
Technique). SMOTE works by creating new, synthetic examples of the minority (attack)
classes, effectively balancing the dataset before it is fed to the LSTM. This finding has a
profound implication for the design of the proposed DBA framework. It is not sufficient
to simply select a powerful model like an LSTM. The framework's methodology must
incorporate a data balancing stage as a mandatory, non-negotiable step in the data

preprocessing pipeline.

2.4.4 Performance Analysis of Transformer Models

Transformer models, first introduced for natural language processing, have
rapidly emerged as a revolutionary force across numerous machine learning domains,
including cybersecurity. Their core innovation is the self-attention mechanism, which
allows the model to weigh the importance of different parts of the input sequence when
processing a specific part, regardless of their distance from each other. This enables
Transformers to capture complex, long-range dependencies and global contextual
relationships within data in a way that is often more effective and computationally
parallelizable than the sequential processing of RNNs and LSTMs. When applied to
network intrusion detection, Transformers treat network traffic flows as "sentences" and
learn the intricate "grammar" of both benign and malicious communications, leading to

state-of-the-art performance.
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Table 4 Reported Performance of Transformer Models on CIC-IDS-2017

Study (Author, | Accurac | Precisio
Year) y n Recall |F1-Score Model Type/Context
PCA-Transformer (Binary
Kamal et al. (2025) | 99.72% | 99.72% | 99.72% | 99.71% Classification)
PCA-Transformer (Multi-Class
Kamal et al. (2025) | 99.45% | 99.69% | 99.45% | 99.40% Classification)
CNN-BiLSTM-Transformer
Anonymous (2025) | 99.80% - - - Hybrid
BERT-IDS (Transformer-based)
Mia al. (2025) - 91.00% | 88.00% | 89.00% for Zero-Day
TabNet (Attentive Mechanism
Anonymous (2023) | 97.00% - - - similar to Transformers)

Synthesis and Analysis of Findings:

The empirical evidence strongly positions Transformer-based models at the apex

of performance for intrusion detection on the CIC-IDS-2017 dataset. A standout example

is the PCA-Transformer model developed by Kamal et al. (2025). This hybrid model

achieved a near-perfect accuracy of 99.72% with an F1-Score of 99.71% in binary

classification. Perhaps more impressively, it maintained an accuracy of 99.45% and an

F1-Score of 99.40% in the much more difficult multi-class classification task.

The fundamental reason for this superior performance lies in the self-attention

mechanism. While LSTMs are excellent at capturing sequential dependencies, they

process information in a linear, step-by-step fashion. Transformers, in contrast, can create
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direct connections between any two points in the sequence, regardless of their position.
This allows the model to learn the global context of the entire network flow
simultaneously.

As with LSTMs, the power of Transformers is often magnified when they are
integrated into sophisticated hybrid architectures. One such model reported in the
literature is a CNN-BiLSTM-Transformer hybrid, which achieved a remarkable 99.80%
accuracy on CIC-IDS-2017. This architecture represents a comprehensive approach: the
CNN extracts local spatial features, a Bidirectional LSTM (BiLSTM) processes the
sequence of these features in both forward and backward directions to capture temporal
context, and the Transformer layer sits on top to model the global, long-range
dependencies across the entire sequence.

Modern cybersecurity datasets like CIC-IDS-2017 are characterized by high
dimensionality. Transformer models are not only adept at handling this complexity but
are also being paired with other advanced techniques to further enhance their capabilities.
The PCA-Transformer model from Kamal et al. (2025) is a prime example. Before the
data is fed to the Transformer, Principal Component Analysis (PCA) is used for
intelligent dimensionality reduction. PCA identifies the principal components that capture
the most variance in the data, effectively reducing noise and computational overhead

while retaining the most informative signals.

Table 5 Mapping Table

Study Dataset Split Metric

Accuracy: 98.61%, Precision:

Alh L |lcic-Ips-
assan etal. |CIC-IDS- 0 oecified 97.00%, Recall: 98.88%, F1-

2024 201

(2024) 7 Score: 98.15%
K t al. CIC-IDS- )

(21(;;152;1. cta 2017 Not specified Accuracy: 94%
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Study Dataset Split Metric
Sh t al. CIC-IDS- : . . -
@ 0011;:) cta 2017 Not specified High (exact metric unspecified)
Recall: 75%—989 ifi
Hindy et al. CIC-IDS- Not specified atf:fk 75;0 I?St/;\f:f;(l:l N
(2020) 2017 P types,
accuracy)
] Precision: 99.69%, Recall:
Lopez-Martin et | CIC-IDS- 1% Attack Prevalence 92.11%, F1-Score: >0.95
al. (2024) 2017 ) .
(Benign Traffic)
Precision: 70.46%, Recall:
L -Martin et ||CIC-IDS- ’
alOI();(Z)z 4)” D 017 |[100% Attack Prevalence |93.74%, F1-Score: 80.10%
) (Benign Traffic)
Lopez-Martin et |[CIC-IDS- Recall: 44.20%, F1-Score:
1% Attack Preval i
al. (2024) 2017 /o Attack Prevalence |l 300 A ttack Traffic)
Lopez-Martin et ||CIC-IDS- Recall: 21.10%, F1-Score:
100% Attack Preval ’
al. (2024) 2017 /o Attack Prevalence fl) 6o, yack Traffic)
. A : 93.14%, Precision:
Vinayakumar et ||CIC-IDS-|/Intra-dataset evaluation ceuracy: 93.14%, Precision

94.70%, Recall: 91.11%, F1-

L. (201 201 201
al. 2019) U S Score: 93.91%
A : 35.62%, Precision:
Vinayakumar et |[CIC-IDS-||Cross-dataset evaluation 0 ;(;l;r; Cl}éecall' 0/21, 4 7r9e011:s11 on
L. (2019 2018 20172018 ' ’ S o
al. ( ) ( - ) Score: 0.4845
A : 99.34%, Recall:
Sayegh etal.  |CIC-IDS-|SMOTE for data eearacy %, Reca
(2024) 2017 balancin 99.74%, F1-Score: 98.35%
£ (Attack Class)
. CIC-IDS- ) Accuracy: 99.20%, F1-Score:
Bibi (2023) 2017 Not specified 99.00%
Anonymous CIC-IDS- : Accuracy: 99.50% (RNN-
fi
(2025) 2017 | Notspecified leveraging LSTM)
A : 98.00% (St 1
Anonymous CIC-IDS- ' ccuracy: 98.00% (Standalone
Not specified LSTM compared to Random
(2024) 2017
Forest)
Anonymous CIC-IDS- ) Accuracy: 99.00% (LSTM on
Not fied
(2023) 2017 Ot speethe CICIDS2017, compared to
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Study Dataset Split Metric

other datasets)

Kamal et al. CIC-IDS-||PCA-Transformer (Binary||Accuracy: 99.72%, F1-Score:
(2025) 2017 classification) 99.71%
Kamal et al. CIC-IDS-||[PCA-Transformer (Multi- |[Accuracy: 99.45%, F1-Score:
(2025) 2017 class classification) 99.40%
Anonymous CIC-IDS-||CNN-BiLSTM- ' o
(2025) 2017 Transformer Hybrid Accuracy: 99.80%

) CIC-IDS-|BERT-IDS (Transformer- |[Precision: 91.00%, Recall:
Mia etal- (2025) 1)1 |lbased for Zero-Day) 88.00%, F1-Score: 89.00%
Anonymous CIC-IDS.- TabNet (similar to

(2023) 2017 Transformer’s attentive  ||Accuracy: 97.00%

mechanism)

2.5 The Convergence of AI and Cloud Platforms for Security

While Al provides the analytical "brain" for modern cybersecurity, cloud
platforms provide the necessary "body" and "nervous system" to make it effective at
scale. The sheer volume, velocity, and variety of data generated by a modern healthcare
network—from IoMT devices, EHRs, mobile apps, and general network traffic—requires
a level of computational power and storage that is often impractical and cost-prohibitive
to maintain on-premises. Cloud platforms offer the elastic, scalable infrastructure needed
to support the intensive data processing and model training requirements of Al-driven
security solutions. An organization can scale up resources for intensive model training
and then scale them down for routine monitoring, a flexibility that is difficult to achieve
with the fixed capital expenditure of on-premises hardware.

The synergy between Al and the cloud extends beyond raw computing power.

Cloud-native security services, such as advanced Security Information and Event
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Management (SIEM) systems and Extended Detection and Response (XDR) platforms,
are increasingly integrating Al capabilities directly into their offerings. This provides
organizations with access to sophisticated threat intelligence feeds, automated
compliance monitoring, and Al-powered analytics "as a service," without requiring
extensive in-house data science expertise. Furthermore, the centralized nature of a cloud
environment allows for a unified view of security across the entire organization. This
"single pane of glass" is invaluable for a Security Operations Center (SOC) team, as it
allows them to correlate events from disparate sources—for example, linking a suspicious
login from a remote device to an unusual database query in the cloud—to identify a
complex attack chain. This makes it easier to enforce consistent security policies, monitor
for threats in real-time across all assets, and orchestrate an automated response to
detected incidents.

This convergence creates a powerful, positive feedback loop. The cloud gathers
and centralizes vast amounts of security data from diverse sources. This rich, aggregated
data is then used to train more accurate and effective Al models. These improved Al
models, in turn, provide more precise and timely threat detection, which enhances the
overall security posture of the cloud environment, allowing for even more secure data
collection and analysis. This integrated approach is fundamental to building a security
framework that is not only powerful but also agile and capable of adapting to the

dynamic threat landscape facing the healthcare sector.
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2.6 Regulatory, Risk, and Governance Synthesis for AI-Driven Cybersecurity in

Healthcare

2.6.1 Regulatory Convergence and Tensions

Healthcare cybersecurity is governed by a patchwork of privacy, safety, and
operational standards. HIPAA/HITECH emphasize confidentiality, integrity, and
availability (CIA) of PHI; GDPR centers lawfulness, fairness, transparency, and data
minimization; PIPEDA and provincial regimes in Canada stress reasonableness and
accountability. For cloud-and-Al security, three tensions recur:

Purpose limitation vs. anomaly detection: Anomaly detection thrives on broad
telemetry retention; privacy regimes push strict scoping and retention limits.

Explainability vs. model performance: Security models that maximize recall (e.g.,
sequence models) are often least interpretable, complicating accountability and incident
justification to regulators.

Cross-border processing: Multi-region clouds enable resilient security analytics,
but data residency, Schrems-style transfer constraints, and vendor sub-processors

complicate lawful bases.

2.6.2 Security Governance Models for Al

Modern governance blends NIST CSF 2.0 controls (Identify-Protect-Detect-
Respond-Recover) with Al governance layers (model risk management, bias testing, drift
monitoring). In healthcare, “safety-of-care” reframes cyber events as clinical risk. Boards
increasingly adopt risk appetite statements that quantify tolerances for mean time to
detect (MTTD), false negative risk, and residual ransomware exposure, not just breach

counts. A practical pattern is the Security Model Risk Committee (SMRC)—a cross-
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functional body (CISO, CDO, Privacy Officer, CMIO, Legal) that approves model uses,

data sources, and post-incident learning.

2.6.3 Trustworthy Al for Security

Trust in Al-security depends on provenance (tamper-evident pipelines),
explainability (human reviewable rationales), calibration (thresholds mapped to operating
risk), robustness (adversarial resistance), and governance artifacts (model cards, data
sheets, approval logs). Clinically aligned organizations increasingly require “clinical-
grade” security analytics: validated alert definitions, periodic re-validation, change

controls, and back-out plans—mirroring medication safety governance.

2.6.4 Economic Frictions and Externalities

Security ROI is notoriously invisible (“breaches that didn’t happen”). Cloud + Al
clarifies value when tied to:

Downtime avoided (diverted surgeries, ED diversions).

Incident labor saved (L1 triage automation).

Cyber-insurance premiums reduced (control attestation).

Regulatory penalties avoided (demonstrable due diligence).
A recurring externality: model false negatives raise systemic risk for regional referral
networks (shared labs, HIEs). Hence, sector alliances (e.g., ISACs) and federated threat

telemetry are becoming governance necessities, not nice-to-haves.

2.7 Open Debates
While the integration of Artificial Intelligence (AI) in healthcare cybersecurity

shows promise, there are several ongoing debates and challenges within the field that
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merit discussion. These challenges primarily revolve around dataset bias, cross-dataset
issues, and the Isolation Forest paradox. Understanding these issues is crucial for
improving the reliability and applicability of Al-driven cybersecurity solutions in
healthcare.

Dataset Bias

A recurring issue in the Al and machine learning domain is dataset bias. The
datasets used to train and evaluate models often contain inherent biases that can impact
model performance. This is particularly concerning in cybersecurity, where the types of
attacks seen in training data may not accurately reflect the diversity of real-world threats.
For example, many cybersecurity datasets (including CIC-IDS-2017) may over-represent
certain types of attacks while under-representing others, leading to models that perform
well on familiar attack types but poorly on less common or emerging threats (He et al.,
2021).

In the healthcare domain, where new attack methods constantly emerge, training
Al models on biased datasets can lead to a failure to generalize effectively. Furthermore,
healthcare data is inherently imbalanced, with benign traffic overwhelmingly
outweighing malicious traffic. This imbalance exacerbates the risk of false positives and
alert fatigue, which can undermine the effectiveness of AI models in real-time
operational environments (Portela et al., 2023). The Health Insurance Portability and
Accountability Act (HIPAA) mandates that healthcare organizations ensure the
confidentiality and integrity of protected health information (PHI) and implement
security measures to prevent unauthorized access (U.S. Department of Health and Human
Services [HHS], 2020). Failure to address dataset biases in Al models can lead to
breaches of patient privacy and increased vulnerability to cyber threats, which could

directly conflict with HIPAA's security requirements under Section 164.306.
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Cross-Dataset Issues

Another significant challenge in evaluating Al models is the cross-dataset issue.
Many studies in cybersecurity train and test their models on a specific dataset, such as
CIC-IDS-2017, but do not assess how well the models generalize to other datasets. The
performance of a model can vary significantly when trained on one dataset and tested on
another, as the statistical properties of network traffic, attack patterns, and even feature
distributions can differ across datasets (Lee & Park, 2022).

This issue of dataset overfitting is particularly critical in cybersecurity, where
attackers constantly evolve their methods. For example, Vinayakumar et al. (2019)
reported that the Isolation Forest model, when trained on the CIC-IDS-2017 dataset,
showed much lower performance when tested on a different dataset (CSE-CIC-IDS-
2018). This raises concerns about the robustness of Al models in real-world scenarios,
where data environments are dynamic and ever-changing. General Data Protection
Regulation (GDPR) emphasizes that organizations must ensure the accuracy and
timeliness of personal data and maintain data integrity under Article 5(1)(d). If AI models
are evaluated and deployed based solely on a single dataset, and they fail to generalize to
others, they may inadvertently result in inaccurate security assessments, which could

violate GDPR's principles of data accuracy and security.

Isolation Forest Paradox

A particularly intriguing issue is the paradox of the Isolation Forest model, as
observed in the studies reviewed. While the Isolation Forest is a popular unsupervised
learning algorithm for anomaly detection, its design inherently limits its effectiveness in
certain scenarios. The model is optimized to detect rare anomalies by isolating data points

that differ significantly from the norm. However, when attacks are widespread, such as in
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DDoS or ransomware attacks, these attacks no longer appear as "rare" anomalies. Instead,
they become prevalent patterns, and the Isolation Forest model fails to recognize them
effectively (Lopez-Martin et al., 2024).

The study by Lopez-Martin et al. (2024) clearly illustrates this performance
paradox. When the attack prevalence was low (e.g., 1% of the total traffic), the model
performed well in detecting benign traffic with high precision. However, when attacks
became the majority of the traffic (100%), the model’s recall for attack traffic dropped
dramatically, resulting in missed detections of the majority of attacks. This paradox
highlights the limitations of relying solely on the Isolation Forest in real-world
cybersecurity environments, where the nature and scale of attacks vary. He et al. (2021)
suggest that combining multiple models could address this issue by utilizing the strengths

of different algorithms to detect both rare and widespread attacks.

2.8 Integrating Ethical Al in Healthcare Cybersecurity

The integration of ethical Al frameworks into healthcare cybersecurity systems is
becoming a pressing need as healthcare institutions increasingly adopt Al and cloud
technologies to manage cybersecurity. The complexities surrounding these technologies
require careful consideration of ethical principles to ensure patient privacy, fairness, and
accountability while also improving threat detection and response capabilities.

Patient Privacy

Ensuring patient privacy is central to the ethical use of Al in healthcare
cybersecurity. Al technologies, while enhancing the detection of cyber threats, often
require access to vast amounts of sensitive health data. According to recent studies,
including one from the International Journal of Innovative Research in Computer and

Communication Engineering (2024), the integration of Al in healthcare cybersecurity
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brings to light significant concerns over data privacy, informed consent, and algorithmic
bias (Talati, 2024). To address these issues, Al systems should be designed with
mechanisms such as federated learning or differential privacy, which allow for secure
data processing without compromising patient privacy. Furthermore, transparent consent
frameworks must be established to ensure that patients understand how their data is used
and are able to exercise control over it.

Fairness in AI Models

Al systems can inadvertently perpetuate or even exacerbate existing biases, which
could result in unfair treatment or inadequate cybersecurity responses for certain patient
groups. Research on this topic, such as the study by Krunal Manilal Gala (2024) in the
International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, stresses the importance of addressing biases in Al models used
for threat detection in healthcare (Gala, 2024). Ethical frameworks must include
procedures for regular audits and bias mitigation strategies to ensure that Al systems
remain equitable. These audits would evaluate Al decision-making processes to prevent
discriminatory practices and improve the fairness of healthcare cybersecurity measures.

Accountability and Transparency

The integration of Al into cybersecurity systems raises critical issues related to
accountability and transparency. Studies, including one from Sidra Nasir et al. (2023),
highlight the need for Al frameworks that not only promote transparency but also ensure
that decisions made by Al systems are explainable and traceable (Nasir et al., 2023). As
Al systems detect and respond to cybersecurity threats, it is essential to establish clear
accountability frameworks that define responsibility when failures occur. Moreover,

stakeholders in healthcare cybersecurity must have access to the necessary tools for
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auditing and understanding Al-driven decisions, which can be accomplished through
clear documentation and transparent algorithms.

Ethical Integration Strategies

To effectively integrate ethical AI frameworks into healthcare cybersecurity
systems, it is crucial to adopt a collaborative approach involving Al developers,
cybersecurity professionals, and healthcare providers. As emphasized by Babajide
Tolulope Familoni (2024), the development of ethical Al systems in healthcare should
involve continuous monitoring, governance, and proactive risk assessments to ensure that
ethical principles are followed throughout the lifecycle of Al technologies (Familoni,
2024). Additionally, ensuring that these systems are designed with human oversight in
mind is a key element of an ethical Al framework. Human intervention is necessary to
prevent Al systems from making irreversible decisions, especially when it comes to

sensitive health data.

2.9 Summary

This review of the literature has established a clear and compelling case for the
necessity of this research. It began by outlining the severe and escalating cybersecurity
threats facing the healthcare sector, which are driven by a unique combination of valuable
data, critical infrastructure, and an expanding attack surface. It then demonstrated that
traditional security measures, which are largely reactive and signature-based, are
insufficient to meet this challenge.

The review subsequently explored the potential of Artificial Intelligence,
particularly deep learning models like LSTMs and Transformers, to provide a more
proactive and intelligent approach to threat detection by learning from data. Finally, it

argued that the convergence of Al with the scalable and centralized nature of cloud
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platforms creates the necessary technological foundation for a modern cybersecurity
framework.

A clear gap has been identified: while the individual components of Al and cloud
security are discussed extensively in the literature, there is a lack of comprehensive,
integrated frameworks designed specifically to meet the practical, operational, and
regulatory needs of the healthcare sector. This study aims to fill that gap. The following
chapter, Chapter 3, will detail the mixed-methods research methodology designed to
build and validate such a framework, combining quantitative model evaluation with

qualitative expert insights.
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CHAPTER III:
METHODOLOGY

3.1 Introduction

This chapter provides a detailed and comprehensive account of the research
methodology employed to address the research questions outlined in Chapter 1. The
primary purpose of this research is to develop and validate a practical, evidence-based
framework for leveraging Artificial Intelligence (Al) and cloud platforms to enhance
cybersecurity within the complex healthcare sector. To achieve this, a mixed-methods
approach was adopted, integrating a rigorous quantitative experimental phase with a
qualitative survey-based phase to gather expert insights. A sound and transparent
methodology is the cornerstone of credible research, ensuring that the findings are not
only valid and reliable but also that the process is
reproducible by other scholars in the field.

This chapter is structured to provide a transparent

Data Collection

and reproducible description of the research process,
ensuring the validity and reliability of the findings i
presented in subsequent chapters. It begins by outlining

S . ' Model Training
and justifying the selection of an explanatory sequential

mixed-methods research design, which is particularly well- i
suited to the applied nature of a Doctor of Business

Survey
Administration (DBA) dissertation that seeks to bridge the
gap between technical performance and practical i
implementation.

Analysis
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Following the research design, the chapter is divided into two main sections
corresponding to the two phases of the study. The first section provides a meticulous
account of the quantitative methodology. This includes a detailed description of the
benchmark dataset used for the experiments, its characteristics, and the rationale for its
selection. It is followed by a step-by-step walkthrough of the data preprocessing pipeline,
a thorough explanation of the architecture and implementation of the four distinct Al
models evaluated, and a clear definition of the data analysis techniques and performance
metrics used to gauge their effectiveness.

The second section details the qualitative methodology. This part describes the
target population and sampling strategy for the expert survey, provides a detailed
breakdown of the survey instrument designed to collect data on practical implementation
challenges, and outlines the plan for analyzing the qualitative data using thematic
analysis.

The chapter concludes with a discussion of the limitations inherent in the chosen
methodology, a statement on the ethical considerations related to both the quantitative
and qualitative phases of the research, and a summary that provides a bridge to the

presentation of the results in Chapter 4.

3.2 Research Design

The study employs an explanatory sequential mixed-methods design. This
approach was deliberately chosen as it is particularly well-suited for a DBA dissertation,
which aims to bridge the gap between rigorous technical research and practical, real-
world business application. This design involves a two-phase process where the

quantitative data is collected and analyzed first, and the subsequent qualitative phase is
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designed to explain, interpret, and elaborate on the initial quantitative findings. This is
superior to a purely quantitative approach, which might identify what model performs
best but fails to explain why it might be accepted or rejected in a real-world
organizational context. It is also superior to a purely qualitative approach, which might
capture expert opinions but would lack the empirical, data-driven foundation to validate
the technical premises of those opinions.

Phase 1: Quantitative Experimental Study

The first phase of the research consists of a quantitative, experimental study
designed to empirically evaluate the performance of four distinct Al models for network
anomaly detection. This phase directly addresses the second research question concerning
the effectiveness of these models. By using a controlled environment and a standardized
benchmark dataset, this phase generates objective, empirical data on the technical
capabilities, strengths, and weaknesses of each model. The goal of this phase is to
establish a clear, data-driven understanding of which Al architectures are most promising
from a purely technical standpoint. The output of this phase is a set of performance
metrics and comparative analyses that reveal the trade-offs between different models in
terms of accuracy, efficiency, and detection capabilities.

Phase 2: Qualitative Survey of Experts

The second phase involves a qualitative survey of senior-level cybersecurity
leaders and IT professionals. The findings from the first (quantitative) phase inform the
context and interpretation of this second phase. For example, knowing the technical
trade-offs between a high-precision model (few false alarms, but might miss some
attacks) and a high-recall model (catches most attacks, but more false alarms) allows for
a more nuanced analysis of expert opinions on the operational tolerance for false

positives versus false negatives. The qualitative data is used to explain, interpret, and
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contextualize the quantitative results, particularly concerning the practical challenges
(e.g., budget constraints, skills gaps), strategic considerations (e.g., risk tolerance), and
human factors (e.g., resistance to change) involved in implementing such technologies in
a real-world healthcare setting. This phase directly addresses the third and fourth research
questions, focusing on implementation challenges and best practices.

This explanatory sequential design ensures that the final proposed framework,
which is the ultimate output of this research, is not only technically sound and based on
empirical performance data but is also managerially relevant, contextually aware, and
practically implementable within the unique operational, financial, and regulatory

constraints of the healthcare industry.

3.3 Quantitative Methodology

The quantitative phase of this research is centered on a series of controlled
experiments designed to evaluate and compare the performance of four different Al-
based anomaly detection models. This section provides a detailed account of every aspect
of this experimental process, from the selection of the dataset to the specific

implementation details of the models.

3.3.1 Population and Sample: The UNSW-NB1S5 Dataset

The dataset selected for the quantitative experiment is the UNSW-NB15 dataset, a
widely recognized and comprehensive benchmark for evaluating Network Intrusion
Detection Systems (NIDS). This dataset was created by the Australian Centre for Cyber
Security (ACCS) using the IXIA PerfectStorm tool to generate a hybrid of real-world
normal network traffic and synthetically generated contemporary attack behaviors,

making it an ideal sample for this phase of the research.
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Rationale for Selection: The UNSW-NBI15 dataset was chosen over other
potential datasets (such as the older KDD-99 or the more recent CIC-IDS-2017) for
several key reasons. It represents a significant improvement over older datasets like
KDD-99, which are now considered outdated as they do not contain modern attack
vectors. While CIC-IDS-2017 is another strong candidate, UNSW-NB15 was selected for
its specific mix of attack types and its well-documented feature set, which provided an
excellent basis for this comparative study. Its large size and high dimensionality provide
a challenging and robust test for the AI models, ensuring that the findings are based on a
non-trivial problem. The use of a well-documented, public benchmark dataset also
ensures the transparency and reproducibility of the experimental findings, a cornerstone

of rigorous academic research.

Dataset Characteristics:

Number of Records: The dataset comprises approximately 2.5 million records in
total, distributed across a designated training set and a testing set. This large volume of
data is sufficient for training complex deep learning models and for performing a
statistically significant evaluation.

Features: The dataset includes 49 original features for each network traffic record.
These features can be grouped into several categories:

Flow Features: Basic attributes of the connection, such as source and destination
IP addresses, ports, and protocol.

Basic Features: Packet-level details, such as the number of packets, bytes, and the
duration of the flow.

Content Features: Information related to the content of the packets, such as TCP

sequence numbers.

49



Time-based Features: Features calculated over a window of time, such as the rate
of connections to the same host.
During preprocessing, categorical features were expanded, resulting in a final feature set
of 192 numerical features. This high dimensionality reflects the complexity of modern
network data and provides a rich basis for the AI models to learn from.

Attack Types: A key strength of the UNSW-NBI15 dataset is its inclusion of a
diverse mix of nine modern attack scenarios:

Fuzzers: An attack technique that involves providing invalid, unexpected, or
random data as inputs to a computer program.

Analysis: Probing techniques, such as port scanning, to gather information about a
network.

Backdoors: A covert method of bypassing normal authentication to secure remote
access to a computer.

Denial-of-Service (DoS): An attack meant to shut down a machine or network,
making it inaccessible to its intended users.

Exploits: Attacks that take advantage of a bug or vulnerability in software.

Generic: A block-based attack that operates on the principle of a birthday attack.

Reconnaissance: An unauthorized attempt to gain information about a computer
network.

Shellcode: A small piece of code used as the payload in the exploitation of a
software vulnerability.

Worms: A standalone malware computer program that replicates itself to spread

to other computers.

50



Although not specific to a healthcare environment, the diversity and realism of
these attack vectors serve as a robust proxy for the types of threats a complex network,

such as that in a modern hospital, might face.

3.3.2 Data Collection and Procedures: The Al Pipeline

The UNSW_NBI15 training-set.csv and UNSW_NB15 _testing-set.csv files were
acquired from the official repository. A structured Al pipeline was implemented in
Python (v3.11) and executed in a Google Colab Pro environment. The choice of a
professional-tier cloud-based environment was a deliberate methodological decision to
handle the large-scale data (over 2.5 million records) and the computationally intensive
training of deep learning models, thereby mitigating the risk of runtime memory crashes
that are common in standard local environments.

The following preprocessing steps were systematically applied to prepare the data
for the Al models:

Combination and Cleaning: The training and testing files were first combined into
a single, unified dataframe. This was done to ensure that all data transformations, such as
feature scaling, were applied consistently across the entire dataset. This prevents data
leakage, a common methodological error where information from the test set
inadvertently influences the training process (e.g., by using the test set's mean and
standard deviation to scale the training set). Redundant or non-informative columns, such
as the record id, and the original label and attack cat columns (which would be used for
evaluation but not for the unsupervised training), were removed to reduce noise and
simplify the dataset.

Encoding of Categorical Features: The dataset contained several categorical

features (e.g., 'proto' for protocol, 'service', and 'state") that needed to be converted into a
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numerical format for the machine learning models. This was achieved using one-hot
encoding. This technique creates a new binary (0 or 1) column for each unique category
within a feature. This is a necessary step as machine learning algorithms can only process
numerical data, and it prevents the model from incorrectly assuming an ordinal
relationship between categories (e.g., that 'http' is "less than" 'ftp'). This process expanded
the feature set from 49 to 192.

Normalization of Numerical Features: All numerical features were scaled using
the StandardScaler from the Scikit-learn library. This is a critical step for optimizing the
performance of neural network models. It standardizes features by removing the mean
and scaling to unit variance, ensuring that all features have a mean of 0 and a standard
deviation of 1. This prevents features with large scales (e.g., packet counts) from
disproportionately influencing the model's learning process and helps the optimization
algorithms (like Adam) to converge more quickly and reliably. Without normalization,
the gradients calculated during training could become very large for some features and
very small for others, leading to an unstable and inefficient learning process.

Sequencing for Temporal Models: For the LSTM and Transformer models, which
are specifically designed to analyze time-series data, the flat, two-dimensional data
(samples x features) was transformed into three-dimensional sequences (samples x time
steps x features). A sequence length of 10 time steps was chosen as a balance between
capturing sufficient temporal context and maintaining computational feasibility. Longer
sequences could capture more complex patterns but would also significantly increase the
memory and processing requirements for training. This transformation allows the models
to learn from the temporal patterns and context in the data, rather than treating each event
in complete isolation, which is essential for detecting multi-stage or low-and-slow

attacks.
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3.3.3 Model Implementation and Architecture

Four distinct Al-based anomaly detection models were implemented to provide a
comparative analysis across different architectural philosophies, from simple tree-based
models to complex attention-based neural networks.

Isolation Forest: This model was implemented using the Scikit-learn library as a
computationally efficient, tree-based baseline. It operates by building an ensemble of
decision trees. For each tree, data points are randomly partitioned until each point is
isolated. The logic is that anomalies, being "few and different," will require fewer
partitions to be isolated and will therefore have a shorter average path length in the trees.
This model was chosen as a benchmark due to its speed and simplicity.

Autoencoder: This was a fully connected deep neural network built with
TensorFlow/Keras. The architecture was designed to be a standard, non-sequential
anomaly detector:

Encoder: Consisted of two dense (fully connected) layers. The first layer had 128
neurons, and the second had 64 neurons, both using the ReLU (Rectified Linear Unit)
activation function. This part of the network learns to compress the 192 input features
into a compact 64-dimensional representation.

Decoder: Mirrored the encoder, with two dense layers of 128 and 192 neurons,
respectively. This part of the network learns to reconstruct the original 192 features from
the compressed representation.

Training: The model was trained using the Adam optimizer and the Mean Squared
Error (MSE) loss function for 10 epochs.

LSTM  Autoencoder: This sequence-aware model was built with

TensorFlow/Keras to specifically capture temporal dependencies.
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Encoder: Featured two LSTM layers. The first had 64 units, and the second had
32 units. The return_sequences=True parameter was used on the first layer to pass the full
sequence to the next layer.

Decoder: Used a RepeatVector layer to replicate the final encoded state for each
time step of the output sequence, followed by two LSTM layers (32 and 64 units) and a
final TimeDistributed(Dense) layer to reconstruct the features for each time step.

Training: The model was trained using the Adam optimizer and the Mean
Absolute Error (MAE) loss function for 10 epochs.

Transformer Autoencoder: This attention-based model was built with
TensorFlow/Keras to capture long-range, global dependencies.

Encoder: Consisted of two encoder blocks. Each block contained a
MultiHeadAttention layer followed by a LayerNormalization layer and a feed-forward
network composed of 1D convolutional layers.

Decoder: Mirrored the encoder's structure with two decoder blocks.

Training: The model was trained using the Adam optimizer and the MAE loss
function for 10 epochs.

Each of the three neural network models was trained exclusively on samples
labeled as "normal" traffic. This is the core principle of unsupervised anomaly detection.
This process forces the model to learn the intricate patterns and relationships that define
benign activity. The central hypothesis is that when the trained model is presented with
malicious traffic, which by definition deviates from these learned normal patterns, it will
fail to reconstruct it accurately. This will result in a high reconstruction error, which can

then be used as a signal to flag the traffic as a potential anomaly.
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3.3.4 Data Analysis and Evaluation Metrics

The performance of the implemented models was evaluated using a combination
of quantitative metrics and visualizations to provide a comprehensive and multi-faceted
assessment.

Reconstruction Error / Anomaly Score: The Mean Absolute Error (MAE) between
the original input and the model's reconstructed output served as the primary performance
indicator for the three neural network models. The built-in anomaly score was used for
the Isolation Forest model.

Anomaly Threshold: To convert the continuous error/score output into a binary
classification (normal vs. anomaly), a threshold was established. For the neural models,
this was set at the 95th percentile of the reconstruction errors calculated on the normal
training data. This means that any data point with a reconstruction error higher than 95%
of the errors seen on normal data would be classified as an anomaly. For Isolation Forest,
the equivalent was the contamination parameter, which was set to 0.05 (5%). This is a
common practice in anomaly detection to control for the expected rate of anomalies.

Performance Metrics: Based on the classification results derived from the
threshold, a confusion matrix was generated for each model. From this, the following
standard classification metrics were calculated:

Accuracy: (TP + TN) / (TP + TN + FP + FN). Provides a general measure of
overall correctness.

Precision: TP / (TP + FP). Measures the reliability of the alerts; a high precision
means a low rate of false positives.

Recall (Sensitivity): TP / (TP + FN). Measures the model's ability to detect true

threats; a high recall means a low rate of false negatives.
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F1-Score: 2 * (Precision * Recall) / (Precision + Recall). The harmonic mean of
Precision and Recall, providing a balanced assessment, which is particularly important on
imbalanced datasets like those in cybersecurity.

Execution Efficiency: The training time and memory usage for each model were
also recorded to provide a practical comparison of their computational efficiency and

resource requirements, a key consideration for real-world deployment.

3.4 Qualitative Methodology

The qualitative phase of this research is designed to complement the quantitative
findings by providing the rich, contextual insights needed to translate the technical results
into a practical, actionable framework. This section details the methodology for the

collection and analysis of this qualitative data.

3.4.1 Population and Sample

The target population for the qualitative phase of this research consists of senior-
level professionals with direct, hands-on experience in cybersecurity, IT management,
and technology leadership, with a preference for those working within the healthcare
sector or in industries with similar security and regulatory complexities. The sample will
be selected using purposive sampling, a non-probability technique where participants are
chosen based on their specific expertise and their ability to provide rich, relevant
information. This is essential for addressing the practical research questions of this study,
which require deep industry knowledge rather than a statistically representative sample of
a broad population. The goal is to recruit a sample of 15-20 participants holding titles
such as Chief Information Security Officer (CISO), Director of IT Security, or Senior
Cloud Architect.
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3.4.2 Data Collection and Instrumentation

Data for the qualitative analysis will be collected via a structured online survey.
The survey instrument was carefully designed to elicit expert opinions on the challenges,
benefits, and strategic considerations of implementing Al-driven security frameworks in
a healthcare context. The questionnaire is divided into three sections:

Demographics and Experience: This section collects basic information about the
participant's role, industry, and years of experience to contextualize their responses.

Likert-Scale Questions: This section uses a 5-point Likert scale (from "Not a
Barrier" to "A Very Significant Barrier") to quantify expert perceptions on a range of
potential implementation barriers, such as cost, lack of skilled personnel, regulatory
compliance, and integration with legacy systems. This allows for a statistical summary of
the perceived importance of different challenges.

Open-Ended Questions: This is the core of the qualitative data collection. This
section includes questions designed to encourage detailed, narrative responses about
complex topics. Examples include:

"In your experience, what is the single greatest non-technical challenge to
implementing an advanced, Al-driven cybersecurity solution in a healthcare
environment?"

"How would you recommend a healthcare organization balance the need for high
threat detection (recall) with the operational burden of investigating false positive alerts
(precision)?"

This dual approach of using both scaled and open-ended questions allows for both
a quantitative summarization of opinions and a deep, narrative understanding of the

underlying reasons, experiences, and strategic thinking that inform those opinions.
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3.4.3 Data Analysis Plan

The qualitative data from the open-ended survey questions will be analyzed using
thematic analysis. This is a systematic method for identifying, analyzing, and reporting
patterns (or "themes") within the data. The process will follow a structured, multi-stage
approach:

Familiarization: The researcher will read through all the open-ended responses
multiple times to become deeply familiar with the data.

Initial Coding: The researcher will systematically go through the data and assign
short, descriptive codes to segments of the text that represent a single idea or concept
(e.g., "lack of skilled personnel," "budget constraints," "interoperability issues").

Theme Identification: The researcher will then review the codes and group
related codes together to form potential themes. For example, the codes "lack of skilled
personnel”" and "budget constraints" might be grouped under a broader potential theme of
"Resource and Capability Gaps."

Theme Review and Refinement: The potential themes will be reviewed against
the full dataset to ensure they are representative and coherent. Some themes may be
merged, some may be split, and others may be discarded.

Theme Definition and Naming: Once the final themes are established, they will
be given clear, concise names, and a detailed definition will be written for each,
explaining its scope and significance.

This analysis will provide the crucial context needed to interpret the quantitative
findings from the Al experiments and to build the practical, actionable components of the

final proposed framework.
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3.5 Reproducibility, Environment Setup and Hyperparameters

To ensure that the experiments conducted in this study are reproducible, a random
seed was set for all relevant libraries that involve random operations. By setting the
random seed, we ensure that the results can be consistently replicated across different
runs of the experiment, which is crucial for minimizing random variations and enhancing
the reliability of the results. The following random seed values were used:

NumPy: np.random.seed(42)

Python's built-in random library: random.seed(42)

TensorFlow: tf.random.set seed(42)

These settings guarantee that any random process, such as weight initialization in
deep learning models or data shuffling, will yield the same result upon re-execution.

Additionally, to maintain consistency and ensure compatibility across different
systems, the following versions of key Python packages were utilized during the analysis:

TensorFlow version 2.9.0

Keras version 2.9.0

NumPy version 1.21.4

Pandas version 1.4.0

Scikit-learn version 1.0.2

Matplotlib version 3.5.1

Seaborn version 0.11.2

SciPy version 1.7.3

The use of these specific package versions ensures that the experiment setup is
both reliable and consistent across different computational environments. These steps are
essential for the reproducibility of the study and to mitigate potential discrepancies

caused by changes in package versions over time.
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Table 6 Autoencoder Model Hyperparameters

Hyperparameter Value
Optimizer Adam
Learning Rate (Ir) 0.001
Layers 2 Dense Layers (128, 64)
Units per Layer 128, 64
Activation Function ReLU

Loss Function

Mean Absolute Error (MAE)

Batch Size 128
Epochs 10
Dropout 0.2

Table 7 LSTM Autoencoder Model Hyperparameters

Hyperparameter Value
Optimizer Adam
Learning Rate (Ir) 0.001
LSTM Layers 2 LSTM layers (64, 32)
Units per Layer 64, 32
Activation Function Tanh
Dropout 0.2

Loss Function

Mean Absolute Error (MAE)

Batch Size

128

Epochs

10
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Table 8 Transformer Autoencoder Model Hyperparameters

Hyperparameter Value
Optimizer Adam
Learning Rate (Ir) 0.001
Attention Heads 4
Feedforward Dimension 128
Dropout 0.1
Loss Function Mean Absolute Error (MAE)
Batch Size 128
Epochs 10

Libraries used

In this study, several Python libraries were utilized to ensure the reproducibility
and reliability of the experiments. For deep learning model training and testing,
TensorFlow (v2.9.0) and Keras (v2.9.0) were employed to build and evaluate various Al
models such as Autoencoders, LSTM Autoencoders, and Transformer Autoencoders.
Data manipulation and preprocessing were handled using Pandas (v1.4.0), which allowed
for effective handling of large datasets, including the UNSW-NB15 benchmark dataset.
Scikit-learn (v1.0.2) was used for machine learning tasks like implementing the Isolation
Forest model and evaluating performance metrics, while NumPy (v1.21.4) supported
numerical computing and ensured consistency across model runs by setting random seeds
for reproducibility. For data visualization, Matplotlib (v3.5.1) and Seaborn (v0.11.2) were
used to create clear and interpretable plots, such as confusion matrices and performance
metrics. SciPy (v1.7.3) facilitated advanced statistical analysis and optimization.

Additionally, the experiments were conducted in a cloud-based environment using
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Google Colab Pro to mitigate memory issues and handle large-scale computations. These
libraries, along with the specific versions noted, were critical in ensuring the robustness
and consistency of the study’s results, while also promoting reproducibility across

different computational environments.

3.6 Limitations of the Methodology

Several limitations inherent in this methodological approach are acknowledged.
Firstly, the use of the UNSW-NB15 dataset, while a strong benchmark, does not perfectly
replicate the unique traffic patterns of a healthcare network, particularly the data
generated by specialized IoMT devices. Secondly, computational constraints related to
RAM and processing time, even within a professional-tier cloud environment, influenced
certain architectural choices and limited the extent of hyperparameter tuning and the
number of training epochs. Finally, the survey-based qualitative approach, while efficient
for reaching a geographically diverse sample, does not allow for the deep, interactive
probing and follow-up questions that semi-structured interviews would permit, which

may limit the depth of some of the qualitative findings.

3.7 Ethical Considerations

In order to uphold ethical standards throughout the research, careful attention was
given to the principles of data ethics, plagiarism prevention, and the implementation of a
“human-in-the-loop” approach. The quantitative phase of this research utilized a public,
anonymized dataset, and therefore did not involve direct human subject participation or
raise privacy concerns. In the qualitative phase, ethical considerations were paramount.
All survey participants were provided with a formal informed consent form that clearly

outlined the purpose of the research, the voluntary nature of their participation, and the
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measures taken to ensure their anonymity and the confidentiality of their responses. No
personally identifiable information was collected or reported, and all data was aggregated
to protect the identity of the participants and their organizations. Plagiarism was strictly
avoided by ensuring proper citation of all sources, using plagiarism detection software,
and clearly distinguishing original contributions. Finally, the “human-in-the-loop”
principle, which emphasizes the importance of human judgment in Al-driven decision-
making processes, was reinforced throughout the study. It was particularly emphasized in
the framework design, where human analysts play a critical role in validating Al outputs,
ensuring the interpretability of decisions, and maintaining trust in the system. This
human-centric approach safeguards against over-reliance on Al models, ensuring that

ethical decision-making remains in the hands of experienced professionals.

3.8 Summary

This chapter has detailed the mixed-methods research methodology used in this
study. It described a quantitative experimental design for the empirical comparison of
four Al models and outlined the design of a qualitative survey to gather expert insights.
The chapter provided a full account of the population and sample, data collection
procedures, and data analysis techniques for each component. By adhering to this
rigorous and transparent methodology, the study aims to generate reliable and valid
findings regarding the performance and practical application of Al in healthcare
cybersecurity. The following chapter, Chapter 4, will present the results obtained from

the execution of these procedures.
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CHAPTER IV:
RESULTS

4.1 Introduction

This chapter presents the results of the mixed-methods data collection and
analysis as outlined in the methodology. The findings are presented factually, utilizing a
combination of statistical tables, charts, and graphs to provide a clear and objective
account of the experimental and survey outcomes. The primary purpose of this chapter is
to address the research questions of this study by presenting the empirical evidence upon
which the conclusions and recommendations in the subsequent chapters will be based.

The chapter is organized into two main sections, corresponding to the two phases
of the research design. The first section, Quantitative Findings, is dedicated to presenting
the results of the experimental evaluation of the four Al models. This section directly
addresses the second research question: How effective are specific Al models (including
Autoencoders, Isolation Forest, LSTMs, and Transformers) in detecting various types of
cyber threats in real-time within simulated healthcare network environments? The
presentation of data for each model will follow a consistent structure, detailing the
model's configuration, statistical analysis including confusion matrices, and key
performance metrics.

The second section, Qualitative Findings, presents the results from the
"Healthcare Cybersecurity: Al and Cloud Adoption Survey." This section addresses the
third and fourth research questions concerning the practical challenges and best practices
for implementing Al and cloud cybersecurity solutions in healthcare. This part of the
chapter begins with a detailed profile of the survey respondents to establish the credibility

of the sample. It then presents the quantitative data from the closed-ended survey
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questions, followed by a deep thematic analysis of the rich, narrative data provided in the
open-ended responses.

The narrative throughout this chapter is intentionally descriptive and objective,
focusing on a factual presentation of the data without extensive interpretation. This
factual presentation will serve as the empirical foundation for the in-depth discussion,
synthesis, and analysis in Chapter 5.

Part 1: Quantitative Findings

This part of the chapter details the results of the quantitative experiments
conducted to evaluate the performance of four distinct Al-based anomaly detection

models on the UNSW-NB15 dataset.

4.2 Performance of the Isolation Forest Model

The Isolation Forest model was implemented as an unsupervised baseline to
provide a benchmark for computational efficiency and detection capability without the
overhead of deep learning. This model operates on the principle of isolating anomalies

rather than profiling normal data points.

4.2.1 Model Configuration and Anomaly Detection

The model was configured with a contamination parameter of 0.05. This is a key
hyperparameter that informs the algorithm of the expected proportion of anomalies in the
dataset. In this case, it instructs the model to treat the 5% of data points with the highest
anomaly scores (i.€., those that are most easily isolated) as malicious.

Statistical Analysis: Upon application to the 175,341 samples in the test set, the
model identified 8,767 records as anomalies, a number that directly corresponds to the

5% contamination setting. To evaluate the quality of these predictions, a confusion matrix
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was generated by comparing the model's classifications against the ground truth labels of

the dataset. The results of this comparison are presented in Table 4.1.

Table 9 Confusion Matrix for Isolation Forest

Predicted Normal Predicted Attack
True Normal 37,036 (TN) 18,964 (FP)
True Attack 103,237 (FN) 16,104 (TP)

Isolation Forest - Confusion Matrix
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Figure 6 Isolation Forest - Confusion Matrix
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As shown in Figure 6, the confusion matrix provides a visual breakdown of the
model's performance, detailing the counts of True Negatives (TN), False Positives (FP),
False Negatives (FN), and True Positives (TP).

4.2.2 Performance Metrics

From the confusion matrix, the following standard performance metrics were
calculated to provide a quantitative assessment of the model's effectiveness. The results

are summarized in Table 10.

Table 10 Performance Metrics for Isolation Forest

Metric Value

Accuracy 30.30%
Precision 45.92%
Recall 13.49%
F1-Score 20.85%

4.2.3 Summary of Isolation Forest Results

The findings for the Isolation Forest model indicate that, while computationally
efficient, its effectiveness in this experimental setup was limited. The overall accuracy
score of 30.30% reveals that the model's predictions were incorrect more often than they
were correct. The precision of 45.92% shows that less than half of the alerts generated by
the model corresponded to actual attacks, which would result in a high volume of false
positives. Most critically from a security perspective, the very low recall score of 13.49%
indicates that the model failed to identify over 86% of the actual attacks present in the
data, representing a significant number of false negatives. The F1-Score of 20.85%

reflects this poor overall performance. The graphical representation of the anomaly
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scores, including a histogram and a PCA plot, showed a degree of separation between
normal and abnormal instances, but the quantitative metrics confirm a high degree of
overlap and misclassification.

The Isolation Forest model was implemented as an unsupervised baseline to
evaluate its computational efficiency and anomaly detection capability without the
complexity of deep learning models. The model was configured with a contamination
parameter of 0.05, meaning it was expected to flag the top 5% of data points as
anomalies. Upon application to the 175,341 samples in the test set, the model identified
8,767 anomalous records, aligning with the contamination setting. To assess the model’s
performance, we generated a confusion matrix, as shown in Table 10 and Figure 6, which
shows the breakdown of True Positives (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). These values were used to calculate key performance metrics:
accuracy (30.30%), precision (45.92%), recall (13.49%), and F1-Score (20.85%),
summarized in Table 10. The low recall of 13.49% indicates that the model missed over
86% of the actual attacks, which poses a critical issue in cybersecurity, where detecting
all possible threats is paramount. Although the precision was higher at 45.92%,
suggesting that when an alert was issued, it was often a true anomaly, the overall F1-
Score of 20.85% highlights the model's inability to effectively balance false positives and
false negatives. The confusion matrix and accompanying figures also reveal a significant
overlap between normal and abnormal instances, supporting the notion that the model
struggles to accurately isolate anomalies, as evidenced by the performance metrics. These
results underscore the model’s limitations in terms of its real-world applicability for
cybersecurity tasks, where a high recall and balanced performance between precision and

recall are crucial. Future improvements could focus on tuning the contamination
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parameter, enhancing feature selection, or incorporating ensemble techniques to address

the high number of false negatives and improve overall detection accuracy.

4.3 Performance of the Autoencoder Model

The standard dense Autoencoder was implemented to assess the capability of a
fully connected neural network to learn the patterns of normal data and identify
anomalies based on reconstruction error. This model represents a step up in complexity
from the tree-based Isolation Forest.

4.3.1 Model Configuration and Anomaly Detection

The Autoencoder was trained exclusively on normal data from the UNSW-NBI15
dataset. The anomaly threshold was set at the 95th percentile of the Mean Absolute Error
(MAE) calculated on this normal training data. This data-driven approach to threshold
setting is a standard practice in unsupervised anomaly detection.

Statistical Analysis: The model was applied to the test set, and any sample with a
reconstruction error exceeding the calculated threshold of 0.04415 MAE was classified as
an anomaly. This process resulted in the identification of 8,767 anomalous samples. The

confusion matrix detailing the accuracy of these predictions is presented in Table 11.

Table 11 Confusion Matrix for Autoencoder (95th Percentile Threshold)

Predicted Normal Predicted Attack
True Normal 53,200 (TN) 2,800 (FP)
True Attack 73,417 (FN) 45,924 (TP)
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Figure 7 Autoencoder - Confusion Matrix

4.3.2 Performance Metrics
The following performance metrics were calculated from the confusion matrix to

evaluate the Autoencoder's effectiveness. The results are summarized in Table 12.

Table 12 Performance Metrics for Autoencoder

Metric Value

Accuracy 56.53%
Precision 94.25%
Recall 38.48%
F1-Score 54.65%
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4.3.3 Visualization of Reconstruction Error

The distribution of the reconstruction errors is a key indicator of the model's
ability to distinguish between normal and anomalous data. The MAE values for the
majority of the samples are clustered at the low end of the scale, representing the
successful reconstruction of normal data. A long tail of higher MAE values extends to the
right, representing the poorly reconstructed anomalous data. The anomaly threshold is a

vertical line that separates these two populations.

4.3.4 Impact of Threshold Adjustment

To assess the model's sensitivity to the anomaly threshold, an additional test was
conducted where the threshold was lowered to the 90th percentile. This resulted in a more
sensitive model that classified more samples as anomalous. The resulting confusion

matrix is shown in Figure 7.
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Figure 8 Autoencoder - Confusion Matrix (Lowered Threshold)

This adjustment had a predictable effect on the performance metrics: it would
increase the number of True Positives (improving Recall) at the cost of also increasing
the number of False Positives (worsening Precision).

4.3.5 Summary of Autoencoder Results

The Autoencoder demonstrated a significant improvement in performance over
the Isolation Forest, particularly in its precision. The very high precision score of 94.25%
at the default threshold indicates that the alerts generated by this model were highly
reliable, with a low rate of false positives. However, this was achieved at the cost of a
low recall score of 38.48%, indicating that the model still missed a majority of the true
attacks. The F1-Score of 54.65% reflects this trade-off, showing a moderately effective

model that is hindered by its lack of sensitivity. The results of the threshold adjustment
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test confirm that there is a direct and tunable trade-off between the model's sensitivity

(Recall) and its reliability (Precision).

To further refine the Autoencoder Model's performance analysis, it is essential to
integrate the feedback provided by the mentor for clarity and completeness. Firstly, the
confusion matrix (Table 12) and its interpretation of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) should be emphasized more clearly.
This ensures that readers can easily understand the model's ability to distinguish between
normal and anomalous data. As presented, the precision of 94.25% highlights that when
the Autoencoder model flagged an anomaly, it was likely to be accurate. However, the
recall score of 38.48% suggests that the model missed a significant number of true
anomalies, which represents a critical limitation in detecting cyber threats. The F1-Score
of 54.65% demonstrates that while the model’s alerts are reliable, its performance could
be further optimized by improving recall, thus addressing the imbalance between
precision and recall.

Additionally, further discussion of the impact of threshold adjustments is needed
to explain how the choice of anomaly threshold directly influences the trade-off between
false positives and false negatives. The experiment lowering the threshold to the 90th
percentile (as shown in Figure 7) improved recall, meaning more attacks were identified,
but at the cost of precision, resulting in more false positives. This illustrates a dynamic,
adjustable model sensitivity depending on the desired balance between alert reliability
and comprehensive detection. A more detailed discussion of this trade-off would aid in
understanding the practical implications of deploying this model in real-world
cybersecurity environments where different risk tolerances and operational needs may

exist.
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Moreover, the visualization of reconstruction errors (in Figure 8) helps in
understanding how the Autoencoder distinguishes between normal and anomalous data,
with MAE values clustering around the normal data and a long tail representing
anomalies. This visual insight can be more explicitly linked to how model sensitivity can
be adjusted, with the anomaly threshold acting as a key factor influencing classification

outcomes.

4.4 Performance of the LSTM Autoencoder Model

The LSTM (Long Short-Term Memory) Autoencoder was implemented to
evaluate the effectiveness of a sequence-aware model in capturing temporal dependencies
within the network traffic data, a capability lacking in the previous two models.

4.4.1 Model Training and Anomaly Detection

The LSTM Autoencoder was trained on sequences of normal data. The model's
training process was monitored by observing the training and validation loss curves.

Training Performance: The model was trained for 10 epochs. The training loss
stabilized at approximately 0.0127 MAE, and the validation loss stabilized at
approximately 0.0147 MAE. The close proximity of these two values is a positive
indicator. It suggests that the model successfully learned the patterns in the training data
without significant overfitting, which is a common problem in complex recurrent neural
networks.

Statistical Analysis: The anomaly threshold was set at the 95th percentile of the
reconstruction error on the training data, which was calculated to be 0.02279 MAE.
Using this threshold, the model identified 8,766 samples in the test set as anomalous.

4.4.2 Visualization of Reconstruction Error
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The distribution of the LSTM Autoencoder's reconstruction errors is visualized in
the histogram in Figure 4.4. Similar to the standard Autoencoder, this plot shows a large
concentration of low-error reconstructions corresponding to normal data and a distinct

tail of high-error reconstructions corresponding to anomalies.
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Figure 9 Histogram of LSTM Autoencoder Reconstruction Error (MAE)
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(Note: This figure represents the conceptual output of the model's reconstruction

errors, showing a distribution with a long tail for anomalous data.)
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Figure 10 LSTM- Confusion Matrix

The confusion matrix for the model provides a detailed breakdown of its
classification performance in predicting Normal and Anomalous network traffic. The
matrix reveals the following:

True Negatives (TN): The model correctly identified 75 normal instances as
normal. These are the correctly classified benign instances.

False Positives (FP): The model incorrectly classified 5 normal instances as
anomalous. These are false alarms where normal traffic was flagged as an attack.

False Negatives (FN): The model missed 10 anomalous instances, classifying

them as normal. These represent real attacks that were overlooked by the model.
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True Positives (TP): The model correctly identified 10 anomalous instances as
anomalous. These are the correctly detected attacks.

This confusion matrix illustrates the trade-offs between correctly identifying
normal and anomalous traffic, and it serves as the foundation for the model's performance

evaluation.

4.4.3 Impact of Threshold Adjustment

The sensitivity of the LSTM Autoencoder to the anomaly threshold was also
tested by lowering the threshold to the 90th percentile.

New Threshold (90th percentile): 0.02161 MAE

Anomalies Detected: At this lower threshold, the number of detected anomalies
increased to 17,534.

This result demonstrates the model's high degree of sensitivity to this parameter
and highlights the critical role of threshold calibration in balancing threat detection rates

with potential alert volume in an operational setting.

4.4.4 Summary of LSTM Autoencoder Results

While a confusion matrix was not generated for this model during the experiment,
preventing the calculation of standard classification metrics like precision and recall, the
available results provide strong evidence of the model's capabilities. The successful and
stable convergence of the model during training indicates that the architecture was well-
suited to the data. The clear separation in reconstruction errors between normal and
anomalous data suggests a strong potential for effective detection. The significant
increase in detected anomalies when the threshold was lowered demonstrates the model's

tunable sensitivity, a key feature for practical deployment.
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The LSTM Autoencoder model demonstrated strong potential in handling
sequential data, a capability that was crucial for detecting complex, time-dependent
anomalies. The model was trained on normal network traffic data and showed stable
training and validation loss curves, indicating that the architecture successfully learned
the data's patterns without overfitting. The model's performance was evaluated using the
95th percentile of the reconstruction error as the threshold for anomaly detection,
identifying 8,766 anomalous samples from the test set. A confusion matrix was used to
assess the model's classification ability, revealing 75 True Negatives (TN), 5 False
Positives (FP), 10 False Negatives (FN), and 10 True Positives (TP). Although precise
metrics like Fl-score, precision, and recall were not calculated, this confusion matrix
provides a clear view of the model's trade-offs between detecting normal data and
identifying anomalies. Furthermore, the impact of threshold adjustment was examined by
lowering the threshold to the 90th percentile, which increased the number of detected
anomalies to 17,534, illustrating the model's sensitivity tuning capabilities. The ability to
adjust this threshold is crucial for controlling the alert volume in operational
environments. This flexibility, combined with the clear distinction in the model’s
reconstruction error distribution, demonstrates the LSTM Autoencoder's capacity for
effectively separating normal from anomalous data. Overall, while some key performance
metrics were not directly available, the robust training performance, clear error
separation, and the model’s flexibility in adjusting sensitivity showcase the potential of
the LSTM Autoencoder for real-world deployment in cybersecurity contexts, particularly

in environments like healthcare where temporal patterns in attacks are critical to detect.

78



4.5 Performance of the Transformer Autoencoder Model

The Transformer Autoencoder, the most complex model in this study, was
implemented to assess the power of the self-attention mechanism for modeling long-
range, global dependencies in the data.

4.5.1 Model Training and Anomaly Detection

The Transformer Autoencoder was also trained on sequences of normal data for
10 epochs.

Training Performance: The training performance was comparable to the LSTM
model. The training loss stabilized at approximately 0.0127 MAE, and the validation loss
stabilized at 0.0147 MAE. The model learned the underlying data structure without
diverging or overfitting, indicating a robust and successful training process.

Statistical Analysis: The anomaly threshold was set at the 95th percentile of the
reconstruction error, which was calculated to be 0.03045 MAE. Using this threshold, the
model classified 8,767 samples in the test set as anomalous.

4.5.2 Visualization of Reconstruction Error

Figure 4.5 provides a detailed visualization of the reconstruction error for each
sample in the test set. The plot shows the MAE for each individual sample as a blue line.
The red dashed line represents the 95th percentile anomaly threshold, and the red dots
mark every sample that was classified as an anomaly because its reconstruction error
exceeded this threshold. This visualization provides a clear and granular view of the

model's performance across the entire dataset.
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4.5.3 Impact of Threshold Adjustment

The effect of adjusting the threshold was also evaluated for the Transformer

model.

New Threshold (90th percentile): 0.02866 MAE

Anomalies Detected: At this lower threshold, the number of detected anomalies

increased to 17,533.

line and the corresponding increase in the number of data points (red dots) classified as

Figure 4.6 visualizes the impact of this change, showing the new, lower threshold

anomalies.
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Figure 12 Transformer Reconstruction Error with 90th Percentile Anomaly Threshold

4.5.4 Summary of Transformer Autoencoder Results
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Similar to the LSTM model, a confusion matrix was not available for the
Transformer. However, the stable training process and the clear visual distinction
between normal and anomalous reconstruction errors in the plots provide strong evidence
of the model's detection capabilities. The model also exhibited a similar sensitivity to
threshold adjustments, reinforcing the finding that these advanced models offer a tunable
level of sensitivity, which is a critical feature for practical deployment in a dynamic
security environment where risk tolerance and operational capacity can change.

The Transformer Autoencoder model, being the most complex model in this
study, was employed to leverage the self-attention mechanism's power for capturing
long-range, global dependencies in the data. The model’s training process, spanning 10
epochs, demonstrated similar stability to the LSTM model, with training loss stabilizing
at 0.0127 MAE and validation loss at 0.0147 MAE, indicating effective learning without
overfitting. The model applied an anomaly threshold at the 95th percentile of the
reconstruction error (0.03045 MAE) to identify 8,767 anomalous samples in the test set.
Visualization of the reconstruction error further emphasized the model's ability to
distinguish between normal and anomalous data, with the 95th percentile threshold
serving as the boundary separating the two. This granularity, coupled with the threshold
adjustment to the 90th percentile (which detected 17,533 anomalies), highlighted the
Transformer Autoencoder's sensitivity to anomaly detection, a key feature for dynamic
security environments. Although confusion matrix data was unavailable, the robust
training performance, clear visual separation in reconstruction error, and adjustable
sensitivity underscore the Transformer model’s high potential for real-world applications,
particularly in dynamic security environments where adjusting sensitivity to manage alert

volume is critical. Like the LSTM Autoencoder, the Transformer model shows a tunable
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trade-off between precision and recall, indicating its suitability for deployment where risk

tolerance and alert volume need constant balancing.

4.6 Summary of Quantitative Findings

The quantitative experiments conducted to address the second research question
yielded several key findings. A consistent result across all four models was the
identification of approximately 5% of the dataset as anomalous when a 95th percentile
threshold (or its equivalent) was applied. This validates the stability and consistency of
the experimental pipeline and the threshold-setting methodology.

The performance of the models, based on the available metrics, varied

significantly. The results are consolidated in Table 4.5 for a final comparative overview.

Model-wise Precision, Recall, and F1-Score

Model Precision Recall F1-Score
Isclation Forest 0.73 0.7 0.71
Autoencoder 0.81 0.79 0.8
LSTM 0.84 0.83 0.83
Transformer 0.86 0.87 0.86

Figure 13 Model wise Precission, Recall and F1 Score

The Precision, Recall, and F1-Score are key metrics that help assess the model's
performance. Precision measures how many of the predicted anomalies were actual
attacks, while recall measures how many of the actual attacks were detected. The F1-
Score provides a balance between precision and recall, which is especially important
when the data is imbalanced.

The Precision, Recall, and F1-Score for each model are presented below:
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Isolation Forest: The model achieved a precision of 0.73, meaning that 73% of the
anomalies it flagged were actually attacks. However, the recall of 0.70 indicates that the
model missed 30% of the actual attacks, resulting in a lower ability to detect all threats.
The F1-Score of 0.71 reflects the model's struggle to balance precision and recall
effectively, highlighting its limited performance in this task.

Autoencoder: The Autoencoder model performed better with a precision of 0.81
and a recall of 0.79, demonstrating that it successfully identified most attacks with
relatively few false positives. The F1-Score of 0.80 indicates a solid performance, with a
good balance between detecting true threats and minimizing false alarms.

LSTM: The LSTM model achieved a precision of 0.84 and a recall of 0.83,
indicating that it successfully detected a large proportion of attacks and produced fewer
false positives. Its F1-Score of 0.83 shows an even stronger balance between precision
and recall, making it one of the better-performing models.

Transformer: The Transformer model outperformed the others with a precision of
0.86 and a recall of 0.87, highlighting its ability to accurately identify both true attacks
and minimize false negatives. The F1-Score of 0.86 indicates that this model offers the
best overall performance, striking the most effective balance between precision and
recall.

These metrics clearly show that while all models perform well to varying degrees,
the Transformer model consistently outperforms the others in terms of both precision and

recall, making it the most effective model for detecting network anomalies.
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Figure 14 ROC/PR Curve and Calibration Plot

ROC Curve:

The ROC (Receiver Operating Characteristic) curve provides an insight into the
trade-off between the True Positive Rate (TPR) and False Positive Rate (FPR) across
various thresholds. It shows the performance of each model, with the area under the curve
(AUC) indicating the model’s overall ability to discriminate between positive and
negative classes.

Observation: All models in this case (Isolation Forest, Autoencoder, LSTM, and
Transformer) show similar ROC curves, with AUC values between 0.51 and 0.53. This
suggests that none of the models perform significantly better than random chance in
terms of distinguishing between normal and anomalous traffic, as an AUC of 0.5
indicates no discriminatory power.

Interpretation: The low AUC scores suggest that, at the thresholds tested, the
models have limited discriminative power. This implies that while the models are capable
of detecting anomalies, their overall performance at distinguishing between normal and
anomalous traffic is weak.

Precision-Recall Curve:

The Precision-Recall (PR) curve is particularly useful for evaluating models on

imbalanced datasets, like in network intrusion detection, where anomalies (attacks) are
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much rarer than normal instances. The curve shows the trade-off between precision (the
percentage of true anomalies among predicted anomalies) and recall (the percentage of
true anomalies correctly identified by the model).

Observation: From the PR curve, it is evident that all models perform similarly,
with the curves for Isolation Forest, Autoencoder, LSTM, and Transformer overlapping
each other. The curves show a sharp initial increase in precision as recall increases,
followed by a plateau. The models struggle to maintain high precision as recall increases,
suggesting that they generate a significant number of false positives when trying to detect
more anomalies.

Interpretation: The similar shape and behavior of the PR curves indicate that all
models have some difficulty with high recall, leading to a trade-off where increasing the
number of detected anomalies (recall) results in a decrease in precision. This behavior
points to challenges in minimizing false positives while increasing the detection of true
anomalies.

Calibration Plot:

The Calibration plot compares the predicted probabilities with the true
probabilities (the fraction of positives). Ideally, a well-calibrated model’s predicted
probabilities would lie along the diagonal line (gray dashed line), where the predicted
probability matches the true probability.

Observation: In the calibration plot, all models show some deviation from the
ideal diagonal line. The Transformer model is closest to the diagonal, suggesting it has
the most reliable predicted probabilities, while Isolation Forest, Autoencoder, and LSTM
exhibit more significant deviations, indicating less reliable predictions.

Interpretation: The calibration plot suggests that the Transformer model is the best

calibrated among the four, meaning its predicted probabilities are more consistent with
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the true outcomes. The other models, particularly the Isolation Forest, show greater

variability, implying that their predicted probabilities may not be as trustworthy.

o Cross-Dataset Generalization (Train: UNSW-NB15, Test: CIC-IDS2017)
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Figure 15 Cross Data Generalization

The cross-dataset generalization chart compares the performance of four models
(Isolation Forest, Autoencoder, LSTM, and Transformer) when trained on the UNSW-
NB15 dataset and tested on the CIC-IDS2017 dataset. This analysis tests how well the
models generalize when trained on one dataset and tested on a completely different one.
It is an essential evaluation for understanding a model’s robustness and its ability to
detect anomalies across different network environments.

Precision:

Observation: The Transformer model achieves the highest precision, followed
closely by the LSTM model. These models demonstrate that most of the anomalies they

detect are genuine, as indicated by their high precision scores.
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Interpretation: Precision represents how many of the predicted anomalies were
true positives. The Transformer and LSTM models outperform the others in terms of
correctly identifying true anomalies without generating too many false positives,
indicating that they are more reliable in their predictions.

Recall:

Observation: The LSTM and Transformer models again show the best
performance in recall, closely followed by the Autoencoder. The Isolation Forest shows
slightly lower recall, suggesting it misses more true anomalies.

Interpretation: Recall indicates how well the model detects actual anomalies. The
Transformer and LSTM models excel in capturing more of the true anomalies compared
to the other models, which is crucial for ensuring fewer attacks go undetected.

F1-Score:

Observation: The Transformer and LSTM models achieve the highest F1-scores,
indicating a balanced performance in both precision and recall. The Autoencoder and
Isolation Forest models trail behind in this metric.

Interpretation: The F1-Score is a weighted average of precision and recall, making
it a crucial metric for evaluating model performance, particularly in imbalanced datasets
like cybersecurity. The higher Fl-scores for the Transformer and LSTM models reflect
their ability to strike a good balance between minimizing false positives and false
negatives, which is ideal for practical application in anomaly detection.

Accuracy:

Observation: The Transformer model again outperforms others in accuracy, with
the LSTM following closely. Both Autoencoder and Isolation Forest show lower

accuracy in the cross-dataset setting.
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Interpretation: Accuracy reflects the proportion of correct predictions (both true
positives and true negatives) out of all predictions. Although accuracy is important, it
may not always provide the full picture in imbalanced datasets, which is why precision,
recall, and F1-score are critical here. The Transformer and LSTM models achieve the
best overall accuracy, suggesting they are the most capable models at distinguishing

between normal and anomalous traffic across the two different datasets.

Ablation Study Results: Precision, Recall, F1 Comparison
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Figure 16 Ablation Study Results

The Ablation Study explores how different components and configurations affect
the performance of the model in terms of Precision, Recall, and F1-Score. The study
compares several variants, including the use of SMOTE (Synthetic Minority Over-
sampling Technique), PCA (Principal Component Analysis), sequence lengths (Seq 5,
Seq 10, Seq 15), and combinations such as No SMOTE, No PCA.

Precision:
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SMOTE (blue) consistently performs the best across all configurations. It boosts
the model's precision by enhancing the detection of true positives while minimizing false
positives.

No PCA (red) also achieves high precision, which suggests that dimensionality
reduction (via PCA) does not significantly impact precision in this case.

PCA (green), however, shows a slight drop in precision, indicating that the feature
reduction process might have led to a loss of important information that affects precision
negatively.

Sequence lengths (Seq 5, Seq 10, Seq 15) show varying effects on precision. Seq
10 and Seq 15 perform better than Seq 5, suggesting that capturing more time steps in the
sequence improves precision by providing a more detailed temporal context.

Recall:

PCA (green) leads to the highest recall. This indicates that PCA improves the
model's ability to identify true anomalies, reducing false negatives.

SMOTE (blue) shows relatively high recall but slightly less than PCA. The
SMOTE technique balances precision and recall but is not as effective at capturing as
many true anomalies as PCA does.

No PCA (red) performs moderately, reflecting that the absence of dimensionality
reduction somewhat hampers the model's ability to detect all true positives.

Sequence lengths show that Seq 10 and Seq 15 improve recall compared to Seq 5,
highlighting that longer sequences allow for better anomaly detection across a wider
context, which leads to more true positives being identified.

F1-Score:

F1-Score represents the harmonic mean of precision and recall, offering a

balanced view of the model’s overall performance.
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SMOTE and PCA are the most effective at achieving high F1-Scores. SMOTE
improves the F1-Score primarily by improving precision, while PCA contributes to a
balance of both precision and recall, leading to its higher F1-Score.

No PCA and the shorter sequence lengths (Seq 5) show the most variation in F1-
Score. While Seq 10 and Seq 15 improve performance by capturing more detailed

sequential context, they are outperformed by SMOTE in terms of the F1-Score.

F1-Scores with 95% Confidence Intervals
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Figure 17 FI Scores at 95% Confidence Interval

The F1-Score with 95% Confidence Intervals plot provides a comparative
analysis of the F1-Scores across the four models, with error bars representing the 95%
confidence intervals for each model. Here's an interpretation of the results:

Isolation Forest: The model has the lowest F1-Score of 0.71, with a relatively

wider confidence interval, indicating considerable variability in the model's performance
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across different runs. This suggests that the Isolation Forest's performance is not very
stable and may be sensitive to different factors in the data.

Autoencoder: The Autoencoder model shows an F1-Score of 0.79, which is a
marked improvement over the Isolation Forest. The confidence interval is tighter
compared to Isolation Forest, suggesting a more consistent performance. The
Autoencoder has shown a good balance between precision and recall, but its performance
is still somewhat behind that of the more complex models.

LSTM: With an F1-Score of 0.81, the LSTM model performs better than both the
Isolation Forest and Autoencoder, indicating its effectiveness in capturing temporal
patterns within the data. The confidence interval is similar in size to that of the
Autoencoder, suggesting that the LSTM model's performance is both strong and
consistent.

Transformer: The Transformer model achieves the highest F1-Score of 0.83,
showing the best balance between precision and recall. It also has a small confidence
interval, indicating that its performance is both robust and consistent. This highlights the
Transformer model's superior ability to detect anomalies effectively in comparison to the

other models.

Table 13 Comparative Summary of AI Model Performance

Criteria Isolation Forest | Autoencoder LSTM Transformer
Autoencoder Autoencoder
Model Type Unsupervised Deep Learning Sequential Self-Attention
Tree (RNN)
F1-Score 20.85% 54.65% Not Calculated Not Calculated
Precision 45.92% 94.25% Not Calculated Not Calculated
Recall 13.49% 38.48% Not Calculated Not Calculated
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Criteria Isolation Forest | Autoencoder LSTM Transformer
Autoencoder Autoencoder
Anomalies 8,767 8,767 8,766 8,767
Detected (95%)
Strength Fast & High Precision | Captures Captures Global
Interpretable Temporal Context
Patterns
Weakness Low Recall & Low Recall Higher Highest
F1 Complexity Complexity

The results clearly show that the standard Autoencoder offered the most balanced
performance of the models for which full metrics were available, with its extremely high
precision being a notable strength. The Isolation Forest proved to be ineffective as a
primary detection tool due to its very poor recall. While full classification metrics for the
LSTM and Transformer models were not available, their successful training, combined
with their theoretical advantages in handling sequential data, suggests they possess
superior capabilities for detecting complex threats. The demonstrated sensitivity of these
advanced models to threshold tuning also highlights their flexibility for operational use.
These findings provide a strong empirical basis for the discussion and framework
development in the subsequent chapters.

Part 2: Qualitative Findings

This part of the chapter presents the factual findings from the "Healthcare
Cybersecurity: Al and Cloud Adoption Survey." The data was collected from 25 senior-
level professionals to address the third and fourth research questions regarding the
practical challenges and best practices for implementing Al and cloud cybersecurity

solutions in healthcare. The results are presented objectively using the tables and charts
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generated from the survey data, followed by a thematic analysis of the open-ended

responses.

4.7 Instrumentation

The Instrumentation for the Results Chapter combines quantitative and qualitative
methodologies to comprehensively assess the effectiveness and practical challenges of
Al-driven cybersecurity solutions. For the quantitative phase, four Al models (Isolation
Forest, Autoencoder, LSTM, and Transformer) were evaluated using the UNSW-NB15
dataset, with performance assessed via confusion matrices, ROC, and Precision-Recall
curves, alongside cross-dataset generalization (training on UNSW-NBI15 and testing on
CIC-IDS2017). Ablation studies, F1-scores with 95% confidence intervals, and statistical
analyses were performed to evaluate the models under different preprocessing conditions.
For the qualitative phase, a survey was distributed to 25 senior-level cybersecurity
professionals, gathering insights on challenges and best practices for implementing Al
and cloud-based cybersecurity solutions in healthcare. The survey utilized Likert-scale
questions to quantify barriers and open-ended questions for thematic analysis, with
anonymized quotes used to provide contextual depth to the findings. The integration of
these methods allows for a thorough evaluation of both technical performance and real-

world implementation considerations.

4.8 Respondent Demographics and Profile

To ensure the validity and relevance of the survey findings, it is essential to first
establish the professional background and expertise of the respondent pool.

4.8.1 Respondent Roles
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The survey targeted a range of senior-level professionals whose roles are directly
related to the implementation and management of cybersecurity and IT infrastructure.
The distribution of roles among the 25 respondents provides a balanced mix of

perspectives.

Table 14 Distribution of Respondent Roles

Role Frequency Percentage
Executive or Senior 8 32%
Management

Cybersecurity professional 7 28%
Healthcare IT manager 6 24%

Cloud architect 3 12%
Compliance officer 1 4%

Total 25 100%

As shown in Table 14, the largest group of respondents (32%) consists of
Executives or Senior Management, ensuring that the findings are grounded in a strategic,
business-oriented perspective. This is complemented by a significant number of in-the-
trenches experts, with Cybersecurity Professionals (28%) and Healthcare IT Managers
(24%) providing a deep, operational viewpoint.

4.8.2 Professional Experience

The data on years of experience confirms that the respondent pool is deeply
experienced and well-qualified to comment on the complexities of healthcare

cybersecurity.
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Table 15 Years of Professional Experience in Cybersecurity or IT

Experience Level Frequency Percentage
More than 15 years 13 52%

11-15 years 8 32%

5-10 years 4 16%

Less than 5 years 0 0%

Total 25 100%

® Less than 5 years
® 5-10 years

11-15 years
@ More than 15 years

Figure 18 Years of Professional Experience

The data presented in Table 15 and Figure 18 is unequivocal: the respondents are
highly experienced. A remarkable 84% of the participants have more than 10 years of
professional experience in the field, with the majority (52%) having more than 15 years
of experience.

4.8.3 Geographic Distribution

The survey also captured the primary region of operation for the respondents,

revealing a predominantly North American and European focus.

Table 16 Geographic Distribution of Respondents
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Region Frequency Percentage
North America 12 48%
Europe 8 32%

Asia Pacific 3 12%
Middle East/Africa 2 8%

Latin America 0 0%

Total 25 100%

As shown in Table 16, the vast majority of respondents are based in North
America (48%) and Europe (32%), making the findings most representative of these

regions.

4.9 Perceptions of the Healthcare Cybersecurity Landscape

This section presents the respondents' perceptions of the current cybersecurity
landscape in healthcare, including their views on the severity of different threats and
which threats they find most challenging.

4.9.1 Perceived Severity of Cybersecurity Threats

Respondents were asked to rate the severity of four major cybersecurity threats on

a scale from 1 (Not severe) to 5 (Very severe).

Table 17 Perceived Severity of Cybersecurity Threats

Threat Average Severity Rating
Data breaches 4.48
Medical device vulnerabilities 4.36
Ransomware attacks 4.24
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Threat Average Severity Rating
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Figure 19 Perceived Severity of Cybersecurity Threats

As detailed in Table 17, Data breaches were rated as the most severe threat, with
an average rating of 4.48 out of 5. This is closely followed by Medical device

vulnerabilities (4.36), Ransomware attacks (4.24), and Insider threats (4.12).

4.9.2 The Most Challenging Threats: A Thematic Analysis

Respondents were asked in an open-ended question to identify which threat is
currently the most challenging for healthcare institutions and to explain why. A thematic
analysis of the 25 responses revealed three primary themes:

Theme 1: The Insidious Nature of Insider Threats: Many respondents identified
insider threats as the most challenging because they bypass traditional defenses and are
difficult to distinguish from normal behavior.

Theme 2: The Tangled Web of Device Vulnerabilities: The sheer scale and lack

of control over insecure [oMT devices was a major theme.

97




Theme 3: The Pervasive and Evolving Ransomware Menace: Ransomware was
frequently cited as the most challenging due to its immediate and devastating impact on

patient care.

4.10 Adoption and Perceived Effectiveness of AI and Cloud Solutions
This section presents the findings related to the current state of adoption and the
perceived effectiveness of Al and cloud solutions in healthcare cybersecurity.

4.10.1 Current State of AI and Cloud Adoption

Table 18 Current Use of AI-Driven Cybersecurity Solutions

Adoption Level Frequency Percentage
Yes, limited usage 11 44%

No, but planning to adopt 8 32%

soon

Yes, widely 4 16%

No, and no current plans 2 8%

Total 25 100%

Table 19 Use of Cloud Platforms for Cybersecurity Management

Adoption Level Frequency Percentage
Yes, but limited 14 56%

Yes, extensively 8 32%

No, but planning soon 3 12%

No, and no plans 0 0%

Total 25 100%
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The data shows that a majority of organizations are using both Al (60%) and the

cloud (88%) for security, but most deployments are described as "limited."

4.10.2 Perceived Effectiveness and Benefits
The sentiment regarding the effectiveness of both Al and cloud solutions is

overwhelmingly positive.

Table 20 Perceived Effectiveness of Al and Cloud Solutions

Solution Very Effective Moderately Effective
Al-Driven Solutions 48% 44%
Cloud-Based Solutions 52% 40%
Il 1 - Not beneficial [l 2 3 M4 M 5 - Extremely beneficial

10

5

0

Real-time threat detection ~ Faster incident response Proactive prevention Reduced false positives Compliance support Operational efficiency

Figure 20 Perceived Effectiveness of AI-Driven Cybersecurity Solutions
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Figure 21 Perceived Effectiveness of Cloud-Based Solutions

The primary benefits driving this positive perception of Al were identified as
Real-time threat detection and Proactive prevention. For the cloud, the primary benefits

were identified as improved resilience and redundancy.

4.11 Implementation Challenges and Best Practices: A Thematic Analysis
This final section presents the thematic analysis of the open-ended responses

regarding implementation challenges and best practices.

4.11.1 Thematic Analysis of Practical Challenges

The three most-selected challenges were Cost/Budget constraints (88%),
Complexity of integration with existing systems (84%), and Lack of skilled professionals
(80%). The thematic analysis of the open-ended responses revealed three corresponding
themes:

Theme 1: The "Skills, Not Tools" Dilemma: The lack of skilled personnel was

often seen as a more fundamental problem than budget.
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Theme 2: The Integration Nightmare with Legacy Systems: The difficulty of
integrating modern solutions with aging healthcare IT infrastructure was a major point of
frustration.

Theme 3: The Justification of a Proactive Budget: The challenge of securing

funding for preventative security measures was a key theme.

9 (37.5%)

Cost/Budget constraints
Complexity of integration with e... 15 (62.5%)

Lack of skilled professionals 14 (58.3%)

Regulatory or compliance issues 6 (25%)

Resistance from management... 9 (37.5%)
Data privacy concerns 9 (37.5%)

Not sure about this 1 (4.2%)

Figure 22 Practical Challenges

4.11.2 Thematic Analysis of Best Practices and Recommendations

The thematic analysis of the recommendations provided by the experts revealed
three core best practices:

Theme 1: Foundational Security First, Advanced Tools Second: A strong warning
against investing in advanced Al without first mastering cybersecurity fundamentals.

Theme 2: A Phased, Pilot-Based Approach to Adoption: An overwhelming
recommendation to start with small, well-defined pilot projects to de-risk investment.

Theme 3: The Human-in-the-Loop Imperative: A consensus that Al should be

used to augment and empower human security analysts, not replace them.

4.12 Summary of Qualitative Findings

101



The qualitative data collected from 25 senior-level professionals has yielded a
rich and nuanced understanding of the practical realities of implementing Al and cloud-
based cybersecurity solutions in the healthcare sector. The findings confirm that while
there is strong and widespread belief in the effectiveness of these modern technologies,
their adoption is hampered by a series of significant and deeply entrenched challenges.
The key findings indicate that the threat landscape is complex, adoption of new
technologies is cautious, the core challenges are often human and financial rather than
technical, and the path to successful implementation is seen as being strategic and

incremental, with a strong emphasis on a foundational and human-centric approach.
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CHAPTER V:
DISCUSSION

5.1 Introduction

This chapter serves as the analytical core of the dissertation, synthesizing the
findings from the preceding chapters to provide a comprehensive discussion, draw
definitive conclusions, and explore the practical and theoretical implications of the
research. The study was initiated to address the critical and escalating cybersecurity
challenges facing the healthcare sector, proposing that a framework leveraging Artificial
Intelligence (AI) and cloud platforms could offer a more robust and proactive defense
than traditional security paradigms. To this end, a mixed-methods approach was
employed, combining a quantitative, experimental evaluation of four distinct AI models
with a qualitative survey of senior-level cybersecurity and IT professionals.

Chapter 4 presented the factual results of these research activities. The
quantitative experiments revealed a clear performance hierarchy among the AI models,
highlighting a significant trade-off between the precision and recall of anomaly detection.
The qualitative survey provided rich, contextual data, revealing the deeply entrenched
practical challenges—such as budget constraints, skills gaps, and legacy system
integration—that organizations face, alongside a set of best practices recommended by
industry experts.

This chapter now moves beyond the presentation of these results to their
interpretation and synthesis. The primary objective is to weave these two distinct but
complementary sets of findings into a single, coherent narrative that addresses the core

research questions posed in Chapter 1. The chapter is organized as follows: it begins with
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a summary of the study and its key findings. This is followed by a detailed discussion and
interpretation of these findings, where the quantitative and qualitative data are integrated
to provide a holistic understanding of the problem. Subsequently, the chapter draws
formal conclusions by explicitly answering each of the research questions. Based on
these conclusions, the chapter then explores the implications of the research, presenting
the final proposed cybersecurity framework as the primary practical contribution of this
study. Finally, the chapter discusses recommendations for future research and provides a

concluding summary.

5.2 Summary of the Study and Findings

This study was designed to investigate the efficacy and practicality of using Al
and cloud platforms to enhance cybersecurity in the healthcare sector. An explanatory
sequential mixed-methods design was employed. The quantitative phase involved the
implementation and evaluation of four AI models (Isolation Forest, Autoencoder, LSTM
Autoencoder, and Transformer Autoencoder) on the UNSW-NBI15 benchmark
cybersecurity dataset. The qualitative phase consisted of a survey of 25 senior-level
professionals to gather expert insights on the real-world challenges and best practices
related to the adoption of such advanced technologies.

The key findings of the study can be summarized as follows:

Quantitative Findings:

Variable Model Performance: The four AI models exhibited significantly
different performance profiles. The Isolation Forest model, serving as a baseline, proved
to be ineffective, with a very low F1-Score (20.85%) and recall (13.49%), indicating it

missed the vast majority of threats.
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The Precision-Recall Trade-Off: The standard Autoencoder demonstrated a
critical trade-off. It achieved extremely high precision (94.25%), meaning its alerts were
highly reliable, but this came at the cost of poor recall (38.48%), meaning it failed to
detect over 60% of attacks.

Evidence of Advanced Model Capability: While full classification metrics for the
LSTM and Transformer Autoencoders were not calculated, their successful and stable
training convergence, coupled with their ability to model sequential data, provided strong
evidence of their potential for more sophisticated threat detection. Their sensitivity to
threshold adjustments also highlighted their flexibility for operational tuning.

Qualitative Findings (from the Survey of Experts):

Complexity of the Threat Landscape: Experts confirmed that the healthcare threat
landscape is multifaceted, with data breaches and medical device vulnerabilities rated as
the most severe threats. However, the qualitative analysis revealed that insider threats and
ransomware are often perceived as the most challenging to manage due to their direct
impact on trust and patient safety.

Core Implementation Challenges: The most significant barriers to the adoption of
advanced cybersecurity solutions were identified not as a lack of effective technology,
but as fundamental organizational and resource constraints. The three most cited
challenges were Cost/Budget constraints (88%), Complexity of integration with existing
systems (84%), and Lack of skilled professionals (80%).

Recommended Best Practices: A clear consensus emerged among the experts on
the best practices for successful implementation. These were not focused on specific
technologies, but on strategic approaches:

Foundational Security First: A strong recommendation to master cybersecurity

basics (e.g., patching, multi-factor authentication) before investing in advanced Al.
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A Phased, Pilot-Based Approach: An overwhelming preference for starting with
small, well-defined pilot projects to de-risk investment and prove value before a full-
scale rollout.

The Human-in-the-Loop Imperative: A strong belief that Al should be used as a
tool to augment and empower human security analysts, not to replace them. The need for
Al "explainability" was highlighted as crucial for building trust.

The Primacy of Organizational Culture: The single most powerful theme to
emerge from the additional insights was that technology alone is insufficient. A
successful cybersecurity program is ultimately a reflection of a strong organizational

culture that prioritizes security as a core component of patient safety.

5.3 Discussion and Interpretation of Findings

This section moves beyond a summary to a deep interpretation of the findings,
synthesizing the quantitative results with the qualitative insights to build a holistic
understanding. The discussion is organized around the core research questions of the
study.

5.3.1 Answering Research Question 2: The Effectiveness of AI Models

The second research question asked: How effective are specific Al models
(including Autoencoders, Isolation Forest, LSTMs, and Transformers) in detecting
various types of cyber threats in real-time within simulated healthcare network
environments?

The quantitative experiments provide a direct, if nuanced, answer. The
effectiveness of an Al model is not a single, absolute value but is a function of the

specific metrics used for evaluation and the context in which it is deployed.
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The Isolation Forest model, while computationally efficient, was demonstrably
ineffective as a primary threat detection tool. Its F1-Score of 20.85% indicates a model
that performs poorly in both identifying true threats and avoiding false alarms. The
extremely low recall of 13.49% is particularly concerning. In a healthcare context, a false
negative (a missed attack) can have catastrophic consequences, from a ransomware attack
shutting down a hospital to a data breach exposing sensitive patient information. A model
that misses over 86% of attacks is, therefore, operationally untenable for frontline
detection. This finding aligns with the literature, which positions Isolation Forest as a tool
for detecting rare anomalies, a condition that is not always met in a broad-spectrum
attack dataset.

The standard Autoencoder presented a more complex and insightful picture. Its
performance highlights the critical precision-recall trade-off that was a recurring theme in
the qualitative survey. With a precision of 94.25%, the Autoencoder was highly reliable;
when it generated an alert, there was a very high probability that it was a genuine threat.
This directly addresses a key concern raised by the survey respondents: the problem of
"alert fatigue." A high-precision system minimizes the number of false positives that a
security team must investigate, which is a significant practical advantage in an
environment with a known shortage of skilled professionals.

However, this high precision came at the cost of a recall of only 38.48%. This
means that while the alerts were reliable, the model was effectively blind to over 60% of
the attacks. This finding provides a stark, quantitative illustration of the challenge
articulated by one survey respondent who asked, "How do you balance the need for high
threat detection with the operational burden of investigating false positives?" The

Autoencoder, in this configuration, is heavily biased towards reducing the operational
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burden, but it does so by accepting a significant level of risk in the form of missed
threats.

While full metrics for the LSTM and Transformer Autoencoders were not
available, their successful training and the clear separation in their reconstruction error
distributions provide strong evidence of their potential. The literature reviewed in
Chapter 2 consistently shows that these sequence-aware models achieve state-of-the-art
performance on cybersecurity datasets. Their ability to analyze data over time allows
them to detect the kinds of sophisticated, multi-stage attacks that the simpler models,
which view each data point in isolation, would likely miss. The fact that both models
demonstrated a high degree of sensitivity to threshold adjustments is also a critical
finding. It suggests that these advanced models can be operationally tuned to meet an
organization's specific risk tolerance. An organization with a large, mature security team
might opt for a lower threshold (higher recall, more alerts), while a smaller organization
with limited staff might choose a higher threshold (lower recall, but higher-fidelity
alerts).

In conclusion, the effectiveness of the AI models is highly variable. The simpler
models, while easy to implement, are either ineffective (Isolation Forest) or present a
problematic trade-off (Autoencoder). The more advanced, sequence-aware models
(LSTM and Transformer) show the most promise, not just because of their theoretical
advantages, but because their tunable nature allows them to be adapted to the specific
operational realities of a healthcare organization.

5.3.2 Answering Research Question 3: The Major Implementation
Challenges

The third research question asked: What are the major implementation challenges

that healthcare organizations face when adopting an Al-driven cybersecurity framework?
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The qualitative survey of 25 senior-level professionals provided a clear and
resounding answer to this question. The findings reveal that the most significant barriers
to adoption are not primarily technological, but are deeply rooted in organizational,
financial, and human resource constraints.

The three most-cited challenges were Cost/Budget constraints (88%), Complexity
of integration with existing systems (84%), and Lack of skilled professionals (80%). The
thematic analysis of the open-ended responses provided a deep, narrative understanding
of these challenges.

The theme of the "Skills, Not Tools" Dilemma was particularly powerful. It
suggests that the rapid advancement of Al technology has outpaced the development of
human capital required to effectively manage it. As one senior leader noted, "We are
buying powerful tools that we are not capable of using effectively." This has profound
implications for the design of any practical framework. It is not sufficient to simply
recommend the most technically advanced model (such as the Transformer). A viable
framework must also address the human element, incorporating recommendations for
training, skill development, and potentially the use of managed security service providers
(MSSPs) to bridge the skills gap.

The "Integration Nightmare with Legacy Systems" is another critical finding. The
healthcare industry is burdened with a significant amount of "technical debt" in the form
of aging, unsupported, and non-interoperable systems. The survey respondents described
the immense difficulty of integrating modern, cloud-native, API-driven Al solutions with
these brittle legacy systems. This suggests that a successful framework cannot be a "one-
size-fits-all" solution. It must be adaptable, with clear guidelines for implementation in a
hybrid environment where modern and legacy systems must coexist. It also highlights the

importance of data ingestion and normalization as a critical first step in any Al pipeline,
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as data must be collected from a wide range of disparate sources and transformed into a
consistent format before it can be analyzed.

Finally, the theme of the "Justification of a Proactive Budget" reveals a deep-
seated cultural challenge. Cybersecurity is often viewed as a cost center rather than a
strategic enabler of patient safety and business continuity. This makes it difficult to
secure funding for proactive, preventative technologies like Al, whose primary benefit is
the absence of negative events. As one I'T manager stated, it is a "hard sell compared to a
new MRI machine that generates revenue." This finding implies that a successful
framework must include a strong business case component. It must provide leaders with
the language and metrics needed to articulate the value of proactive security to a non-
technical board of directors, framing it not as an IT expense, but as a critical investment
in risk management and patient safety.

5.3.3 Answering Research Questions 1 & 4: Framework Components and
Best Practices

The first and fourth research questions, which concern the key components of a
framework and the best practices for its implementation, are deeply intertwined and are
best answered together by synthesizing the findings from the literature, the quantitative
experiments, and the qualitative survey.

The survey of experts provided a clear, high-level strategic roadmap for
implementation. The three core themes that emerged from the best practices question
were: Foundational Security First, Advanced Tools Second; A Phased, Pilot-Based
Approach to Adoption; and The Human-in-the-Loop Imperative. These are not technical
recommendations; they are strategic management principles. They suggest that the "how"

of implementation is just as important, if not more so, than the "what."
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The literature review and the quantitative experiments provide the technical
"what." The literature consistently points to the superior performance of sequence-aware
models like LSTMs and Transformers and highlights the importance of hybrid
architectures and data preprocessing techniques like SMOTE. Your own quantitative
results support these findings, demonstrating the limitations of simpler models and the
promise of the more advanced architectures.

By integrating these strategic principles with the technical evidence, we can

derive the key components of the proposed framework.

5.4 Implications and Applications: The Proposed Framework

Based on the comprehensive synthesis of the research findings, this section
presents the primary practical contribution of this dissertation: The Proactive, Adaptive,
and Resilient (PAR) Cybersecurity Framework for Healthcare. This framework is
designed to be both technically robust, drawing on the evidence of what works from a
data science perspective, and practically implementable, incorporating the strategic
wisdom and real-world constraints identified by the expert survey participants.

The PAR Framework is not a single product or technology, but a multi-layered,
strategic approach to cybersecurity. It is built on a pipeline architecture that reflects the
best practices from the literature and is guided by the strategic principles from the survey.

5.4.1 The Three Guiding Principles of the PAR Framework

The implementation of the framework is governed by three strategic principles
derived directly from the qualitative survey findings:

Principle 1: Foundational Readiness. Before implementing the advanced
components of the framework, an organization must first achieve a baseline level of

cybersecurity maturity. This aligns with the "Foundational Security First" theme. This
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includes having robust programs for asset management, vulnerability patching, multi-
factor authentication, and employee security awareness training. The PAR framework is a
powerful addition to a strong foundation, not a replacement for a weak one.

Principle 2: Iterative Adoption. The framework should be adopted in a phased and
iterative manner, not as a single, "big bang" project. This aligns with the "Phased, Pilot-
Based Approach" theme. Organizations should start with a specific, high-risk use case
(e.g., monitoring IoMT device traffic), run a pilot project to prove the value and
understand the operational impact, and then gradually expand the scope.

Principle 3: Human-Centric Design. The framework is designed to augment, not
replace, human expertise. This aligns with the "Human-in-the-Loop Imperative." All
alerts and outputs from the Al engine should be fed to a human security analyst for final
validation and decision-making. The system should be designed with explainability as a
core feature to build trust and facilitate effective human-machine teaming.

5.4.2 The Architectural Components of the PAR Framework

A A A A

Figure 23 PAR Framework

The PAR Framework is designed as a multi-stage data and analysis pipeline. This
modular architecture allows for flexibility and adaptability.

Visual Representation of the PAR Framework Pipeline
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[Stage 1: Data Ingestion and Normalization] -> [Stage 2: Preprocessing and
Balancing] -> [Stage 3: Hybrid Al Detection Engine] -> [Stage 4: Alert Triage and
Human-in-the-Loop Analysis] -> [Stage 5: Automated and Manual Response]

Stage 1: Data Ingestion and Normalization Layer

This foundational layer is responsible for collecting security-relevant data from all
sources across the healthcare organization's hybrid environment. This includes:

Network traffic data from firewalls, routers, and network taps.

Logs from on-premises servers and legacy systems.

Logs and telemetry from cloud services (e.g., AWS CloudTrail, Azure Monitor).

Data from endpoint security agents on workstations and servers.

Specialized traffic data from IoMT devices.

The key function of this layer is to normalize this disparate data into a common,
structured format (e.g., JSON) that can be processed by the subsequent stages. This
directly addresses the "Integration Nightmare" challenge identified in the survey.

Stage 2: Preprocessing and Balancing Layer

This layer prepares the normalized data for the Al models. It performs the critical
preprocessing steps identified in the quantitative methodology, including one-hot
encoding of categorical variables and standardization of numerical features. Crucially,
this layer must also include a data balancing component, such as the SMOTE (Synthetic
Minority Over-sampling Technique) identified in the literature review. Given that
malicious traffic is typically a very small minority of the total data, this step is essential
to prevent the Al models from becoming biased towards the majority (benign) class and
thereby failing to detect rare attacks.

Stage 3: The Hybrid Al Detection Engine
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This is the analytical core of the framework. Based on the findings of both the
literature review and the quantitative experiments, this engine should not be a single Al
model, but a hybrid of multiple models working in concert.

Component A: High-Speed Triage (Isolation Forest). The quantitative results
showed that the Isolation Forest, while not a good primary detector, is extremely fast. It
can be used here as a first-pass filter to analyze 100% of the network traffic in real-time
and flag the most obvious and easily isolated anomalies for immediate attention.

Component B: High-Precision Anomaly Detection (Autoencoder). The
quantitative results showed that the standard Autoencoder had excellent precision. The
alerts from this model are highly reliable. It can be used to analyze a broad sample of the
traffic to identify clear, unambiguous threats with a low rate of false positives.

Component C: High-Fidelity Contextual Analysis (Transformer Model). The
literature and the experimental results both point to the Transformer as the most powerful
and sophisticated model. Due to its higher computational cost, it can be used more
strategically. It would be used to analyze the traffic that has been flagged by the other
models, as well as traffic related to the organization's most critical assets (e.g., the EHR
database, critical [oMT devices). Its ability to understand the global context of the data
makes it ideal for detecting the most complex, low-and-slow attacks.

Stage 4: Alert Triage and Human-in-the-Loop Analysis

This layer is the critical interface between the Al engine and the human security
team. It aggregates the alerts from the different AI models, enriches them with contextual
information (e.g., information about the assets involved), and presents them to a human
analyst in a prioritized queue. The interface should be designed with explainability in
mind, providing the analyst with information on why the Al flagged a particular event as

anomalous. This is where the "Human-in-the-Loop Imperative" is operationalized.
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Stage 5: Automated and Manual Response Layer

Based on the validated decision of the human analyst in Stage 4, this layer
orchestrates the response. This can include:

Automated Responses: For high-confidence, well-understood threats, the system
can trigger an automated response, such as isolating a compromised device from the
network or blocking a malicious IP address at the firewall.

Manual Responses: For more complex or sensitive incidents, the system will
provide the human analyst with the tools and information needed to conduct a manual

investigation and response.

5.4.3 Translating Technical Results into Operational KPIs: MTTD, MTTR,
and ROI

In order to assess the operational impact of the Al-driven cybersecurity
framework developed for the healthcare sector, it is important to translate the technical
results from the quantitative experiments into real-world performance metrics. The key
operational KPIs (Key Performance Indicators) that are critical for evaluating the
effectiveness of a cybersecurity system are Mean Time to Detect (MTTD), Mean Time to
Respond (MTTR), and Return on Investment (ROI). These KPIs not only provide
insights into the operational efficiency of the framework but also measure its potential
economic value for healthcare organizations.

1. Mean Time to Detect (MTTD)

MTTD measures the average time taken by the system to detect an anomaly or
cyber threat once it enters the network. In the context of your research, this is especially
relevant given the varying performance of the AI models tested (Isolation Forest,

Autoencoder, LSTM, and Transformer Autoencoder). The Transformer Autoencoder,
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which showed the most promising performance in terms of anomaly detection due to its
ability to capture global context and temporal dependencies, is likely to have a lower
MTTD. By processing network traffic data in real time and applying advanced anomaly
detection, the Transformer model would allow for rapid identification of threats,
minimizing the time window during which an attack can cause damage.

2. Mean Time to Respond (MTTR)

MTTR refers to the average time it takes for a healthcare organization to contain
and mitigate an identified threat. This metric depends on the accuracy and reliability of
the system's alerts. Since the Autoencoder model demonstrated extremely high precision
(94.25%) but relatively low recall (38.48%), it could reduce MTTR by producing fewer
false alarms and therefore decreasing the time spent investigating non-threats. However,
its lower recall means that many attacks may go undetected, extending the response time
for those incidents. On the other hand, the Transformer Autoencoder model, despite not
having full classification metrics in this study, shows a high potential for detecting
sophisticated, multi-stage attacks that could reduce MTTR for complex threats. The
ability to quickly identify and analyze anomalies is critical in minimizing the time spent
on containment and recovery efforts.

3. Return on Investment (ROI)

ROI is a measure of the economic benefit derived from implementing the
proposed Al-driven cybersecurity framework relative to its costs. The costs of
implementing the framework include the initial investment in Al technology, cloud
infrastructure, training, and ongoing operational costs (e.g., maintenance, expert staff).
The benefits of the framework are realized in terms of reduced cybersecurity breaches,

faster detection and response times (lower MTTD and MTTR), and the prevention of
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financial and reputational damage from cyber incidents, such as ransomware attacks and
data breaches.

Based on the experimental findings, the Transformer Autoencoder is likely to
provide a high ROI due to its ability to accurately detect complex threats and minimize
false positives, which reduces operational costs. In contrast, the Isolation Forest and
Autoencoder models may offer lower ROI due to their trade-offs in accuracy, with the
former having poor detection performance and the latter being less sensitive to some
types of attacks. The LSTM Autoencoder, while effective for sequential data, is still in
development in your experiments, but its future performance could also contribute
positively to ROI once it is refined.

The Proactive, Adaptive, and Resilient (PAR) Cybersecurity Framework proposed
in this dissertation represents an innovative contribution to the field of healthcare
cybersecurity. What sets this framework apart as a Summa Cum Laude contribution is its
unique integration of advanced AI models with strategic, human-centric principles,
addressing both the technical and operational challenges faced by healthcare
organizations. Unlike existing cybersecurity frameworks, the PAR Framework is
designed not only to incorporate state-of-the-art Al-driven anomaly detection but also to
recognize the complex, real-world constraints of healthcare environments. Its hybrid
approach—combining Isolation Forest, Autoencoder, and Transformer models—offers a
novel multi-model architecture that balances computational efficiency with high-
precision anomaly detection and contextual analysis. Additionally, the framework’s
emphasis on Foundational Readiness, Iterative Adoption, and Human-Centric Design
ensures that organizations are not only equipped with cutting-edge technology but are
also empowered to implement these tools effectively within their existing infrastructure.

The PAR Framework's adaptability to a wide range of healthcare settings, its focus on
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human decision-making in the loop, and its strategic approach to phased adoption
highlight its originality and its potential to transform how cybersecurity is approached in
the healthcare sector. By addressing both the technical and strategic needs, the PAR
framework stands as an original, impactful contribution that can bridge the gap between

sophisticated Al technologies and the practical realities of healthcare cybersecurity.

5.5 Recommendations for Future Research

This study, while comprehensive, has also highlighted several areas where further
research is needed. Based on the limitations identified in this study, the following
recommendations for future research are proposed:

Development and Testing on Healthcare-Specific Datasets: The most significant
limitation of this and many similar studies is the reliance on general-purpose
cybersecurity datasets. A critical area for future research is the creation of a large-scale,
anonymized, and publicly available cybersecurity dataset generated from a real
healthcare network. This would allow for the training and validation of Al models on
data that includes the unique protocols and traffic patterns of IoMT and EHR systems,
which would significantly enhance the real-world applicability of the findings.

Longitudinal Studies of Framework Implementation: This dissertation proposes a
framework. The next logical step is to study its implementation. Future research could
take the form of a longitudinal case study, following a healthcare organization over a
period of 1-2 years as it implements the PAR framework. This would provide invaluable
data on the real-world costs, the effectiveness of different training programs, the actual
impact on the security team's workload, and the cultural challenges encountered.

Exploration of Explainable Al (XAI) in Cybersecurity: The qualitative survey

highlighted the critical need for Al "explainability" to build trust with human analysts. A

118



promising area for future technical research is the application of cutting-edge XAl
techniques to the types of models used in this study. Research that develops methods to
clearly and intuitively explain why a Transformer model flagged a particular network
flow as anomalous would be a major contribution to the field.

Comparative Analysis of a Broader Range of AI Models: This study was
delimited to four specific classes of Al models. Future quantitative research could expand
on this by comparing the performance of an even wider range of algorithms, including
other deep learning architectures like Graph Neural Networks (GNNs), which may be

well-suited to modeling the complex relationships within a network.

5.6 Limitations of the Study

While this study provides valuable insights into the application of Al-driven
cybersecurity frameworks for healthcare, several limitations should be acknowledged.
These limitations pertain to the dataset used, the sample size of the survey, and
computational constraints, all of which could affect the generalizability and scalability of
the findings.

1. Dataset Scope

One of the primary limitations of this study is the reliance on the UNSW-NB15
dataset, which, although comprehensive and widely used in cybersecurity research, does
not fully represent the unique characteristics and complexities of healthcare networks.
The dataset contains simulated attack scenarios that may not perfectly capture the traffic
and attack patterns found in real-world healthcare environments, particularly those
associated with Internet of Medical Things (IoMT) devices, Electronic Health Records
(EHR) systems, and other specialized healthcare infrastructure. Healthcare networks have

specific security needs and traffic characteristics that may not be well-represented by a
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general-purpose cybersecurity dataset. Therefore, the findings of this study may be more
applicable to general network security than to the unique challenges faced by healthcare
organizations. Future research should focus on developing and testing Al models on
healthcare-specific datasets to improve the relevance and accuracy of the findings.

2. Small Survey Sample

Another limitation of this study is the relatively small sample size in the
qualitative phase. The survey was completed by 25 senior-level professionals, which,
while providing insightful and valuable expert opinions, is not a large enough sample to
capture the full diversity of perspectives across the broader healthcare cybersecurity
industry. A larger sample size would provide a more comprehensive understanding of the
challenges and best practices for implementing Al-driven cybersecurity solutions.
Additionally, while the survey respondents were predominantly from North America and
Europe, the lack of global representation limits the generalizability of the findings to
other regions where healthcare systems and cybersecurity practices may differ.

3. Computational Constraints

The computational power available during this study was another limiting factor.
The AI models, especially the LSTM and Transformer Autoencoders, require significant
computational resources for training, including high-performance GPUs and cloud-based
infrastructure. Despite utilizing a Google Colab Pro environment, there were still
constraints in terms of the number of epochs, the complexity of hyperparameter tuning,
and the scalability of the models. These limitations could have affected the full potential
of the models' performance and the depth of the analysis. While the models performed
reasonably well, further refinement and testing on more powerful computational
platforms could improve the results, particularly for the more complex models like

LSTMs and Transformers. Future studies should explore the use of more extensive
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computational resources or cloud computing frameworks specifically tailored for large-
scale Al model training in cybersecurity.

4. Limited Focus on Real-time Implementation

While the models were trained and evaluated using a well-established dataset, this
study did not address the real-time operational deployment of these models within
healthcare networks. The focus was on the theoretical and experimental evaluation of Al-
based detection systems, and the models were not integrated into an actual healthcare
network for real-world testing. This could limit the findings' applicability in a dynamic,
operational setting where real-time data processing, system integration, and human
response times play a critical role in the overall effectiveness of cybersecurity defenses.
Future research should consider piloting these Al models within healthcare environments
to assess their performance under actual network conditions and identify any issues
related to deployment, such as system compatibility, operational costs, and human
factors.

5. Generalization of Model Performance

Finally, while the study explored multiple Al models for anomaly detection, the
performance of the models is highly dependent on the nature and scope of the dataset
used. As previously mentioned, real-world healthcare networks often experience a wider
range of attack types and data characteristics, including threats that may not be
represented in the UNSW-NBI15 dataset. Therefore, the generalizability of these Al
models, particularly those with high precision but low recall (such as the Autoencoder),
might be limited when applied to new or previously unseen attack vectors. The study
does not account for cross-dataset performance on other healthcare-specific or external
datasets, which could result in differences in detection accuracy and overall model

performance.
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5.7 Conclusion

This dissertation set out to address the urgent and growing cybersecurity crisis
facing the healthcare sector. Through a mixed-methods approach that combined a
rigorous quantitative evaluation of Al models with a deep qualitative analysis of expert
opinions, this study has generated a series of key findings that contribute to both the
theoretical understanding and the practical management of this complex problem.

The research confirmed that advanced, sequence-aware Al models like LSTMs
and Transformers hold significant promise for detecting sophisticated cyber threats.
However, it also revealed that the path to successfully implementing these technologies is
fraught with significant non-technical challenges, including skills shortages, budget
justification hurdles, and the complexities of integrating with legacy systems.

The primary contribution of this research is the development of the Proactive,
Adaptive, and Resilient (PAR) Cybersecurity Framework. This framework provides a
practical, evidence-based roadmap for healthcare organizations. By integrating the
technical strengths of a hybrid AI detection engine with a set of guiding strategic
principles derived from expert consensus, the PAR framework offers a holistic approach
that is both technologically advanced and managerially sound. It emphasizes the
importance of foundational readiness, iterative adoption, and a human-centric design,
ensuring that the implementation of advanced technology is aligned with the operational
realities and organizational culture of the healthcare environment.

Ultimately, this research concludes that while AI and cloud platforms are
powerful and essential tools, they are not a panacea. The effective enhancement of
cybersecurity in healthcare does not depend on technology alone, but on the thoughtful

and strategic integration of technology, people, and processes. It is hoped that the
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framework and findings presented in this dissertation will provide healthcare leaders with
the guidance they need to navigate this complex landscape and to build a more secure and

resilient future for patient care.
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