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ABSTRACT

TRANSFORMATIVE Al FRAMEWORK FOR WILDFIRE MANAGEMENT

SUSHMA DODDALINGEGOWDA
2025

Dissertation Chair: Dr. Gualdino Miguel Cardoso
Co-Chair: Dr. Mario Silic, Dr. Sasa Petar

The purpose of this study is to investigate the methods for Al transformation in the Fire
industry, focusing on predicting wildfire characteristics such as wildfire spread and
contextual information related to the fire scene. To achieve this, the study utilizes
numerical datafrom various satellite data sources, as this data platform enables
scalability for Al-integrated real-world applications on aglobal scale. The research
employs various unsupervised machine learning algorithms on unlabeled data. It
proposes new clustering algorithms that predict wildfire characteristics, including
contextual information like the threat level to the nearest residence.

This study addresses the challenges associated with integrating Al predictionsinto real-
world applications on time. It proposes a system software architecture designed to
effectively schedule GPUs by logically grouping data points from various sources,
ensuring that accuracy is maintained. The application is divided into these groupings,

enabling the computation of Al predictions from aregional to a national level.
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The approach involves continuously acquiring real-time raw fire event data from various
sources, including MODIS and VIIRS, and utilizing a deployable cloud platform. This
platform is designed to constantly preprocess real-time data and compute predictions
using the selected unsupervised algorithms. The study then illustrates the method for
exposing the algorithm's predictions and integrating them into a visualization system
within areal-world application, ensuring that the information is readily accessible and
usable by the firefighting community for effective decision-making and management
during wildfire incidents. This research makes a substantial contribution to the business

sector by enhancing the management capabilities of firefighting organizations.
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CHAPTER I:
INTRODUCTION

1.1 Introduction

Artificial intelligence applications are rapidly expanding in various industries,
including manufacturing, healthcare, finance, retail, transportation, and education.
However, Al applications are less prevalent in the fire industry, especially for wildfire
management.

This research focuses on the fire industry as a case study, outlining methods to
develop personalized Al solutions that enhance automation and efficiency, tailored to the
industry's specific needs. It employs detailed data analysis, utilizing various visualization
techniques, to gain a deeper understanding of the data and address challenges in wildfire
management. The research involves experimenting with Al models and customizing them
to suit the unique requirements of the fire industry. Furthermore, it proposes validation
methods to assess the Al models, particularly in terms of improving human efficiency. It
outlines a necessary qualification process before deploying Al productsin real-world
applications. It also suggests a system software architecture designed to meet the
accuracy and performance demands of the industry.

Thisthesis has several essential businessimplications by delivering real-time
insightsinto fire growth and at-risk residences. For insurers, it improves risk assessment,
policy pricing, and claims management, while firefighting organizations benefit from
operational efficiency through optimized routing and resource deployment. The solution
enhances public trust by reducing false alarms and boosting situational awareness, and its
scalable, cloud-based design creates SaaS opportunities with global expansion potential
in wildfire-prone regions. Additional business implications include data monetization

through partnerships with satellite providers and insurers, as well as CSR and brand



reputation gains for enterprises adopting the technology, positioning it as both a high-
impact safety tool and a commercialy viable innovation.
1.2 Resear ch Problem

Major concerns with existing Al methods stem from their general -purpose focus,
which often results in inadequate accuracy and performance when applied to fire
industries. These Al solutions tend to be less effective in addressing the unique
requirements and complexities inherent to specialized fields, leading to suboptimal
outcomes in applications that demand precision and reliability.

These sectors are often highly regulated and operate within systems where
failures can lead to catastrophic consequences. Consequently, these industries involve
significant human oversight and intervention to ensure safety and reliability.

1.3 Purpose of Research

The purpose of this study isto develop an Al framework that has the potential to
revolutionize the fire industry in the area of wildfire management. Traditionally, human
experts establish predefined rules that encapsulate the knowledge of the domain related to
fire. These systems generate insights by applying specific rules derived from this domain
knowledge to the input data received from fire detection systems. When a particular rule
condition is satisfied, the system produces output and facilitates decision-making based
on those rules. However, a notable limitation of these systemsis their inability to learn
from new situations or adapt to changing circumstances.

For example, many fire detection systems depend solely on sensors that recognize
the presence of afire but cannot predict the fire’s specific characteristics. Understanding
the details of fire scene features is often more important than just detecting the fire. By
analysing data from various sensors and contextual sources, humans can gain deeper

insightsinto the fire situation. The Al framework proposed in this study aimsto close this



gap by improving decision-making in the fire industry. By transitioning from a strict rule-
based approach to a more adaptable and responsive method, the framework will facilitate
better-informed decisions that account for the complexities of fire emergencies,

ultimately enhancing safety and response effectiveness.

1.4 Significance of the Study

The study provides essential guidance on adopting Al in the fireindustry in the
area of predicting wildfire characteristics and contextual information related to fire
scenes:

e Exploratory Data Analysis Approach: This approach outlines a systematic method
for conducting exploratory data analysis on unlabeled numeric data produced
from the instruments on a satellite. It involves analyzing the history of raw fire
events to understand the seasonal and geographic influences on the growth of
wildfires.

e Utilizing Data Insights: This study details the effective methods for leveraging
insights gained from exploratory data analysis to select appropriate samples. This
processis crucial for validating unsupervised machine learning models, ensuring
that the data used for testing is relevant and representative.

e Machine Learning Algorithm Selection and Customization: The study focuses on
selecting an appropriate unsupervised machine learning algorithm for the specific
application. It emphasizes the importance of balancing accuracy with the latency
required for computing predictions of growing fire events. Thisbalanceis
essential for meeting the fire industry's needs to integrate these algorithmsinto
real-world applications. Additionally, the section discusses customizing the

machine learning agorithm to enhance predictions with more contextual



information related to the fire scene and the anticipated growth areain near real -
time.
e Enhancing the Accuracy of Prediction and Performance: This study emphasizes
the importance of improving the accuracy of predicting growing fire events. It
highlights the use of multiple data sources and addresses the challenges of
reducing latency, particularly when handling large data sets, by integrating
various data sources for prediction.
e Real-World Application: This study proposes aframework for continuously
integrating and deploying machine learning predictions into real-world products.
It focuses on ensuring that the devel oped algorithms can be effectively applied in
practical scenarios, facilitating timely and accurate responses to growing fire
events.
1.5 Resear ch Questions. Background and Motivation

Research questions are formulated by considering one of the most challenging
areas of the fireindustry. These questions drive extensive research in the area of applying
Al methods to address the current challenges in wildfire management.

Wildfires pose a significant threat worldwide, particularly affecting the United
States, Australia, Canada, Russia, Europe, South America, and Africa. The 2023 Maui
wildfires were especially devastating, marking the deadliest wildfiresin the U.S. in over a
century. In January 2025, the Palisades Firein California erupted, consuming 23,707
acres and resulting in five deaths while damaging over 12,000 structures and displacing
more than 150,000 residents. The Eaton Fire similarly ravaged 14,021 acres, destroying
around 5,000 structures and claiming six lives, with both fires together causing estimated

|osses of $40 hillion.



Wildfires often start in remote forest areasrich in fuel, where gusty winds enable
rapid spread. Without early detection and swift action, these fires can escalate into
uncontrollable infernos requiring vast resources, such as water, skilled firefighters, and
air support. Technologies like stationary cameras and sensors exist but are limited by
high costs, making satellite monitoring a more practical solution. Unfortunately, current
satellites lack the capacity for effective wildfire detection, complicating response efforts.
Firefighting agencies often face resource shortages, with containment typically beginning
an average of three days after firesfirst appear in satellite images, underscoring the

urgent need for improved detection and response strategies.

1.6 Resear ch Questions

1. Arethereany hidden patternsof growing firesin the collected raw data
from the history dataset captured from the satellite?

There are various types of equipment used for detecting wildfire eventsin forests.
A significant constraint of conventional equipment, such as fire and smoke detection
sensors and cameras, is that their coverage is often less than 50% of the forest area.
Additionally, the installation and maintenance costs of these devices can be pretty high,
as they require ongoing upkeep in challenging forest environments.

Currently, satellite datafrom NASA and NOAA is available in the form of
geographical coordinates indicating where fires have occurred, along with the date and
time, aswell asafew other parameters. However, since these satellites are not explicitly
designed for fire detection, over 50% of the data consists of noise. This makesit
challenging to identify agrowing fire on the day it is discovered, asfires are primarily
visible in the data only when they expand to alarger area. In the early stages of afire,

distinguishing between noise and actual growing fire events becomes difficult. Therefore,



itiscrucial to analyze the raw datato uncover hidden patterns. Steps such as
preprocessing the data, visualizing it with various plots, performing time series analysis,
and applying statistical methods will help to understand the correlation between fire
events and other influencing factors.

2. Which machine algorithm isaccuratein predicting the fire growth and
eliminating the non-growing firesfrom theraw fire events dataset on the day of
discovery?

Fire industries often operate within a more rule-based system that is typically not
equipped to handle large datasets effectively. To address this, implementing machine
learning techniquesis essential for grouping similar fire events and filtering out the noise
from the raw fire events from satellite data. Unsupervised learning, a branch of machine
learning, focuses on learning from unlabeled data, meaning that it identifies patterns and
relationships within the data without any predefined labels or categories. Several
unsupervised clustering algorithms can be utilized for this purpose, including: -

Hierarchical Clustering: This method creates a hierarchy of clusters, enabling the
exploration of data at varying levels of granularity.

K-Means Clustering: This algorithm partitions the data into a specified number of
clusters based on the mean distance between points, making it suitable for identifying
similar groups of fire events.

Gaussian Mixture Models (GMMs): GMMs assume that the data points are
generated from a mixture of several Gaussian distributions, providing a probabilistic
approach to clustering.

Fuzzy C-Means Clustering: Unlike K-means, this approach allows each data point
to belong to multiple clusters with varying degrees of membership, which can be

beneficia in environments with overlapping characteristics.



Density-Based Spatial Clustering of Applications with Noise (DBSCAN): This
algorithm identifies clusters based on the density of data points, making it effectivein
distinguishing noise from meaningful clustersin the dataset. By applying these
techniques, the ability to process and analyze data is ultimately enhanced, leading to
more effective wildfire detection and response strategies.

The accuracy of the predictions made by unsupervised clustering algorithmsis
assessed using various evaluation methods that measure the goodness of the predicted
clusters. One such method isinertia, which quantifies the sum of intra-cluster distances.
A lower inertia value indicates better accuracy, as it means that the data points within
each cluster are closer together. Another vital evaluation metric isthe Dunn Index, which
assesses the clustering quality based on the compactness and separation of the clusters. A
higher Dunn Index signifies better clustering, suggesting that the clusters are well-defined
and distinctly separated from one another. By utilizing these eval uation methods, one can
effectively gauge the performance of clustering algorithms and optimize their
effectivenessin analyzing fire event data.

The Silhouette Score is another valuable evaluation metric used to assess the
accuracy of clustering. It measures how similar each data point isto its cluster in
comparison to other clusters. The silhouette plot visually represents these scores for each
sample, providing insights into the clustering quality. A high silhouette score indicates
that clusters are well-separated and defined, which corresponds to better accuracy in the
clustering solution. Conversely, a silhouette score close to 0 suggests that the clusters
overlap significantly, making it difficult to distinguish between them. A negative
silhouette score indicates poor clustering, asit impliesthat a data point may have been
assigned to the wrong cluster. Utilizing the Silhouette Score can help refine clustering

algorithms and improve their effectiveness in categorizing fire events.



The Calinski-Harabasz score evaluates clustering by measuring the ratio of the
variance between clusters to the variance within clusters. It ranges from 0 to infinity, with
higher scoresindicating better clustering quality. On the other hand, the Davies-Bouldin
index assesses the average similarity between clusters. It aso ranges from 0 to infinity,
but lower scores signify better clustering. In addition to these quantitative metrics,
performing avisual inspection of the predicted clustersis essential for validation. By
creating plots, such as 2D or 3D visualizations, one can effectively showcase al fire
events within a selected region on a specific date. This visual representation helpsin
understanding the distribution and separation of clusters, further validating the clustering
results and insights derived from the data analysis.

3. Doesthe accuracy of the machine algorithm in predicting the growing fires
vary on real-timefire events data(unseen data)?

The degree to which a machine agorithm performs well on new, unseen data
depends on factors such as the quality and diversity of the training data, the complexity of
the model, and the effectiveness of model tuning and validation. It’s essential to use
techniques like cross-validation to get a better understanding of how the agorithm will
perform in real-world scenarios.

4. Can machine lear ning algorithms predict mor e contextual information
about fire scenesin areas expected to experiencefire growth in near real-time, such
asthethreat level to near by residences from the growing fire?

Machine learning algorithms can be utilized to predict more contextual
information about fire scenes, including assessing the threat level to nearby residences
from growing fires. By integrating various data sources, such as geographical

information, population density, infrastructure proximity, and historical fire data,



machine learning models can analyze patterns and relationships that influence the impact
of fires on surrounding areas.

5. Isthe accuracy of the machine lear ning algorithm's prediction and the
latency of the machinelearning algorithm in predicting the fire growth acceptable
to integrateinto real-world applicationsin thefireindustry?

Machine learning predictions become valuable for integration into real -world
applications when they can accurately predict most growing fire events for a given region
or country. Therefore, assessing the effectiveness of machine learning modelsin
forecasting growing fire events across various data sourcesis crucial. It is aso essential
to identify and implement necessary adjustments when deploying machine learning
models for data derived from different satellite sources. One challenge in this processis
the latency of machine learning models, which can vary significantly, particularly with
large datasets. When predicting diverse contextual information related to the fire scene,
this latency can increase further. Generally, while larger datasets tend to enhance model
generalization and accuracy by providing a more comprehensive set of examples for the
algorithm to learn from, managing latency is essential for making timely predictions.

6. What'sthe strategy to integrate the Al outputs, fire growth predictions,
and additional contextual information into nationwide real-world applicationsin
real timefor thefireindustry?

Developing a seamless interaction between machine learning models and existing
systems s critical for effective implementation. This integration ensures that Al-
generated predictions can be readily integrated into current workflows, enhancing overall
efficiency and decision-making. Additionally, creating user-friendly interfacesis vital for

presenting Al predictions in amanner that is easily understandable for end-users. Such



interfaces should prioritize clarity and accessibility, enabling users to interpret complex

data without requiring extensive technical expertise.
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CHAPTERIII:
REVIEW OF LITERATURE

2.1 Theoretical Framework

The literature review focuses on all the technologies under consideration within
the chosen target fire domain for wildfire spread and the prediction of contextual
information, aiming to understand the application of Al algorithms to complex data
structures. It examines the existing literature that guides the approaches and methods for
Al-driven real-world applications.
2.1.1 Early Wildfire Detection Technologiesin Practice— A Review

According to Ankita et al. (2022), advanced mechanismsthat are currently
utilized for wildfire detection broadly fall into the following four groups:
Sensor Nodes: Low-power sensors are installed in the forest, which sense the humidity,
Temperature, and gases in the near areafor fire detection and aert. These sensors are
charged by solar energy and are capable of communicating wirelessly. They are also
called awireless sensor network.
Challenges: Initial deployment requires manpower or an Autonomous helicopter.
Sensors get damaged during the wildfire, which needs maintenance or Replacements. As
wildfires are seasonal, they require maintenance every year or after every wildfirein that
location, which is very expensive. It is also not feasible to install the sensorsin remote
forest aress.
Unmanned Aerial Vehicles (UAVS): UAVs are equipped with cameras; they are

remotely operated to fly around the forest to capture Images and Video of the suspected
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fire scene. The following deep learning algorithms are used for identifying the fire from
an image and a Video feed captured by a UAV.

1. A convolutiona neural network (CNN) calculates the RGB fire score and the IR
image fire score; both scores are combined to establish the presence of fire.

2. YOLOv3 and YOLOV5 deep learning for Fire detection.

3. Recurrent neural networks, long short-term memory neural networks, a generative
adversarial network, and a deep belief network also detect the wildfire with
reasonable accuracy.

Challenges. UAV's need human involvement throughout their operation. As UAV
technology is new, operating costs are high. Flight times are usually afew days or afew
hours.

Stationary Camera Networks. Stationary cameras are installed in the forest area of
interest; videos are fed to the Al algorithms to detect thefire.

Challenges: Need for a continuous power source. It is Impossible to install this systemin
ahighly remote area.

Satellite Surveillance: NASA and NOAA were two of the first organizations to observe
wildfires using an extensive network of polar orbiting (Terra, Aqua) and geostationary
(GOEYS) satellites. Polar satellites scan the entire Earth afew times each day and can
monitor the whole planet for fires.

Challenges: Processing this data for wildfire anomalies, especially small fires, poses a
challenge due to the lower spatial resolution of satellite images. In addition, smoke can
easily appear identical to clouds. High-flying altitudes limit the resolving power of fires
to apixel in the images.

2.1.2 Data-Driven M odel for Wildfire Prediction in California.
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According to Brennon et al. (2024), Wildfiresin California have increased in size,
resulting in severe economic and environmental losses. In 2023, they resulted in nearly
$1.2 billion in financial losses, while from 2021 to 2022, damages nationwide exceeded
$11.2 billion.

The study analyzed a dataset of 128,125 instances with 18 features related to
wildfire risk, weather conditions, vegetation, and land use. Also, it included atarget
parameter indicating whether afire had occurred. They evaluated several machine
learning algorithms, including Naive Bayes, Logistic Regression, SVM, KNN, Decision
Trees, and Random Forest. They ultimately selected Random Forest as the final classifier
based on the evaluation methods used, namely the ROC curve, confusion matrix, and
precision-recall curve. They also examined the feature importance with Random Forest,
and the top 5 features contributing to wildfire risk are temperature, wind speed, relative
humidity, month of the year, and location. In summary, the Random Forest model
demonstrates potential for wildfire prediction; however, its accuracy depends on the
quality of the data and the influence of climate and human behavior.

2.1.3 Potential Wildfire Behaviour Characteristics Using Multi-Sour ce Remotely
Sensed Data: Towards Wildfire Hazard Assessment

According to Chen et al. (2023), previous research has focused on wildfire modelling,
and less attention has been paid to wildfire characteristics such as wildfire speed and
intensity. According to them, wildfire spread is affected by weather, fuel, topography,
and human intervention. They select two supervised learning models, Random Forest and
Extreme Gradient Boosting, to establish the potential wildfire characteristics based on
explanatory variables. The Wildfire Dataset analyzes the wildfire characteristics,

including probability, speed, and intensity, using a multi-source approach.
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Table 1
Variable Importance of Driving Factors

Variahles PWBC models
Probability Speed  Intensity
FMC 021 6% .75
LAl 0.71 0.54 0.56
FT 0.03 (.50 0.55
_I5 (.05 .65 0.72
AP 0.35 | 0.13
RH L15 62 .62
AT 0.28 0, 0 0.53
L D B
Elevation 0.23 1.00 1.040
Slope 0.0 .65 0.67
Sine of aspect (1.0 0,59 {1,641
Losmcofaspeet 0oy 066 056
Dhstance to roads .02 (.64 063
Dhstance o residential areas  0.04 [ Rl ] 0.77
Distance 10 ralways .19 0.67 0.72

Sour ce: IEEE Xplore: Modeling Potential Wildfire Behavior Characteristics
Using Multi-Source Remotely Sensed Data: Towards Wildfire Hazard Assessment
(October 2023).
The study highlights the role of wind speed in predicting probabilities, aswell asthe
relationship between elevation and speed and intensity (Refer to Table 1). They
recommend Random Forest for improved management, using overall accuracy and

Kappa coefficients for evaluation.
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2.1.4 Wildfire Path Predictions Spread Using Machine Learning

According to Mapulane et al. (2022), Wildfires are expected to grow in severity
and frequency due to climate change and outdated management practices. Effective
models to predict fire spread are essential for wildfire management and disaster
preparedness. This paper examines the application of Machine Learning (ML) techniques
to predict the spread of wildfires from ignition points to surrounding areas using satellite
images from sensors such as MODI 'S, Sea and Land Surface Temperature Radiometer,
Visible Infrared Imaging Radiometer Day Night Band, and SLSTR. The study utilized
two machine learning approaches: agent-based (A3C) and supervised learning (LRCN).
The A3C model shows significant improvements in predicting fire spread at intermediate
time steps, while the LRCN model enhances prediction accuracy. The LRCN model is
expected to perform better overall due to its integration of both temporal and spatial
properties in modeling wildfire spread.
Both models were evaluated by comparing predicted fire spread regions with a validation
dataset to assess their performance and accuracy in identifying burnt and unburnt areas.
LRCN shows superior spatial and temporal properties. Thus, they recommend LRCN for
future studies focused on effective wildfire management to minimize damage and |oss of
life.
2.1.5 Satellite Image-Based Wildfire Detection and Alerting System Using Machine
Learning
According to Rajalakshmi et al. (2023), Satellite images were collected from Google
Images, Open-source initiatives, and Kaggle. After preprocessing the collected images,

they utilized supervised learning models, including Support Vector Machine, Random
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Forest, Backpropagation Neural Network, and Convolutional Neural Network for

wildfire prediction.

i[]t o{g |
U8 a"d%i

7

Satelhte Data Wild-fire prediction Alerting

Figurel
Wildfire prediction system

Sour ce: |[EEE Xplore: Satellite Image-Based Wildfire Detection and Alerting
System Using Machine Learning (December 2023).

Table 2
Comparison of Five Models Results
Method | P CE | Recall | OE | Ace e
| measure

Xu 0483 | 0517 | 0800 | 0200 | 0648 | 0.662
SVM | 0.144 | 0.856 | 0.336 nmﬂnll’ 0.202

RF | 0281 [ 0.719 | 0.776 | 0.224 | 0264 | 0.413
" BP Net | 0.000 | 1.000 | 0.000 | 1.000 1 0.667
CNN | 0.986 | 0.267 | 1.000 | 0.000 | 0974 | 0.965

Source: |IEEE Xplore: Satellite Image-Based Wildfire Detection and Alerting

System Using Machine Learning (December 2023).

Table 3
Comparison of Five Models Results Continues

16



Method TP FP TN | FN
Xu 935 | L0001 | 234 | 234

SVM 93 | 2338 | o0 | 776

RF 907 | 2318 20 [ 2632
BP Net 0 0 | 2338 | 1,169

~ CNN | 1169 | 233 | o | o

Sour ce: |IEEE Xplore: Satellite Image-Based Wildfire Detection and Alerting
System Using Machine Learning (December 2023).
The model’s performance was assessed using the following metrics: Precision (P),
Commission Error (CE), Recall, Omission Error (OE), Accuracy, and F-measure. The
results of the five models are presented in Tables 2 and 3, with the CNN achieving a 97%
accuracy, surpassing the others. This study resulted in awebpage where users can input

images for wildfire predictions; notifications are sent to nearby stations upon detection.

2.1.6 Applying Artificial Intelligence (Al) To Improve Fire Response Activities
According to Chang et a. (2022), Firefighting incident commanders are required to make
decisions under time constraints and extreme conditions on the front line. This decision-
making process necessitates the rapid collection of information regarding current
resources and personnel at the fire scene. Firefighting relies heavily on teamwork, and
leaders must quickly grasp environmental changes to orchestrate on-site firefighting
activities effectively. Al is utilized to continuoudly calculate the number of firefighters
and apparatus on the ground, which aids in maintaining accountability among fireground
personnel through ongoing protocols. When firefighters are not present on the scene, Al
notifications help commanders determine the need for additional personnel for search and
rescue operations. Additionally, Al helps monitor firefighters on-site, identifying signs of

fatigue and notifying other team members accordingly.
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Figure 2
Brainstorm of the procedures of fire safety management practices using Al.

Sour ce: Emergency Management Science and Technology: Applying Artificial
Intelligence (Al) to improve fire response activities (January 2022).
Figure 4 illustrates that when the firefighters arrive at the scene,

« The camerabegins capturing images/videos, which are installed on drones,
vehicles, and firefighters

* Images/videos are then transferred wirelesdly or via satellite networks to the
Cloud servers at an off-site location.

« Al models use the onsite images and predict the number of fire trucks, the
number of firefighters, other objectives, and the number of hazardous
activities. The Onsite incident commander receives this information for
decision making.

This study recommends training the Al model to recognize additional objects, such as

different types of vehicles, fire hydrants on the streets, and specific uniforms worn by
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firefighters, Emergency Medical Technicians, and police officers. The fire commanders
could quickly and precisely grasp the critical information (e.g., number of fire apparatus)
on-site. Continuously monitoring firefighting activities onsite and signs of fatiguein
firefighters. For instance, firefighters’ helmets touching the ground is a clear sign of
fatigue, and the Al software will identify the activity and immediately notify other
firefighters on the ground.

2.1.7 Improved Real-Time Fire War ning System Based On Advanced Technologies
for Visually Impaired People

According to Akmalbek et al. (2022), Smart fire warning systems were devel oped based
on advanced technologies to enhance firefighting safety and protect lives. The proposed
Al-based fire-detection method can be applied in various environments, including bright
and safe cities, aswell as for monitoring firesin urban areas to protect visually impaired
individuals. This system application focuses on early fire-detection systems based on
cameras and wireless technology for use in housing, as they accommodate patients with
impairments and disabilities who live alone, as they are perceived to be more secure from
fire-related incidents. Similarly, according to them, the proposed system can be
effectively used in the fire safety industry. The system detects and notifies of catastrophic
fire outbreaks in real time with high speed and accuracy. Early detection of afire
accelerates the process of eliminating it; thus, the fire poses alesser threat to the health

and lives of people, including the firefighters.
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Figure 3
Fire-Detection and Notification Method

Source: MDPI: Improved Real-Time Fire Warning System Based on Advanced
Technologies for Visually Impaired People (September 2022).

Asillustrated in Figure 3, their proposed system comprises a client-server
scheme, with the Smartphone and smart glasses serving as the client and the Al server for
image analysis and fire detection.

The client section includes Smart glasses, a Smartphone, and a Home
Surveillance Camera. They are used for the following purposein this literature,

e Smartphone - The smartphone's speaker receives input from the user and

sends a command to the smart glass to capture an image.

e Smart glasses - Used for capturing Images when the user givesinstructions
using a smartphone, this method is used to reduce the power consumption
compared to continuous recording from the camera.

e Home Surveillance Camera - Records video constantly.

Al Server - Al server resides on a computer with an 8-core 3.7 GHz processor and 2 1080

GPUs. Receives client-supplied images, processes them using lightweight deep CNN
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models, and outputs results in Audio format. GPUs in wearable assistive devices are |less
capable.

According to them, Bluetooth is used for transmitting images captured from the
sunglasses to the smartphone, and the transmission time is 0.11 seconds. The Image
transmission from a smartphone to an Al server viaWi-Fi or cellular 5G takes 0.32
seconds. The Al server preprocesses the data, predicts the fire, and sends a notification,
which takes 0.83 seconds; the total timeis 1.26 seconds.

2.1.8 Leveraging The Power Of Internet Of Things And Artificial IntelligenceIn
Forest Fire Prevention, Detection And Restoration: A Comprehensive Survey

According to Sofiaet al. (2024), Forest fires pose a significant threat to the
planet’s ecological balance and human communities. To minimize the damage caused by
forest fires and reduce the need for firefighting efforts, it is crucial to predict forest fires
by modeling the relationship between fire risk and factors such as wesather or fuel
availability, and detect them through various monitoring techniques. In response to this
growing threat, the field of forest fire prediction and detection has become a topic of
ongoing research and development, supporting public policies aimed at controlling forest
fires and mitigating the threat they pose.

In conclusion, the use of advanced systems incorporating artificial intelligence
(Al) isapromising approach to mitigating the threat posed by forest fires. This study
highlights the role of algorithmsin forest fire prediction and detection systems, providing
acomprehensive overview of the current state-of-the-art in the field. Using these models
effectively is crucia in mitigating the adverse effects of forest fires and wildfires,
safeguarding human communities, and preserving the resilience of the Earth’s

ecosystems.
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In the context of wildfire spread, this literature suggests that the survey indicates
the threat of forest fires continues to grow, resulting in a growing need for more effective
and efficient methods for forest fire prevention, detection, and restoration. Fire spread
behaviour prediction, including fire spread rates, growth prediction, burned area, and
severity, isamong the primary areas of concern in these models. The behaviour of fire
encompasses arange of physical processes and features, such as combustion rate, flame
height, and fuel consumption. Remote sensing datais beneficia in thisregard, asit
enables a more extensive observation of critical factors that are difficult to assess directly
from thefield, both in terms of space and time. Landsat land cover data, NOAA weather
measurements, and archived MODI S sensor data from several years are employed in
these models. Data mining techniques were employed to predict which fires are likely to
expand, and satellite monitoring was used to determine if the data collected was sufficient
for real-time tracking of Earth phenomena events, such as wildfires. Remote data
collection is an effective means of obtaining extensive coverage of essential variablesin
both space and time, which is difficult to achieve through direct ground measurements.
The models employed archived MODI S sensor data from multiple years, combined with
Landsat surface cover data and NOAA weather observations,

Accurately understanding and maintaining awareness of a wildfire’s dynamic
state, including location, type, and features such as the rate of escalation, ignitable
material, direction, topography, and weather impacts, is crucial for managing the firein a
systematic and timely manner.

Time limitations, resource management, and exactitude factors affect forest fire spread
forecasting in real-time. A framework of cyber for forest fire development forecasting,
which merges input data that is collected from various sources like remote meteorol ogical

sensors and satellites. To facilitate the instantaneous sharing of outcomes, the gathered
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data must be structured for simulation tools that utilise parallel programming paradigms
and computing platforms. A two-stage prediction framework, comprising the Prediction
and Calibration stages, is suggested. The Calibration stage utilizes a Genetic Algorithm
(GA) to optimize the most crucial parameters of aforest fire spread model by accurately
reproducing recent events through a spatial optimization objective function. The fitness
function employed in the Calibration stage strives to minimise the discrepancy between
the observed fire spread and the spatial fire development forecasted by FARSITE.
However, because the GA is repetitive and the simulations require a significant amount
of time, the Calibration stage can be time-consuming. To address this, a Time-Aware
Classification (TAC) was integrated into the Calibration stage to allocate the number of
cores to each individual in the population, taking into account time limitations. Despite
the TAC approach being promising in ensuring that simulations are executed within the
distributed time, it may become trapped in local optimain the search space. The RE-TAC
approach overcomes the time constraint by using rescaled coarse-resolution data. While
the TAC approximation may reject an accurate solution, the ReTAC method produces
positive results when dealing with large forest fires. Compared to the TAC version,
ReTAC reduces the error and achieves efficiency that is closer to the single-core scheme,
where there is no time constraint. The prediction accuracy and time savings of ReTAC
improve with increasing computational capacity. ReTAC utilises high-performance
computing platforms to leverage parallelism at two levels, with the implementation of a
single forest fire propagation forecast that is parallelised using OpenMP. The two-stage
prediction plan of ReTAC has been validated and proven to be an effective fire

forecasting tool for forest fire function analysts and managers.
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2.2 Summary

The literature reviews existing studies to understand how machine learning
models are used in predicting wildfire characteristics and what other technologies are
utilized for wildfire detection, as well astheir limitations, particularly in terms of fire
growth and predicting more contextual information from the fire scene. And what are the
different types of data used in the existing study for such prediction, and reviewing what
methods are used for evaluating the machine algorithm?

While reviewing the existing technology for wildfire detection, it was found that
not all the remote areas of the forest are covered by that technology. One of the
technologies they useisinstaling smoke, flame, and gas detecting sensorsin the forest,
and some forests also install cameras. Asthey required to beinstalled in the forest it need
lot of human effort installing the sensors, in every wild fire event in the forest they
reguire maintenance post every fire incident in that area, thus increases the maintenance
cost using the sensors and camerasin the forest, also these are hard to install on the
remote areas of the forest, they also used drone or UAV’s for monitoring the forest, as
this technology is new, it needs dedicated remote pilots controlling the UAV s there are
still challenges with this technology in the flight time for using them for more than a day.
(e.g., Ankitaet a. (2022)).

While reviewing the different form of data used for wildfire spread or
characteristics prediction, Numerical datasets revolves around environmental factors,
such as temperature, humidity, wind speed and direction, soil moisture content, and
precipitation levels, presence of vegetation, topography like Elevation, Slope, and land-
use patterns, Fuel Parameters like Fuel moisture content, Leaf Area Index, forest type,
and tree species, other Weather Parameters like Accumulated Precipitation, Relative

humidity, Air Temperature, Infrastructure data like Distance to roads, Distance to
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residential areas, Distance to railways. Historical wildfire location, dates, and rate of
speed from the Global Fire Atlas for the years 2003 to 2016, fire intensity from the
MODIS satellite dataset. While preparing these datasets for the model, each instancein
the dataset is labelled as either afire or anon-fire. (e.g., Brennon, 2024; Chen et dl.,
2023).

Some used image data from the instruments captured by the satellite, including
MODIS, Seaand Land Surface Temperature Radiometer, Visible Infrared Imaging
Radiometer Day Night Band, and SLSTR, as well as open-source initiatives such as
Google Images and Kaggle, which were also collected from the satellite. The dataset is
prepared by labeling images as either wildfire or no wildfire (e.g., Mapulane, 2022;
Rajalakshmi et al., 2023).

For the numerical dataset captures all the exploratory variable only specific to a
particular region or state, machine learning model trained on this dataset which has only
specific region data cannot be used for predicting the wild fire for other state or region,
this, the approach of collecting region particular data, retraining machine learning model
for every new incident event of the same region as the climate changes are not static,
might increase the cost of maintaining the accurate dataset and that are region specific.
Such solutions are not easily scalable for real-world applications in the global platform
(e.g., Brennon et al. (2024)).

Machine learning models, primarily used on numeric datasets, a supervised
learning model - Random Forest, show promising results in predicting wildfire
characteristics. Evaluation metrics used to evaluate this supervised learning model
include the ROC curve, the confusion matrix, the precision-recall curve, and the Kappa
coefficient. While using this model, it was found that Wind Speed, Leaf Area Index,

Accumulated Precipitation, Elevation, Fuel moisture content, Distance to resident, month
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of the year, and location are the most influential factors for wildfire spread. (e.g., Chen,
2023; Brennon et al., 2024).

In contrast, the supervised machine learning model used on image-based datasets,
specifically Convolutional Neural Networks and LRCN, which combines CNN and RNN,
also shows promising resultsin predicting wildfire characteristics.

Evaluation metrics used are Precision, Commission error, Recall rate, Omission
error, Accuracy, and F-measure for CNN, as well as the predicted fire spread regions,
which were compared with the validation dataset to determine the overall performance
and accuracy of the LRCN model (e.g., Rgjalakshmi, 2023; Mapulane et al., 2022).

Many of these studies propose integrating machine learning models to predict
wildfire characteristics into real-world applications for future work, but none of these
studies have demonstrated methods for incorporating this into real-world applications
(e.g., Brennon, 2024; Chen, 2023; Rgjalakshmi, 2023; Mapulane et al., 2022).

Additional literature was reviewed to understand the real-world applications of Al
prediction in the fire industry. The reviews highlight products designed for real-world
applications that utilize Al technology, thereby reducing the threat levels to human health
and life, including for firefighters and individual s with visual impairments. (e.g., Sofia,
2024; Akmalbek, 2022; Ray et ., 2022).

Artificial intelligence predictions are applied in real-world products that enhance
fire response activities. Firefighter leaders can quickly grasp multiple fire scenes
remotely based on Al insights, alowing them to manage resource deployment effectively
from one scene to another according to the dynamics of each situation. This approach
significantly increases the efficiency of firefighting organizations (e.g., Chang et d.,

2022). An Al-based notification system can detect fatigued firefighters at the scene of a
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fire and aert other firefighters for assistance. This ensures that support is readily
available, enabling safer and more effective operations during challenging situations.

Leveraging the Internet of Things (IoT) and Artificial Intelligence for forest fire
prevention can significantly reduce the need for firefighting efforts. This approach helps
protect human communities and maintain the resilience of Earth's ecosystems by
facilitating early detection and proactive measures against potential fires. (e.g., Sofia et
al., 2024).

An Artificia Intelligence-based real-time fire warning system detectsfires at an
early stage, making it suitable for deployment in innovative and safe cities. This system
monitors urban areas and supports individuals with impairments and disabilities living
alone. By providing real-time notifications of catastrophic fire outbreaks with high speed
and accuracy, early detection accel erates the response process, thereby reducing the
impact of fire on the health and lives of both residents and firefighters. (e.g., Akmalbek et
al., 2022).

According to individuals with impairments and disabilities living alone, an Al-
based real-time fire notification system can be effectively utilized in the fire safety
industry. This technology offers vital support, ensuring that those who may have

difficulty responding to emergencies receive timely alerts and assistance.
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CHAPTER III:
METHODOLOGY

3.1 Overview of the Research Problem

Traditionally, software products handle more structured data that is well-
organized, primarily used for analysis and reporting. These software applications
generally feature dashboards and visualizations. However, humans are responsible for the
analysis and decision-making processes. The future of the software businessis moving
beyond traditional applications; it's about Al-based intelligent applications that augment
human capabilities to derive actionable insights.
3.2 Operationalization of Theoretical Constructs

This research focuses on the fire industry as an example, employing a quantitative
method to demonstrate the steps and processes involved in transforming atraditional

software product into an intelligent software product through the use of Al technology.

Traditional Software Sarvices

Figure4
Traditional Software Products (own work)
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Sour ce: Created using Google Images.

This research specifically focuses on developing an Al-based product for the fire
industry, which traditionally employs rule-based systems. It aims to analyze data and
derive meaningful insights for informed decision-making, predictive modeling, early
warning systems, and enhanced situational awareness.

3.3 Research Design

Generally, research can be conducted using both quantitative and qualitative
methods. For this research, quantitative methods have been adopted because the study
focuses on demonstrating the techniques required for Al transformation within the fire
industry. By actually building an Al-based product. These methods will alow for
measurable outcomes and a precise evaluation of the product’s effectiveness in meeting

industry needs.
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Quantitative methods will be employed as follows:

e Thehypothesisisto predict fire growth in near real-time using the Al model.

e The data collection step involves gathering historical fire data, along with real-
time or near-real-time data from various data sources. This comprehensive
approach ensures that the model is trained on arobust dataset, enhancing its
predictive capabilities and accuracy in identifying potential fire threats.

e Al platform, Framework, and Devel opment.

Al platform
This study utilizes the Google Colab cloud-based platform, which is extensively
used for data science code development. This choice eliminates the need for a
local setup and provides access to GPU and TPU runtimes, which are crucial for
accel erating computationally intensive machine learning algorithms. Additionally,
Colab integrates seamlessly with other platforms like GitHub, facilitating
collaborative work and version control. While other platforms like Microsoft
Azure were explored, they are more suitable for general Al applications such as
image/video processing and text-based tasks like chatbots. However, Azure does
not offer the same level of control for building Al modelstailored to domain-
specific use cases. Moreover, it can be expensive to use for research-based real-
world application projects. This makes Google Colab a more practical and cost-
effective choice for the objectives of this study.
Al Frameworks:
The Following are the major Al libraries used for experimentation:
e Pandasisused for processing the datain the CSV format. The
CSV format was chosen for processing the data from the data

Sources.
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matplotlib - Thisisused for exploratory data analysis.
Scikit-Learn libraries - Thisis used for experimenting with
traditional clustering machine learning models for handling
unstructured forms of data.

PyGithub — This library enables a mechanism to access the stored
dataset in GitHub and store the predicted dataset for the chosen

Google Colab platform.

Development and Code M anagement using Python: Python is the most widely

used programming language for Al, supporting al major Al libraries, and it is

also suitable for real-world applications.

The data analysis step includes performing exploratory analysis on
the history dataset to understand the population and choose the
sample.

From Exploratory data analysis, identify if there are any hidden
patternsin the data.

Analyse and derive the dataset to include the parameters that
potentially contribute to detecting the hidden patterns

Exercise the various machine learning algorithms that can predict
the fire anomalies in the various sample datasets.

Evaluate machine learning algorithms using the right metric to
meet the accuracy and performance.

Choose the best-performing machine learning model.

31



Statistical Detailed Design
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Satistical Detailed Design — For Al Model Selection & Evaluation.

Figure 6 illustrates the statistical design used to select the most accurate model for

predicting the spread of wildfires.
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For theinitial analysis, concentrate on the historical dataset from MODIS. There's
no need to include datasets from multiple instruments in this phase. This focused
approach will help ensure clarity and precision in analyzing wildfire events.

Extract the dataset specifically for the region identified through exploratory data
analysis (EDA) as having the highest number of wildfire events over the past years. This
targeted approach will enable a more precise investigation of wildfire patterns and trends
in that particular area. Refine the dataset to create a day-wise dataset specifically for the
months that experienced the most significant wildfire events in the selected region. This
will involve isolating data from those months and breaking it down to the daily level,
allowing for amore detailed analysis of wildfire occurrences. Construct a sample dataset
that includes a 3-day time frame centered around the actual dates of wildfire incidents.
This dataset should consist of: - One day before the day of the wildfire occurrence, - The
day of the wildfire occurrence itself, - One day following the day of the occurrence.

Clean the dataset by removing all parameters except for the geo-coordinates. This
will result in a streamlined dataset that focuses solely on the spatial data relevant to the
analysis of wildfire incidents. By retaining only the geo-coordinates, you can better
assess the spatial distribution of wildfire occurrences. Define the key input parameters for
the clustering models as follows:

e Number of Clusters: Expected number of clusters based on prior
knowledge or methods like the el bow method.

e Minimum Cluster Density: Minimum number of points required to form a
dense region.

e Cluster Radius: Maximum distance between points to be in the same

cluster.
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Distance Metric: The method for measuring similarity (e.g., Euclidean,
Manhattan).

Max Iterations: Maximum iterations for algorithms that refine clusters.
Random Seed: For reproducibility in random processes.

Outlier Detection Threshold: To identify and exclude outliers.

These parameters will guide the clustering process, enabling effective analysis of

wildfire patterns. Apply al relevant machine learning clustering models to the selected

dataset. This may include: -

K-means Clustering: For partitioning data into distinct clusters based on
distance.

DBSCAN: To identify clusters of varying shapes and sizes while filtering
out noise.

Hierarchical Clustering: To create atree of clusters that can be cut at
different levels.

Gaussian Mixture Models (GMM): For probabilistic clustering based on
the assumption that data points are generated from a mixture of several
Gaussian distributions.

By leveraging these models, conduct a thorough analysis of the wildfire
data to uncover meaningful patterns and insights related to wildfire spread
and behavior.

Evaluate the accuracy of the clustering models using a combination of
methods, including:

2D Visual Inspection: Create scatter plots to visually assess the clustering

results.
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e Dunn Index: Measures the ratio of the smallest distance between pointsin
different clusters to the greatest intra-cluster distance.

e Silhouette Score: Evaluates how similar an object isto its cluster
compared to other clusters.

e Calinski-Harabasz Index: Assesses cluster validity based on the ratio of
the sum of between-cluster dispersion to within-cluster dispersion.

e Davies-Bouldin Index: Evaluates the average similarity ratio of each
cluster with its most similar cluster.

Using these metrics will provide a comprehensive assessment of the clustering
performance of wildfire data analysis. Select the model that effectively clustersthe
wildfire spread points while categorizing al other data as noise. This model should
demonstrate strong performance based on the evaluation metrics used, ensuring that it
accurately identifies significant clusters of wildfire incidents and segregates irrelevant
data. Choosing the right model will enhance the understanding of wildfire patterns and

inform better management strategies.
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System Design — Al-Enabled Real-World Application
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System Design - Al-enabled Real-World Application

Figure 7 depicts the system design for building an Al-enabled real-world
application. The architecture illustrates how different components interact to process and
anayze data, facilitating intelligent decision-making. Key elementsinclude data
ingestion, processing pipelines, machine learning models, and user interface layers, all

working together to deliver insights and functionality to end-users.
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The system process for handling real-time or near-real-time datasets from MODIS
and VIIRS instruments involves the following steps:

e DataAcquisition: Collect the last 24 hours of datasets from MODIS and
VIIRS, updating them daily.

¢ Region-Specific Dataset: Derive datasets specific to regions, maintaining
separate collectionsfor MODIS and VIIRS.

e Parameter Optimization: Eliminate all parametersin the dataset, retaining
only the geo-coordinates to focus on location-based analysis.

e Clustering Parameters: Define minimum cluster density and cluster radius,
noting that cluster density may vary based on the dataset source (MODIS
or VIIRS).

e Clustering Model Application: Apply a suitable machine learning
clustering model that accurately predicts clusters of wildfire spread points
and noise.

e Cluster Anaysis: Compute vertices for each identified cluster and
determine the nearest residential locations using a dataset of residential
geo-coordinates.

e Integration: Integrate all region-specific predicted clustersinto a
comprehensive national overview.

e Data Storage: Store the predicted clusters, their vertices, and the nearby
residence locations in a shared file system for easy access and analysis.

e Web Application Development: Develop aweb application that displays a
3D map visualizing wildfire spread clusters, nearby residences at risk, and

cluster border points.
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e Deployment Platform: Utilize Google Colab Pro and other platforms for
deployment.

e Development Tools: Build the web app using HTML, CSS, JavaScript,
and Google Map services to ensure interactive and user-friendly
visualization.

3.4 Resear ch Design Limitations
The following are some of the key limitations:

e Model performance cannot be assured when working with large datasets.

e The specific cloud environment constrains the effectiveness of the selected
algorithm; different cloud platforms or edge devices may produce slightly varying
results.

e Tuning parameters for the models differ when utilizing data points from various
sources, due to the varying resolutions of the data collection instruments.

3.5 Data Collection Procedures
For performing exploratory data analysis and predicting wildfire growth, the following
instruments' raw fire events data are utilized.

e Moderate Resolution Imaging Spectroradiometer (MODIS) isinstalled on the
Aquaand Terra satellites.

e VisibleInfrared Imaging Radiometer Suite (VIIRS) isinstalled on the satellites
Suomi NPP, NOAA-20, and NOAA-21.

Background of data capturing instruments:
MODIS instrument views the entire Earth's surface in 1 to 2 days, acquires datain
36 spectral bands with Wavelengths from 0.4 um to 14.4 ym, and datais available in the

following spatial resolutions,
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e 250 m (band 1 to 2) and 500m (band 3 to 7) -The primary use of the datain this
band is for viewing Land/Cloud/Aerosols Boundaries.

e 1000m (band 8 to 36) - The primary use of data from this band isfor viewing the
Ocean Color / Phytoplankton/Biogeochemistry. Atmospheric, Surface/Cloud
Temperature, Water Vapor, Atmospheric Temperature, Cirrus Clouds, Water
Vapor, Cloud Properties, Ozone, Surface/Cloud Temperature, Cloud Top
Altitude.

Visible Infrared Imaging Radiometer Suite (VIIRS), installed on the satellite
Suomi NPP, NOAA-20. Thisinstrument detects fire events at different densities
compared to MODIS. Thisinstrument is primarily used for global Earth observations,
imagery, and Radiometric measurements of land, atmosphere, cryosphere, and oceans.
Data from both MODI S and VIIRS instruments are utilized, which ensures a greater
coverage of the areas for predicting fire anomalies.
3.5.1 Data obtaining steps - Satellite data - Raw Fire eventsfrom MODIS & VIRRS.

Data is obtained from NASA’s Fire Information for Resource Management
System (FIRMYS). Historic and Real/near-real -time data are obtained from the following
webpage.
Historic Data Main Web Page Title: NASA FIRMS Fire Information for Resource
Management System, select DOWNLOAD ARCHIVED DATA, follow the sequence to
get to the final webpage for getting the historical data.

e Webpage Subtitle - Archive Download, Authentication through Email.

e Webpage Subtitle - Download Requests email ID - Select Create request.

e Webpage Subtitle - Download Request.

Enter the following field, from the webpage with the subtitle ‘Download Request’

e Select ‘Country’ from the drop-down
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e Select Fire Source “MODIS’ from the drop-down
e Select Date from Jan 2020 to the current date of 2025
e Select Comma-Separated - Text (.csv)
The dataset from the requested instrument, country, selected duration, and requested
format will be sent to the email address provided.
Real-time data Main Web Page Title: NASA FIRMS Fire Information for Resource
Management System, select “Web services’, follow the sequence to access the final
webpage, where you can obtain the URL for real-time data.
Webpage Subtitle - Web Services,
e Select the link ‘API - Application Programming Interface’.
e Webpage Subtitle— API, Choose the link ‘country’
e Webpage Subtitle - API / country
Enter the following details.
e Select Country — United States (USA) from the drop-down
e Select the following Source one at atime from the drop-down
a) MODIS (URT +NRT)
b) VIIRSNOAA-20 (URT +NRT)
c) VIIRSNOAA-21 (URT +NRT)
d) VIIRSS-NPP (URT +NRT)
e Enter - MAPKEY
e Select Day Range — 1 from the drop-down
e Select the button ‘Display Results’
e Copy thelink and useit in the code.
e Changeto al different sources as specified above, and copy the individual links

and put them in your code.
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3.5.2 Data obtaining steps - Emergency Incidents: Download the actual wildfire
emergency incidents from the Current Emergency Incidents Web Page. Thisdatais
captured from the state government of California and consists of actual wildfire
emergencies in the state for the past 13 years.

e Gotothe subtitle — ‘Incident Data’ on this webpage

e Select ‘ALL DATA AS CSV’ to download the actual emergency incident.
3.5.3 Data obtaining steps - Residential data of the USA: For predicting the contextual
information of fire scenes, residential data from the US Census Bureau and the
neighbourhood database are used. This datais captured as follows:

e Download the residential datafrom the United States Census Bureau. From
the webpage with the title ‘Gazetteer Files’, select 2024

a) Go tothe Webpage subtitle ‘Census Tracts’

b) Select the state from ‘Download a Single State Census Tracts
Gazetteer File ‘from the dropdown.

c) Select the link “Download the National Census Tracts Gazetteer
Files[2.3MB]’.

e Download residential data from the United States Neighbourhoods database
available from the website with the webpage title ‘simple maps, Interactive
maps and data’.

3.5.4 Parameter and Description - Satellite Dataset (MODIS/VIRRYS)
Table 4 provides a comprehensive overview of all the parametersincluded in the
MODIS/VIIRS datasets used for exploratory data analysis of the raw fire event and

wildfire growth predictions after preprocessing.

41



Table 4
Satellite Dataset Parameters

Parameter Description Type and Range
latitude Geo Location of fire spots L atitude ranges from
18°N to 72°N for the
USA
longitude Geo Location of fire spots Longitude ranges from
6/°W to 179°W.
brightness Brightness temperature data | 300-510
of the fire spots
scan Represents the along-scan 1-5
pixel size, which isthe spatial
resolution in the East-West
direction of the scan.
track Represents the along-track 1-2
pixel size, which isthe spatial
resolution in the North-South
direction of the scan.
acq_date The date on which thisfire 01-01-2020 to 03-31-
was active 2025
acq_time Time at which the fire was 00 to 2359
active
satellite Terra- Terrasatellite NA
Agqua— Agquasatellite
N20 - NOAA-20 satellite
N21 - NOAA-21 satellite
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N - Suomi NPP satellite

instrument

Refers to the instrument
MODIS or VIIRS, which

captured the fire spot.

NA

confidence

This access quality of fire
pixels, assigning confidence
levels to gauge the reliability
of detected hotspots

0-100

frp

Fire Radiative Power refers
to the rate of outgoing
thermal radiative energy

emitted from a burning spot

0-16146.4

bright_t31

It refers to the brightness
temperature of the fire pixel,
measured in Kelvin,
specifically from channel 31
of the MODI S instrument;
this refers to the intensity of

thefire.

Ranges from 264 to 401
Kelvin, Datatypeis
float32,

daynight

Indicates the Day or night

fire spot detected.

D, N

Type

It refersto different land
cover classification schemes,
including IGBP (International

Geosphere-Biosphere

1to 3,
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https://www.google.com/search?sca_esv=8e9f13b930d05df0&cs=0&sxsrf=AHTn8zrpwJZbmMP_jSggzBDvFlOXwCGAXg:1744203722468&q=IGBP&sa=X&ved=2ahUKEwiBvf2ZgcuMAxXVQzABHRSkIUEQxccNegQIAxAB

Programme), LAI/fPAR,

and NPP (Net Primary
Production), which are used
to categorize and map various

land surface features.

3.5.5 Parameter And Description - Emergency Incident Dataset

This dataset has been meticulously collected by the regional incident management team
in Californiaand has received approval from local government authorities. It serves a
critical purpose: validating the predictions of machine learning models regarding the
emergence of fire locations by directly comparing predicted fire growth with actual

wildfire occurrences in this dataset.

Table 5
Emergency Incident Dataset
Par ameter Description Type and Range
incident_date created Thisisthe date and time Date 2013 to Date 2025
when the wildfire incident
was reported
incident_acres burned Thisindicates the acres Max 1032648.0
burned in the wildfire Min O
incident
incident latitude Geo Location of fire spots
incident_|ongitude Geo Location of fire spots
incident_type Thisindicatesthe Type of | Wildfire, Fire, flood,
emergency earthquake.
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3.5.6 Parameter And Descriptions - Census and Neighbourhood Dataset

The United States Census Bureau - U.S. Gazetteer Files dataset, urban areas, and
The U.S. Neighbourhoods website dataset comprised most of the residential addresses
and Geographical data coordinates of the USA.

3.6 Data Analysis
Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is performed on the independent parameters to
gather insightsinto fire events within the MODI S dataset, focusing on their relationship
with the Date (Season) and geographic location. The analysis examines explicitly:

e Latitude
e Longitude

e Date

General Analysis
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Figure 8
Fire events from 2020 to 2024, USA - MODIS Raw Fire events

Plot Interpretation: In Figure 8, the y-axis indicates the total number of fire events,
while the x-axis represents the Y ear.

Plot Inference:

General Insights on fire events across the USA in the past 5 years:

e Inthepast 5 years, 2021 recorded the highest number of fire eventsin the USA.
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e Conversely, 2023 saw the lowest number of fire events.

e Anoveral trend from 2021 to 2023 indicates a declinein fire events.

e However, projections for 2024 suggest a resurgence, with an expected increasein
fire events compared to 2023.

Total fire events across various geographic locationsin the USA:
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USA Sate-wise Raw Fire Events MODI S - 2020 to 2025
Plot Interpretation: In Figure 10, the Y -axis represents the total number of fire events

across different statesin the USA, while the X-axis lists the states themselves.
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Plot Inference: Insights into fire events in various geographic locations of the USA over
the past five yearsinclude: -

e 2020: Cdlifornia, Oregon, Texas, Florida, Georgia.
[ ]
[ ]

2021: California, Washington, Oregon, Texas, |daho.

2022: Alaska, Texas, Georgia, Florida, New Mexico.

2023: California, Texas, Georgia, Florida, Louisiana.
e 2024: Oregon, Idaho, Cdlifornia, Texas, Georgia.
e 2025: Florida, Georgia, California, Texas, Hawaii.
From 2020 to 2025, the states listed above reported the highest number of fire
eventsin the USA. Further exploratory analysis will be conducted on these regionsto

examine the behavior of fire events in each geographic location and date (season).
3.6.1 FireEvent In California

3.6.1.1 Seasonal Influence on Fire Events

California Fire Evants
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California Fire events - 2020 to 2025
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Callfornla Fire Events - 2022 and 2025
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California Fire events - 2022 to 2025
Plot I nterpretation:
Figure 11: Thisfigure presents multiple subplots, illustrating the total number of
fire events on the Y -axis and the months on the X-axis for the years 2020 to 2025.
Figure 12: Thisfigure also comprises multiple subplots, displaying the total
number of fire events on the Y -axis and the months on the X-axis for the years 2022 to
2025.
Plot I nference:
Insights of Fire eventsin California:
e Inthelast 5 years (2020-2025), fire events peak from June to October.
e Overthelast 3 years (2022-2024), fire events have been lower in comparison to
the years 2021 and 2022.
e Notably, both 2022 and 2025 exhibit a slight spike in fire events during the first

guarter of the year.
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3.6.1.2 Geographic location influence on Fire events
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Figure 12
California Map - Fire events Jul Aug 2023 and Jul Aug 2024 Map

Plot Interpretation:
Figure 13 isrepresented as follows,
e Fireeventsfor July 2023 and July 2024 are depicted on the Californiamap in
blue.
e Fireeventsfor August 2023 and August 2024 are shown in red on the California
map.
e July and August are highlighted explicitly due to being the peak wildfire months
in California
The years 2023 and 2024 are chosen to represent wildfire events, as they are the
most recent data available. The subsequent plotsin this EDA section will follow asimilar
pattern.
Plot Inference:
e Fireeventsin thislocation demonstrate the following behaviors:
e Spotting: Fire eventstend to occur in isolated locations.

e Spreading: Fire events show atendency to expand across the area.
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3.5.2 Fire Event in Washington

3.5.2.1 Seasonal Influence on Fire Events

Washington Fire Events - 2020 and 2025
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Washington fire events Monthly - 2020 to 2025
Plot Interpretation:
Figure 14: Thisfigure represents multiple subplots. It indicates the total fire eventsin the
Y axis and Monthsin the X-axis for the years 2020 to 2025.
Plot Inference:
Insights into fire events in Washington:
e Inthelast 5 years (2020-2025), fire events peak between June and October.

e During this period, the year 2021 recorded the highest number of fire events.
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3.5.2.2 Geographic location influence on Fire events

Fi gufe 14 |
Washington Map - Fire events Jul Aug 2023 and Jul Aug 2024
Plot I nterpretation:
Figure 15 is represented as follows,
e Fireeventsfor July 2023 and July 2024 are depicted on the Washington map in
blue.
e Fireeventsfor August 2023 and August 2024 are shown in red on the Washington
map.
e July and August are selected for this representation, asthey are the peak wildfire
months in Washington.
Plot Inference:
Fire eventsin this location demonstrate the following behaviors:
e Fireeventstend to occur in isolated spots.
e Fireeventstend to spread.
e In 2024, approximately 12 fire eventsin this location expanded into larger areas.

e 1n 2023, roughly seven fire eventsin this location spread to wider areas.
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3.5.3FireEventsin Idaho

3.5.3.1 Seasonal Influence on Fire Events

Haha Fire Events - 2020 and 2025
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Figure 15
Idaho fire events Monthly - 2020 to 2025

Plot I nterpretation:
Figure 16: Thisfigure represents multiple subplots. It indicates the total fire

eventsin the Y-axis and Months in the X-axis for the years 2020 to 2025.

Plot Inference:
Insightsinto fire eventsin California
e Inthe past 5 years (2020-2025), fire events peaked between June and October.

e Within thistimeframe, the year 2024 recorded the highest number of fire events.
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3.5.3.2 Geographic location Influence on Fire events
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Figure 16
Idaho Map - Fire events of Aug Sep 2022, Aug Sep 2023, and Aug Sep 2024
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Plot Interpretation:
Figure 17 is represented as follows,
e All fire events from August 2022, August 2023, and August 2024 are depicted on
the Californiamap in red.
e All fire events from September 2022, September 2023, and September 2024 are
represented on the Californiamap in blue.
e August and September are noted as the peak months for fire eventsin this
location.
Plot Inference:
Fire eventsin this location demonstrate the following behaviours:
e Fireeventstend to occur in isolated spots.
e Fireeventstend to spread.
e In 2024, approximately 10 fire eventsin this location expanded into larger areas.

e 1n 2022, roughly ninefire eventsin this location spread to wider areas.
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3.5.4 FireEventsin Oregon

3.5.4.1 Seasonal Influence on Wildfire Events

Dregon Fire Events - 2020 and 2025
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Figure 17

Oregon fire events Monthly - 2020 to 2025
Plot Interpretation

Figure 18: This figure presents multiple subplots, illustrating the total number of fire

events on the Y -axis and the months on the X-axis for the years 2020 to 2025.
Plot Inference:

Insights into fire events in Oregon:

In the last 5 years (2020-2024), fire events peak between June and October.
[ ]

During this period, the year 2021 recorded the highest number of fire events.

In the past 3 years (2022-2024), the year 2024 reports the highest number of fire
events.
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3.5.4.2 Geographic location influence on Wildfire events
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Figure 18
Oregon Map - Fire events of July-Aug 2023 and July-Aug 2024

Plot I nterpretation:
Figure 19 is represented as follows,
e All fireevents from July 2023 and July 2024 are depicted on the Oregon map in
blue.
e All fire events from August 2023 and August 2024 are represented on the Oregon
map in red.
e July and August are selected for this representation, as they are the peak fire

months for this location.
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Plot Inference:
Fire eventsin this location demonstrate the following behaviours:
e Fireeventstend to occur in isolated spots.
e Fireeventstend to spread.
e In 2024, approximately nine fire eventsin this location expanded into larger areas.
e 1n 2023, roughly fivefire eventsin this location spread to wider aress.
3.5.5 FireEventsin Texas

3.5.5.1 Seasonal Influence on the Fire Events
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Figure 19
Texas fire events Monthly - 2020 to 2025

Plot Interpretation:
Figure 20: Thisfigure presents multiple subplots, illustrating the total number of
fire events on the Y -axis and the months on the X-axis for the years 2020 to 2025.
Plot Inference:
Insights into Wildfire Eventsin Texas
e Inthelast 6 years (2020-2025), fire events peak between January and April.
e Inthelast 5 years (2020-2024), fire events have remained moderate from April to
September.
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e Inthelast 5 years (2020-2024), there has been a slight increase in fire events from
September to November.

e Inthe past 5 years (2020-2024), the year 2022 reported the highest number of fire
events.

e Inthe past 3 years (2022-2024), the year 2024 reports the highest number of fire
events.

3.5.5.2 Geographic location influence on Fire events
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Figure 20
Texas Map - Fire events of Feb Mar 2023 and Feb Mar 2024

Plot Interpretation
Figure 21 is represented as follows,
o All wildfire events from July 2023 and July 2024 are depicted on the Texas map

in blue.

o All wildfire events from August 2023 and August 2024 are represented on the

Texasmap inred.
e February and March are selected for this depiction, as they are the peak wildfire

months for this location.

59



Plot Inference:
Fire eventsin this location demonstrate the following behaviour:
e Fireeventstend to occur in isolated spots.
e In 2023 and 2024, there were no visible observations of fire spread in this
location.
3.5.6 FireEventsin Georgia

3.5.6.1 Seasonal I nfluence on Fire Events
Geargia Fere Events - 2020 and 2025
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Figure 21

Georgia Fire events Monthly - 2020 to 2025
Plot Interpretation:
Figure 22: Thisfigure presents multiple subplots, illustrating the total number of

fire events on the Y -axis and the months on the X-axis for the years 2020 to 2025.

Plot Inference:
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Plot Inference:
e Inthelast 5 years (2020-2024), fire events have shown a peak from January to
May.
e Additionally, there has been an increase in fire events from September to
November, followed by a decrease in December.

3.5.6.2 Geographic location influence on Fire events

Figure 22
Georgia Map - Fire events of Feb Mar 2023 and Feb Mar 2024

Plot Interpretation:
Figure 23 is represented as follows,
e All the Fire events of July 2023 and July 2024 are represented in the GeorgiaMap
in blue.
o All the Fire events of August 2023 and August 2024 are represented in the
GeorgiaMap in red.
e February and March are considered for the depiction as they are the peak fire
months in Georgia.
Plot Inference:

Fire event in this location exhibits the following behavior,
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e Fireevent exhibits a spot
e In 2023 and 2024, no visible observation of the fire spread in thislocation.
3.5.7 FireEventsIn Florida

3.5.7.1 Seasonal Influence on Fire Events

Florida Fire Events - 2020 and 2025
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Figure 23
Florida Fire events Monthly - 2020 to 2025

Plot I nterpretation:

Figure 24 demonstrates multiple subplots, showcasing the total number of fire
events represented on the Y -axis against the months on the X-axis for the years 2020 to
2025.

Plot Inference:
Insights of Fire eventsin Florida:
e Inthelast 5 years (2020-2024), fire events have shown peaks between January
and May.
e Additionally, there has been a gradual increase in fire events from September to

January, followed by another peak.
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Geographic location influence on Fire events
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Figure 24
Florida Map - Fire events of Feb Mar 2023 and Feb Mar 2024

Plot I nterpretation
Figure 25 is represented as follows,
o All thewildfire events from July 2023 and July 2024 are represented in blue on
the Florida map.
o Similarly, al wildfire events from August 2023 and August 2024 are shown in
red.

e Additionally, February and March are highlighted, as these months are considered

peak wildfire periodsin Florida.
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Plot Inference:
Thefire in thislocation exhibits the following behavior:

It shows spot fires. However, in 2023 and 2024, there have been no visible
observations of fire spread in this area.

3.5.8 Fire EventsIn Pennsylvania

3.5.8.1 Seasonal Influence on Fire Events

Pennsylvania Fire Events . 2020 and 2025

140 ¢
2020

2021
120 4

2022
2023
100 4 2024
2025
2 B804
.
g 6O
40 4 =0
e~
20 4 N
04 B
DEC YN FEB MAR APR MAY MUN UL AUG SEP OCT NOV
Maonth
Figure 25

Pennsylvania fire events Monthly - 2020 to 2025

Plot I nterpretation: Figure 26 displays multiple subplots that indicate the total number
of fire events on the Y -axis, with months represented on the X-axis for the years 2020 to
2025.
Plot Inference: Inthelast 5 years (2020-2025), Pennsylvania has reported one of the
lowest numbers of fire events. This state is selected for analysis to understand better the

seasonal patterns of fire eventsin the northeastern part of the USA.
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3.5.8.2 Geographic location influence on Fire events

Pennsylvania Mar-Blue and Apr-Red 2023
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Figure 26
Pennsylvania Map - Fire events of Mar Apr 2023 and Mar Apr 2024
Plot I nterpretation:
Figure 27 is represented as follows,
o Fireeventsfrom March 2023 and March 2024 are represented in blue on the
Pennsylvania map.
¢ Incontragt, fire events from April 2023 and April 2024 are shown in red on the

same map.
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Plot Inference:
Firein thislocation exhibits the following behavior:
Spot fires characterize them. Additionally, there have been no visible

observations of fire spread in this area during 2023 and 2024.

3.6 Data Analysis Summary

Exploratory Data analysis reveals that wildfires are spreading at specific
longitudes towards the western part of the country, and have alow tendency to spread at
specific longitudes towards the eastern part of the country. Wildfire spread behavior did
not vary across different latitudes of the country. Southwest to northwest exhibited the
exact wildfire-spreading nature across all latitudes, while southeast to northeast exhibited
alow tendency of wildfire spread across all latitudes of the country. Possible causes of
spreading could be highly flammable vegetation and heavy winds specific to those
regions, or alack of efficiency in the human operation to control the wildfire in some
areas.

States in the USA show a seasonal pattern, western states experience
growing wildfires from June to November, and the Eastern part of the USA experiences
mostly isolated fire events from January to May.

The historical raw fire event datasets from California and Idaho, both located in the
western region of the USA, have been selected for Al model experimentation. These
states are among the top five in the USA that have experienced wildfires over the past
fiveyears. The fire eventsincluded in the dataset encompass al combinations of small
and large fire growths, noises, nearby fire growth areas, and the gradual increase in fire

growth from the initial discovery day to the following days.
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3.7 Data Preparation
3.7.1 Elimination of Variables
This research aims to predict “Fire growth”. The dataset comprised the
parameters’ latitude, longitude, acq_date, acq_time, satellite, instrument, brightness, scan,
track, confidence, frp, bright_t31, and day-night for the entire globe.
Parameters brightness, scan, track, confidence, frp, bright_t31, and day-night are
eliminated from the dataset.
3.7.2 Derived Metrics
To filter the raw fire events for the selected region, derive a dataset that captures
explicitly only the fire events occurring within the defined boundaries of that region. This
process involves applying a geographical filter to the raw data, ensuring that only
relevant fire events are included. Once the filtering is complete, create a more focused
dataset that can be used for further analysis and insight into fire occurrencesin the
specified area.
Cdifornia
e Latitude- 32.5t042.
e Longitude-124to -115.
Idaho:
e Latitude- 43to49.
e Longitude-124to-110.5.

To further analyze the dataset, separate it into individual datasets corresponding to

each day. Thisstep is essentia to illustrate the variation in fire points from the day the

fire spread was first identified, as well as the subsequent days reflecting the fire's growth.
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By doing this, we can visually validate the clustering of fire growth observed on the
initial day and compare it with the clusters from the following days.
California Datasets:
e Filter by date - January 7, 2025
e Filter by date - January 8, 2025
e Filter by date - January 9, 2025
|daho Datasets:
e Filter by date - August 5, 2025
e Filter by date - August 6, 2025
e Filter by date - August 7, 2025
Remove the parameters acq_date, acq_time, satellite, and instrument from the datasets.
Consequently, each dataset will consist of just two parameters. Latitude and Longitude
for the selected dates and the specified region.
3.8 Implementation and evaluation
3.8.1 MachineLearning Model and Evaluation
The following unsupervised learning models are experimented with and eval uated.
e K-Means Clustering.
e Fuzzy C-means Clustering.
e Gaussian Mixture Models Clustering.
e Agglomerative Hierarchical Clustering.
e DBSCAN clustering machine learning agorithm.
e New Proposed Model: Multi-level multi-criteria clustering algorithm.
3.8.2K-means Clustering

The following Python Packages are used for the development:

68



e General Libraries: These are necessary for reading the dataset in CSV format and
for deriving the dataset based on the timestamp of the fire event occurrence.
e K-means Clustering Libraries: These libraries are required for computing 'k’
clusters from the input dataset.
e Clustering Evaluation Libraries: These libraries are necessary for evaluating the
clusters generated by the K-means algorithm.
General Import Libraries
e import pandas as pd
e from datetime import datetime
e import time
K-means Clustering Libraries
e from sklearn.cluster import KMeans
e import math
e import numpy as np
K-means Clustering Evaluation Libraries
e from sklearn.metrics import silhouette score
e from sklearn.metrics import pairwise_distances
e import matplotlib.pyplot as plt
Dataset Preparation
Firstly, derive the dataset based on the specified region by filtering using the geographic
coordinates. For Region 1, which is California, USA, select the relevant geo-coordinates
to isolate the dataset pertaining to this area.
e 'latitude’ <42 'latitude' > 32.5
e ‘longitude >-124 ‘longitude < -115.5
Region 2: Idaho, USA
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e 'latitude’ <49 ‘'latitude' > 43

e ‘longitude >-118 ‘longitude' <-110.5
Secondly, derive the dataset for the required dates, focusing specifically on the incident
days. Sample Dataset 1, Region 1: California, USA: The dataset includes fire events from
MODIS for the following dates:

e January 6, 2025

e January 7, 2025

e January 8, 2025
Sample Dataset 2, Region 1: California, USA: The dataset includes fire events from
MODIS for the following dates:

e January 21, 2025

o January 22, 2025

e January 23, 2025
Sample Dataset 3, Region 2: Idaho, USA: The dataset includes fire events from MODIS
for the following dates:

e August 5, 2025

e August 6, 2025

e August 7, 2025
Modeling the Data Using K-Means
To initialize the K-means algorithm, the following input parameters need to be set:
Randomly choose the value of ‘k,” which represents the desired number of clusters. You
can set ‘k’ to either 2, 3, or 4, depending on the analytical requirements for the dataset.
K-means Clustering - Evaluation
The following evaluation metrics are used to evaluate the K-means clustering algorithm.

e Silhouette score
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e Inertia

e Dunn Index
3.8.3 Fuzzy C-Means Clustering
The following Python packages are used for the devel opment:
General Libraries: These libraries are essential for reading the dataset in CSV format and
for deriving the dataset based on the timestamp of the fire event occurrence.
Fuzzy C-Means Libraries: These libraries are required for computing Fuzzy C-Means
clusters from the input dataset.

Fuzzy C-Means Clustering Evaluation Libraries: These libraries are necessary for

evaluating the clusters derived from the Fuzzy C-Means algorithm.
General Import Libraries

e import pandas as pd

e from datetime import datetime

e import time
K-means Clustering and Evaluation Libraries

e import skfuzzy asfuzz

e from skfuzzy import control as ctrl

e from sklearn.metrics import pairwise_distances

e import matplotlib.pyplot as plt
Dataset Preparation

Firstly, derive the dataset based on the specified region by filtering with the
geographic coordinates.
For Region 1: California, USA, select the relevant geo-coordinates to isolate the

dataset about this area. This step involves ensuring that only the data points that fall

within the defined latitude and longitude ranges for California are included in the dataset.
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o 'latitude’ <42 'latitude' > 32.5

e ‘longitude > -124 'longitude < -115.5
Region 2: Idaho, USA

e 'latitude’ <49 'latitude' > 43

e ‘longitude > -118 ‘longitude' <-110.5
Secondly, derive the dataset for the required dates, specifically on the incident days.
Sample Dataset 1, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 6, 2025

e January 7, 2025

e January 8, 2025
Sample Dataset 2, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 21, 2025

o January 22, 2025

e January 23, 2025
Sample Dataset 3, Region 2: Idaho, USA: The dataset consists of fire events from
MODIS for the following dates:

e August 5, 2025

e August 6, 2025

e August 7, 2025
Modeling the Data Using Fuzzy C-Means Clustering

The following input parameters need to be initialized for the Fuzzy C-means

clustering algorithm:
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‘c’: This parameter represents the number of clusters and can be set to 2, 3, or 4,
depending on the density of the dataset.

‘m’: This is the fuzziness parameter, which controls the degree of overlap or
fuzziness between clusters. It typically ranges from 1.5 to 2.5 and can be set to values
suchas 1.5, 2, or 2.5.

Fuzzy C-Means Clustering - Evaluation: After clustering, various evaluation
metrics can be applied to assess the clustering results, ensuring the effectiveness of the
clustering process.

The following evaluation metrics are used for evaluating Fuzzy C-means clustering.

e Fuzzy Partition Coefficient (FPC)

e Partition Entropy Coefficient (PEC)

e Dunn Index
3.8.4 Gaussian Mixture M odels Clustering
The following Python packages are used for the devel opment:
General Libraries: These libraries are essential for reading the dataset in CSV format and
for deriving the dataset based on the timestamp of the fire event occurrence.
Gaussian Mixture Models Libraries: These libraries are required for computing the
probabilities and clusters of Gaussian Mixture Models from the input dataset.
Gaussian Mixture Models Evaluation Libraries: These libraries are necessary for
evaluating the clusters derived from the Gaussian Mixture Models.
General Import Libraries

e import pandas as pd

e from datetime import datetime

e import time

Gaussian Mixture Models, Clustering and Evaluation Libraries
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e from sklearn.mixture import GaussianMixture

e from sklearn.metrics import silhouette score

e import matplotlib.pyplot as plt
Dataset Preparation
Firstly, derive the Dataset based on the region, Filter by regional Geo coordinates
Region 1: California, USA

e 'latitude’ <42 'latitude' > 32.5

e ‘longitude > -124 'longitude < -115.5
Region 2: Idaho, USA

e 'latitude’ <49 'latitude' > 43

e ‘longitude > -118 ‘longitude' <-110.5
Secondly, derive the dataset for the required dates, specifically on the incident days.
Sample Dataset 1, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 6, 2025

e January 7, 2025

e January 8, 2025
Sample Dataset 2, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 21, 2025

o January 22, 2025

e January 23, 2025
Sample Dataset 3, Region 2: Idaho, USA: The dataset consists of fire events from
MODIS for the following dates:

e August 5, 2025
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e August 6, 2025

e August 7, 2025
Modeling the Data Using Gaussian Mixture M odels Clustering
The following input parameters need to be initialized for the Gaussian Mixture Models
clustering algorithm:
Component: This parameter represents the number of clusters (or elements) in the model.
It can be set to 3. The model will compute the probability of each data point belonging to
each cluster.
Gaussian Mixture Models Clustering - Evaluation
The following evaluation metrics are used for evaluating the Gaussian Mixture Model
cluster.

e Visual Inspection using the Plots

e Silhouette score
3.8.5 Agglomerative Hierarchical Clustering
The following Python packages are used for the devel opment:
General Libraries: These libraries are essential for reading the dataset in CSV format and
for deriving the dataset based on the timestamp of the fire event occurrence.
Agglomerative Hierarchical Clustering Libraries: These libraries are required for
performing Agglomerative Hierarchical Clustering on the input dataset.
Genera Import Libraries

e import pandas as pd

e from datetime import datetime

e import time
Agglomerative Hierarchical Clustering and Evaluation Libraries

e from sklearn.cluster import AgglomerativeClustering
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e from scipy.cluster.hierarchy import dendrogram, linkage

e from sklearn. metrics import silhouette _score

e import matplotlib.pyplot as plt.
Dataset Preparation
Firstly, derive the Dataset based on the region, Filter by regional Geo coordinates
Region 1: California, USA

e 'latitude’ <42 'latitude' > 32.5

e ‘longitude > -124 'longitude < -115.5
Region 2: Idaho, USA

e 'latitude’ <49 'latitude > 43

e ‘longitude > -118 ‘longitude' <-110.5
Secondly, derive the dataset for the required dates, specifically on the incident days and
near real-time.
Sample Dataset 1, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 6, 2025

e January 7, 2025

e January 8, 2025
Sample Dataset 2, Region 1: California, USA: The dataset consists of fire events from
MODIS for the following dates:

e January 21, 2025

o January 22, 2025

e January 23, 2025
Sample Dataset 3, Region 2: Idaho, USA: The dataset consists of fire events from
MODIS for the following dates:
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e August 5, 2025

e August 6, 2025

e August 7, 2025
Modeling the Data Using Agglomer ative Hierarchical Clustering
The following input parameters need to be initialized for the Agglomerative Hierarchical
Clustering algorithm:

e Set the number of clustersto 3.

e Linkage method set to ‘complete’ (it can also be set to other values like ‘ward

method’, ‘single’, or ‘average’)

Agglomerative Hierar chical Clustering - Evaluation
The following evaluation metrics are used to evaluate the Agglomerative Hierarchical
Clustering.

e Visual Inspection using the Plots

e Silhouette score
3.8.6 DBSCAN Clustering
The following Python packages are used for the devel opment:
General libraries: These are required for reading the dataset in CSV format and for
deriving the dataset based on the timestamp of the fire events. DBSCAN Clustering
libraries: These are necessary for computing DBSCAN on the input dataset.
DBSCAN Clustering Evaluation Libraries: These are required for evaluating the results
of the DBSCAN clustering.
General Import Libraries

e import pandas as pd

e from datetime import datetime

e import time
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DBSCAN Clustering Libraries
e from sklearn.cluster import DBSCAN
e import matplotlib.pyplot as plt
e import math
e import numpy as np
DBSCAN Clustering Evaluation Libraries
e from sklearn.metrics import silhouette score
e from sklearn.metrics import calinski_harabasz_score
e from sklearn.metrics import davies_bouldin_score
Dataset Preparation
Firstly, derive the Dataset based on the region, Filter by regional Geo coordinates
Region 1: California, USA
e 'latitude’ <42 'latitude' > 32.5
e ‘longitude >-124 'longitude < -115.5
Region 2: Idaho, USA
e 'latitude’ <49 'latitude' > 43
e ‘longitude > -118 ‘longitude' <-110.5
Secondly, derive a separate dataset for the required days and date, specifically focused on
the incident days and the near real-time.
Incident 1, Region 1: California, USA: The dataset consists of fire events from MODIS
for the following dates:
e January 6, 2025
e January 7, 2025
e January 8, 2025
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Incident 2, Region 1: California, USA: The dataset consists of fire events from MODIS
for the following dates:

e January 21, 2025

o January 22, 2025

e January 23, 2025
Incident 3, Region 1: California, USA, Near Real Time: The dataset consists of near-real-
time fire events from:

e MODIS

e VIIRSNOAA-21

e VIIRSNOAA-20

e Date: April 21, 2025
Incident 4, Region 2: Idaho, USA
The dataset consists of fire events from MODI S for the following dates:

e August 5, 2025

e August 6, 2025

e August 7, 2025
Modeling The Data Using DBSCAN
The following input parameters are set for the DBSCAN models:

e Set the radius of the neighbourhood around a data point to 0.1 meters.

e Set the minimum points required to form a dense region/cluster.

e If the captured instrument is MODI S, set the minimum pointsto 5.

e If the captured instrument is VIIRS, set the minimum points to 10.

Thisinput parameter configuration must be tailored to the specific input devicein

use. Adjustments should be made to ensure optimal clustering based on the

characteristics of the data captured by different instruments.
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DBSCAN Clustering - Evaluation

The following evaluation metrics are used for evaluating the DBSCAN cluster.
e Silhouette score
e Calinski-Harabasz Index
e Davies-Bouldin Index

3.8.7 Newly Proposed Multi-Level Multi-Criteria Clustering Algorithm

Proposes a new clustering algorithm that first marks all the data points that have
more than a specified nearest neighbors, determines the nearest neighbors based on the
specified distance between the points, and excludes the data points that do not have
nearest neighbors or the nearest neighbors count is less than the specified nearest
neighbors. It then regroups, points to a new cluster by identifying one core point from
previously marked points, and determines the nearest points to this core point based on
the specified distance.

From the core point and rest al the marked points, form a cluster with all the
neighboring points nearer to the core points, and exclude the remaining marked points
that are not nearer. Mark these points as ‘unknown cluster’, then identify another core
point in the remaining points, then determine the nearest neighbors to this core point, and
form anew cluster. This process continues until all the points form anew cluster or are
eliminated from the group. Then, it further determines the approximate area of each
cluster. If the distance between any two clustersis less than the specified inter-cluster
distance, then it forms abigger cluster by combining the two nearest clusters.

It determines the area using a bounding box (Rectangular Approximation), a
convex hull(polygon/polytope). The design of the proposed new clustering algorithm is
asfollows.

e Cluster the data points that share similar characteristics.
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e Cluster the data points that are close to each other, and measure the Euclidean
distance between these data points.

e Exclude the data points from the Cluster that are far from the other fire spotsin
The Cluster.

e Form aCluster when at least 5 fire points are at a shorter distance to each other

e Compute the area of the cluster.

e The higher the fire data pointsin asmaller area, the higher the probability that the
cluster is the wildfire spreading spot.
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Figure 27
Fire spot - Potential for Clustering
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Day 1 - Fire spot - on 2-D space
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Figure 30
Day 1 - P1 to Pmax - Euclidean distance

Figure 31
Day 1 - P2 to all other points - Euclidean distance
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Day 1 - P15 to all other points - Euclidean distance

Consider Points in the space/dataset P1(x1, y1), P2(x2, y2), P3(x3, y3), P4(x4,
y4), ..., P15(x15, y15).

Compute the distance from P1 to rest all the points in the space/dataset
dl,n = SQRT [(xn x1)2 +(yn - y1)2], where ‘n’ ranges from 1 to max pointsin
the space/dataset.

Compute the distance from P2 to all the points in the space/dataset

d2,n = SQRT [(xn x2)2 +( yn—Yy2)2], where ‘n’ ranges from 1 to a maximum
point in the space/dataset.

Compute the distance from P3 to all the points in the space/dataset

d3,n = SQRT [(xn x3)2 +( yn—y3)2], where ‘n’ is the 1 to max points in the
space/dataset.

Compute the distance from P4 to all the points in the space/dataset

d4,n = SQRT [(xn x4)2 +( yn — y3)2], where ‘n’ is the 1 to max points in the
space/dataset.
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Compute the distance from P5 to rest all the points in the space/dataset

d5, n = SQRT [(xn x5)2 +( yn—y5)2], where ‘n’ varies from 1 to the maximum
number of data points in the space/dataset.

Similarly, compute the distance from all the points

Compute the distance from P6 to all the points in the space/dataset

d6, n = SQRT [(xn x6)2 +( yn—y6)2], where ‘n’ varies from 1 to the maximum
number of data points in the space/dataset.

Compute the distance from P7 to all the points in the space/dataset

d7,n = SQRT [(xn x7)2 +( yn—y7)2], where ‘n’ varies from 1 to the maximum
number of data points in the space/dataset.

Compute the distance from P8 to all the points in the space/dataset

d8, n = SOQRT [(xn x8)2 +( yn—y8)2], where ‘n’ varies from 1 to the maximum
number of data points in the space/dataset.

Compute the distance from P9 to all the points in the space/dataset

d9, n = SOQRT [(xn x9)2 +( yn—y9)2], where ‘n’ varies from 1 to the maximum
number of data points in the space/dataset.

Compute the distance from P10 to all the points in the space/dataset

d10, n = SQRT [(xn x10)2 +( yn—y10)2], where ‘n’ varies from 1 to the
maximum number of data pointsin the space/dataset.

Compute the distance from P11 to rest al the points in the space/dataset

d1l, n = SQRT [(xn x11)2 +( yn—y11)2], where ‘n’ varies from 1 to the
maximum number of data pointsin the space/dataset.

Compute the distance from P12 to all the points in the space/dataset

d12, n = SQRT [(xn x12)2 +( yn—y12)2], where ‘n’ varies from 1 to the

maximum number of data pointsin the space/dataset.
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e Compute the distance from P13 to all the points in the space/dataset
d13, n = SQRT [(xn x13)2 +( yn—y13)2], where ‘n’ varies from 1 to the
maximum number of data pointsin the space/dataset.

e Compute the distance from P14 to all the points in the space/dataset
d14, n = SQRT [(xn x14)2 +( yn—y14)2], where ‘n’ varies from 1 to the
maximum number of data pointsin the space/dataset.

e Compute the distance from P14 to rest al the pointsin the space/dataset, dn, n-1 =
SQRT [(xn-1 xn)2 +( yn-1—yn)2], where ‘n’ varies from 1 to the maximum

number of data points in the space/dataset.

dmin(1... n).

Table 6

Computation of distances - all points of the dataset

Points Distance with other Points in Space or Dataset

P1 dip |dis |dis |dis |dis [dig |dis [die |digo |din [dip i i [digs
P2 dll dlj dl—l— dlj dlﬁ dl:? dE:S dlg‘ dl: 10 dl: 11 dl: 12 dl: 13 dl: 14 dlli
P3 dsy |dsp |dss |dss [dss [ds7 |dss [dse |dspo |dsn i |dsgs |dsae [dsas
P4 d-l-=1 d—l-:l dej d—Lj d—l—ﬁ d—k? d—l-:S d—l—ﬂ‘ d—l-:ID d-L:ll d—l-: 12 d—l— 13 d—l-: 14 d—l— 15
P5 ds;  |dsp |dss |dsy |dss |dsy |dsg [dso |dsio |dsy [dsp |dsgs |dsge [dsas
P6 d6=1 dﬂ:l dﬁj dﬁ;l— dﬁj dﬁ:? dl.‘l:S d6=9‘ dl.‘l: 10 dﬁ: 11 dﬁ: 12 dl.‘l_ 13 dl.‘l: 14 dﬁ_lj
P7 diy |dip |dis |diy |dis |dis |dis [die |dipo |din |dip |digs |diae [dias
P38 d&l dS:E de dS 4 dS 3 dS ] dS:? dS ) dS 10 dS 11 dS 12 dS 13 dS:l-L dS 15
P9 do; |doy |dos |doy |dos [dos |dos |dog doo |doy1 |dopo |dogs |dogs |doss

P10 dios |dioa
P11 dig |dno |dus |dns |dus |dis [dug [dus | [dun [din [dugs [dus [dis
P12 dig |dia |dips |dps |dis [dis |diag
P13 dizi |disa |diss |diss |diss [diss |diss
P14 digg |dio
P15 disy; |disa
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Figure 33
Grouping the points to cluster based on the farthest point distance

e Choose the distance that is based on the business need. The basis for choosing this
distanceisthe historical event and the area of spread.

e Choose 3 miles, 5 Miles, or 10 miles, Cluster Farthest Points Distance = m.

e Thebasisfor choosing this distance is the historical event and the area of spread.

e Thenfilter out all the points above this distance; these are most likely the fire
spots that are not spreading and are farthest apart, so eliminate those points.

e Compare the distance computed between the points < Cluster Farthest Points
Distance.

e Choose the Nearest neighbor count based on historic events. Basis: In the
history data set, fire events that are nearer on day 1 and then sped up from the
second day, 4 or 10, based on the history.

e Eliminate all the points from the dataset that do not have any nearest neighbors.

e From the cluster (Cluster ab) of pointswhere each point has the Near est

neighbor points >=the Nearest neighbor count.
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Figure 34 Group AB regrouping - P1
Repeat these steps for the Cluster ab until each point in the cluster is nearer to each other
by less than the Cluster Farthest Points Distance and has nearest neighbors equivalent to
or greater than the Near est neighbor count.
e Choose randomly any one point from the large cluster ab and determine
how many points are close to this point.
¢ Randomly chosen point is P1, compute the distance from P1 to all the
pointsin the Cluster ab.
e dl,n =SQRT [(xnx1)2+(yn-yl1)2]
e where ‘n’ is the remaining points of the Cluster ab.
e If the distance from P1 to other pointsin cluster ab is less than the Cluster
Farthest Points Distance, then set that point as the Nearest Neighbor of P1.

e Formanew Cluster A that is set as the Nearest neighbors of PL.
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Table 8
P1 - Closest & Final Grouping - Cluster 1
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e Determine whether the total pointsin the new Cluster A are greater than or
equal to the Nearest neighbor count.

Repeat the same steps for the remaining points of Cluster AB.

Cluster AB- Remaining Points

PO

P10
PG
P8

Figure 35
P6 Cluster

Figure 36 depicts the remaining points of the cluster AB.

e Randomly choose the new point from the cluster AB

e Randomly choose point P6, and determine the distance from this point to
the rest of the pointsin the cluster AB.

e Determine the total pointsthat are closeto P6 are greater than or equal to

the Near est neighbor count. Then form this as a new cluster B.
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Table9

Closest & Final Grouping - Cluster 2

Nearest Nearest Nearest Nearest
Distance |Neighbour |Distance |Neighbour|Distance |Neighbour|Distance |Neighbour
Points to P7 of P6 to P8 of P6 to P9 of P6 to P10 of P6
P6 dﬁ,'.'r Yes dﬁ,s Yes dﬁ,g Yes dﬁ,]ﬂ Yes

clusters.

Repeat these steps 10 times to identify the existence of 10 different

It's assumed that for the chosen country based on EDA, there cannot be

more than 10 active spreading wildfire points at different locationsin the

selected state.

If there are more than 5 clusters formed for the selected state, then drop

the clusters from the results if any cluster has data points less than 3% of

the data pointsin the dataset.

Determinethe area and vertices of each cluster

Figure 36

Cluster A

P2

P3

P5

P4

New model Predicted - Final Clusters.

Cluster B

Pa

P7

e Clusters are assumed to be convex hulls.
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e Vertices of the convex hull are determined using the algorithm Graham Scan or
Jarvis March (Gift Wrapping).
e Theareaof the convex hull is computed from Gauss's Shoelace Formula.
Area=0.5* abs(sum (xi * (yi+1 - yi-1) for i in range(n))). Here, where (xi, yi)
are the coordinates of the vertices in counterclockwise order.
Specify the distance between the vertices of the clusters
Forms and other bigger clusters consist of small clusters where any of the vertices
of Cluster A islessthan the specified inter-distance from Cluster B.

Determinethe distance from the cluster to the nearest Residence ar ea.

Cluster
— + Cormex Hull
[ ] =
oe®
Residencial Points ! » |
T , o
.-__,.-': % ey : .-'."f
® N
~, @ Te
' .... . °
m'x. _.'; ." @ Residencial Points
N L

Figure 37
Cluster and Residential Proximity Computation
e Compute the Euclidean distance between the six vertices of the identified clusters.
Convex hulls with the data points in the Census and Neighbourhood dataset of the
Selected region.
dv,n = SORT [(xn xv)2 +( yn—yv)2]

XV, YV — ‘v’ refers to 6 vertices, varies from 1 to 6 of the convex hulls.
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Where ‘n’ refers to all the datapoints that correspond to the selected region in the
Census and Neighborhood dataset.
Inter Distance, Intra distance, fixed density Clustering - Evaluation
The following evaluation metrics are used for evaluating this Clustering with real
wildfire incidents.

e Visual Inspection using the Plot
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CHAPTER IV:
RESULTS

4.1 Resear ch Question One
Arethereany hidden patternsof growingfiresin the collected raw data from the
history dataset captured from the satellite?

In the Data Analysis section, a comprehensive method for analyzing historical
datais outlined, followed by its application to real-time scenarios. Understanding
historical dataiscrucial, asit enables the identification of constraints and patterns that
correlate with actual incidents. This analysis provides a foundation for assessing how
these patterns may behave in real-time situations. The process begins with testing Al
methods on historical datasets where the outcomes of past incidents are already known. If
the Al demonstrates accurate predictions based on this historical data, the learned
configurations can then be applied to real-time data with similar input settings. However,
it is essentia to note that the insights gained from historical datain a specific region may
not apply to al areas. In such cases, Al methods must be configured with region-specific
learnings derived from the historical datarelevant to that locale. Additionally, the use of
different instruments for data capture can lead to variations in data resolution.
Conseguently, the learnings from one instrument's historical data may differ from those
of another. To address this, the configuration of Al methods must take into account the
specific instrument used for data collection. The same configurations that yielded
accurate results with historical data should then be replicated for real-time predictions.

Firstly, understand the history of fire event data from the MODI S instrument over
the past 5 years for the USA.
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Table 10

Raw Fire events 2020 to 2024 - USA - MODIS

Total Raw
YEAR
Fire Events

2020 153916

2021 163735

2022 130445

2023 94000

2024 123652
Table 11
Total Raw Fire events - Top 5 states, USA, 2020 to 2024
Year 202| Orezon  [Idabe  [CaliforniiTexns  |Georsia
Eaw Fire|l 14702 11566 11096 GTES 6775
Year 202 Califormea| Texas | Georma | Flonda |Lowsianal
Raw Firgl 7685 7581 1269 TOR3 3026
Year 202| Alaska | Texas v Hampsl Georgia | Flonda
Raw Firgl 24045 GTR2 BELS 057 7332
Year 202| CaliforniaWashingtod Oregon | Texas Idaho
Eaw Firgl 45589 11472 11332 2358 B325
Year 202| Califorma| COregon | Texas | Florda | Georgia
Raw Firgl S015% 12156 E466 666 64935
Table 12
Total Raw Fire events - Monthly Top 5 State USA - 2020 to 2024
Year Siate JAM |FEB] MAR | APR | MAY | JUN | JUL | AUGH SEP | OCT | MOV |DEC
2023 | Calformia | 117 |310) 141 | 367 | 290 [ 303 | s60 | 2odsf 1114 1100 | 820 | z6s
2024 | Cobfomea | 137 | B3 | 291 ilE 327 RO} | 4836 | 1565) 1404 | 738 | 603 | 17
2023 | Washmgion | & i) 118 151 25 9 391 | 78 | 227 ) 434 145 1 20
2024 | Washmgion| 2 ] k33 &7 s} 1539 ) 1936 ) 1025]) 204 | 22 171§ 2t
2023 Tdnho & 1 14 &2 178 47 S24 | 482 ) 31 ) 432 | 1BS o
| 2024  Idaho 2 | 2] o4 | 118 | 195 | 194 | 536 [4344]| 3572] 2284 | 229 | 28
2023 Cliegom 42 | 42 15 4 [74 41 H22 | 13430 460 | 570 | 392 | 167
2024 | Cregon 3 X 1 H 219 163 | T4 | 22000 3384 | 443 | 421 | 26l
2023 Tenas Bl | TAEE T4 500 324 J87 | 354 ) Sx0 ) 444 | B3O ) &V | TAT
2024 Texas 575 [1431] 747 | 466 | 317 | 376 | 371 | 428 | se9 | 492 | s21 |a7s
2021 |  Geoprzia T4 | BIRE 1762 318 205 183 | 198 | 260 § 400 | B0 | 712 | 55
2024 | Greosgin gas | LAT2) 1260 | 612 L4h 184 | 130 | A28 | 22 | 753 | 185 &0
2023 Flarida LOS1 14728 1132 373 324 478 | 252 | MA ] 25%3] 414 | 447 | 347
2024 Flonda | 428 13s8] 823 | so1 | 387 | 260 | 172 | 200 | 111 ] 332 | 472 | s0e
2023 |Penmsvlvaminl 0 g 42 T3 104 ] 105 | &7 T 37 7 1]
2024 [Pempylvamal | 13 A 131 134 &% il =4 i 3 i 1
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Table 13
Total Raw Fire events - Monthly Top 5 states, USA - 2025

Year State JAN|FEB
2025|California 867| 86
2025| Washington 10 0
2025{Idaho 1 0
2025|Oregon 81 1
2025| Texas 403| 476
2025|Georgia 696| 613
2025|Florida 765] 600
2025 Pennsylvania 1 5

Table 10 lists the total raw fire eventsin the MODI S dataset in the past 5 yearsin the
USA. Table 11 liststhe top 5 states in the USA that had the highest fire eventsin the past
5 years based on the MODI S dataset. Tables 12 and 13 illustrate the seasonal spread of
raw fire events across different geographical locations in the USA for the years 2025,
2024, and 2023. It provides insights into how fire incidents vary by season in various
regions, highlighting trends and patterns throughout the year. Here’s a breakdown of the
geographical locations of raw fire events based on seasons:
e South West: California (Coastal)
e North West:
a) Oregon (Coastal)
b) Washington (Coastal)
¢) ldaho (Non-Coastal)
e South East:
a) Georgia(Coastal)
b) Florida(Coastal)
¢ Northeast: Pennsylvania (Non-Coastal)

e Northeast

96



This classification helpsin understanding the distribution of fire events across various
regions and their seasonal patterns.
Based on the historical data analysis of MODIS raw fire events, it was found that

e Statesin the USA show aseasonal pattern

e Western states experience growing wildfires from June to November

e The eastern part of the USA experiences wildfires from January to May
Also, by referring to raw fire events of the peak months in 2D-plotsin the following
figures, that was discussed in detail in the data analysis section,

e Figure 25 FloridaMap — Fire events of Feb Mar 2023 and Feb Mar 2024

e Figure 23 GeorgiaMap - Fire events of Feb Mar 2023 and Feb Mar 2024

e Figure 21 Texas Map — Fire events of Feb Mar 2023 and Feb Mar 2024
States in the eastern part of the USA did not exhibit fire-spreading characteristicsin their
monthly depictions of peak months. This also indicates that wildfire spreading
characteristics are more prevalent in the higher longitudinal region of the USA. In
contrast, they are less observed or rarely observed in the lower longitudinal region of the
USA, with no impact across the different latitudes of the USA.
California and Idaho have been selected for further Al experimentation, as these states
are among the top five states that have experienced significant fire events over the past
fiveyears. They are also located in both coastal and non-coastal areasin the western
United States.
Additionally, in California, datais available from the California Current Emergency
Incidents organization, which lists all actual wildfire eventsin the state. Thisdatais
available for the past 10 years, which is used to validate the actual wildfire incidents

against the machine learning model's predicted wildfire growth events.
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Table 14

The 2025 deadliest wildfire eventsin California

sident_date
incident_ae| hckdint I incidandt |
incident_nams |incident_date_cowated o nrunful\ 52 ~ |incidens_jd
' = T - res_burned] ongitude| atEwde =
i
s Ta3- 7048~ 42040651
Palispdes Fore | 2035-00-07T1220:00Z I-01-2025 23448 -LIRS45| 30703 L. sy
45 Thdec: 1 E8n
. dbza s Tde- 1L D-4467-b3a%-
Esteas Fire J24DL-0TTLE 19002 JE-01-202% 0] -rigos| aeapug)T e N
i | s hchdc
1 S il | - hE1ubaiin- T bl Sk B0
fugh T I02501-22TIR5302 MIH -LIR5S 34553
Haghes F n TIS302E Eo2 [ 46 Thoenabiih
0T P g dll ] AR 8B e,
EF 2 2N2501-23THAS 35 -k E 32,5047
Biwiles 2 Fue 20 2ATHI R0 (LT L LS E44 14 <hUDfEs] 2024
014151 e T T 5-0 -
Silves Pae 2025 04-30T L1 E55E [&ELY -EL[X 333 .27.30079 I'_ oM i
LRI SAAE]

Table 14 represents the deadliest wildfire eventsin Californiain early 2025. The
Palisades Fire, Eaton Fire, and Hughes Fire incident dates are chosen to understand any
hidden patterns of growing firesin the MODI S raw dataset on the day of discovery and

their progression on the second day.

Calfonua mildiines Jan 2025

“@

= e l‘mn:o\c Fire Spet 3
- T I Grawing Mire Spor 2
— -;:,—l;':'--.!“-,.u, S —— = —— —
Growing Fire Spat L
Figure 38

Wildfires pattern - JAN CA 2025
Figure 39 illustrates al the raw fire events captured by the MODI S instrument for
January 2025 in state California, highlighting three significant fire incidents that spread

to larger areas.
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Figure 39
Growing fire and Isolated fires - CA JAN 2025 Incident One

Figure 40 illustrates raw fire event data as observed by the MODIS instrument of
the Palisades Fire and Eaten Fire, referred to in Table 14, which shows asmall dense
pattern on the day it was discovered, and expanded to alarger area on the second day.
On the previous day, only isolated fire incidents were recorded, characterized by small

fire spots. The last day's raw data was also plotted to ensure that the actua wildfire
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discovery dates in the manually collected dataset are accurate.

YRl MARTYRS a0 20T S Caldorrdy widres fan 22t 2035 Calforriy wittves an 280 2005
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Isolated Five Spots Growing Fires ~ Discovered Growing Fires'- Second day

Figure 40
Growing fire and Isolated fires - CA JAN 2025 Incident Two

Figure 41 illustrates raw fire event data as observed by the MODI S instrument of
the Hughes Fire in the state of California, referred to in Table 14, which shows a small
dense pattern on the day it was discovered. However, thisfire did not show growth on the
following day, which may be attributed to effective control measuresimplemented by fire
management or may have occurred due to natural suppression influenced by weather

phenomena.
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Figure 43
Time Series Raw Fire events MODISAUG 5 to 7, 2024

Figure 42 illustrates growing wildfire patternsin the state of 1daho for the peak
month of August. Visually, this pattern aligns with the real wildfire incident patternin
California, as depicted in the Figure. 39.

For the state of 1daho, there is no manually collected data avail able on the real
wildfire incidents. Hence, MODI S raw fire events for each day from the beginning of
August are depicted in a separate 2D map in Figures 43 and 44.

On the 3rd day of August, although it visually appeared to be a small, densefire,
it did not grow the next day, so it was discarded for Al model experimentation.

On August 6, growing fires were discovered, exhibiting asimilar pattern to that observed

in the 2D plot of the Californiawildfire on the day it was found, Figures 40 and 41.

4.2 Resear ch Question Two

Which machine algorithm isaccuratein predicting thefire growth and eliminating

the non-growing firesfrom theraw fire events dataset on the day of discovery?
Unsupervised clustering machine learning algorithms are primarily utilized for

unlabeled data, and several algorithms have been experimented with in this context:
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K-Means Clustering: A widely used method that partitions data into a specified
number of clusters based on the mean distance between points.

Fuzzy C-Means Clustering: This approach allows data points to belong to
multiple clusters with varying degrees of membership, accommodating uncertainty in
cluster assignments.

Gaussian Mixture Models (GMM): A probabilistic model that assumes data points
are generated from amixture of several Gaussian distributions, providing aflexible
approach to clustering.

Agglomerative Hierarchical Clustering: A method that builds clustersiteratively
by merging smaller clustersinto larger ones based on distance measures.

DBSCAN (Density-Based Spatial Clustering of Applicationswith Noise): This
algorithm identifies clusters based on the density of data points, effectively distinguishing
noise from meaningful clusters.

In addition to these established methods, a new machine learning algorithm, the Multi-
Level Multi-Criteria Clustering Algorithm, has been developed. Thisinnovative model
showcases the substantial applications of Al in analyzing complex data. It retains all the
capabilities of DBSCAN while introducing additional features that enhance its ability to
predict contextual information related to growing fire scenes. The development of this
new model represents a significant advancement in clustering techniques, aiming to
improve the accuracy and relevance of predictions in fire management and other

applications.
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4.2.1 K-Means Clustering
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Figure 44

K-Means Clustering Results -Sample Data 1
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K-Means Clustering Results -Sample Data 2
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Figure 46
K-Means Clustering Results - Sample Data 3

K -means Results | nter pr etation:

Visual Inspection:
3D Map view:
Depicts all the fire events that occurred for the selected date in the selected region.
Figure 45: Represents the January 6, 7, and 8, 2025 fire events of California.
Figure 46: Represents the January 21, 22, 23, 2025 fire events of California.
Figure 47: Represents the August 5, 6, and 7, 2024 fire events of Idaho.
2D plot with no clustering:
Follows the exact depiction as specified in the 3D Map View,
The X axis represents the Longitude, and the Y axis represents the Latitude of the fire
events.
ThisPlot is utilized for the Visual Inception by comparing it with the resultant clusters
from the K-means prediction.
2D plot with clustering and Results:
Figures 45, 46, 47: K-Means results are depicted as follows
January 6, 2025 dataset (Fig. 45):
e K-Meansincorrectly clusters 63.64% of non-spreading fire eventsin cluster 1.
e K-Meansincorrectly clusters 36.36% of non-spreading fire eventsin cluster 2.
January 7, 2025 dataset (Fig. 45) Incident Day:
e K-Means accurately clusters 86.67% of spreading fire eventsin cluster 1.
e K-Meansincorrectly clusters 6.67% of non-spreading fire eventsto cluster 2.

e K-Meansincorrectly clusters 6.67% of non-spreading fire eventsto cluster 3.
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January 8, 2025 dataset (Fig. 45):

e K-Meansamost accurately clusters 89% of spreading fire eventsin cluster 1,
although afew pointsin this cluster are far away, appearing much isolated from
the actual fire growth area.

e K-Meansincorrectly clusters 4.74% of non-spreading fire eventsto cluster 2.

e K-Meansincorrectly clusters 2.37% of non-spreading fire eventsto cluster 3.

January 21, 2025 dataset (Fig. 46):

e K-Meansincorrectly clusters 28% of non-spreading fire eventsin cluster 1.

e K-Meansincorrectly clusters 12% of non-spreading fire eventsin cluster 2.

e K-Meansincorrectly clusters 60% of non-spreading fire eventsin cluster 3.

January 22, 2025 dataset (Fig. 46) Incident Day:

e K-Meansamost accurately clusters 18.92% of spreading fire eventsto cluster 1.
Few pointsin this cluster are far away and do not appear to be spreading spots.

e K-Meansincorrectly clusters 67.57% of non-spreading fire eventsin cluster 2.

e K-Meansincorrectly clusters 13.51% of non-spreading fire eventsin cluster 3.

January 23, 2025 dataset (Fig. 46):

e K-Meansamost accurately clusters 48.48% of spreading fire eventsto cluster 1.
Few pointsin this cluster are far away and do not appear to be spreading spots.

e K-Meansincorrectly clusters 27.27% of non-spreading fire eventsin cluster 2.

e K- K-Meansincorrectly clusters 24.24% of non-spreading fire eventsto cluster 3.

August 5, 2024 dataset (Fig. 47):

e K-Meansincorrectly clusters 53.33% of non-spreading fire eventsto cluster 1.

e K-Meansincorrectly clusters 26.67% of non-spreading fire events to cluster 2.

e K-Meansincorrectly clusters 20% of non-spreading fire eventsin cluster 3.

August 6, 2024 dataset (Fig. 47) Incident Day:
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e K-Meansamost accurately clusters 18.62% of spreading fire eventsto cluster 1.

Few pointsin this cluster are far away and do not appear to be spreading spots.

e K-Meansamost accurately clusters 33.51% of spreading fire eventsto cluster 2.

Few pointsin this cluster are far away and do not appear to be spreading spots.

e K-Means amost accurately clusters 47.87% of spreading fire eventsto cluster 3.
August 7, 2024 dataset (Fig. 47):

e K-Meansamost accurately clusters 62.50% of spreading fire eventsto cluster 1.

e K-Meansamost accurately clusters 24.11% of spreading fire eventsto cluster 2.

Few pointsin this cluster are far away and do not appear to be spreading spots.

e K-Meansamost accurately clusters 13.39% of spreading fire eventsto cluster 3.

Few pointsin this cluster are far away and do not appear to be spreading spots.
Silhouette score:

The silhouette score is notably high for the K-Means clustering results for the
sample dataset on the day of the incident, as well as the second day following the
incident. Interestingly, this high score is also observed for the dataset from the day before
the incident, although this particular dataset is largely noisy and lacks dense fire events.

This observation raises a significant concern: the silhouette score may not be an
effective measure when clusters do not contain a substantial number of dense events. In
datasets characterized by noise, such as those with sparse fire events, the silhouette score
might misleadingly suggest a good clustering outcome, even when the clusters are not
truly meaningful. This highlights a critical need for more robust evaluation metrics or
adjusted clustering approaches that can better handle noisy datasets and provide reliable
insights, particularly in scenarios where dense fire events are essential for practical

analysis and prediction.
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Inertia:

In the sample dataset for the Incident Day, the inertiavalue is notably low,
indicating that the clusters formed through K-Means clustering are compact and well-
defined. This suggests that the clustering is effective for this particular dataset. However,
for the other sample datasets, the inertia values are high, which is primarily attributed to
the presence of outliers. High inertiain these cases indicates that the data points are more
dispersed within the clusters, suggesting that the K-Means clustering results may not be
accurate or meaningful. The presence of outliers can significantly impact the clustering
process, as K-Means s sensitive to such anomalies. Therefore, when interpreting the
clustering results, it is essential to consider the effect of outliers and explore potential
preprocessing steps, such as outlier removal or aternative clustering methods, to improve
the accuracy of clustering for datasets that exhibit such characteristics.

Dunn Index:

A higher Dunn Index is desirable as it indicates better clustering quality, with
well-separated and compact clusters. In this case, the Dunn Index is high specifically for
the Sample Data 1 (Incident Day) dataset clusters, suggesting that the K-Means clustering
performed well in distinguishing these clusters. Conversely, for al other sample datasets
(Sample Data 2 and Sample Data 3), the Dunn Index is low. This low score indicates that
the K-Means clusters for these datasets lack separation and compactness, suggesting that
the clustering results are not accurate.

Limitations of K-Means:

The K-Means clustering algorithm requires further manual intervention to
accurately differentiate between clusters representing spreading fire events and those
representing non-spreading fire events. Unfortunately, it tends to incorrectly merge

normal days and non-spreading fire events into a single cluster. On the actual incident
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day, the algorithm also mistakenly includes some distant fire points as part of the same
spreading fire cluster. This misclassification of outliers can lead to inaccuraciesin
computing the vertices or border area of the cluster, potentially resulting in incorrect
interpretations of the fire scene. Additionaly, the performance metrics for this type of
dataset show alower Dunn Index and higher inertia, further indicating that K-Means
clustering is not well-suited for such scenarios. The low Dunn Index suggests poor
separation between clusters, while the high inertiaindicates that data points are widely
dispersed within the clusters. These factors underscore the challenges encountered when
applying K-Means clustering to datasets with complex patterns and outliers, highlighting
the need for alternative clustering approaches or more sophisticated preprocessing

techniques to achieve accurate and meaningful results.
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4.2.2 Fuzzy C Means Clustering
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Figure 47

Fuzzy C-means Clustering Results Fuzziness 1.5 - Sample Data 1
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Fuzzy C-means Clustering Results Fuzziness 1.5 - Sample Data 2
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Fuzzy C-means Clustering Results Fuzziness 1.5 - Sample Data 3
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Fuzzy C-means Clustering Results Fuzziness 2.5 - Sample Data 2
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Fuzzy C-means Clustering Results Fuzziness 2.5 - Sample Data 3

Fuzzy C Means Results I nterpretation:

Visual Inspection

3D Map view:

Depicts all the fire events that occurred for the selected date in the selected region.
Figure 48, 51: Represents the January 6, 7, 8, 2025 fire events of California.
Figure 49, 52: Represents the January 21, 22, 23, 2025 fire events of California.
Figure 50, 53: Represents the August 5, 6, 7, 2024 fire events of 1daho.

2D plot with no clustering:
Follows the exact depiction as specified in the 3D Map View,
The X axis represents the Longitude, and the Y axis represents the L atitude of the

fire events.
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ThisPlot is utilized for the Visual Inception by comparing it with the resultant

clusters from the K-means prediction.

2D plot with clustering and Results:

Figures 48, 49, 50, 51, 52, 53: Fuzzy C Means results are depicted as follows

January 6, 2025 dataset (Fig. 48, 51):

Fuzzy C Meansincorrectly clusters 36.36% of non-spreading fire events
to cluster O for Fuzziness= 1.5 and 2.5.

Fuzzy C Meansincorrectly clusters 18.18% of non-spreading fire events
into the cluster for Fuzziness = 1.5 and 2.5.

Fuzzy C Meansincorrectly clusters 45.45% of non-spreading fire events
to cluster 2 for Fuzziness = 1.5 and 2.5.

Fuzzy Partition coefficient 0.95 for Fuzziness = 1.5

Fuzzy Partition coefficient 0.82 for Fuzziness = 2.5

No change to cluster distribution based on the fuzzinessin this dataset.

January 7, 2025 dataset (Fig. 48, 51) Incident Day:

Fuzzy C Meansincorrectly clusters 6.67% of non-spreading fire eventsto
cluster O for Fuzziness = 1.5.

Fuzzy C Meansincorrectly clusters 6.67% of non-spreading fire eventsto
cluster 1 for Fuzziness = 1.5.

Fuzzy C Means clusters accurately cluster 86.67% of spreading fire events
to cluster 2 for Fuzziness = 1.5.

Fuzzy C Meansincorrectly clusters 6.67% of non-spreading fire eventsto
cluster O for Fuzziness = 2.5.

Fuzzy C Means accurately clusters 86.67% of spreading fire eventsto

cluster 1 for Fuzziness = 2.5.
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Fuzzy C Meansincorrectly clusters 6.67% of non-spreading fire eventsto
cluster 2 for Fuzziness = 2.5.

Fuzzy Partition coefficient one at Fuzziness= 1.5

Fuzzy Partition coefficient 0.95 at Fuzziness= 2.5

No change to cluster distribution based on the fuzzinessin this dataset.

January 8, 2025 dataset (Fig. 48, 51):

Fuzzy C Means amost accurately clusters 92.89% of spreading fire events
to cluster O for Fuzziness = 1.5.

Fuzzy C Meansincorrectly clusters 2.37% of non-spreading fire eventsto
cluster 1 for Fuzziness = 1.5

Fuzzy C Meansincorrectly clusters 4.74% of non-spreading fire eventsto
cluster 2 for Fuzziness = 1.5

Fuzzy C Means amost accurately clusters 53.36% of spreading fire events
to cluster 1 at Fuzziness = 2.5. A Few pointsin this cluster are far away
and are not close to other dense, spreading fire points.

Fuzzy C Means amost accurately clusters 39.53% of spreading fire events
to cluster 2 at Fuzziness = 2.5. A few pointsin this cluster are far away
and do not appear to be spreading spots

Fuzzy C Meansincorrectly clusters 7.11% of non-spreading fire eventsto
cluster 0 at Fuzziness= 2.5

Fuzzy Partition coefficient 1 at Fuzziness= 1.5

Fuzzy Partition coefficient 0.89 at Fuzziness = 2.5

January 21, 2025 dataset (Fig. 49, 52):

Fuzzy C Meansincorrectly clusters 28% of non-spreading fire events to

cluster O.
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e Fuzzy C Meansincorrectly clusters 60% of non-spreading fire eventsto
cluster 1.

e Fuzzy C Meansincorrectly clusters 12% of non-spreading fire eventsto
cluster 2.

e Fuzzy Partition coefficient 0.95 at Fuzziness = 1.5.

e Fuzzy Partition coefficient 0.76 at Fuzziness = 2.5.

January 22, 2025 dataset (Fig.49, 52) Incident Day:

e Fuzzy C Means amost accurately clusters 67.57% % of spreading fire
events to cluster O at Fuzziness = 2.5. Few pointsin this cluster are far
away and do not appear to be spreading spots.

e Fuzzy C Meansincorrectly clusters 10.81% of non-spreading fire events
to cluster 1 at Fuzziness= 2.5.

e Fuzzy C Meansincorrectly clusters 21.62% of non-spreading fire events
to cluster 2 at Fuzziness = 2.5.

e Fuzzy C Meansincorrectly clusters 13.15% of non-spreading fire events
to cluster O at Fuzziness= 1.5.

e Fuzzy C Meansincorrectly clusters 18.92% of non-spreading fire events
to cluster 1 at Fuzziness= 1.5.

e Fuzzy C Meansincorrectly clusters 67.57% of spreading fire eventsto
cluster 2 at Fuzziness = 1.5. Few points in this cluster are far away and do
not appear to be spreading spots.

e Fuzzy Partition coefficient 0.98 at Fuzziness = 1.5.

e Fuzzy Partition coefficient 0.82 at Fuzziness = 2.5.
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January 23, 2025 dataset (Fig. 49, 52):

Fuzzy C Meansincorrectly clusters 48.48% of non-spreading fire events
to cluster O at Fuzziness= 2.5

Fuzzy C Meansincorrectly clusters 24.24% of non-spreading fire events
to cluster 1 at Fuzziness= 2.5.

Fuzzy C Means almost accurately clusters 27.27% of spreading fire events
to cluster 2 at Fuzziness = 2.5. Few pointsin this cluster are far away and
do not appear to be spreading spots.

Fuzzy C Meansincorrectly clusters 24.24% of non-spreading fire events
to cluster O at Fuzziness= 1.5.

Fuzzy C Meansincorrectly clusters 27.27% of non-spreading fire events
to cluster 1 at Fuzziness= 1.5.

Fuzzy C Meansincorrectly clusters 48.48% of spreading fire events to
cluster 2 at Fuzziness = 1.5. Few points in this cluster are far away and do
not appear to be spreading spots.

Fuzzy Partition coefficient 0.98 at Fuzziness = 1.5.

Fuzzy Partition coefficient 0.80 at Fuzziness = 2.5.

August 5, 2024 dataset (Fig. 50, 53):

Fuzzy C Meansincorrectly clusters 26.67% of non-spreading fire events
to cluster O at Fuzziness= 1.5.
Fuzzy C Meansincorrectly clusters 13.33% of non-spreading fire events
to cluster 1 at Fuzziness= 1.5.
Fuzzy C Meansincorrectly clusters 33.33% of non-spreading fire events

to cluster 2 at Fuzziness= 1.5.
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e Fuzzy C Meansincorrectly clusters 26.67% of non-spreading fire events
to cluster O at Fuzziness= 2.5.

e Fuzzy C Meansincorrectly clusters 53.33% of non-spreading fire events
to cluster 1 at Fuzziness= 2.5.

e Fuzzy C Meansincorrectly clusters 20% of non-spreading fire eventsto
cluster 2, at Fuzziness = 2.5.

e Fuzzy Partition coefficient 0.96 at Fuzziness = 1.5.

e Fuzzy Partition coefficient 0.92 at Fuzziness = 2.5.

August 6, 2024 dataset (Fig. 50, 53) Incident Day:

Fuzzy C Means almost accurately clusters 33.51% of spreading fire events to
cluster 0 at Fuzziness = 1.5. Few points in this cluster are far away and do not
appear to be spreading spots.

Fuzzy C Means aimost accurately clusters 47.89% of Spreading fire eventsto
cluster 1 at Fuzziness = 1.5. Few points in this cluster are far away and do not
appear to be spreading spots.

Fuzzy C Means almost accurately clusters 18.62% of spreading fire events to
cluster 2 at Fuzziness = 1.5. Few points in this cluster are far away and do not
appear to be spreading spots.

Fuzzy C Means almost accurately clusters 33.51% of spreading fire events to
cluster 0 at Fuzziness = 2.5. Few points in this cluster are far away and do not
appear to be spreading spots

Fuzzy C Means accurately clusters 18.62 % of spreading fire eventsto cluster
1 at Fuzziness = 2.5. Few pointsin this cluster are far away and do not appear

to be spreading spots.
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e Fuzzy C Means accurately clusters 47.87% of spreading fire eventsto cluster
2 at Fuzziness = 2.5. Few pointsin this cluster are far away and do not appear
to be spreading spots.

e Fuzzy Partition coefficient 0.95 at Fuzziness = 1.5.

e Fuzzy Partition coefficient 0.76 at Fuzziness = 2.5.

August 7, 2024 dataset (Fig. 50, 53):

Fuzzy C Means clusters 62.50% of spreading fire eventsto cluster O at Fuzziness
= 1.5. Few pointsin this cluster are far away and do not appear to be spreading
spots.

Fuzzy C Means clusters 24.11% of spreading fire eventsto cluster 1 at Fuzziness
= 1.5. Few pointsin this cluster are far away and do not appear to be spreading
spots.

Fuzzy C Means clusters 13.39% of spreading fire eventsto cluster 2 at Fuzziness
= 1.5. Few pointsin this cluster are far away and do not appear to be spreading
spots.

Fuzzy C Means accurately clusters 62.50% of spreading fire eventsto cluster O at
Fuzziness = 2.5. Few points in this cluster are far away and do not appear to be
spreading spots.

Fuzzy C Means accurately clusters 13.39 % of spreading fire eventsto cluster 1 at
Fuzziness = 2.5. Few points in this cluster are far away and do not appear to be
spreading spots.

Fuzzy C Means accurately clusters 24.11% of spreading fire eventsto cluster 2 at
Fuzziness = 2.5. Few pointsin this cluster are far away and do not appear to be
spreading spots.

Fuzzy Partition coefficient 0.96 at Fuzziness = 1.5.
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e Fuzzy Partition coefficient 0.76 at Fuzziness = 2.5.
Other evaluation methods:
Fuzzy Partition Coefficient
The Fuzzy Partition coefficient was better for the lowest fuzziness at 1.5.
Dunn Index:

The Dunn Index is suitable for this dataset. The Dunn index is high only for the
sample data 1 Incident Day dataset clusters; for al other sample data clusters, the Dunn
index islow, indicating that Fuzzy C-means clustering is not accurate.

Limitations of Fuzzy C-Means:

The Fuzzy C-means clustering algorithm also requires additional manual
intervention to accurately distinguish between clusters representing spreading fire events
and those indicating non-spreading fires. One significant issueis that it tends to
incorrectly cluster non-spreading fire events from normal days into the same cluster.
Furthermore, adjusting the fuzziness parameter from 1.5 to 2.5 complicates the process of
identifying distinct clusters, leading to increased confusion in the clustering results. On
the actual incident day dataset, the algorithm includes some farthest fire events within the
same cluster. This misclassification of outliers can negatively impact the computation of
the cluster's vertices or border area, consequently resulting in incorrect interpretations of
the fire scene. The Fuzzy C-means clustering also shows alower Dunn Index for thistype
of dataset, indicating poor separation between clusters. This suggests that while the
algorithm is designed to handle ambiguity in data, its current configuration isineffective
for accurately capturing the complex patterns present in fire event data. As such, this
highlights the need for further refinement of the algorithm or exploration of alternative

clustering methods to improve accuracy in such scenarios.

122



4.2.3 Gaussian Mixture Models Clustering
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Gaussian Mixture Models Clustering Results - Sample Data 1
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Gaussian Mixture Models Clustering Results - Sample Data 2
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Gaussian Mixture Models Clustering Results - Sample Data 3
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Gaussian Mixture Models Results I nter pretation:

Figures 54, 55, and 56 represent the results of the Gaussian Mixture Models, with
the silhouette score indicating high values on the incident date in sample data 1 and 2,
particularly when the dataset contains fewer datapoints. However, this metric has a lower
score in sample 3, which has more datapoints. Hence, this metric is not reliable for the
evaluation where there are more datapoints in the dataset. The models' prediction results
are almost the same as those of K-means; therefore, the results explanation is not

repeated here.
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4.2.4 Agglomer ative Hierarchical Clustering

Agglemerative Hisrarchical Clustering
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Figure 56

Agglomerative Hierarchical Clustering Results - Sample Data 1
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Agglomerative Hierarchical Clustering Results - Sample Data 2
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Agglomerative Hierarchical Clustering Results - Sample Data 3

Agglomerative Hierarchical Clustering Results Inter pretation:

Figures 57, 58, and 59 represent the results of the Agglomerative Hierarchical

Clustering, with Silhouette scores indicating high values on the incident date in the

sample data (1, 2), particularly when there are fewer datapoints. However, this metric has

alower scorein the sample 3 dataset on the second day of the incident, when there are

more datapoints. Hence, this metric is not reliable for the evaluation where there are more

datapointsin the dataset.

Models’ prediction results are almost the same as K-means. Hence, the results

explanation is not repeated here.
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4.2.5 DBSCAN Cluster

ing
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DBSCAN Clustering Results -Sample Data 1
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Figure 61

DBSCAN Clustering Results - Sample Data 3
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DBSCAN Results I nter pretation:
Visual Inspection
3D Map view:
Depicts all the fire events that occurred for the selected date in the selected region.
Figure 60: Represents the January 6, 7, and 8, 2025 fire events of California.
Figure 61: Represents the January 21, 22, 23, 2025 fire events of California.
Figure 62: Represents the August 5, 6, 7, 2024 fire events of 1daho.
2D plot with no clustering:
Follows the exact depiction as specified in the 3D Map View,
e The X axisrepresents the Longitude, and the Y axis represents the Latitude of the
fire events.
e ThisPlotisutilized for the Visual Inception by comparing it with the resultant
clusters from the DBSCAN prediction.
2D plot with clustering and Results:
Figures 60, 61, 62: DBCAN results are depicted as follows
January 6, 2025 dataset (Fig. 60):
e Indicates al the non-spreading fire events are represented in ‘— ve’, indicating
100% noise.
January 7, 2025 dataset (Fig. 60) Incident Day:
e |t accurately clusters 86.67% of spreading fire events to cluster 0.
e Other non-spreading fire events are represented in -ve, 13.33% indicates noise.
January 8, 2025 dataset (Fig. 60):
e |t accurately clusters 36.76% of spreading fire eventsto cluster O.
e |t accurately clusters 51.38% of spreading fire eventsto cluster 1.

e |t accurately reports 1.98% of spreading fire eventsto cluster 2.
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e Other non-spreading fire events are represented in -ve, 9.88% indicates noise.
January 21, 2025 dataset (Fig. 61):
All the fire events are represented in ‘— ve’, indicating 100% noise.
January 22, 2025 dataset (Fig. 61) Incident Day:
e The DBSCAN Algorithm accurately clusters 56.76% of spreading fire eventsinto
cluster O.
e Other non-spreading fire events are represented in -ve, 43.22% indicates noise.
January 23, 2025 dataset (Fig. 61):
e Thealgorithm accurately clusters 21.21% of spreading fire eventsto cluster O.
e Other non-spreading fire events are represented in -ve, 78.79 % indicates noise.
August 5, 2024 dataset (Fig. 62):
e DBCAN accurately clusters 53.33% of suspicious spreading fire eventsin cluster
0.
e Other fire events are represented in -ve, 46.67 % indicates noise.
August 6, 2024 dataset (Fig. 62) Incident Day:
e The DBSCAN Algorithm accurately clusters 5.32% of spreading fire eventsinto
cluster O.
e The DBSCAN Algorithm accurately clusters 7.98% of spreading fire eventsinto
cluster 1.
e The DBSCAN Algorithm accurately clusters 4.79% of spreading fire eventsinto
cluster 2.
e The DBSCAN Algorithm accurately clusters 42.55 % of spreading fire eventsinto
cluster 3.
e The DBSCAN Algorithm accurately clusters 6.8 % of spreading fire eventsinto

cluster 4.
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e The DBSCAN Algorithm accurately clusters 11.17 % of spreading fire eventsinto
cluster 5.

e The DBSCAN Algorithm accurately clusters 13.30 % of spreading fire eventsinto
cluster 6.

e The DBSCAN Algorithm accurately clusters 4.26 % of spreading fire eventsinto
cluster 7.

e Other non-spreading fire events are represented in -ve, 4.26 % indicates noise.

August 7, 2024 dataset (Fig. 62):

e The DBSCAN Algorithm accurately clusters 11.90% of spreading fire eventsinto
cluster O.

e The DBSCAN Algorithm accurately clusters 2.01% of spreading fire eventsinto
cluster 1.

e The DBSCAN Algorithm accurately clusters 4.17% of spreading fire eventsinto
cluster 2.

e The DBSCAN Algorithm accurately clusters 61.61 % of spreading fire eventsinto
cluster 3.

e The DBSCAN Algorithm accurately clusters 2.68 % of spreading fire eventsinto
cluster 4.

e The DBSCAN Algorithm accurately clusters 10.71 % of spreading fire eventsinto
cluster 5.

The algorithm accurately clusters 2.68 % of spreading fire eventsinto cluster 6.

Other non-spreading fire events are represented in -ve, 4.17 % indicates noise.
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Silhouette score:

This score is not computed for sample datasets 1 and 2 in the DBSCAN results;
this evaluation metric requires at least two clusters to score the clustering. The silhouette
score is not suitable for the DBSACN evaluation, as thistype of dataset is most likely to
have fewer clusters on the day of the incident.

Calinski-Harabasz I ndex:

The Calinski-Harabasz Index score is high on the Sample Data 4 when there are
more fire events spreading clusters, which indicates a good score for the clusters. The
Calinski-Harabasz Index is not computed on the remaining sample data; it requires at
least two clusters for scoring.

For this application, the dataset is likely to have less fire event data on the day of
the incident, which may result in single cluster predictions from DBSCAN. Therefore,
the Calinski-Harabasz Index evaluation is not suitable for this application.
Davies-Bouldin index

Davies-Bouldin index islow on the Sample Data 4 second day of incident
compared to the first day of incident, but the evaluation metric does not compute the
score when there are fewer than 2 cluster, asthistype of dataset most likely have fewer
clusters on the day of incident, hence it’s not suitable for the DBSCAN results evaluation.
Limitations of DBSCAN:

When there are nearby spreading clusters, the algorithm tends to separate them
into two distinct small clustersif they meet the specified criteriafor cluster density and
radius. However, it fails to account for the potential to merge these clusters when the
intra-cluster distance is small, which can lead to an inaccurate representation of the

overall fire event dynamics.
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Additionally, the algorithm demonstrates inconsistency when faced with multiple

clusters; it often shifts some data points across the nearest clusters. Thisinconsistency

can lead to instability in clustering outcomes, making it challenging to rely on the

algorithm for the precise delineation of fire event clusters. These issues underscore the

need for enhancements to the algorithm's logic to better account for proximity and cluster

integrity, thereby ensuring a more accurate and meaningful analysis of spreading fire

events.

4.2.6: Multi-Level Multi-Criteria Clustering Algorithm
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Proposed New Model Clustering Results - Sample Data 1
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Proposed New Model Clustering Results - Sample Data 2
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Figure 64
Proposed New Model Clustering Results - Sample Data 3

Proposed New M odel Results I nterpretation:
Figures 63, 64, and 65 represent the result of the Proposed New Model Clustering.
2D plot with clustering and Results:
Figures 63, 64, 65: clustering results are depicted as follows
January 6, 2025 dataset (Fig. 63):
e No clusters are formed, 100% of the datapoints are noise.
January 7, 2025 dataset (Fig. 63) Incident Day:
e Cluster 1 has 86.66 fire events, and the rest of the datapoints are noise.

e Other 13.33% of fire events are identified as noise.
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January 8, 2025 dataset (Fig. 63):
e Cluster 1 has 36.76% of fire events
e Cluster 2 has 51.38% of fire events
e Cluster 3 has 1.97% of fire events.
e 9.88% of fire events are noise.
January 21, 2025 dataset (Fig. 64):
e No clusters are formed, 100% of the datapoints are noise.
January 22, 2025 dataset (Fig. 64) Incident Day:
e Cluster 1 has 56.75% of fire events
o 43.24% of fire events are noise
January 23, 2025 dataset (Fig. 64):
e Cluster 1 has 56.75% of fire events
o 43.24% of fire events are noise.
August 5, 2024 dataset (Fig. 65) :
e Cluster 1 has 47.05% of fire events
o 52.94% of fire events are noise.
August 6, 2024 dataset (Fig. 65) Incident Day:
e Cluster 1 has 5.31% of fire events.
e Cluster 2 has 7.97% of fire events
e Cluster 3 has 5.85% of fire events
e Cluster 4 has 42.55% of fire events
e Cluster 5 has 17.55% of fire events
e Cluster 6 has 13.29% of fire events
e Cluster 7 has 4.25% of fire events

e 3.19% of fire events are noise.
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August 7, 2024 dataset (Fig. 65):

Cluster 1 has 11.30% of fire events.
Cluster 2 has 1.78% of fire events
Cluster 3 has 2.08% of fire events
Cluster 4 has 41.66% of fire events
Cluster 5 has 5.65% of fire events
Cluster 6 has 19.34% of fire events
Cluster 7 has 10.71% of fire events
Cluster 8 has 2.67% of fire events

2.38 % of datapoints are noise.

The newly proposed model effectively eliminates all noise, isolating only the fire events

that are spreading within the cluster. The results show high accuracy on the incident day.

In the following days, as the fire expands, over 95% of the data points predominantly

represent the spreading fire events, as can be observed in sample dataset 3, where the

noise percentage is less than 5%. In situations where the fire becomes uncontrollable,

indicated by the occurrence of more than five clusters nearby, the distinction between

smaller, separate clusters and afew larger clusters with smaller adjacent clusters becomes

significant.

This model excelsin severa key areas.

It accurately identifies 100% of the data points as noise when there are no
spreading fire events present in the dataset.

It successfully recognizes all spreading fire events and accurately assigns them to
clusters on the incident day, as well as at other times, despite the presence of

noise.
The results produced by the model are consistent and reliable.
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4.3 Resear ch Question Three

Does the accuracy of the machine algorithm in predicting the growing fires vary on
real-time fire events data (unseen data)?

From Research Question 1, DBSCAN was tested on the real-time dataset from MODIS
and VIIRS (on the satellites NOAA-20 and NOAA-21).
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Figure 65
DBSCAN Clustering Results -Near real-time dataset

Figure 66: Represents near-real-time/real-time fire events of California captured
on April 21 /2025.
Visual Inspection
Real Time/Near real time dataset (Fig. 66):
Modis Dataset:

e All the non-spreading fire events are represented in ‘- ve’, which indicates 100%

noise.
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VIRRS NOAA 20:
e All the non-spreading fire events are represented in ‘- ve’, which indicates 100%
noise.
VIRRS NOAA 21.
e All the non-spreading fire events are represented in ‘- ve’, which indicates 100%
noise.

Based on the visual inspection of results from the DBSCAN algorithm,
performance and accuracy remain the same on the unseen real-time dataset tested from
the source MODIS.

But accuracy decreased when DBSCAN was experimented on the unseen dataset
from different sources VIIRS on satellite NOAA21, hence the experiment on VIRRS
dataset was repeated by tuning the input parameter ‘minimum points in density’ to higher
values as the resolution of instrument VIRRS is higher than the MODIS, accuracy of the
DBSCAN increased on the VIIRS dataset at the higher ‘minimum points in density’,
experiment was again repeated for the same day dataset from the VIIRS dataset equipped
on the different satellite NOAA20, DBSCAN algorithm accuracy remained same as
VIRRS dataset of NOAA21, thereis no change required for the input parameter
‘minimum points in density’ between VIRRS on NOAA20 and VIRRS NOAAZ21, hence
it can be concluded that as far the source remain same accuracy of the DBSCAN
algorithm remained same between the sample dataset and the unseen dataset, when there
is change of source of dataset input Parmeter requires to be tuned to improve the
accuracy.

The Proposed New Multilevel multicriteria clustering algorithm was also tested
on the unseen near-real-time dataset (refer to Web App Figure 74, 75 in Research

Question 6), similar to DBSCAN, the same machine learning input configuration applied
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for the MODIS dataset was required to be changed for the VIRRS, with the ‘minimum
points in density’ increased to a higher value, 2 times the MODIS configured value.

With these changes, this model illustrates the higher accuracy for both the unseen
data set from MODIS and VIRRS. There was no change required between the VIRRS on
different satellites, SNPP, or on NOAA 20 or NOAA21. The input configuration applied
for the VIRRS SNPP dataset remains the same for NOAA 20 and NOAA 21.

No other customization or experimentation is required for the different data
sources, including VIRRS on SNPP, NOAA-20, and NOAA-21, as thisinstrument
produces these data and is similar to MODI S, except for the resolution, which
necessitated changes only in the minimum pointsin density.

4.4 Resear ch Question Four

Can machinelearning algorithms predict mor e contextual information about fire
scenesin areas expected to experience fire growth in near real-time, such asthe
threat level to nearby residences from the growing fire?

Refer to Figure 74 of the Web App, which represents residences under threat in
different colors, specifically pink. This prediction is aresult of the newly proposed
model, amulti-level, multi-criteria clustering algorithm. This model first predictsfire
growth clusters and then utilizes the residential dataset to predict contextual information
for the expected fire growth scene, identifying residences located near the predicted
growing fire.

4.5 Resear ch Question Five
Isthe accuracy of the machine learning algorithmsin predicting thefire
growth and the latency in predicting the fire growth and its additional contextual

information acceptableto real-world applicationsin the fireindustry?
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Region-Based Prediction- Multiple GPUs - Parallel computing

Theinitial hypothesis was to compute the prediction at the regional dataset as depicted in
Figure 67, which uses an individual GPU for each region and was hosted on a separate
web URL. However, the algorithm's prediction accuracy was higher, and the latency of
computing the growing fire predictions and the additional contextual information was
within a minute; this was an acceptable performance for the fire industry. However,
maintaining individual GPUs for each regional app and hosting on the particular web
URL for each region is an expensive solution; calling to the globe is more costly in terms

of GPU utilization from each app.
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When the algorithm was experimented on the country-wide dataset using asingle
GPU, as represented in Figure 68, the latency of the algorithmsincreased to > 15 min for
predicting the growing fire in the country-wide dataset, and for predicting the contextual
information for each predicted growing fire in the country-wide dataset, the latency

increased to more than 30 minutes.
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Figure 68
Derived metric - Region-based prediction and Integrated prediction - Sequential GPU
scheduling

To reduce latency, the dataset isfirst divided into regional datasets (Figure 69).
The machine learning model is then sequentially scheduled to predict the growing firein
each regional dataset, utilizing asingle GPU, once all the regional predictions are
completed. The machine learning model is scheduled sequentialy to predict the

contextual information of each predicted growing fire scene, utilizing the regiona
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residence dataset. Then, all the predicted regional growing fire datais merged to obtain
country-wide predictions.

Contextual information of every growing fire sceneis merged to get country-wide
predictions. With this approach, latency has improved from 30 minutes to less than 2

minutes, which is till acceptable for the fire industry application.
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System Software Architecture - Performance and Accuracy - Application A Data Source
MODIS
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System Software Architecture - Performance and Accuracy Aspects - Application B Data
Source VIRRSNOAA21
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System Software Architecture - Performance and Accuracy Aspects - Application C Data
Source VIRRSNOAA20
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System Software Architecture - Performance and Accuracy Aspects -Application D Data
Source VIRRS SNPP

Accuracy is another important factor for the fire industry. Though using the MODIS
dataset, accuracy was achieved to agreater extent w.r.t to eliminating noises from the raw
fire events dataset and by identifying growing fires, but due to the satellite blind spots
and resolution, not all the fire growth can be detected by one instrument, there are
possibilities that one among the other satellites SNPP or NOAA 20 or NOAA 21 that
cover the USA could have observed those growing firesin initial stage, hence to achieve
higher level of accuracy machine learning models are implemented in real/near real time
dataset from other satellites. With the increased number of data points, the latency of the

machine learning algorithms deteriorates to more than 60 minutes for predicting growing
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firesfrom four different data sources, including the raw fire event dataset, and for
predicting contextual information for each detected growing fire scene.

To further improve latency, four separate applications are created, each of which
is executed using a dedicated GPU, and each application independently processes
datasets from its respective data source.

Figure 70 illustrates that Application A processes the dataset from the MODIS
instrument installed on the satellites Aqua and Terra. Application A is associated with a
single GPU; the machine learning model predicts all growing fires and their contextual
information within 2 minutes. Similarly, Figure 71 illustrates that Application B
processes the dataset from the VIRRS instrument installed on the NOAA-21 satellite.
Application B is associated with one GPU; the machine learning model predicts all the
growing fires and their contextual information within 2 minutes. Figure 72 illustrates
Application C processing the dataset from the VIRRS instrument installed on the satellite
NOAA-20. Application C is associated with a single GPU; the machine learning model
predicts all growing fires and their contextual information within 2 minutes. Figure 73
illustrates Application D, which utilizes the dataset from the VIRRS instrument, installed
on the SNPP satellite. Application D is associated with a single GPU, the machine
learning model predicts all the growing fires and their contextual information within 2
minutes, when Applications A, B, C and D are scheduled parallelly to compute the
prediction from their dedicated data sources, all the predicted growing firesfor al the 4
data sources are calculated within 2 min, this latency is acceptable to fire industry

application.
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4.6 Resear ch Question Six
What'sthe strategy to integrate the Al outputs, fire growth predictions, and
additional contextual information into nationwide real-world applicationsin real

timefor thefireindustry?

Wildlire Anamolies

ove Unted States

Figure 73
Web App Fire Growth Points
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Wildfire Anamolies

Figure 74
Web App - Fire Growth Point & Residence threat

Figures 74 and 75 represent the Web App that was built as part of this research.
Al prediction isintegrated into this web app. This web app primarily renders a 3D map of
the USA, developed using Google Maps services and programming languages such as
HTML, CSS, and JavaScript. This map displays only the growing fires across the country
and marks the areas near residences under threat with pink circles. The traditional display

comprises all the raw fire events from the satellite.
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Figure 75
Al Integration to Web APP

Improvements in this software product are achieved by leveraging Al prediction.
This map displays only growing firesin near real-time and provides additional contextual
information by highlighting residences near the growing fires that require attention from
firefighters. Satellite real-time raw fire events datais continuously read from the Al
engine using the FIRM S web API services. The Al engineis scheduled to run
periodically in Google Colab Pro, although another cloud platform can also be used. The
Al engine continuously computes predictions and additional contextual information,
writing them to the shared file system.

When the user accesses the web app through the URL, the Web App fetches the
prediction from the file system and displays the growing fire prediction along with
contextual information. Real/Near-real-time predicted fire events include the numeric
values of latitude and longitude of the growing fire events, labeled as growing firesin the
file system. Additionally, the predicted contextual information consists of the numeric
values of latitude and longitude of residential information near the growing fires, labeled
as "threat residence." The web application utilizes a distinct color palette and pattern to
represent these elements based on their labels visually.

4.6 Summary of Findings
Unsupervised machine learning algorithms play acrucia role in detecting fire

growth within our dataset, which contains two primary types of data:
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e Typel Data(Noise): This category includeslatitude and longitude coordinates of

isolated fire events that lack nearby occurrences.

e Type?2 Data: Thisinvolves latitude and longitude coordinates of fire events that

are closely and densely located.

Several important objectives guide the analysis:

Accurate ldentification of Type 2 Data: The algorithm should reliably
identify Type 2 data on the day fire growth is observed.

Clustering Separation: When multiple clusters of Type 2 data are present,
the algorithm should adeptly distinguish between them.

Exclusion of Type 1 Data: All Type 1 data must be excluded from active
clusters exhibiting significant growth.

Autonomous Cluster Determination: Given the unknown number of
clusters, the clustering algorithm should automatically determine the
number of existing clusters.

Threat Level Assessment: The algorithm should evaluate the threat level

for the nearest residencesin areas prone to fire.

To meet these objectives, avariety of unsupervised machine learning algorithms were

considered, including:

Density-Based Spatial Clustering (DBSCAN)

K-Means Clustering

Fuzzy C-means Clustering

Gaussian Mixture Models Clustering

Agglomerative Hierarchical Clustering

New Model: Multilevel Multicriteria Clustering Algorithm
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While K-means clustering, Fuzzy C-means clustering, Gaussian Mixture Models,
and Agglomerative Hierarchical Clustering are established techniques, they present some
challenges in this context. These algorithms necessitate a predefined number of clusters,
which is not known in our case. Additionally, they may struggle to classify Type 1 data
as noise, leading to its unwarranted inclusion in clusters.

The accuracy of these algorithms can aso vary, especially when small clusters are
positioned near each other. Their outcomes are influenced by the specified 'number of
clusters; alower setting may result in the formation of broader clusters, while a higher
setting tends to create smaller, distinct ones.

Ultimately, this means K-means and similar methods may not effectively address
objectives 3, 4, and 5. Moreover, objectives 1 and 2 may also fall short, as these
algorithms often fail to successfully differentiate between noise and genuine fire spread
event clusters, rendering their outputs less applicable in real-world scenarios.

In contrast, Density-Based Spatial Clustering has shown promise in successfully
addressing the key objectives (1, 2, 3, and 4) established for this study. This algorithm
does not require a predetermined number of clusters; instead, it leverages two essential
parameters. minimum cluster density and maximum distance between endpoints. Both
parameters are derived through exploratory data analysis, allowing for amore adaptive
and practical approach to clustering in this context. However, the results produced by this
algorithm may exhibit inconsistencies, particularly in cases where multiple nearer fire
growing points exist within the dataset. Furthermore, it does not satisfy Objective 5. In
comparison, the newly proposed model achieves a high prediction accuracy of 95% and
effectively meets al specified objectives.

When these algorithms were tested on the nationwide dataset, their performance

was found to be suboptimal. Consequently, the dataset was segmented into smaller
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subsets based on regional divisions. The machine learning algorithms were employed to
predict fire growth within each regional dataset, and these predictions were subsequently
integrated to form a comprehensive nationwide forecast. This approach resulted in
improved model performance.

Similarly, the performance of the machine learning model declined when tasked
with predicting contextual information about the fire-growing scene, specifically
assessing the threat level to nearby residences from the growing fire. To enhance
performance, the algorithms first identified residences at risk at the regional level and
then consolidated these regional predictions to generate a national-level assessment. This
integration of predictionsinto real-world applications further increased the effectiveness
of the model.

The proposed software architecture in the research enhances accuracy. It reduces
latency by logically dividing alarge application into multiple smaller applications and
scheduling the GPU for these independent applications. This approach minimizes latency,
as each application is dedicated to processing data from a separate source. The results of
these independent applications are then integrated, thereby improving the accuracy of the
predictions. This research presents a method for continuously integrating and deploying
Al-predicted fire growth in real-time, raw fire event datafrom MODIS and VIRRS, aong
with predicted contextual information of the fire scene, leveraging a cloud platform. A
web app was also developed as part of this research, alongside the study. Al predictionis
integrated into thisweb app in real time. Thisweb app primarily renders a 3D map of the
USA This map displays Al-predicted growing fires across the country and marks the

predicted near residences under threat with pink circles.
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CHAPTER V:
DISCUSSION

5.1 Discussion of Resear ch Question One

Arethereany hidden patterns of growing firesin the collected raw data from

the history dataset captured from the satellite?

Based on the findings from the exploratory data analysis of fire events obtained

from the MODI S instruments aboard the Aqua and Terra satellites, the following insights

emerged from the time series analysis of fire event geographic coordinates:

1.

On the day the fire originated, there was a high density of fire events concentrated
in aspecific area.

In the days that followed, these fire events expanded to cover alarger area,
leading to an increase in the number of geographic coordinates reflecting the fire
events.

Visualizing the geographic coordinates of these fire events on a 2D plot for the
day of the incident revealed that the coordinates were densely clustered, forming a
darker, thicker area on the regional map of the USA, specifically around the
known site of the fire. Refer to figures 39, 40, and 41.

The MODI S dataset indicated that numerous geographical points, greater than
five and within a 13-mile radius, demonstrated fire growth in the following days.
This observation was particularly evident in the California region during two real
incidents, the Palisades Fire and the Eaton Fire, detailed in Table 14. A similar
pattern of increasing fire density was observed for the Idaho region on the
incident day, asillustrated in Figure 44.

When examining the 2D plots of fire event coordinates from the day before the

incident, the events appeared isolated, with distances exceeding 13 miles between
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them. As shown in Figures 40, 41, 43, and 44, these isolated fire events did not

present as dense spotsin the 2D map, as there were no more than five events close

together.
The significance of utilizing satellite datasets lies primarily in their scalability on a global
level, which streamlines data preprocessing and enhances the efficiency of Al models.
The standardized format of these datasets enables consistent application of Al methods
across different regions and contexts. Although satellites can occasionally miss early fire
detections due to limitations such as sensor resolution or blind spots, they tend to provide
more reliable indicators when fire events exhibit a growing pattern. This correlation
increases confidence that these events represent developing wildfires, allowing for better
monitoring and response strategies.

Performing exploratory data analysis on the MODI S dataset is significant for
several reasons. A key aspect isthat it helps determine the most suitable machine
learning algorithms for the dataset. Additionally, it facilitates the selection of arelevant
subset of historical data, specifically those records of raw fire events that span over a
decade. Thistargeted approach is essential because running algorithms on the entire
dataset can be pretty time-consuming. By focusing on a carefully chosen subset that
encapsulates the patterns and behaviors of past raw fire events, we can ensure more
reliable results when applying the model to unseen data. Ultimately, this enhances the
model's effectivenessin real-time applications, aiding in the timely prediction of wildfire
OCCUrrences.

Existing literature utilizes satellite images of wildfires gathered from various
resources, including Google Images, open-source initiatives, and Kaggle, as well as data
from MODIS, Seaand Land Surface Temperature Radiometer, Visible Infrared Imaging
Radiometer Day Night Band, and SLSTR. These datasets are manually labeled as either
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wildfire or non-wildfire. A limitation in such literature isthat it does not determine the
characteristics of growing wildfires from satellite image datasets. (e.g., Mapulane, 2022;
Rajalakshmi et al., 2023).

Some of the existing literature utilizes data, with the majority focusing on weather
and environmental conditions, such as temperature, humidity, wind speed and direction,
soil moisture content, and precipitation levels- al factors that significantly determine the
likelihood of afire. Additionally, the presence of vegetation, topography, and land-use
patterns influences the risk of wildfiresin a given area. It had atarget parameter of fire or
no fire, based on real wildfire incidentsin that region. (e.g., Brennon et al., 2024).

The limitation of this dataset is that it focuses only on a particular region of the
USA. The dataset is not scalable, which increases the effort required to generate the
dataset for each state and nation. Revising the models for every new incident also
reguires significant effort to maintain the accuracy of these models.

Another existing literature also focuses on fuel parameters, Weather Parameters,
Infrastructure, Topography, the Global Fire Atlas, and Fire Intensity from MODIS for the
specific region—the southwestern border of China—for predicting wildfire
characteristics. A limitation of this approach isthat collecting data across all areas of the

country and the globe is a challenging task. (e.g., Chen et al., 2023).

5.2 Discussion of Research Question Two

Which machine algorithm isaccuratein predicting thefire growth and eliminating

the non-growing firesfrom theraw fire events dataset on the day of discovery?
While answering Research Question 1, it was found that the data available from

MODIS s not labelled; hence, unsupervised algorithms were implemented to predict

growing wildfire events from the raw fire events dataset.
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DBSCAN (Density-Based Spatia Clustering of Applicationswith Noise) and
proposed a new unsupervised clustering algorithm, the Multi-Criteria Clustering
Algorithm, was able to predict the growing fire accurately and eliminate isolated fire
events, i.e., noise from the predicted growing fire cluster. Other unsupervised algorithms,
including K-Means, Fuzzy C-Means, Gaussian Mixture Models, and Agglomerative
Hierarchical Clustering, were also experimented with; however, they were unable to
eliminate the isolated fire events from the clusters accurately.

These algorithms are validated using three sample datasets from the recent
MODIS history dataset, two sample datasets for the Californiaregion, and athird sample
dataset for the Idaho areain the United States.

For the sample datasets 1, 2, and 3, DBSCAN results are indicated in the

Figures 60,61,62. DBSCAN was able to cluster all the fire-growing events on the day the
fire was discovered and also on the subsequent day when they exhibited a growing
pattern. This agorithm was able to effectively mark 100% isolated fire events as noise on
the previous day of the fire growth. Similar behavior was observed in all three sample
datasets, as indicated in Figures 63, 64, and 65, by the newly proposed algorithm, the
Multi-Criteria Clustering Algorithm. One difference between the DBSCAN and the
Multi-Criteria Clustering Algorithm is that, when there are multiple clusters of growing
fires on the same day, the Multi-Criteria Clustering Algorithm can consistently cluster the
growing fire events into the same cluster. Every execution of this algorithm on the same
dataset produces the same output, but DBSCAN results were not consistently repeatable.
The border fire event of one cluster is often transferred between two neighboring clusters.
However, this algorithm accurately classifies the growing fire events. Still, it failsto
provide the same repeatable output, asit frequently moves the border of growing fire

points between the two nearest clusters. Thisinconsistency is unacceptable for usein a
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real-world application, particularly when deriving more contextual information for the
detected fire scenes. The Multi-Criteria Clustering Algorithm isidentified as an accurate
model for determining fire growth in the MODI S dataset.

Existing literature utilizes |abeled numeric data; therefore, they employ
supervised machine learning models to predict wildfire characteristics. Random Forest
performed better compared to Decision Trees, KNN, Support vector machine, logistic
regression, and Naive Bayes on the |abeled numeric dataset that comprised of the weather
and environmental conditions, such as temperature, humidity, wind speed and direction,
soil moisture content, and precipitation levels, the presence of vegetation, topography,
and land-use patterns influences. The support vector machine was eliminated because it
required excessive time for prediction (e.g., Chen et al., 2023).

Another existing literature al so recommends Random Forest for predicting
wildfire characteristics over other machine learning models, such as extreme gradient
boosting. They also had asimilar type of region-specific labeled numeric dataset with a
few additional parameters, such asthe Global Fire Atlas, which contains historical
locations, dates, Rates of speed between 2003 and 2016, and fire intensity data from
MODIS, along with weather and environmental conditions parameters (e.g., Brennon et
al., 2024).

A limitation of the existing literature is that although the recommended
supervised algorithm, random forest, demonstrated higher accuracy on the test dataset,
which is historically collected, it has not been tested on real-time data. The authors
suggested that enhancing the dataset with local vegetation data, such as chaparral,
grassland, or coniferous forests, as well as incorporating regional population data, could
further improve the accuracy of the machine learning agorithm. However, a significant

limitation remains with the dataset, as the random forest was only tested for one specific
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region, using an input configuration parameter of max depth 20, defined solely for this
regional Californiadataset in the USA, to achieve the highly accurate results. In contrast,
another study described a maximum depth of 10 for Y unnan Province, China, while the
maximum depth for other regionsin the country remains undefined. This ultimately
hampers the scalability of the model at both national and global levels.

5.3 Discussion of Research Question Three

Doesthe accuracy of the machine algorithm in predicting the growing firesvary on
real-timefire events data (unseen data)?

DBSCAN and the Multilevel Multicriteria Clustering Algorithm were tested on
real-time data over several days, fetching raw MODI S fire event data directly from the
FIRMS web API. The accuracy in predicting wildfire growth remained consistent on both
real-time data and unseen data, asillustrated in Figures 66 and 74.

The input parameter for minimum cluster density points was set to 5 during
experiments on the historical dataset, which did not necessitate any changes for the real-
time data, as shown in Figure 74. The analysis indicated a growing fire predicted across
all regions of the United States based on real-time data from various states.

Additionally, both algorithms were tested using raw fire events from aternative
sources, including VIRRS data from the NOAA-20, NOAA-21, and SNPP satellites.
Real-time datawas directly retrieved from the FIRMS web API for al areasin the U.S.
For the raw fire event dataset from VIRRS, the minimum cluster density points parameter
was adjusted to 10 from the initial 5 to enhance the accuracy of wildfire growth
predictions.

Overall, the findings indicate that the accuracy of the algorithms remains high for

both real-time data and unseen datasets, provided the source remains the same. This
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shows arobust model for predicting wildfire growth across various regions of the country
and potentially for datasets from other countries as well.

The only adjustment necessary pertains to the use of different sensors based on
their resolution. The study highlighted that when utilizing data from different sensors, the
minimum cluster density should be modified accordingly. Higher-resolution sensors
reguire a higher minimum cluster density to ensure accurate predictions, whereas
applying the same lower resolution settings could lead to inaccuracies. Thus, when
incorporating data points from new satellite-based sensors, it is essential to make minimal
adjustments to maintain model accuracy. Once calibrated for one region, the same input
values can be applied at aglobal level.

By answering this question, this research has demonstrated its significance by
adapting the proposed unsupervised Al model framework to function effectively with any
satellite-based sensor raw fire numeric dataset, thereby predicting wildfire spreading
characteristics. The approach has been proven to achieve higher accuracy, making it
applicable to various regions worldwide.

Existing literature emphasi zes that the random forest algorithm achieves higher
accuracy on test datasets compared to other supervised learning models when working
with labeled numeric data. However, there is a notable gap in the experimentation of
these models using real-time data for the same region or other regions of the country.
While some studies have employed Convolutional Neural Networks (CNNs) and
customized CNN models for predicting wildfires using image datasets, they still struggle
to demonstrate accuracy in predicting wildfire characteristics in real-time or with unseen

data (e.g., Brennon, 2024; Chen, 2023; Mapulane, 2022; Rajalakshmi et al., 2023).
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5.4 Discussion of Resear ch Question Four

Can machine learning algorithms predict mor e contextual information about fire
scenesin areas expected to experience fire growth in near real-time, such asthe
threat level to nearby residences from the growing fire?

The chosen Multilevel Multicriteria Clustering Algorithm predicts more
contextual information about the fire scene. This prediction is shown in Figure 75, which
represents the predicted |atitude and longitude of the threat residence in pink.

Predicting contextual information about fire scenes plays avital role in assessing
the threat levels of wildfires to human safety. Aswildfires continue to escalate, it
becomesincreasingly critical for firefighters to prioritize containment efforts to mitigate
risksto life.

Additionally, the proposed Multilevel Multicriteria Clustering Algorithm
framework (Refer Section 3.8.7) offers an easily customizable solution for gathering
more contextual details about the fire scene, which is essential for effective wildfire
management.

Existing literature has not addressed the prediction of contextual information
regarding growing fire scenes, as most studies have primarily focused on wildfire
characteristics or detection. (e.g., Brennon, 2024; Chen, 2023; Mapulane, 2022;
Rajalakshmi et a., 2023). Another existing literature that utilizes Al for other
applications in the fire industry recommends training the Al model to recognize
additional context in fire scenes for future work, such as different types of vehicles, fire
hydrants on streets, and specific uniforms worn by firefighters, Emergency Medical
Technicians, and police officers. The fire commanders could quickly and precisely grasp
the Al-predicted critical information (e.g., number of fire apparatus) on-site.

Continuously monitoring firefighting activities onsite and signs of fatigue in firefighters.
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For instance, when a firefighter’s helmet touches the ground, it is a clear sign of fatigue,
and the Al software immediately notifies other firefighters on the ground. (e.g., Chang,
2022).

5.5 Discussion of Resear ch Question Five

Isthe accuracy of the machine learning algorithmsin predicting thefire
growth and thelatency in predicting the fire growth acceptable to real-world
applicationsin thefireindustry?

The proposed system software architecture, depicted in Figures 70, 71, 72, and
73, outlines the framework for implementing unsupervised machine learning models on
national-level datasets and from multiple satellite sensors to enhance accuracy suitable
for real-world applications in the fire industry on a cloud platform. It also provides
guidance on cost-effectively improving prediction latency, ensuring that the
implementation of machine learning models meets the necessary efficiency for practical
usein this sector. By utilizing increased data points, the architecture aims to achieve the
desired accuracy levels essential for these applications.

The wildfire growth initially starts small, and by employing this proposed
architecture, it is possible to achieve wildfire growth prediction across the entire country
using raw fire event data obtained from multiple satellite sensors and contextual
information of the fire scene within 2min, asit does not immediately result in catastrophe
or jeopardize life safety, predicting with in 2min should be acceptable for the fire
industry.

The latency requirement for the fire alarm, as specified by the National Fire
Protection Association (NFPA), was reviewed. NFPA isaglobal, self-funded, non-profit
organization dedicated to eliminating death, injury, property damage, and economic |oss

dueto fire, electrical, and related hazards, according to multiple sources. NFPA develops
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and publishes consensus-based codes and standards that are widely used to prevent and
mitigate these hazards, over 300 codes and standards that address various aspects of fire
and electrical safety, building design, hazardous materials, and more. These standards are
devel oped through a consensus process involving technical committees and subject
matter experts. Code NFPA 72 pertains to fire detection, signalling, and emergency
communication systems. This code outlines the requirements for fire alarm systems,
encompassing design, installation, inspection, testing, and maintenance, for all types of
buildings. The primary goal isto protect life and property from fire and related hazards.
According to NFPA 72, fire alarm signals must be received and confirmed at a central
monitoring station/remote station within 90 seconds.

Aswildfires generally start small and do not immediately impact life safety,
predicting their growth and providing contextual information within 2 minutes should be
acceptable for the fire industry, even from aregulatory standpoint, as we closely achieve
NFPA code specifications for building fires. Building fire detection timeis more
aggressive in the NFPA code, asit immediately affects life and property.

Additionally, while reviewing the existing literature on wildfire characteristic
prediction, researchers often fail to integrate their findings into practical, real-world
applications; instead, most of them suggest these integrations as future work (e.g.,
Brennon, 2024; Chen, 2023; Mapulane, 2022; Rajalakshmi et a., 2023).

Some existing literature that focuses on the application of Al in other areas of the
fireindustry has demonstrated effective integrations of Al predictionsinto real-world
applications (e.g., Akmalbek 2022).

For instance, they ran an Al model on computers equipped with 2 GPUs, serving
asaserver that utilizes images sent from 10T devicesto predict fires using an image-

based Al model. They found that using 2 GPUs enabl es fire predictions from images and
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can send notifications within 0.83 seconds. However, alimitation of thisliterature is the
lack of aclear illustration of the location of the Al server computer, itsload capacity, or
the number of buildings or coverage areas it can manage.

If the Al model takes 0.83 seconds to predict fire from a single image, predicting
fire from the entire city's building camera images would become computationally
expensive. Utilizing 2 GPU-based servers for the town as awhole could lead to severa
hours required to compl ete the predictions. Thus, the methods proposed in the existing
literature currently do not operate effectively on alarge scale and can be very expensive
to operate with alarger number of GPUs.

Additionally, this fixed GPU-based system, which is used for achieving real-time
response, may not be suitable, as there will often be a need to derive more contextual
information about the fire scene. A fixed GPU-based system typically requires hardware
upgrades, which can be expensive, especially when incorporating additional Al-based
featuresinto the existing product.

5.6 Discussion of Resear ch Question Six

What'sthe strategy to integrate the Al outputs, fire growth predictions, and
additional contextual infor mation into nationwide real-world applicationsin real
timefor thefireindustry?

The Al engine resides on a cloud computing platform. It is scheduled to run Al
models continuously to read raw fire eventsin real-time, as detected by sensorson a
satellite through the FIRM's web API services, preprocess the data, and make predictions.
This predicted output of fire growth and contextual information is integrated in real-time
into the shared file system and API.

For area-world application, aweb app has been built. Thisweb app displays
real-time Al-predicted data from the shared file system/API on a 3D map of the United
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States. Thisweb app can be accessed from any smartphone, iPad, tablet, or Personal
computer using the URL. Firefighting organizations can utilize this web app for
improved wildfire management.

While reviewing the existing literature on wildfire characteristic prediction,
researchers often fail to integrate their findings into practical, real-world applications,
instead, most of them suggest these integrations as future work (e.g., Brennon, 2024;
Chen, 2023; Mapulane, 2022; Rajalakshmi et ., 2023).

Some existing literature that focuses on the application of Al in other areas of the
fireindustry has demonstrated the effective integration of Al predictionsinto real-world
applicationsin rea-time (e.g., Chang 2022; Akmalbek et al., 2022).

In this literature, images of the fire scene are captured in real time from the
cameras installed on the drone, vehicles, and firefighters, utilizing the Wi-Fi or satellite
network these images are transferred to cloud server from camera, Al models on the
cloud platform use the onsite images preprocess the data and predict the number of fire
fightersin the fire scene and send the information to onsite incident commander which is
used for decision making.

In another existing literature, they use a client-server scheme for integrating the
Al prediction to real world application in real time, where the clients are used for
collecting the data, smart glass that consist of camera and Home surveillance Camera are
the clientsin the client-server scheme, they are used for capturing images in the building,
Smart glass sends image using Bluetooth to the smartphone(client), Smart phone and
camera sends image to the Al server using the cellular or 5G, Al model in the Al server
preprocess the image and predict the fire presence in the building and sends the

notification in real time. (e.g., Akmalbek 2022).
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Following Business Implications of Al-Driven Wildfire Growth Prediction

1. Enhanced Risk Management for Insurers

Insurance companies can leverage the predictive model to assess wildfire risks
more accurately at both regional and national scales. Real-time identification of
threatened residential zones enables dynamic adjustment of risk portfolios, more precise
pricing of homeowner policies, and faster claims management after fire incidents.

2. Operational Efficiency for Firefighting Organizations

The integration of real-time predictions into aweb application reduces uncertainty
in field operations. L ogistics managers can optimize deployment routes for vehicles,
thereby lowering response times, fuel costs, and resource waste. This efficiency trandates
directly into cost savings while improving response capacity during critical incidents.

3. Technology-Enabled Public Safety Services

Emergency response agencies gain access to a practical decision-support tool that
provides real-time situational awareness. This strengthens public trust and positions
agencies to justify investments in advanced technology platforms. The reduced rate of
false alarms further improves credibility and operational reliability.

4. Market Opportunitiesin SaaS and Cloud Solutions

The modular, GPU-optimized architecture offers a scalable business model for
cloud-based SaaS solutions. Technology providers can commercialize this platform by
offering subscription services to governments, NGOs, and private companies in forestry
and land management. Expansion opportunities exist globally, particularly in regions
prone to wildfires.

5. Data M onetization and Partner ships

Theintegration of MODIS and VIRRS real-time data streams opens avenues for

data monetization. Partnerships with satellite data providers, insurance companies, and
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environmental consultancies could generate recurring revenue streams through AP
access, analytics dashboards, and custom risk reports.

6. Corporate Social Responsibility (CSR) and Brand Reputation

Enterprises adopting this technology, especially in insurance, utilities, and
telecommunications, can enhance their CSR profiles by actively contributing to disaster
prevention and community safety. Demonstrating proactive adoption of Al-driven
wildfire prediction enhances stakeholder confidence and brand value.

7. Global Expansion Potential

While the study is applied to U.S. wildfire data, the underlying methodology is
transferable to other regions with similar environmental risks (e.g., Australia,
Mediterranean Europe, South America). This creates significant potential for global

partnerships, licensing agreements, and technology exports.
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CHAPTER VI:
IMPLICATIONS AND RECOMMENDATIONS

6.1 Implications

Performing exploratory data analysis on the MODI S dataset is significant for
several reasons. A key aspect isthat it helps determine the most suitable machine
learning algorithms for the dataset. Additionally, it facilitates the selection of arelevant
subset of historical data, specifically those records of raw fire events that span over a
decade. Thistargeted approach is essential because running algorithms on the entire
dataset can be pretty time-consuming. By focusing on a carefully chosen subset that
encapsul ates the patterns and behaviors of past raw fire events, we can ensure more
reliable results when applying the model to unseen data/real -time data. Ultimately, this
enhances the model's effectivenessin real-time applications, aiding in the timely
prediction of wildfire occurrences. The significance of utilizing satellite datasets lies
primarily in their scalability on aglobal level, which streamlines data preprocessing and
enhances the efficiency of Al models. The standardized format of these datasets enables
consistent application of Al methods across different regions and contexts. Although
satellites can occasionally miss early fire detections due to limitations such as sensor
resolution or blind spots, they tend to provide more reliable indicators when fire events
exhibit a growing pattern. This correlation increases confidence that these events
represent developing wildfires, allowing for better monitoring and response strategies.

This research has demonstrated its significance by adapting the proposed
unsupervised Al model framework to function effectively with any satellite-based sensor
raw fire numeric dataset, thereby predicting wildfire spreading characteristics. The
approach has been proven to achieve higher accuracy, making it applicable to various

regions worldwide. Additionally, the proposed Multilevel Multicriteria Clustering
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Algorithm framework offers an easily customizable solution for gathering more
contextual details about the fire scene, which is essentia for effective wildfire
management. This Novel clustering model makes a significant contribution to both
theory and practical application within the fire industry.

An Al framework that leverages an efficient data derivation strategy and further
employs cost-effective parallel and sequential computation methods to schedule GPUs
and fulfill the real-time computation demand for practical applications, aligning closely
with the regulatory timing requirements of the fire industry.

The practical application of the research is evident in areal-world product
developed as part of this study: aweb application designed to monitor wildfire
characteristics and threat levelsto residences in real-time. This monitoring system is
particularly beneficial for wildfire management organizations, enabling them to make
informed decisions, respond swiftly to emerging threats, and implement effective
strategies for fire prevention and control. By leveraging advanced analytics and real-time
data, these organizations can enhance their operational efficiency and improve safety
outcomes for communities at risk.

6.2 Recommendations for Future Research

Future research can explore deriving more contextual insights of the fire scene
that might be required for more effective wildfire management using Al methods.

Exploring the data captured by sensors on other satellites, such as Landsat, Orbital
Tech, and the GOES-R Series, can further enhance the accuracy of predicting wildfire
characteristics. Explorethis datafor additional use cases using Al in the fire industry.
Additionally, examining the feasibility of deploying Al as aredundant system alongside a
primary rule-based system will be crucial for managing high-risk areas within these

industries.
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