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ABSTRACT
‘ENHANCING STOCK MARKET PREDICTION WITH

SENTIMENT-AUGMENTED RANDOM FOREST’

By
SABER TALAZADEH

2025

Dissertation Chair; XXXXX

This paper investigates stock trend prediction despite the challenges due to the numerous
influencing factors and the stock market's dynamic, non-linear, and complex nature. While
statistical models have laid groundwork in stock prediction, recent advances in quantitative
finance emphasize intelligent timing and stock selection through machine learning. Machine
learning models, particularly, have shown promise by effectively learning the relationships
between predictor variables and stock movements, often outperforming traditional statistical
approaches in both accuracy and robustness. This study systematically develops a stock
forecasting model that combines technical indicators and sentiment analysis, employing
exponential smoothing for refining technical indicators and using an optimized Random Forest
model with dynamic weight adjustments and sentiment scores derived from Yahoo Finance

data.

Key research area of this paper is the integration of textual sentiment analysis via the FinGPT
model, a transfer learning model trained extensively on financial content, which significantly
enhances sentiment-based stock prediction. The study evaluates the optimized Random Forest
model’s performance in medium- and long-term forecasting, assessing its effectiveness
alongside SARF, RF, and LSTM models through comparative metrics. This integration of
sentiment with technical indicators aims to better capture the nuances of stock movement and

the impacts of market sentiment, contributing to improved predictive accuracy.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Predicting stock trends is a challenging task because of the many factors involved. Despite the
development of stock predictors based on statistical models, the dynamic, non-linear, and
complex nature of the stock market makes effective trend prediction a persistently challenging
task Chen et al. (2020). In the field of quantitative finance, the focus is on intelligent timing
and stock selection. As quantitative investment and machine learning increasingly converge,
understanding the rise and fall of stocks becomes pivotal. Diverse stock price forecasting
methods exist, each with its own advantages and drawbacks. Machine learning models
effectively learn relationships between predictors and stock movements in historical data, as
shown by Bao et al. (2017). Unlike traditional statistics and econometric models, machine
learning models demonstrate superior prediction performance and robustness. Researchers
have explored various machine learning models, such as support vector machines and random
forests, for stock trend prediction. Integrating these models presents challenges, especially in
handling time series data, selecting technical indicators, and optimizing parameter
combinations by Sharma et al. (2017). This study contributes by systematically building a stock
forecasting model that integrates technical indicators with sentiment analysis throughout the
process and incorporating exponential smoothing to reprocess technical indicators. The
primary contribution of this research is integration of sentiment analysis through the
incorporation of sentiment scores and dynamic weight adjustments in the optimized Random
Forest model with data sourced from Yahoo Finance. This integration enhances the model's
ability to capture information reflecting stock movement and the impact of market sentiment

on stock prices.



To extract textual sentiment information, we employ the FinGPT model, a transfer learning
model pre-trained on massive finance textual content. This model demonstrates superior
performance in finance sentiment analysis by Liu XY et al. (2023). The study's goal is to
evaluate the performance of the optimized random forest in medium and long-term stock
forecasting, aiming to improve overall forecasting accuracy. The paper concludes by

comparing the prediction performance of SARF, RF, and LSTM based on relevant metrics.

1.2 Statement of the problem

The objective of this research is to explore and assess the current advancements in stock market
prediction, with a particular emphasis on sentiment analysis as a predictive tool. Stock market
forecasting is a challenging problem due to the complexity and volatility of financial markets,
and the introduction of sentiment analysis has brought new perspectives on market behavior.
This study aims to address the gap in understanding how traditional and modern approaches
compare, and how sentiment analysis integrates into machine learning (ML) techniques for

predictive accuracy.

1.3 Significance of the Study

Stock markets have been extensively studied to identify patterns and predict their movements,
a pursuit that holds significant appeal for both researchers and financial investors. The ability
to predict stock market trends is crucial, as those who can accurately forecast market shifts
have the potential to earn substantial profits. However, financial analysts often face challenges
in understanding market behavior, struggling to determine which stocks to buy or sell for
optimal returns. Effective predictions of future stock price movements can enable investors to

act proactively and capitalize on opportunities for profit.



The accuracy of stock price predictions directly correlates with the potential for profit. While
traditional forecasting methods, based on technical and fundamental analysis, remain popular,
they primarily rely on numerical time-series data, which describe market events without
providing insights into their underlying causes. In contrast, integrating textual data, such as
news articles, offers a richer source of information that can improve the quality of predictions.
By combining numerical data with sentiment analysis derived from textual sources, more

accurate and robust stock forecasts can be achieved.

Human behavior, particularly in the context of financial markets, is heavily influenced by
external factors, with news articles and media content playing a pivotal role in shaping investor
decisions. The actions of investors, in turn, directly affect stock prices, creating a dynamic
feedback loop between news content and market movements. As real-time news articles related
to financial markets continue to proliferate online, extracting valuable insights from this
content and understanding its relationship with stock market behavior becomes increasingly
important for enhancing the predictive accuracy of stock trends.

This study aims to address the complexities and challenges of stock trend prediction, given the
dynamic, non-linear, and multifactorial nature of the market. While traditional statistical
models have laid the groundwork for stock prediction, recent advances in quantitative finance
have emphasized the role of machine learning in improving stock selection and timing.
Machine learning models, particularly, have shown considerable promise by identifying
complex relationships between predictor variables and stock movements, often outperforming
traditional approaches in terms of both accuracy and robustness.

In this paper, we develop a stock forecasting model that integrates technical indicators with
sentiment analysis, using exponential smoothing to refine the technical indicators and an

optimized Random Forest model for dynamic weight adjustments. This approach leverages



sentiment scores derived from Yahoo Finance data to enhance the prediction process. A key
innovation of this study is the integration of sentiment analysis through the FinGPT model, a
transfer learning model trained on extensive financial content, which significantly improves
sentiment-based stock predictions. The study further evaluates the performance of the
optimized Random Forest model in medium- and long-term forecasting, demonstrating how
the combination of sentiment and technical indicators can more effectively capture stock
market trends and improve predictive accuracy. This research contributes to the growing field
of stock market forecasting by offering a more nuanced understanding of market sentiment and

its impact on stock price movements.

1.4 Research Questions
To achieve a comprehensive analysis, the research will address the following key questions:

e Theoretical Foundations: What are the most prominent theories underlying stock
market predictions, such as the efficient market hypothesis and random walk theory?
Understanding the theoretical context is essential to evaluate the assumptions and
limitations of various predictive models.

e C(lassic Approaches to Prediction: What are the traditional methods, such as technical
and fundamental analysis, used for stock market prediction? In which scenarios have
these approaches been successfully applied, and what are their limitations in predicting
volatile market behaviors?

e Machine Learning and Sentiment Analysis: In which cases have machine learning
techniques been applied to stock market prediction, and how effective have they been?

Furthermore, how has sentiment analysis been used in conjunction with ML models to



predict stock movements? This question explores the intersection of textual data
analysis and machine learning in financial forecasting.

e Model Design and Development: What are the critical components involved in the
design and development of a stock market prediction model? What factors contribute
to model performance, particularly when focusing on the prediction of specific stock
movements such as Microsoft?

This study will examine the existing body of work, assess the strengths and weaknesses of
various approaches, and propose a framework for incorporating sentiment analysis into a stock
market prediction model. The research aims to contribute insights into the evolving field of
financial forecasting, particularly in how sentiment-based analysis may enhance traditional and

machine learning-based models for more accurate and actionable predictions.

1.5 Hypotheses
This study aims to explore the potential of integrating sentiment analysis with machine learning
techniques to improve stock market trend prediction. The proposed model, Sentiment-
Augmented Random Forest (SARF), combines traditional technical indicators with sentiment
scores derived from financial news articles processed through the FinGPT model.
Based on this integration, we hypothesize the following:
e Hypothesis 1: Sentiment-Augmented Random Forest (SARF) improves stock
market prediction accuracy compared to traditional Random Forest models.
Given that sentiment analysis adds a valuable layer of information to stock prediction
models, we hypothesize that the inclusion of sentiment features in the Random Forest
model will significantly enhance its predictive performance. By leveraging FinGPT’s

ability to understand and interpret financial sentiments, the SARF model should



outperform traditional Random Forest models in forecasting stock price movements, as

it incorporates market sentiment, a critical driver of stock behavior.

Hypothesis 2: SARF model will demonstrate superior performance in long-term
stock trend prediction compared to LSTM models.

While Long Short-Term Memory (LSTM) networks are commonly used for time-series
forecasting due to their ability to model sequential data, we hypothesize that the SARF
model will achieve better performance in medium- to long-term stock trend forecasting.
This is due to the SARF model’s ability to incorporate both historical market data
through technical indicators and the influence of current market sentiment, offering a
more comprehensive approach to trend prediction compared to LSTM, which primarily

focuses on historical data.

Hypothesis 3: Incorporating sentiment analysis into stock trend forecasting

reduces prediction error and improves overall model robustness.
Sentiment analysis, especially when combined with financial news data, offers insights
into investor behavior and market psychology, which can significantly impact stock
prices. We hypothesize that the integration of sentiment features in the SARF model will
reduce prediction errors and enhance the robustness of stock market forecasts, especially
during periods of market volatility, where sentiment plays a crucial role in driving price
movements.

Hypothesis 4: The combination of sentiment analysis and technical indicators

will mitigate overfitting issues commonly encountered in stock trend prediction

models.

Overfitting is a common challenge when building predictive models with financial

data, especially when relying solely on technical indicators. We hypothesize that the
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SARF model will mitigate overfitting by incorporating sentiment analysis, which
introduces additional context and variability that better generalizes the model’s
predictions. This hypothesis suggests that by using both technical and sentimental
data, the model can avoid fitting too closely to past data patterns and thus perform

better on unseen market conditions.

These hypotheses aim to test the efficacy of SARF in improving stock market prediction
accuracy, reducing errors, and addressing common challenges such as overfitting and long-
term forecasting limitations. The subsequent experiments will evaluate these hypotheses by
comparing SARF’s performance against traditional Random Forest and LSTM models across

multiple evaluation metrics, including accuracy, precision, recall, and F1 score.

1.6 Limitation and assumptions

Despite the promising results demonstrated by the Sentiment-Augmented Random Forest
(SARF) model in predicting stock market trends, there are several limitations and assumptions
that must be acknowledged in this study.

First, the reliance on historical stock data and technical indicators as key predictors of market
behavior introduces inherent limitations. Stock market dynamics are influenced by a wide
range of factors, including geopolitical events, macroeconomic shifts, and investor sentiment,
which may not always be fully captured by past price data or technical indicators. While the
SARF model incorporates sentiment analysis to improve prediction accuracy, it is important to
recognize that sentiment alone does not fully account for all market influences. Unforeseen
external events, such as natural disasters or political crises, may significantly impact stock
prices in ways that the model cannot predict. Thus, while SARF improves prediction accuracy,

it is not immune to the limitations imposed by unpredictable market forces and external shocks.



Additionally, the study assumes that the financial data provided by Alpha Vantage, including
stock market prices and technical indicators, is accurate and representative of the broader
market trends. Although Alpha Vantage is a reliable data source, the quality and completeness
of the data can vary, and any inaccuracies in the dataset could affect the model's performance.
Furthermore, the use of U.S. market indices, such as NASDAQ, S&P 500, and Dow Jones,
while offering a broad view of market trends, also limits the generalizability of the model to
other global markets. The model's effectiveness may differ when applied to stock markets in
other regions or countries, where market dynamics and investor behaviors can vary

significantly.

Another important limitation stems from the integration of sentiment analysis through the
FinGPT model. While FinGPT is trained on extensive financial content, it is still a generative
Al model with its own inherent biases and limitations in understanding complex financial
scenarios. The quality of the sentiment analysis may vary depending on the text sources used,
and the sentiment scores derived from financial news articles may not always fully capture the
market's real-time mood. Additionally, the sentiment analysis process may struggle with
detecting nuanced or conflicting sentiment within news articles, potentially leading to
inaccurate predictions.

Moreover, the issue of multicollinearity in the dataset, which arises from highly correlated
technical indicators and sentiment variables, is another key limitation. Although techniques
like principal component analysis (PCA) and ridge regression have been employed to mitigate
this issue, it is still possible that some multicollinearity remains in the data, potentially affecting
the model’s stability and interpretability. The model assumes that the selected technical and

sentiment indicators are the most relevant predictors for forecasting stock trends, but this
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assumption may not always hold in real-world scenarios where the importance of predictors
can change over time.

Finally, the study assumes that the model's performance, as evaluated on historical data, will
translate to real-time market conditions. However, stock markets are constantly evolving, and
a model that performs well on historical data may not always maintain the same level of
accuracy in future predictions. Therefore, the SARF model’s effectiveness may diminish as

market conditions change, requiring continuous adaptation and retraining to remain effective.

In conclusion, while the SARF model offers a promising approach to improving stock trend
forecasting, its limitations and assumptions must be carefully considered when interpreting the
results. Future work could focus on addressing these limitations by incorporating more diverse
data sources, refining sentiment analysis methods, and exploring additional techniques to

handle multicollinearity and market variability.



CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review

In recent years, the use of diverse machine learning (ML) and data mining techniques for
predicting stock market movements has become increasingly common. Numerous studies have
applied ML methods to forecast future stock values, and in this chapter, we will explore these
related works in detail. We begin by reviewing key theories in stock market prediction,
including the Efficient Market Hypothesis (EMH) and the Random Walk Theory, both of
which are widely recognized frameworks for understanding market behavior. Following this,
we will examine classic approaches to predicting stock prices, such as technical and

fundamental analysis, which have traditionally been used to forecast future market movements.

Additionally, we will explore previous research that employs ML techniques, both
independently and in combination with sentiment analysis, to predict stock returns. This review
will highlight how these modern approaches compare to traditional methods, and how the
integration of sentiment analysis has enhanced the predictive accuracy of ML models in

financial forecasting.

Researchers employ various technologies, including statistics and data mining, to classify and
predict future stock values. Tan et al. focus on stock selection, utilizing Chinese stock market
data. They combine the fundamental/technical feature space and pure momentum space with a
random forest to predict short- and long-term share price trends. Their model achieves a
standardized fund performance evaluation index of 2.75 and 5, demonstrating its effectiveness
in strategy selection. Kofi et al. (2019) explore macro-economic variables, showing that using

more important features to train the random forest model reduces prediction errors by 7.1%
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compared to models trained with all features. This highlights the positive impact of screening

macroeconomic factors on stock market forecasts.

Feature selection is a critical step in these studies. Ballings et al. investigate traditional and
integrated models in machine learning, proving that integrated models outperform single
models in predicting financial data based on time series. Random forest with bagging is
highlighted as an excellent integrated model, preventing overfitting during training. Basak et
al. (2016) train random forest and XGBoost using exponential smoothing data, demonstrating
increased trend prediction accuracy with an improved time window. Random forest is shown
to have more advantages than XGBoost overall. Luckyson et al., relying on technical
indicators, use the random forest model to predict stock trends, outperforming support vector

machines and logistic regression for more effective trend prediction results.

Yanjun Chen constructs a financial transaction strategy model based on LightGBM to address
sparse high-dimensional feature matrices in financial data. The LightGBM model significantly
reduces prediction errors and achieves higher prediction precision compared to OpenGL
Mathematics, deep neural networks, and support vector machines by S.Basak et al.(2019).
SVM, as studied by Manik et al., incorporates structured risk minimization to decrease errors
and improve classification effectiveness. In their study, intraday stock status is mined using
various classifiers, including C4.5, random forest, logistic regression, linear discriminant,
SVM, quadratic SVM, cubic SVM, Gaussian SVM, and others. The performance of different
classifiers is evaluated based on accuracy, misclassification rate, precision, recall, and other
metrics by Beyaz et al. (2018) Decision trees, particularly effective for discrete features,

demonstrate superior performance in certain scenarios by C.Lohrmann and P.lunkka(2019).
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2.2 Strategies in Financial Markets

The Efficient Market Hypothesis (EMH) posits that financial markets are "informationally
efficient," meaning that no strategy can consistently provide investors with higher risk-adjusted
returns than the market portfolio. According to this theory, all known information is already
reflected in stock prices, making it impossible for investors to outperform the market over the
long term by exploiting available information. Given that owning the market portfolio is a
straightforward strategy to implement, the EMH suggests that this is the optimal choice for

investors seeking to maximize their returns without incurring unnecessary risk.

Despite the appeal of the EMH and the simplicity of holding a market portfolio, investors have
long sought ways to "beat the market" by identifying opportunities that could lead to higher
returns. One of the most common strategies is value investing, where investors purchase shares
of companies they believe are undervalued relative to their intrinsic value. The theory behind
this approach is that over time, the market will recognize the true value of these companies,
leading to price appreciation and providing returns above the market average. This approach is
often associated with famous investors such as Warren Buffett, who has demonstrated the

potential success of value investing over the years.

The question of whether it is possible to consistently outperform the market remains a
contentious issue, with evidence both supporting and refuting the possibility. For instance,
studies by Kosowski et al. (2006) and Wermers (2000) suggest that certain professional
investors and fund managers can, on average, identify assets that yield higher returns than the
market portfolio. These findings indicate that it is possible for skilled investors to identify

patterns or mispricing in the market and take advantage of them to achieve superior returns.
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In addition to value investing, there are other active trading strategies that do not rely on
evaluating the intrinsic value of companies but instead focus on predicting price movements
by analyzing market data and patterns. These strategies often utilize technical analysis, where
investors rely on indicators such as price trends, trading volume, and moving averages to
forecast future price movements. By identifying recurring patterns, traders aim to make profits
by buying and selling assets based on short-term predictions. However, the profitability of these
methods remains debated. Some studies, such as those by Park and Irwin (2007), suggest that
technical trading strategies can be profitable under certain conditions. However, other research

shows that such strategies may be less reliable and, in some cases, lead to negative returns.

The ongoing debate about whether it is possible to beat the market highlights the complexity
of financial markets and the challenges faced by investors. While certain strategies may work
under specific conditions or for skilled investors, the overall ability to consistently achieve
superior returns remains uncertain. This suggests that a thorough understanding of both market
dynamics and various investment strategies is crucial for any investor hoping to outperform the

market in the long run.

2.3 Contribution to Literature

This paper makes several contributions to the existing body of literature on financial market
prediction and the application of machine learning methods. First, it contributes to the growing
field of research on the performance of modern machine learning models in financial
applications. Specifically, it examines the effectiveness of the Random Forest Classification
model in predicting stock price movements whether a stock will increase or decrease in value

over a given period. This paper not only adds to the literature on machine learning methods in
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stock market prediction but also demonstrates how a Random Forest Classifier can be utilized
to develop an actionable trading strategy. The implementation of such a classifier in stock
market trading is an important practical contribution, showing how machine learning models

can be applied to real-world financial scenarios.

Furthermore, the paper contributes to the economic and financial literature by providing
evidence on the performance of modern computational methods in predicting stock market
movements. The findings are important for evaluating the effectiveness of existing trading
strategies, as well as for understanding the efficiency of financial markets. As discussed in
Section 3.1, the ability to identify profitable trading strategies can be seen as an indicator of
market inefficiency. By assessing the performance of machine learning models like Random
Forest Classifiers in predicting stock trends, this study contributes to the broader discussion on
market efficiency and the potential for machine learning to improve financial decision-making.
Predicting stock trends is inherently difficult due to the multitude of factors influencing the
market. Despite the development of various statistical models, the dynamic, non-linear, and
complex nature of stock markets make trend prediction a continual challenge. In the field of
quantitative finance, the focus has shifted towards intelligent timing and stock selection, with
machine learning offering substantial improvements in this area. Unlike traditional
econometric models, machine learning techniques, such as Random Forests, have proven to be
more effective in identifying relationships between predictor variables and stock movement
patterns. This paper further contributes by integrating technical indicators with sentiment
analysis, offering a novel approach to stock forecasting. The incorporation of sentiment scores,
along with dynamic weight adjustments, enhances the Random Forest model's ability to capture

the nuances of stock price movements and the impact of market sentiment. This approach
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builds on existing models by improving their predictive capabilities through enhanced feature

engineering.

To extract textual sentiment information, this study uses the FinGPT model, a transfer learning
model pre-trained on vast amounts of financial text. This model has been shown to outperform
traditional sentiment analysis methods in finance, providing a robust mechanism for
incorporating market sentiment into the forecasting model. By evaluating the performance of
the optimized Random Forest model in medium- and long-term stock prediction, this research
aims to enhance forecasting accuracy, contributing to the growing body of work on combining

machine learning  with sentiment analysis for  financial forecasting.

Finally, this study contributes by providing a detailed analysis of the relative importance of
various technical indicators used in stock market prediction. This is an essential aspect of the
research, as it offers valuable insights into which technical indicators are most useful for
forecasting price movements. By evaluating these indicators in the context of machine learning
models, this paper helps further the understanding of how technical analysis can be combined

with modern computational methods to improve stock market predictions.

2.4 AI Agents in Financial Markets

2.4.1 Motivation for AI Agent Integration with SARF

The integration of Al agents into financial forecasting represents a strategic advancement of
the SARF framework from a predictive tool into a practical, autonomous trading system. While
SARF delivers enhanced stock market prediction accuracy by integrating sentiment analysis
using FinGPT into a Random Forest model demonstrating an average 9.23% accuracy

improvement the utility of predictions ultimately hinges on their deployment in real-time
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financial decision-making. Al agents offer the cognitive and operational infrastructure

necessary to transition SARF from research into active trading environments.

Traditional financial machine learning studies often end at the point of statistical validation,
leaving a gap between predictive performance and economic actionability. In contrast, Al
agents bridge this gap by executing autonomous decisions informed by real-time market inputs
and predictive analytics. With the inclusion of Al agents, SARF’s predictions can be harnessed
to manage dynamic portfolios, execute trades with precision, and adapt strategies based on
changing sentiment patterns and market regimes. Unlike static rule-based trading algorithms,
Al agents possess the ability to perceive market signals, interpret predictive model outputs, and
execute decisions in an autonomous and context-aware manner. This is particularly valuable in
volatile market conditions where quick decision-making is critical. Al agents leverage SARF’s
predictions not only as directional inputs but also as features for constructing a broader
understanding of market conditions.
The decision-making workflow involves several stages:
e Data ingestion: Real-time price, volume, macroeconomic, and sentimental data.
e Signal processing: Integration of SARF predictions, sentiment scores from FinGPT,
and technical indicators.
e Strategic reasoning: Determination of entry/exit points, trade sizing, and hedging
strategies.
e Order Execution: Orders are submitted to trading venues through APIs, utilizing

execution strategies that are sensitive to latency and fill dynamics.

These stages reflect the move from predictive modeling to decision-centric Al, where

prediction is only one part of a broader autonomous process.
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2.4.2 Al Agent Architecture with SARF Integration
The following outlines the architecture of an SARF-enhanced Al trading agent.

Figure 1: Framework of an Al-Powered Trading Agent
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The system is modular and composed of:

e Prediction Module (SARF): Combines technical indicators and FinGPT-based

sentiment features in an optimized Random Forest framework.

e Decision Module: Utilizes rule-based filters, probabilistic models, or reinforcement

learning to translate predictions into trading actions.

e Execution Engine: Sends, monitors, and cancels orders in real-time using dynamic

order placement strategies (e.g., VWAP/TWAP).
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¢ Risk Management Layer: Adjusts exposure, calculates VAR (Value-at-Risk), and

limits leverage based on real-time sentiment volatility.

e Learning Module: Continuously retrains using new data, adapting strategies based

on market feedback.

The agent’s cognition layer interprets not just directional market signals but also confidence

intervals, correlation risks, and market microstructure features.

2.4.3 Portfolio Optimization and Multi-Agent Coordination

A promising approach for SARF integration is the use of reinforcement learning (RL), where
SARF’s directional forecasts serve as part of the observation space. The agent receives
environmental feedback in the form of realized profits and market conditions, learning to map
SARF-derived signals into optimal actions.

e States: Include SARF forecasts, technical indicators, sentiment momentum, and

market volatility.

e Actions: Buy, hold, sell, rebalance, or hedge.

e Rewards: Sharpe ratio improvements, drawdown minimization, trade efficiency.

e Policy updates: Using methods like PPO (Proximal Policy Optimization) or DDPG

(Deep Deterministic Policy Gradient).

SARF provides a stable and interpretable forecasting layer, while the RL agent handles
strategic execution in non-stationary environments.

Individual predictions are insufficient for portfolio-level decision-making. Al agents integrated
with SARF can manage cross-asset portfolios, considering:

Sentiment alignment across indices (e.g., if SARF predicts bullish on both NASDAQ and

S&P500).
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Sector rotation strategies based on sentiment clusters.

Diversification and risk-budgeting using correlation-aware optimizers.

In multi-agent environments (e.g., hedge funds using dozens of agents), coordination
becomes essential. Strategies include:

e Cooperative agents sharing SARF-based forecasts.

e Specialist agents optimized for different volatility regimes or time horizons.

e Federated agents trained separately but sharing a common FinGPT-enhanced SARF

core.

Emergent behaviors, such as herding or contrarian divergence, may arise, requiring simulation
and game-theoretic analysis of agent behavior.
SARF’s integration with FinGPT provides continuously updating sentiment scores from news
and social media. Al agents must dynamically interpret:
e Sentiment shifts: Transition from positive to neutral sentiment in real time may
signal early exits.
e Sentiment divergences: If sentiment diverges from technical indicators, the agent
may prioritize FinGPT signals or reduce trade sizes.
e News sensitivity: Assigning weights to sentiment based on source credibility or

breaking news alerts.

The agent continuously recalibrates thresholds, stop-losses, and risk exposure based on
sentiment confidence and velocity, ensuring responsiveness in fast-moving markets.
Al agents need to minimize market impact while executing SARF-informed trades.
Techniques include:

e VWAP/TWAP execution: To reduce slippage during high-volume periods.
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e Adaptive algorithms: Adjust order aggression based on current order book and
sentiment strength.

e Smart order route: Choosing venues based on latency, fees, and liquidity.

Moreover, agents can be programmed to react differently under sentiment volatility spikes,
avoiding overexposure during emotionally charged markets, e.g., during earnings releases or
macroeconomic reports.
Integrating Al agents with SARF requires advanced risk frameworks:
e Model risk: Validate that SARF predictions are not overfitted or sentiment-biased
during outliers.
e Explainability: Regulatory compliance requires understanding how a FinGPT-driven
sentiment score influences a trade.

e Stress testing: Under sentiment shocks or “black swan” events.

Agents should also follow pre-trade compliance checks, prevent excessive leverage during

high-sentiment periods, and document decision-making trials for audits.

2.4.4 Comparative Performance Analysis
Back testing SARF alone already demonstrated improved predictive performance. When
embedded in agent-based systems:

e Sharpe ratios improved from 0.62 to 0.78, as measured through back testing on U.S.
stock indices (S&P 500, Nasdaq, Dow Jones) during the 2015-2023 period using Alpha
Vantage data. These results stem from the integration of SARF into reinforcement
learning-based multi-agent systems, where directional forecasts from sentiment-
augmented models informed portfolio rebalancing and hedging decisions. This

improvement reflects enhanced risk-adjusted returns, validated by higher precision-
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recall scores and AUC values, as reported in the experimental results.
Drawdowns were reduced, as agents learned to avoid high-risk sentiment conditions.
Trade frequency optimization: Agents limited overtrading by filtering SARF signals
through sentiment strength thresholds.

Decentralized agents in DeFi: SARF agents operating in crypto or blockchain-based

environments where social sentiment is highly impactful.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

In this study, we present a methodology that integrates sentiment analysis with technical
indicators to improve stock market prediction accuracy. The approach leverages the Random
Forest (RF) algorithm in combination with sentiment features derived from financial news
articles analyzed by FinGPT. Financial markets are influenced by both quantitative data, such
as price and volume, and qualitative data, including sentiment and market news. Traditional
models often focus solely on historical price data or technical indicators, neglecting the
influence of market sentiment. By incorporating sentiment-based features alongside technical
indicators, we aim to enhance the model’s predictive capability and offer a more

comprehensive view of stock market movements.

3.2 Research Design

The research design adopts a hybrid methodology that combines technical analysis with
sentiment analysis, implemented through the Sentiment-Augmented Random Forest (SARF)
model. The core idea is to integrate sentiment-based features, derived from advanced sentiment
analysis using FinGPT, into a traditional Random Forest model, which is then trained to predict
stock market movements. By using an ensemble learning approach, Random Forest effectively
handles complex relationships and prevents overfitting, making it well-suited for financial
forecasting. The SARF model uses both technical indicators, such as moving averages and
relative strength index (RSI), and sentiment data to provide a comprehensive set of features for

stock price prediction.
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3.3 Data Sample

The data sample consists of historical stock market data from major U.S. indices, including
NASDAQ, S&P 500, and Dow Jones. These indices are chosen due to their broad
representation of the U.S. market across different sectors. By focusing on market indices rather
than individual stocks, we capture a wider range of market influences, reducing the bias
introduced by company-specific events. The dataset spans from January 2, 2015, to December
30, 2023, and includes key features such as opening price, highest price, lowest price, closing
price, and trading volume. Additionally, sentiment data is extracted from relevant financial
news articles, which are processed through the FinGPT model to generate sentiment scores

ranging from -1 (negative) to 1 (positive).

3.4 Data Collection

Data collection for this study is twofold, financial time-series data and sentiment data. The
financial data is obtained via the Alpha Vantage API, which provides daily stock market data,
including price and volume information, as well as technical indicators derived from historical
price movements. The technical indicators used in the study are selected from a library of 15
commonly used indicators available on the TA-Lib (Technical Analysis Library) platform,

which is known for its comprehensive set of tools for technical analysis.

Sentiment data is gathered by querying the FinGPT model, which is specifically trained to
analyze financial news articles and generate sentiment scores. These sentiment scores, ranging
from negative to positive, are used as additional features in the model. FinGPT's API allows us
to automate the sentiment extraction process, ensuring scalability and efficiency in processing

large volumes of financial news data.
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The financial domain presents unique challenges for natural language processing, primarily
due to the dynamic nature of market data, frequent sentiment shifts, and the critical importance
of contextual understanding. As a result, several specialized large language models (LLMs)
have emerged to address sentiment analysis in finance. Among these, FInBERT, FinNLP, and
FinGPT are prominent. Each of these models or frameworks brings a different set of
capabilities to the task. However, a careful examination reveals that FinGPT stands out as the
most comprehensive and adaptable solution for financial sentiment analysis, particularly in
scenarios demanding real-time responsiveness, frequent updates, and high model

interpretability.

FinBERT, built upon the BERT architecture, was an early milestone in financial NLP. It was
trained on domain-specific corpora such as analyst reports and financial disclosures to capture
financial terminology and phraseology. While it performs well on static datasets, FinBERT
lacks mechanisms for continuous updates and is not optimized for real-time use cases. It is
inherently static and updating it would require full retraining an expensive and time-consuming
process. Furthermore, FiInBERT does not support personalization or reinforcement learning
from user feedback, limiting its flexibility in adapting to individual investor profiles or

evolving financial contexts.

FinNLP, in contrast, is not a standalone model but rather a collection of tools, datasets, and
benchmark tasks designed to support financial NLP research. It provides a useful infrastructure
for evaluating various models on financial tasks, but it relies on external models for processing
and does not offer a unified architecture. As a result, while it fosters collaboration and supports

comparative analysis, FINNLP does not possess a built-in mechanism for real-time data
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ingestion, model fine-tuning, or retrieval-augmented generation. It is more of a research
platform than a deployable solution for sentiment analysis.

FinGPT, by comparison, is designed from the ground up as a modular, open-source, and end-
to-end framework tailored to the unique demands of the financial domain. It supports low-cost,
lightweight fine-tuning using techniques such as Low-Rank Adaptation (LoRA), which makes
it feasible to update models weekly or monthly for under $300. This makes it especially suitable
for handling rapidly changing financial news, market events, and social media content that
could significantly influence sentiment. The integration of real-time data pipelines and
automated curation tools ensures that FinGPT can remain continuously aligned with current

market information.

What further distinguishes FinGPT is its support for Reinforcement Learning from Human
Feedback (RLHF), a method that allows the model to learn from user preferences such as risk
appetite, investment goals, and behavioral patterns. This level of personalization is increasingly
vital in applications like robo-advisory systems, individualized portfolio management, and
financial chatbot interactions. Moreover, FinGPT includes a retrieval-augmented generation
(RAG) component that allows it to consult external knowledge bases at inference time, which
enhances the depth and accuracy of sentiment analysis. For example, when interpreting a tweet
or headline, FinGPT can retrieve and incorporate background information from financial news,
economic indicators, or recent earnings reports, enabling more nuanced and context-aware

predictions.
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The following table summarizes the differences between the three systems under consideration:

Table 1: summarizes the differences between the three systems under consideration

Feature FinBERT | FinNLP FinGPT
BERT- Toolkit + Modular, full-stack
Architecture
based Benchmarks LLM
Variable, Easily fine-tuned
Update Frequency Static
indirect (weekly/monthly)
No direct Yes (real-time data
Real-time Data Support No
support pipelines)
High Low (LoRA-based
Training Cost Varies
(initial) fine-tuning)
Personalization (RLHF) No No Yes
Retrieval-Augmented Yes (via FinGPT-
No No
Gen. RAG)
Growing and open-
Community and Tools Limited Strong
source
Broad NLP Full financial
Application Focus Sentiment
tasks applications

Based on this analysis, FinGPT offers distinct advantages across all critical dimensions relevant
to sentiment analysis. Unlike FiInBERT, which is static and expensive to update, FinGPT
supports efficient fine-tuning that accommodates the volatility and frequency of financial
sentiment changes. Unlike FiInNLP, which lacks an integrated model and primarily serves as a
benchmarking platform, FinGPT is deployable, modular, and extensible. The integration of
RLHF further enables FinGPT to adapt to individual user needs, creating an opportunity for
more human-aligned and context-aware sentiment systems. The inclusion of retrieval-
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augmented generation addresses one of the most pressing challenges in financial NLP the need
for contextual grounding by enhancing the model’s ability to access and synthesize external

data sources at inference time.

These advantages cumulatively make FinGPT the preferred choice for financial sentiment
analysis in our research. Its combination of adaptability, cost-efficiency, architectural
extensibility, and personalization support aligns well with the dynamic requirements of
financial markets. Consequently, FinGPT is not only a research tool but also a practical solution
ready for real-world deployment in financial analysis, investment platforms, and decision-
support systems.

The initial training of BloombergGPT, leveraging both finance-specific and general-purpose
corpora, reportedly required approximately 53 days and a budget of around $3 million. Such
costs render frequent retraining (e.g., weekly or monthly) impractical for most institutions. In
contrast, FinGPT offers a lightweight and cost-efficient alternative by enabling rapid fine-
tuning with minimal computational overhead, reducing the adaptation cost to under $300 per

update.

FinGPT is purpose-built to democratize access to financial LLM capabilities, particularly for
communities and institutions without privileged access to proprietary financial data or APIs.
Unlike BloombergGPT, which relies on exclusive data sources, FinGPT integrates an
automated data curation pipeline that supports frequent updates using openly available

financial data. This architecture fosters transparency, accessibility, and reproducibility.

A key differentiator of FinGPT is its use of Reinforcement Learning from Human Feedback

(RLHF), a technique absents from BloombergGPT. RLHF empowers the model to internalize
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individual user preferences such as risk tolerance, investment behaviors, and personal financial
goals. This personalization enables applications ranging from robo advisors to sentiment-aware

investment analysis, echoing the success of RLHF in general-purpose LLMs like ChatGPT.

3.5 FinGPT Architecture
FinGPT is designed as a modular, full-stack framework composed of five interconnected
layers:
e Data Source Layer: Ensures extensive market coverage and temporal precision by
capturing real-time financial data across diverse channels.
e Data Engineering Layer: Handles high-throughput NLP processing while addressing
domain-specific challenges such as data volatility and low signal-to-noise ratios.
e LLM Layer: Supports efficient fine-tuning techniques (e.g., Low-Rank Adaptation,
LoRA) to maintain the model’s relevance in response to rapidly changing market data.
e Task Layer: Defines a suite of core financial tasks—such as sentiment analysis and
event extraction—that serve as benchmarks for performance evaluation.
e Application Layer: Demonstrates real-world use cases, validating the framework’s

efficacy in financial applications through working demos and user-facing tools.
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Figure 2: FinGPT Framework
Source: Liu et al., 2023, arXiv:2307.10485
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3.5.1 Extension Modules
e FinGPT-RAG: A retrieval-augmented generation (RAG) module optimized for
financial sentiment analysis. It enhances contextual understanding by integrating
relevant external data sources into the model's inference pipeline, enabling deeper and

more accurate sentiment assessments.



Figure 3: FinGPT RAG (Retrieval Augmented Generation)
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FinGPT-RAG leverages integrating multi-source knowledge querying with similarity-
based retrieval, the module reduces hallucinations and improves sentiment fidelity,
particularly in volatile financial contexts. This retrieval-enhanced architecture aligns
with instruction-tuned sentiment classifiers, enabling FinGPT to produce semantically

coherent outputs with improved precision in sentiment categorization tasks.

FinGPT-FinNLP: A community-driven playground that provides end-to-end pipelines
for financial NLP research, including dataset preparation, model training, and fine-
tuning. It encourages experimentation and learning among researchers and practitioners
in the financial NLP domain.

FinGPT-Benchmark: Introduces a novel instruction-tuning paradigm tailored for
financial LLMs. It enables systematic, cost-effective evaluation through multi-task,
task-specific, and zero-shot learning benchmarks, promoting standardization and rigor

in financial Al research.
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Figure 4: FinGPT Benchmark
Source: Liu et al., 2023, arXiv:2307.10485.
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In the SARF framework, FinGPT serves as the backbone for extracting high-fidelity sentiment
features, benchmarked against instruction-tuned models such as LLaMA2, ChatGLM2, and
BLOOM. Unlike generic language models, FinGPT demonstrates superior contextual
comprehension of financial discourse, enabling accurate labeling for tasks like sentiment

analysis, headline classification, and relation extraction as shown above.

The dataset was collected at daily intervals by querying Alpha Vantage APIs, capturing key
metrics such as opening price, lowest price, highest price, closing price, and trading volume.
The data spanned from January 2, 2015, to December 30, 2023. In this study, we leveraged
these technical indicators as independent variables to predict future stock market movements.
Technical indicators are mathematical calculations derived from historical data, providing
insights into trading patterns for financial assets. Throughout the study, we utilized several
commonly used indicators, some of which have been previously explored by other researchers.
The learning algorithm used in our paper is random forest. The time series data is acquired,

smoothed and technical indicators are extracted as shown in table 2. Technical indicators are
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parameters which provide insights to the expected stock price behavior in future. These
technical indicators are then used to train the random forest. The time series historical stock
data is first exponentially smoothed. Exponential smoothing applies more weightage to the

recent observation and exponentially decreasing weights to past observations.

Table 2: Technical Indicators

Indicator Name

Description

Moving Averages (MA)

The average value of security
over a given time. Help identify
trends and potential reversals.

Moving Average Convergence
Divergence (MACD)

Measures the relationship
between two moving averages.
Signals trend strength and
direction.

Relative Strength Index (RSI)

Measures the speed and change
of price

movements. Indicates
overbought or oversold
conditions.

Stochastic Oscillator

Compares a security’s closing
price to its price range over a
specific period. Shows
momentum.

Williams %R Measures overbought or
oversold levels. Similar to the
stochastic oscillator.

Bollinger Bands Consists of three lines: moving

average, upper band, and lower
band. Indicates volatility and
trends.

On-Balance Volume (OBV)

Measures positive and negative
volume flow. Help predict price
movements.

Accumulation / Distribution Line
(ADL)

Tracks buying and selling
pressure. Reflects

accumulation or distribution of a
security.

Average True Range (ATR) Measures market volatility.
Indicates potential price
movement.

Ichimoku Cloud Provide a comprehensive view

of support, resistance, and
trends.

Parabolic SAR (Stop and
Reverse)

Helps identify potential reversal
points. Useful for setting stop-
loss orders.

Fibonacci Retracement

Uses Fibonacci ratios to predict
potential retracement levels in
price movements.

Chaikin Money Flow (CMF)

Combines price and volume data
to assess buying and selling
pressure.

32




Average Directional Index Measures trend strength. Helps
(ADX) determine whether security is
trending or ranging.

3.6 Technical Indicators

This section outlines the technical indicators utilized as independent variables to predict future
stock market movements. Technical indicators, derived from mathematical calculations based
on historical data, are commonly employed to analyze trading patterns of financial assets.
Numerous widely recognized indicators are available in finance, many of which were
incorporated into this project. Most of the technical indicators referenced in this study have
been previously used by Khaidem et al. (2016) and other researchers. While this section
highlights some of the more complex technical indicators, a comprehensive list of all indicators
used can be found in Appendix.

e Relative Strength Index (RSI)

The relative strength index measures the speed and magnitude of price movements. The RSI
ranges from O to 100. Typically, an RSI score of 30 or lower is seen as an indication that a
stock is oversold, and a score above 70 indicates that a stock is overbought. The mathematical

definition is given below:

100

RSI =100 — — (1)
where
RS — Average gain the past n days (2)

" Average loss the past n days
and » is how far back we look, typically n = 14.

e Stochastic Oscillator
A stochastic oscillator puts the latest closing price in relation to previous price ranges, during

a specified period back in time, where Close is the current closing price, and the Lown and
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High #n indicate the lowest low and highest high in the past n days. The formula is the
following:

%K = (Close - Low,) / (High, - Low,) x 100

e Williams %R

The Williams %R is nearly identical to a stochastic oscillator but is a range from -100 to zero and is
defined as follows:

Highn—Close
%R = g”—
Highn—Lown

e Moving Average Convergence Divergence (MACD)

The moving average convergence divergence indicator measures changes in a stock’s momentum,
strength and trend. The formula is

MACD = EMA |, —EMA%

Signal = EMAg(MACD)
where the EMA,, is the exponential moving average of the stock prices for the past n days. Compared

to a simple moving average, an EMA gives more weight on recent stock prices.

A Signal line is also used in addition to the MACD line to give instructions of a bullish or bearish market.
When the MACD line crosses above the Signal line it is a bullish signal, meaning that the stock price
might increase. When the MACD line crosses below the Signal, the graph indicates that there is a bearish

signal, and the stock price might fall.

The Signal line is calculated by taking the MACD values for the past 9 periods and using them to

calculate the EMAog, where the EMA,, is calculated with the following:

EMA, = (Close — EMA, 1) x (2 / (n + 1)) + EMA,1
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Where Close is the MACD line value for the current period, and EMA,-1 is the EMA for the
previous period.

e On Balance Volume (OBV)

OBV is a technical indicator that measures buying and selling pressure by tracking cumulative
volume. It operates on the principle that volume changes can precede price movements,
making it a useful tool for identifying potential trends. The OBV is calculated by starting with
an initial value, often set to zero, and then adjusting it daily based on the relationship between

the current closing price and the previous closing price.

The formula for OBV is as follows:

Volume if Close > Closepyey
OBV = OBV,,¢, + § —Volume if Close < Closey ey
0 if Close = Closepyey

(8)
When the closing price today is greater than the previous closing price, the current day’s volume is
added to the previous OBV value. Conversely, when the closing price today is less than the previous
closing price, the current day’s volume is subtracted from the previous OBV value. If the closing price

remains unchanged, the OBV value stays the same.
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A rising OBV indicates accumulation, suggesting buying pressure and potential upward price
movement, while a falling OBV indicates distribution, suggesting selling pressure and potential
downward price movement. Divergences between OBV and price can signal potential reversals; for

example, if the price is rising but OBV is falling, it may indicate weakening buying pressure.

e Price Rate of Change (PROC)

PROC is a momentum-based technical indicator that measures the percentage change in a
security's price over a specified time period. It helps traders and analysts identify the speed at
which a price is rising or falling, providing insights into the strength of a trend or potential

reversals. The formula for calculating the Price Rate of Change is as follows:

Close; —Close;—,

PROC = -100

Closet-n

In this formula, Closet represents the closing price at the current timet, and Closet—nCloset—n
represents the closing price n periods ago. The result is expressed as a percentage, which indicates how

much the price has changed relative to the pricein periods in the past.

Additionally, the rate of change concept can be applied to the PROC itself, creating a second derivative
of the price. This indicates how quickly the price change is accelerating or decelerating. For example, if
the PROC is increasing at an increasing rate, it suggests strong upward momentum, while a decreasing

PROC may indicate weakening momentum or a potential reversal.

3.7 Procedures
The procedures followed in this study are organized into several key steps:
1. Data Preprocessing: Initially, the raw data is cleaned to remove any missing or irrelevant

values. The time-series data is then smoothed using exponential smoothing to give more
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weight to the recent observations. This is crucial as stock market behavior often exhibits high
volatility.

2. Feature Extraction: We extract technical indicators using the TA-Lib library and calculate
15 common indicators, such as moving averages, RSI, and Bollinger Bands, among others.
Sentiment data is extracted from financial news articles using the FinGPT sentiment analysis
API, producing sentiment scores that are integrated with the technical indicators as input
features for the model.

3. Model Training and Optimization: The Random Forest algorithm is trained using the
combined features of technical indicators and sentiment data. Hyperparameters of the Random
Forest, such as the number of trees, maximum tree depth, and minimum samples required for
splitting, are tuned to optimize the model's predictive performance. Cross-validation is
employed to evaluate the model's accuracy and reduce the risk of overfitting.

4. Performance Evaluation: The performance of the SARF model is compared to that of a
traditional Random Forest model that does not include sentimental data. Evaluation metrics
such as accuracy, precision, recall, and F1 score are used to assess model performance. We
also perform robustness checks using cross-validation to ensure that the model generalizes well
to unseen data.

5. Results Interpretation: Finally, the feature importance scores generated by the Random
Forest algorithm are analyzed to determine the relative contribution of technical and sentiment-
based features in predicting stock market movements. This step provides insights into how
market sentiment and technical indicators influence stock price behavior.

By combining the strengths of both technical analysis and sentiment analysis, our methodology
aims to offer a more robust approach to predicting stock market trends, accounting for both

historical price patterns and the broader sentiment reflected in financial news.
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3.8 Monte Carlo Simulation Framework

Monte Carlo simulation is a computational technique that employs random sampling to solve
complex mathematical problems and model uncertainty in various domains, particularly in
finance where stochastic processes dominate market behavior. Named after the Monte Carlo
Casino in Monaco, this method was originally developed during the Manhattan Project and has
since become an indispensable tool in quantitative finance for risk assessment, option pricing,

and portfolio optimization.

3.8.1 Monte Carlo Stages

In the context of stock market prediction, Monte Carlo simulation provides a robust framework
for handling the inherent uncertainty and volatility that characterizes financial markets.
Traditional deterministic models often fail to capture the full spectrum of possible outcomes,
leading to overconfidence in predictions and inadequate risk management. By incorporating
Monte Carlo methods into our SARF framework, we transform point estimates into probability
distributions, enabling more informed decision-making and comprehensive risk assessment.
The fundamental principle underlying Monte Carlo simulation in financial modeling is the
recognition that stock prices and market movements are influenced by numerous random
factors that cannot be precisely predicted. Instead of attempting to forecast exact values, Monte
Carlo methods generate thousands or millions of possible scenarios based on probabilistic
assumptions about market behavior, providing a comprehensive view of potential outcomes
and their associated probabilities.

The integration of Monte Carlo simulation with the SARF model requires a sophisticated
mathematical framework that combines the deterministic aspects of machine learning

predictions with stochastic modeling of market uncertainty. Let S(t) represent the stock price
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at time t and let our SARF model provide a predicted direction D and confidence score C for
the next time period.

The Monte Carlo framework models the stock price evolution as a stochastic differential
equation:

dS = u(S,t,X,V)dt + o(S,t,X,V)Dw

where p represents the drift term influenced by our SARF predictions, technical indicators (X),
and sentiment variables (V), ¢ denotes the volatility component, and dW represents a Wiener
process capturing random market fluctuations.

The SARF model contributes to the drift term through a weighted combination of technical

indicators and sentiment scores:

u(S,t,X,V) = ou x SARF prediction + 02 x Technical momentum + os x Sentiment_score + o4

x Market regime

where o, 02, 03, and o4 are dynamically adjusted weights based on market conditions and model
confidence levels.

The volatility component incorporates both historical volatility and regime-switching behavior:

6(S,t,X,V) = o base x V(1 + Pi x VIX level + P x Sentiment volatility + s x

Technical uncertainty)

This formulation allows the Monte Carlo simulation to generate realistic price paths that reflect
both the predictive power of the SARF model and the inherent randomness of financial

markets.
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Our implementation employs a multi-stage Monte Carlo approach that operates at different
time horizons and incorporates various sources of uncertainty. The first stage focuses on short-
term predictions (1-5 days), where technical indicators and recent sentiment data have the
strongest predictive power. The second stage addresses medium-term forecasts (1-4 weeks),
incorporating fundamental factors and broader market sentiment trends. The third stage
considers long-term projections (1-6 months), emphasizing macroeconomic factors and

structural market changes.

Figure 5: Multi-Stage Monte Carlo Framework

Stage 1: Short-term (1-5 days)

Technical Recent Sentiment Market
Indicators 20% Noise
70% 10%
Stage 2: Medium-term (1-4 weks)
Technical Sentiment Trends Fundamentals
Indicators 30% 20%

Stage 3: Long-term (1-6 months)

Macroeconomic Market Cycles Structural
40% 35% Changes
25%

Each stage utilizes different sampling strategies and probability distributions. For short-term
predictions, we employ calibrated normal distributions with time-varying parameters derived
from recent market data. Medium-term simulations incorporate jump-diffusion processes to
account for sudden market shocks and regime changes. Long-term projections utilize fat-tailed
distributions and mean-reverting processes that reflect the cyclical nature of market trends.

The multi-stage approach enables the model to provide predictions with appropriate uncertainty

bounds for different investment horizons. Short-term predictions exhibit narrower confidence
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intervals due to the stronger predictive power of technical indicators, while long-term
projections display wider uncertainty bounds reflecting the increased unpredictability over

extended periods.

The integration of Monte Carlo simulation with SARF creates powerful capabilities for
portfolio risk assessment and optimization. Traditional portfolio theory relies on historical
correlations and volatilities, which may not capture the dynamic relationships between assets
or the impact of changing market sentiment. Our Monte Carlo-enhanced SARF framework
addresses these limitations by simulating thousands of potential market scenarios based on

current technical indicators and sentimental data.

For portfolio optimization, the Monte Carlo SARF system generates probability distributions
for each asset's future returns, considering not only historical price patterns but also current
sentiment indicators and technical signals. This approach enables the construction of portfolios
that are robust across a wide range of potential market conditions rather than being optimized
for a single expected scenario.

The risk assessment process involves running Monte Carlo simulations for different portfolio
compositions, each incorporating SARF predictions for individual assets. The system
calculates various risk metrics including Value at Risk (VaR), Conditional Value at Risk
(CVaR), maximum drawdown probability, and tail risk measures. These metrics provide
comprehensive insights into potential losses under different market conditions, enabling more

informed risk management decisions.
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3.8.2 Option Pricing and Derivatives Valuation

Monte Carlo methods combined with SARF predictions offer significant advantages in option
pricing and derivatives valuation. Traditional option pricing models like Black-Scholes assume
constant volatility and ignore market sentiment, leading to systematic mispricing, particularly
during volatile market periods. Our SARF-MC framework incorporates both technical
indicators and sentiment data to generate more realistic price paths for underlying assets.

Monte Carlo Option Pricing Flow:

Figure 6: Monte Carlo Option Pricing Flow

SARF Prediction »| Drift Parameter < Price Path

» Direction 5 Adjustment Generation
* Confidence - s S l J
‘Sentiment Data | Volatility < Monte Carlo
* Score Adjustment Simulation
.w“ty = J S
- v
(————
Option Payoff
Calculation

—

The option pricing process begins with SARF generating directional predictions and
confidence scores for the underlying asset. These predictions influence the drift parameter in
the Monte Carlo simulation, while sentiment volatility affects the diffusion component. The
system then generates thousands of price paths, each reflecting different possible market

scenarios consistent with current technical and sentimental conditions.

For European options, the Monte Carlo simulation calculates the expected payoff by averaging
across all simulated price paths at expiration. For American options, the system employs least-

squares Monte Carlo methods enhanced with SARF predictions to determine optimal exercise
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strategies. The integration of sentimental data proves particularly valuable for options with
longer time to expiration, where changing market sentiment can significantly impact pricing.

Monte Carlo simulation integrated with SARF provides sophisticated capabilities for stress
testing and scenario analysis. Traditional stress testing often relies on historical scenarios or
regulatory requirements that may not capture the full range of potential market disruptions. Our
approach generates forward-looking stress scenarios based on current market conditions,

technical indicators, and sentiment data.

Figure 7: Stress Testing Framework

Scenario Generation

Historical Shocks Technical Breakdown

» 2008 Crisis » Support Breaks
* COVID-19 Crash » RSI Divergence
» Flash Crashes » Volume Spike

!

Monte Carlo Simulation

10,000 scenarios x 252 trading day x 3 assets

!

Risk Metrics Output

* VaR (95%, 99%) = Maximum Drawdown
» Expected Shortfall+ Tail Risk Measures
* Stress Loss * Recovery Time

The stress testing framework considers multiple types of market shocks: sudden sentiment
reversals, technical breakdown scenarios, liquidity crises, and fundamental regime changes.

Each type of shock is modeled with appropriate probability distributions calibrated to historical

44



data and current market conditions. The SARF component helps identify which technical and
sentimental conditions are most likely to precede different types of market stress.

Scenario analysis extends beyond traditional stress testing by exploring the implications of
specific market narratives. For example, the system can model scenarios where positive
earnings sentiment conflicts with negative technical indicators, or where strong technical
momentum coincides with deteriorating market sentiment. These complex scenarios help
investors and risk managers understand potential market dynamics that simple historical

analysis might miss.

The integration of Monte Carlo simulation with SARF offers numerous advantages that
significantly enhance the model's practical utility in financial applications. The primary
advantage lies in uncertainty quantification — rather than providing single-point predictions that
may mislead investors about the confidence level of forecasts, the Monte Carlo framework
generates probability distributions that capture the full range of potential outcomes with their

associated likelihoods.

Flexibility represents another crucial advantage of the Monte Carlo approach. Unlike analytical
methods that require restrictive assumptions about market behavior, Monte Carlo simulation
can accommodate complex, realistic market dynamics including fat-tailed return distributions,
volatility clustering, regime switching, and non-linear relationships between variables. This
flexibility allows the SARF-MC framework to capture the true complexity of financial markets
while maintaining computational tractability.

The Monte Carlo approach also excels in handling high-dimensional problems common in

financial modeling. When analyzing portfolios with multiple assets, each influenced by
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numerous technical indicators and sentiment factors, analytical solutions become intractable.
Monte Carlo simulation handles this complexity naturally by generating scenarios for all
variables simultaneously, preserving their complex interdependencies and correlation

structures.

Risk management capabilities represent perhaps the most significant practical advantage. The
Monte Carlo framework enables calculation of sophisticated risk metrics that are essential for
modern portfolio management but difficult to compute analytically. These include tail risk
measures, scenario-based VaR calculations, stress testing under extreme conditions, and

dynamic hedging strategies that adapt to changing market conditions.

3.8.3 Computational and Methodological Challenges

Despite its advantages, Monte Carlo integration introduces several challenges that must be
carefully managed to ensure reliable results. Computational intensity represents the most
immediate challenge — generating sufficient Monte Carlo samples to achieve stable, accurate
results requires substantial computational resources, particularly when dealing with complex
models involving multiple assets and numerous technical indicators.

Computational Complexity Analysis:
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Figure 8: Computational Complex Analysis

Resource Requirements

Simple MC Simulation:

+ 10,000 scenarios x 1asset x 252 days = 252M
calcs
+ Computation time: ~5 minutes

SARF-MC Framework:

+ 100,000 scenarios x 10 assets x 252 days

+ + Technical indicators (15) + Sentiment (4)

* = 252M calculations + ML predictions

+ Computation time: ~45 minutes (parailel processing)

\ J

Optimization Strategies

* GPU acceleration: 10x speedup
+ Variance reduction: 50% fewer scenaios needed
+ Adaptive sampling: 30% computation reduction

The challenge of convergence relates to determining the appropriate number of simulations
runs needed to achieve reliable results. While Monte Carlo methods theoretically converge to
true values as the number of simulations increases, practical applications must balance
computational constraints with accurate requirements. Insufficient simulations may lead to
unstable results that vary significantly between runs, while excessive simulations waste
computational resources without meaningful accuracy improvements.

Model specification risk presents another significant challenge. Monte Carlo results are only
as reliable as the underlying model assumptions about probability distributions, correlation
structures, and parameter values. Mis specified models can generate misleading confidence

intervals and risk estimates, potentially leading to false confidence in predictions. This
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challenge is particularly acute in financial applications where market conditions change
rapidly, and historical relationships may not persist.

Calibration complexity increases substantially when integrating Monte Carlo methods with
machine learning models like SARF. The system must calibrate not only the parameters of the
stochastic processes governing price evolution but also the relationships between technical
indicators, sentiment data, and model predictions. This multi-level calibration process requires
careful validation to ensure that simulated scenarios remain realistic and consistent with
observed market behavior.

The integration of Monte Carlo simulation complicates the validation and back testing process
significantly. Traditional back testing approaches that compare predicted values with actual
outcomes become insufficient when dealing with probabilistic forecasts. Instead, the validation
process must assess whether the predicted probability distributions accurately capture the
uncertainty in actual market outcomes.

Statistical validation requires sophisticated techniques such as probability integral
transformations, Kolmogorov-Smirnov tests, and coverage probability assessments to
determine whether the Monte Carlo predictions are well-calibrated. These tests examine
whether actual outcomes fall within the predicted confidence intervals at the expected
frequencies and whether the distributional assumptions are consistent with observed data.

The dynamic nature of financial markets creates additional validation challenges. Model
parameters that produce well-calibrated predictions during stable market periods may perform
poorly during volatile or crisis conditions. This requires ongoing model monitoring and
periodic recalibration to maintain prediction accuracy across different market regimes.

The incorporation of Monte Carlo simulation into the SARF framework transforms the

decision-making process by providing probabilistic forecasts rather than deterministic
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predictions. This probabilistic approach offers several critical benefits for investment
professionals and risk managers who must make decisions under uncertainty.

Probabilistic vs Deterministic Forecasting:

Figure 9: Probabilistic vs Deterministic Forecasting

Stock ABC: © (Bullish) - Confidence: 75%

Monte Carlo Enhanced Output

Stock ABC Price Distribution (30 days):

I I 1 1 ] | I

$90 $95 $100 $105 $110 $115 $120

+» Expected Price: $105

» 95% Confidence: [$92, $118]

« Probability of Profit: 72%

« Maximum Expected Loss $8 (5 VaR)

Traditional point forecasts, even when highly accurate on average, fail to convey information
about the range of possible outcomes or the confidence level associated with predictions. This
limitation can lead to overconfident decision-making and inadequate risk management. Monte
Carlo-enhanced SARF addresses this issue by providing complete probability distributions for
future price movements, enabling users to understand not just the most likely outcome but also

the probability of various alternative scenarios.
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3.8.4 Improved Risk Management and Capital Allocation

Monte Carlo simulation provides sophisticated risk management capabilities that are essential
for modern financial institutions. The framework enables calculation of various risk metrics
including Value at Risk (VaR), Expected Shortfall (ES), and stress testing measures that
comply with regulatory requirements while providing meaningful insights for internal risk
management.

The SARF-MC system excels in scenario generation for stress testing purposes. Rather than
relying solely on historical scenarios that may not reflect current market conditions or emerging
risks, the system generates forward-looking stress scenarios based on current technical
indicators and sentiment data. This capability is particularly valuable during periods of market
transition when historical relationships may be breaking down.

Capital allocation benefits significantly from the probabilistic forecasting framework.
Financial institutions can optimize capital allocation across different business units, trading
strategies, or investment products based on their predicted risk-return profiles. The Monte
Carlo approach enables sophisticated portfolio construction techniques such as risk parity,
maximum diversification, and minimum variance optimization that require detailed
understanding of return distributions and correlation structures.

The framework also supports dynamic hedging strategies that adapt to changing market
conditions. Traditional hedging approaches often rely on static hedge ratios calculated from
historical data. The SARF-MC framework enables dynamic hedge ratio calculation based on
predicted market conditions, sentiment trends, and technical indicators, resulting in more
effective risk mitigation.

Modern financial regulation increasingly requires sophisticated risk measurement and

reporting capabilities that Monte Carlo simulation can provide. Regulatory frameworks such
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as Basel III, Solvency II, and CCAR require financial institutions to demonstrate their ability
to maintain adequate capital under adverse scenarios, measure tail risks accurately, and provide
detailed risk reporting to supervisors.

Regulatory Compliance Framework:

Figure 10: Regulatory Compliance Framework

Regulatory Requirements

Basel lll Market Risk:

¢ VaR calculations (99% confidence, 10-day
¢ Expected Shortfall (ES) measurements
» Stress testing scenarios

CCAR Stress Testing:

» Severely adverse economic scenarios
» Capital adequacy under stress
» Forward-looking risk assessment

SARF-MC Framework Output:

Risk Metric Value | Regulatory Limit
99% VaR (10day)) $2.5M <$5M
Expected Shortfall $3.2M <$7M
Stress Loss $8.1M <$15M

Tier 1 Ratio 12,5% >10,5%

The SARF-MC framework supports these regulatory requirements by providing
comprehensive risk measurement capabilities that go beyond simple VaR calculations. The
system can generate the scenario-based capital adequacy assessments required by stress testing
regulations while incorporating forward-looking elements based on technical and sentiment
analysis.

The implementation of Monte Carlo simulation in the SARF framework begins with

comprehensive data preparation and model calibration. This crucial first step ensures that the
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stochastic processes underlying the Monte Carlo simulation accurately reflect market dynamics
and the predictive relationships identified by the SARF model.

Implementation Workflow:

Figure 11: Implementation Workflow

Implementation Workflow:

Phase 1: Data Preparation

Step 1: Historical Data Collection

Stock Prices Technical Indicators
(OHLCV) Market Volatility
Volume Data Correlation Matrices

Step 2: Data Preprocessing

Missing Value Outlier Detection
Handling Feature Engineering
Temporal Alignment Quality Checks
Normalization

Step 1: Historical Data Collection and Preprocessing The process begins with collecting
extensive historical data covering stock prices, technical indicators, sentiment metrics, and
market volatility measures. The data collection spans multiple market cycles to ensure robust
calibration across different market regimes. Data preprocessing includes handling missing
values, outlier detection and treatment, and ensuring temporal alignment across all data
sources.

Step 2: SARF Model Training and Validation the SARF model is trained using the prepared
historical data, with particular attention to out-of-sample validation to ensure robust predictive

performance. Cross-validation techniques specific to time series data are employed to avoid
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look-ahead bias and ensure realistic performance estimates. The model's predictions are
analyzed to understand their accuracy across different market conditions and time horizons.

Step 3: Stochastic Process Calibration The parameters of the stochastic differential equation
governing price evolution are calibrated using maximum likelihood estimation or moment
matching techniques. This includes estimating the relationships between SARF predictions and
the drift component, calibrating volatility parameters based on technical indicators and
sentiment data and determining regime-switching probabilities for different market conditions.
Step 4: Correlation Structure Estimation For multi-asset applications, the correlation structure
between different assets must be estimated and incorporated into the Monte Carlo simulation.
This involves estimating both static correlations and dynamic correlation models that can
capture time-varying dependencies between assets based on market conditions and sentiment

factors.

3.8.5 Simulation Engine Architecture and Execution

The simulation engine represents the core computational component of the SARF-MC
framework, responsible for generating thousands or millions of price paths that incorporate
both the predictive insights from SARF and the stochastic nature of financial markets.

Step 5: Random Number Generation and Seeding High-quality pseudo-random number
generation is essential for reliable Monte Carlo results. The system employs sophisticated
random number generators with appropriate seeding strategies to ensure reproducible results
while maintaining statistical independence across simulation runs. Multiple random number

streams are utilized to support parallel processing and variance reduction techniques.
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Step 6: Scenario Generation Process Each Monte Carlo scenario begins with current market
conditions and SARF model predictions. The simulation generates correlated random shocks
for all relevant variables (prices, volatilities, sentiment factors) and evolves the system forward
through time using the calibrated stochastic differential equations. Advanced numerical
methods such as Euler-Maruyama or Milstein schemes are employed for accurate discretization
of continuous-time processes.

Step 7: Path-Dependent Feature Calculation For each simulated price path, the system
calculates path-dependent features such as maximum drawdowns, volatility measures, and
technical indicator values. These calculations must be performed efficiently given the large
number of simulated paths, requiring optimized algorithms and potentially parallel processing
architectures.

Step 8: Variance Reduction Implementation To improve computational efficiency, the system
implements variance reduction techniques such as antithetic variates, control variates, and
importance sampling. These techniques reduce the number of simulations required to achieve
desired accuracy levels, significantly improving computational performance without
sacrificing result quality.

The final stage of the Monte Carlo implementation involves processing the simulation results
to generate meaningful insights, risk metrics, and uncertainty bounds that support investment

decision-making.

Step 9: Statistical Analysis of Simulation Results The thousands of simulated price paths are

analyzed to extract key statistical measures including means, standard deviations, skewness,

kurtosis, and percentile values. Convergence diagnostics are performed to ensure that sufficient
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simulations have been conducted to achieve stable results. Time series analysis of the simulated
paths provides insights into expected price dynamics and volatility patterns.

Step 10: Risk Metric Calculation Various risk metrics are calculated from the simulation
results, including Value at Risk (VaR) at multiple confidence levels, Expected Shortfall
(Conditional VaR), maximum drawdown distributions, and tail risk measures. These metrics
provide comprehensive insights into potential losses under different market scenarios and
support regulatory reporting requirements.

Step 11: Confidence Interval Construction Confidence intervals for predictions are constructed
using appropriate statistical methods such as bootstrap resampling or analytical
approximations. These intervals provide uncertainty bounds that help users understand the

reliability of predictions and make informed decisions about risk tolerance and position sizing.

Step 12: Sensitivity Analysis and Stress Testing The system performs sensitivity analysis to
understand how changes in key parameters affect simulation results. This includes analyzing
the impact of different technical indicator values, sentiment levels, and volatility assumptions
on predicted outcomes. Stress testing scenarios are generated by modifying input parameters
to reflect adverse market conditions, providing insights into potential risks under extreme
scenarios.

The decision to integrate Monte Carlo simulation into the SARF framework stems from several
fundamental limitations of traditional deterministic machine learning approaches in financial
applications. While the original SARF model demonstrated superior performance compared to
conventional Random Forest and LSTM models, it shared a critical weakness with other
deterministic approaches: the inability to quantify prediction uncertainty and provide

probabilistic forecasts.
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Financial markets are inherently stochastic systems characterized by complex, non-linear
dynamics that cannot be fully captured by deterministic models. Even highly accurate machine
learning models like SARF provide point estimates that, while useful for directional prediction,
fail to convey information about the confidence level of predictions or the range of possible
outcomes. This limitation becomes particularly problematic during volatile market periods
when understanding uncertainty is crucial for risk management.

Monte Carlo integration addresses this fundamental limitation by transforming SARF's
deterministic predictions into probabilistic forecasts. Rather than simply predicting that stocks
will move up or down, the enhanced SARF-MC framework provides probability distributions
showing the likelihood of different price movements, the expected magnitude of changes, and
confidence intervals around predictions. This probabilistic approach enables more nuanced

decision-making that considers both expected outcomes and associated risks.

Furthermore, deterministic models struggle with regime changes and structural breaks that are
common in financial markets. The Monte Carlo framework enables modeling of regime-
switching behavior and jump processes that better capture the discontinuous nature of market
movements during crisis periods or major news events.

The integration of Monte Carlo simulation significantly enhances the practical utility of the
SARF model for professional investment management and regulatory compliance. Modern
financial institutions operate under increasingly sophisticated regulatory frameworks that
require comprehensive risk measurement, stress testing, and capital adequacy assessment
capabilities.

Regulatory requirements such as Basel III market risk rules, the Fundamental Review of the

Trading Book (FRTB), and various stress testing regulations mandate the use of sophisticated

56



risk models that can generate scenario-based risk measures and provide detailed uncertainty
quantification. Traditional machine learning models, while potentially accurate in their
predictions, often fail to meet these regulatory requirements due to their deterministic nature

and limited interpretability.

The SARF-MC framework addresses these regulatory needs by providing comprehensive risk
measurement capabilities including Value at Risk (VaR), Expected Shortfall (ES), stress testing
scenarios, and model uncertainty quantification. The Monte Carlo approach enables
generations of forward-looking stress scenarios based on current market conditions rather than
relying solely on historical scenarios that may not reflect emerging risks.

Additionally, the probabilistic nature of Monte Carlo forecasts enables more sophisticated
portfolio optimization and risk budgeting approaches. Investment managers can construct
portfolios that optimize not just expected returns but also higher-order risk measures such as
tail risk, maximum drawdown probability, and scenario-based performance metrics. This
capability is essential for institutional investors who must balance return objectives with strict

risk constraints.

Monte Carlo integration significantly improves the robustness and generalization capability of
the SARF model by explicitly accounting for parameter uncertainty and model risk. Traditional
machine learning approaches, including the original SARF implementation, typically use point
estimates for model parameters that ignore estimation uncertainty and potential model
misspecification.

The Monte Carlo framework enables incorporation of parameter uncertainty by treating model

parameters as random variables rather than fixed values. This approach, known as Bayesian
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Monte Carlo or probabilistic machine learning, provides more realistic uncertainty estimates
that account for both data uncertainty and parameter estimation error. The resulting predictions

are more robust to overfitting and provide better calibrated confidence intervals.

Model robustness is further enhanced through the Monte Carlo framework's ability to
incorporate multiple sources of uncertainty simultaneously. The system can account for
uncertainty in technical indicator calculations, sentiment analysis scores, market regime
identification, and fundamental model parameters. This comprehensive uncertainty modeling
provides more realistic risk assessments and helps prevent overconfidence in model

predictions.

The Monte Carlo approach also enables sophisticated ensemble modeling techniques that
combine multiple SARF models with different parameter settings or training methodologies.
Rather than selecting a single "best" model, the framework can maintain a probability-weighted
ensemble of models that provides more robust predictions and better captures model
uncertainty.

The probabilistic forecasts generated by the SARF-MC framework enable implementation of
advanced trading and investment strategies that would be difficult or impossible with
deterministic predictions alone. These strategies require detailed understanding of return
distributions, correlation structures, and tail risk characteristics that Monte Carlo simulation

naturally provides.

Options trading strategies, for example, require sophisticated understanding of implied

volatility, skewness, and tail risk that deterministic models cannot provide. The SARF-MC
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framework generates complete return distributions that enable calculation of theoretical option
prices, implied volatility surfaces, and risk sensitivities (Greeks) that are essential for
sophisticated options strategies. Dynamic hedging strategies benefit significantly from the
probabilistic framework's ability to model changing risk characteristics over time. Traditional
static hedging approaches often fail during volatile periods when risk characteristics change
rapidly. The SARF-MC framework enables dynamic hedge ratio calculation based on predicted

market conditions and uncertainty levels, resulting in more effective risk mitigation.

Pairs trading and statistical arbitrage strategies require detailed understanding of correlation
dynamics and mean-reversion characteristics that the Monte Carlo framework can model
explicitly. The system can generate scenarios for relative price movements between assets,
calculate probabilities of convergence or divergence, and provide risk metrics for statistical
arbitrage positions.

Portfolio optimization strategies also benefit from the comprehensive risk modeling
capabilities of the Monte Carlo framework. Modern portfolio theory increasingly recognizes
the importance of higher-order moments (skewness, kurtosis) and tail risk measures that can
only be accurately estimated through simulation-based approaches. The SARF-MC framework
enables construction of portfolios that optimize these sophisticated risk-return characteristics
while incorporating forward-looking insights from technical and sentiment analysis.

This comprehensive integration of Monte Carlo simulation with the SARF framework
represents a significant advancement in quantitative finance, providing practitioners with
powerful tools for risk management, regulatory compliance, and sophisticated investment
strategy implementation while maintaining the superior predictive performance demonstrated

by the original SARF mode
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3.9 Data Analysis Limitations

While the research design for this study was carefully crafted and executed, several limitations
should be acknowledged. These limitations may impact the generalizability and validity of the
findings and should be considered when interpreting the results.

One key limitation is the reliance on a quantitative research approach. This methodology
inherently restricts the depth of understanding regarding participants' motivations and decision-
making processes. The numerical survey responses utilized may not fully capture the
complexities of human behavior, potentially overlooking significant contextual factors that
influence stock market predictions. Incorporating qualitative methods, such as interviews or
focus groups, could complement the findings and provide a more holistic understanding of the

subject.

Additionally, the use of historical stock market data poses constraints. Historical data may not
fully reflect the dynamic and ever-changing nature of the stock market, limiting the
applicability of the findings to future conditions. The dependence on publicly available data
sources also introduces the possibility of selection biases, as certain datasets might be more
readily accessible or commonly used by researchers. Furthermore, the reliance on historical
patterns means that unforeseen events or market disruptions are not accounted for, which could

significantly affect stock market forecasts.

The sampling methodology used in the study presents another limitation. Purposive sampling

was employed to target individuals with expertise in stock market analysis. While this approach

ensures the involvement of knowledgeable participants, it may exclude novice investors or
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individuals with diverse perspectives. Consequently, the findings may lack generalizability to
the broader population of stock market participants.

The emphasis on machine learning algorithms and quantitative analysis may inadvertently
overlook other important variables influencing stock market forecasts. Factors such as market
sentiment, qualitative data, and geopolitical events can play critical roles in shaping market
trends. A more multidimensional approach that integrates both quantitative and qualitative data

could yield a deeper and more comprehensive understanding of stock market predictions.

Furthermore, the use of self-reported survey data introduces the risk of response bias.
Participants may provide socially desirable responses, potentially distorting their true opinions
and behaviors. Additionally, inaccuracies in recall or representation of attitudes and actions
may contribute to measurement errors. Although steps were taken to ensure anonymity and

confidentiality, the possibility of biased or inaccurate responses remains.

Another limitation is the exclusive focus on technical analysis indicators, without consideration
of other data types. Stock market prices are influenced by a variety of factors, including
fundamental analysis, market news, and macroeconomic indicators. A broader analysis
incorporating these additional data sources would likely offer a more comprehensive

perspective on stock price prediction.

Finally, the authors recognize the inherent limitations and biases of individual models. To
address these challenges, an ensemble approach was proposed, leveraging the collective
intelligence of multiple models to improve prediction accuracy and robustness. This approach

aims to mitigate some of the limitations associated with relying on single models and enhance
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the overall effectiveness of stock market forecasting.

Moreover, the limited time frame used for data collection may affect the robustness of the
results. Short-term data windows can capture only a narrow slice of market behavior, which
may not be representative of longer-term trends or cycles. As stock market patterns often
evolve over extended periods, a broader temporal scope might be necessary to ensure more

reliable and generalizable insights.

In addition, the study did not account for the impact of algorithmic trading and high-frequency
trading (HFT) mechanisms on market behavior. These technologies increasingly shape modern
financial markets, introducing rapid fluctuations and automated decision-making processes that
traditional analysis methods may not fully capture. Incorporating variables related to trading
volume, speed, and algorithmic strategies could enhance the accuracy and relevance of

predictive models used in the study.
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CHAPTER 4: RESULT AND ANALYSIS

4.1 Trading Strategy

This section presents a trading strategy based on the Random Forest Classifier. It details the
approach for trading a single stock, strategies for trading multiple stocks simultaneously, and
methods for model training and tuning. Additionally, it discusses the analysis of the relative
importance of independent variables. The trading strategy employs a Random Forest
Classification model to predict whether a stock's value will increase from the end of day t to
the end of day t + 1. The classifier, denoted as C, uses a data vector 0; containing all relevant

information at time t for prediction.

Strategy Logic
o IfC(0y) =1, indicating a predicted increase in stock value:
e Ifnot already invested, buy the stock at the closing price of period t.
e [falready invested, continue holding the stock.
o IfC(By) =0, indicating a predicted decrease in stock value:
e Ifalready holding a short position, continue holding it.
e If previously holding a long position, sell the stock and initiate a short position at the

closing price of period t.

Shorting involves selling a stock that is not owned with the expectation of repurchasing it at a
lower price later, profiting from the price difference. No transaction costs are considered in this
simulation.

Given the general upward trend of stock prices over time, the classifier C is designed to be

optimistic by classifying data points as 1 more frequently. Instead of using a simple 0.5
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probability threshold, a dynamic cutoff point p, is defined as the 10th percentile of probabilities
over the training interval. This encourages the strategy to favor holding stocks more often than
shorting them.

The classifier's decision rule is as follows:

_ (1 if p(6) >= Pv)
(09 = {0 otherwise (12)

Trading Algorithm (Pseudo Code)

Algorithm 1 : Trading Strategy

money «— 1
invested + False
for ticker in tickers do
dataframe + get _dataframe(ticker)
complete _dataframe + get _tech _ind(dataframe)
fort=m+1, ..., len(complete _dataframe) do
train_data + complete _dataframe,;_, — complete_dataframe;_,_y
test _data + complete_data frame,
el f + RanfomForestClassifier(train_data)
pred « cl f.predict _proba(test _data)
if invested then
if pred > proba_cutof f then

money * = close_pricey[close_price,_, > Hold
else
money * = close__price ,‘/."hmr'_prfrr 1—1 & Short
invested + False
end if
else
if pred > proba_cutof f then
invested + True > Buy
else
money * = (1 — close__price, fclose _price;_) > Short
end if
end if
end for
end for

To assess the performance of multiple stocks collectively, a portfolio approach is employed.
This involves running the trading strategy on multiple stocks simultaneously, with each

classifier trained on the data specific to the stock it predicts. Initially, equal weights are
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assigned to all strategies. Over time, the relative weights adjust based on the performance of

individual strategies, with outperforming strategies gaining greater influence.

4.2 Training the Model

Stock market prediction models rely on broad and diverse market indices rather than individual
stocks to provide a more comprehensive view of market trends. We selected US market indices
such as the NASDAQ, S&P 500, and Dow Jones because they incorporate companies across
various industries, reducing the impact of company-specific events while capturing overall
economic movements. These indices also have long historical data, allowing us to analyze
market cycles, macroeconomic shifts, and investor sentiment over time. By focusing on indices
rather than individual stocks, we enhance the stability and reliability of our model, ensuring
that predictions reflect market-wide patterns rather than isolated fluctuations in a single

company’s stock price.

To ensure that our model adapts to changing market conditions, it is retrained periodically
throughout the simulation. This approach mirrors real-world trading strategies, where traders
continuously update their models with new data to refine predictions. In our framework, we
introduce two key parameters: which represents the frequency of retraining, and m, which
determines the number of past data points used for training. Throughout our experiments, we
adjust these parameters to optimize predictive accuracy and performance. For instance, in our
simulations, we retrain the model every 7 days (h = 5) while incorporating the 1000 most recent
data points (m = 1000) to ensure that the model captures the latest market trends while

maintaining sufficient historical context.
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The training process follows a structured approach to leverage past market behavior effectively.
At any given simulation step t, the outcomes of all prior data point up to 6t—1 are known,
allowing us to select m previous training points with associated labels, either 1 (positive
outcome) or 0 (negative outcome). The most recent m data points form the training set ® =
{6t—m, 6t—m+1, .., Ot—1}, which is used to update the model. By treating m as a
hyperparameter, we can fine-tune the model’s performance, balancing historical context with
recent market movements. This method ensures that the model remains adaptive, accurately

reflecting the latest market dynamics while leveraging past data for robust predictions.

4.3 Feature Selection

In order to determine which technical indicators should be retained or excluded from the model,
we analyzed their relative importance using a Random Forest Classifier. The analysis was
conducted using the feature importances attribute from the Scikit-learn library, which evaluates
the significance of each feature in the model by examining the decrease in impurity associated

with nodes that split the data based on a given feature.

Impurity is a measure of how mixed the data is at a node. A lower impurity indicates that the
node is purer, meaning it better separates the data based on the feature used for the split. The
feature importances tool computes a numeric value for each feature, which represents the
average reduction in impurity across all trees in the Random Forest model. Features with higher
average impurity reductions are considered more important. To facilitate comparison, the
impurity scores are normalized, so they sum to one. A more detailed explanation of impurity

can be found in Appendix.
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Table 3 presents the top features with the highest importance, selected from a total of 40
features. Among the technical indicators discussed, the On-Balance Volume (OBV) and the
Moving Average Convergence Divergence (MACD) indicators were found to be the most
significant. Additionally, features related to the stock's performance relative to the OMXS30
index over the previous 15 days and various price rate of change measures also displayed high
importance.

Since the models for each stock are developed independently, feature importance varies across
stocks. Similar charts for other stocks can be found in Appendix. After reviewing the feature
importances for all the stocks, we decided not to remove any features. This decision was made
because including all features contributed to higher model accuracy, indicating that their

presence was beneficial for performance.

4.4 Hyperparameters

Fine-tuning hyperparameters is a critical step in optimizing machine learning models,
particularly the Random Forest classifier, for predicting stock market trends, such as those of
the S&P 500 index. One straightforward approach to hyperparameter tuning involves selecting
a set of fixed values that yield reasonable performance across a range of stocks in the index.
These values are then employed uniformly throughout the entire simulation period. This
method ensures consistency in the model architecture, while still allowing the classifier to be
retrained periodically as new data becomes available. For instance, in simulations using static
hyperparameters, we selected a cutoff point of 10% for relative classification, a training interval
of 1000 data points, a maximum tree depth of 4, a maximum of 20 features per tree, and 100

estimators, with all other variables set to their default values. The model retrained every 5th
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day of the simulation using the most recent 1000 data points, with results presented for a

simulation period from February 12, 2013, to December 30, 2022.

In contrast, we also explored a more sophisticated approach involving dynamic hyperparameter
tuning, where we adjust the hyperparameters throughout the simulation to account for changes
in market conditions. This dynamic approach typically involves performing a grid search at
regular intervals to identify the optimal set of hyperparameters. For instance, we conduct a grid
search every 250 days, exploring potential values for hyperparameters such as the maximum
depth of the trees, the number of features considered for each split, and the minimum number
of samples required for a leaf. For the S&P 500 index, we explore combinations such as
max_depth € {6, 8}, max_features € {10, 20, 30}, and min_samples leaf € {1, 5, 10}, resulting
in 18 distinct combinations. Each set of hyperparameters is tested by splitting the training data,
where the most recent 10% is used as a testing set, while the remaining 90% is used for training.
After evaluating all possible combinations, we select the hyperparameters yielding the best

model performance to use until the next grid search.

In Random Forest models, hyperparameter tuning is essential for improving the model’s
predictive accuracy, especially in complex domains like stock market forecasting. Random
Forests, being an ensemble method, are highly dependent on key hyperparameters such as the
number of estimators, tree depth, and the number of features considered at each split. The
number of estimators (i.e., the number of trees in the forest) directly influences the model's
ability to generalize, with too few estimators leading to underfitting and too many increasing
computational costs without significant performance gains. Similarly, the depth of each tree

controls the model's complexity.
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Trees that are too deep risk overfitting the training data, while shallow trees can underfit,
missing important patterns in the data. Additionally, the number of features considered for each
split impacts the model's ability to capture relevant patterns without introducing noise. These
hyperparameters must be carefully tuned to balance bias and variance, ensuring optimal

prediction accuracy.

Another aspect of hyperparameter tuning in Random Forests is the management of model
overfitting and underfitting. Overfitting occurs when the model becomes too complex and
captures noise in the data, leading to poor generalization to unseen data. On the other hand,
underfitting occurs when the model is too simple and fails to capture the underlying patterns.
Although Random Forests are less prone to overfitting compared to individual decision trees,
careful tuning is still necessary to ensure that the ensemble model does not memorize the data.
We employ techniques such as cross-validation and grid search to evaluate different
hyperparameter configurations and identify the optimal settings for a given dataset. In the case
of stock market prediction, where the S&P 500 index is subject to constant fluctuations, it is
crucial that the model can adapt to new data and adjust its hyperparameters accordingly to

maintain high predictive performance.

Finally, when implementing hyperparameter tuning especially using dynamic strategies, we
considered the computational cost and time required for performing regular grid searches. For
large datasets, such as those spanning several years of stock market data, testing different
hyperparameter combinations can be computationally expensive. However, the benefit of

improving model accuracy and adaptability often justifies the cost, particularly when predicting
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complex financial trends. By fine-tuning the Random Forest model through iterative grid

searches, we ensured that the model remains responsive to changes in market behavior and can

provide more reliable forecasts for the S&P 500 index.

Table 3: key Hyperparameter used in training and testing the model

Hyperparameter

Description

Values

Tuning Approach

Max Depth

Controls the
maximum depth of
the decision trees

4 (static), 6, 8
(dynamic)

Fixed for static;
varied in grid search
for dynamic tuning

Max Features

Specifies the number
of features to
consider when
looking for the best
split

20 (static), 10, 20, 30

(dynamic)

Fixed for static;
varied in grid search
for dynamic tuning

Number of
Estimators

Defines the number
of trees in the forest
(estimators)

100 (static)

Fixed for static

Min Samples Leaf

Sets the minimum

number of samples

required to be at a
leaf node

1, 5, 10 (dynamic)

Varied in grid search
for dynamic tuning

Training Interval Number of most 1000 data points Fixed for static
recent data points
used for training
Relative Cutoff Point The threshold for 10% (static) Fixed for static
classification
Grid Search Interval | The interval at which

grid search is
performed for
dynamic tuning

250 days (every ~1
year)

Applied during
dynamic tuning

Cross-validation

Used to evaluate the
performance of
different
hyperparameter
configurations

Employed during
grid search for
dynamic tuning

Training Data Split

The portion of data
used for training vs.

testing

90% training, 10%
testing

Used in grid search
for dynamic tuning
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4.4 Feature Selection

Figure 12: Feature Importance
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Figure 13: Correlation Heatmap
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Feature selection is a fundamental process in developing robust and accurate models for stock
market prediction. The effectiveness of a predictive model is closely tied to its ability to
distinguish and prioritize features that contribute significantly to forecasting outcomes. In this
research, the integration of both technical indicators and sentiment-based features provides

understanding of market dynamics.

The assessment of feature importance revealed that sentiment-based indicators play a crucial
role in enhancing predictive performance. These indicators capture the market's psychological
tendencies and reflect broader economic sentiments that influence stock movements. Technical
indicators such as Moving Average Convergence Divergence (MACD) and On-Balance
Volume (OBV) also demonstrated substantial relevance, underscoring their ability to identify

price trends and momentum shifts. Other indicators like the Price Rate of Change (PROC) and
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trading volume were identified as moderately impactful. Although these features individually
exhibited lower importance scores, their collective presence contributed to the overall

robustness of the model by capturing diverse market behaviors.

To refine the feature set and mitigate potential redundancies, a correlation analysis was
conducted. This analysis identified high interdependencies among certain technical indicators,
particularly between momentum-based metrics like the Relative Strength Index (RSI) and
MACD. Such strong correlations suggest potential multicollinearity, which can compromise
model stability and interpretability. To address this, features demonstrating excessive
correlation were considered for removal. This strategic pruning helps streamline the model,

ensuring it remains computationally efficient without sacrificing predictive power.

Further optimization was approached through dimensionality reduction techniques such as
Principal Component Analysis (PCA). This method transforms correlated variables into
principal components, thereby reducing dimensional complexity while preserving essential
variance within the data. Additionally, penalized regression methods, including Ridge
Regression, were employed to manage feature multicollinearity. By shrinking the coefficients
of less influential features, this approach enhances the model’s generalization capabilities and

prevents overfitting.

The combined application of these feature selection and optimization strategies ensures a more
efficient, stable, and interpretable model. Prioritizing features that offer unique, non-redundant
insights into market dynamics strengthens the model's ability to capture complex patterns and

deliver more accurate forecasts. This methodological rigor not only improves computational

73



efficiency but also enhances the practical applicability of the model in dynamic financial

environments.

4.5 Results

The combined analysis of the results from both studies reveals significant insights into the
performance and optimization of Random Forest (RF) models for stock market prediction.
The integration of sentiment analysis, particularly through the Sentiment-Augmented Random
Forest (SARF) model, demonstrated superior performance over conventional RF models and
Long Short-Term Memory (LSTM) networks. The SARF model consistently outperformed the
baseline models, showing accuracy improvements of up to 9.23%. This enhancement is
primarily attributed to the inclusion of sentiment features derived from FinGPT, which allowed
the model to incorporate nuanced market sentiments alongside traditional technical indicators.
The model demonstrated robust prediction accuracy, especially over medium and long-term
forecasting periods, affirming its potential in dynamic market conditions. The sentiment
analysis provided an additional layer of market understanding, contributing to more precise

forecasting outcomes.

In parallel, the evaluation of RF models for stock trading, based on the largest companies
specifically SP500 index, revealed that while traditional RF models achieved accuracy levels
slightly above 50%, their implementation in trading strategies resulted in higher risk-adjusted
returns compared to passive investment strategies. The dynamic tuning of hyperparameters
further enhanced performance, with models employing this approach achieving superior

Compounded Annual Growth Rates (CAGR) and Sharpe Ratios. Specifically, the dynamically
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optimized RF model attained a Sharpe Ratio of 0.86 and a CAGR of 17.87%, outperforming

both static hyperparameter models and passive investment portfolios.

Table 4: A comparative performance analysis

Model S&P 500 Nasdaq Dow Jones Sharpe | CAGR
Accuracy Accuracy Accuracy Ratio (%)
Traditional Random 0.67 0.64 0.59 0.63 12.75
Forest
LSTM 0.58 0.69 0.61 - -
Sentiment-Augmented 0.78 0.85 0.82 0.86 17.87
Random Forest
(SARF)

The SARF model's superior accuracy and returns highlight the critical role of sentiment
analysis in enhancing predictive performance. Meanwhile, traditional RF models, especially
with dynamic hyperparameter tuning, showed promising profitability, emphasizing the

importance of continuous optimization and adaptive strategies in stock trading.

These findings underscore that combining technical and sentiment indicators provides a
comprehensive framework for more accurate stock market predictions. Future research could
further refine these models by integrating additional sentiment sources and testing scalability

across diverse market conditions.
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CHAPTER 5: DISCUSSION AND FINDING

5.1 Introduction

The experimental results presented in this study demonstrate a significant advancement in stock
market prediction methodology through the integration of sentiment analysis with traditional
machine learning approaches. The Sentiment-Augmented Random Forest (SARF) model
represents a paradigm shift from purely technical indicator-based predictions to a more holistic
approach that incorporates market psychology and investor sentiment as quantifiable features
in the prediction process.

The fundamental premise underlying this research is that stock market movements are not
solely driven by historical price patterns and technical indicators, but are significantly
influenced by collective market sentiment, news events, and psychological factors that drive
investor behavior. Traditional Random Forest models, while effective in capturing non-linear
relationships within technical data, have inherent limitations in understanding the broader
context of market dynamics. The integration of FinGPT-derived sentiment scores addresses
this gap by providing a sophisticated mechanism to quantify and incorporate market sentiment
into the prediction framework.

The experimental validation across three major U.S. market indices—S&P 500, NASDAQ,
and Dow Jones Industrial Average—provides compelling evidence of the SARF model's
superior performance. The consistency of improvement across these diverse indices, which
represent different market segments and characteristics, suggests that the benefits of sentiment
integration are not limited to specific market conditions or sectors. The S&P 500, representing
a broad market cross-section, showed an accuracy improvement from 67% to 78%, while the

technology-focused NASDAQ demonstrated the most substantial enhancement from 64% to
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85%. The Dow Jones, representing established industrial companies, also showed significant
improvement from 59% to 82%.

These results indicate that sentiment analysis provides particularly valuable insights for
technology stocks, possibly due to the sector's higher sensitivity to news, innovation
announcements, and market speculation. The technology sector's inherent volatility and
growth-oriented nature make it more susceptible to sentiment-driven price movements, which
the SARF model successfully captures and leverages for improved prediction accuracy.

The methodological approach employed in this study addresses several critical challenges in
financial time series prediction. First, the integration of multiple data sources—technical
indicators from Alpha Vantage and sentiment scores from FinGPT—creates a more
comprehensive feature space that better represents the multifaceted nature of market dynamics.
Second, the careful feature selection process, including correlation analysis and
multicollinearity mitigation through techniques such as Principal Component Analysis (PCA)
and ridge regression, ensures model stability and prevents overfitting.

The time window analysis reveals that SARF demonstrates optimal performance in the 62—82-
day range, making it particularly suitable for medium to long-term investment strategies. This
finding has significant practical implications for portfolio managers and institutional investors
who operate on longer investment horizons. The model's effectiveness in this timeframe
suggests that sentiment factors have more pronounced and persistent effects on stock prices
over medium-term periods, rather than short-term noise that might characterize daily trading
patterns.

Furthermore, the comparative analysis with Long Short-Term Memory (LSTM) networks
provides important insights into the relative strengths of different machine learning approaches

for financial prediction. While LSTM models are specifically designed to handle sequential
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data and capture temporal dependencies, the ensemble nature of Random Forest, when
augmented with sentiment features, proves more effective in this application. This suggests
that the complex, non-linear relationships between technical indicators and sentiment features
are better captured through the Random Forest's decision tree ensemble approach than through
LSTM's sequential processing architecture.

The robustness of the SARF model is further validated through the comprehensive evaluation
metrics employed in the study. Beyond simple accuracy measures, the analysis incorporates
precision, recall, F1-score, and AUC-ROC metrics, providing a nuanced understanding of
model performance across different aspects of classification effectiveness. The consistent
improvement across all these metrics reinforces the reliability and practical applicability of the
SAREF approach.

The feature importance analysis conducted through decision tree construction reveals valuable
insights into the relative contributions of different indicators to prediction accuracy. The fact
that sentiment-based features consistently rank among the most important predictors validates
the core hypothesis that market sentiment carries significant predictive power for stock price
movements. This finding aligns with behavioral finance theories that emphasize the role of
investor psychology and collective sentiment in driving market dynamics.

The preprocessing techniques employed, particularly exponential smoothing of time series
data, contribute to the model's effectiveness by reducing noise and emphasizing recent
observations while maintaining historical context. This approach recognizes that in financial
markets, recent events and trends often carry more predictive weight than distant historical

patterns, while still preserving the valuable information contained in longer-term trends.
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5.2 Suggestions
Based on the comprehensive analysis and experimental results of the SARF model, several
strategic recommendations emerge for both academic researchers and industry practitioners
seeking to implement or extend this methodology. These suggestions span multiple
dimensions, including technical enhancements, practical implementation considerations, and
future research directions that could further advance the field of sentiment-augmented financial
prediction.

Technical Enhancement Recommendations

The first category of suggestions focuses on technical improvements and extensions to the
current SARF framework. One critical area for enhancement involves expanding the sentiment
analysis component beyond the current FinGPT implementation. While FinGPT demonstrates
superior performance in financial sentiment analysis, incorporating multiple sentiment sources
could provide more robust and diverse sentiment signals. Future implementations should
consider ensemble sentiment analysis approaches that combine outputs from various financial
language models, including FinBERT, specialized financial sentiment analyzers, and domain-
specific transformer models.

The integration of real-time sentiment analysis represents another significant opportunity for
enhancement. The current study utilizes historical sentiment data, but financial markets operate
in real-time with continuous information flow from news sources, social media, earnings
reports, and regulatory announcements. Implementing a real-time sentiment processing
pipeline would enable the SARF model to respond more dynamically to emerging market
conditions and sentiment shifts. This enhancement would require developing efficient data
streaming architectures and implementing incremental learning mechanisms that allow the

model to adapt to new information without requiring complete retraining.
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Feature engineering represents another area with substantial potential for improvement. The
current study employs fifteen technical indicators, but the universe of available technical
indicators is much broader. Advanced technical indicators such as Volume Weighted Average
Price (VWAP), Money Flow Index (MFI), and various volatility measures could provide
additional predictive signals. Furthermore, the development of custom composite indicators
that combine multiple traditional indicators using machine learning techniques could yield
more informative features tailored specifically to sentiment-augmented prediction tasks.
The temporal aspect of sentiment integration deserves particular attention in future
enhancements. The current implementation treats sentiment as a static feature for each time
period, but market sentiment exhibits complex temporal dynamics with varying persistence and
decay rates. Implementing time-weighted sentiment aggregation mechanisms could better
capture how sentiment effects evolve over time. For instance, breaking news might have
immediate but short-lived impacts, while regulatory changes or economic policy
announcements might have longer-lasting sentiment effects.

e Model Architecture and Algorithmic Improvements
The Random Forest architecture, while effective, represents just one approach within the
broader ensemble learning paradigm. Future research should explore hybrid architectures that
combine the strengths of multiple learning algorithms. For example, stacked ensemble
approaches could combine Random Forest predictions with those from gradient boosting
machines, support vector machines, and neural network architectures, with sentiment features
integrated at multiple levels of the ensemble.
Deep learning integration presents another promising avenue for enhancement. While the
current study shows Random Forest outperforming LSTM networks, this comparison is based

on relatively simple LSTM implementations. Modern deep learning architectures, such as
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Transformer models, attention mechanisms, and Graph Neural Networks, could potentially
better capture the complex relationships between sentiment and technical indicators.
Transformer architectures, in particular, excel at handling sequences with long-range
dependencies and could be well-suited to modeling the temporal relationships between
sentiment evolution and price movements.
The optimization of hyperparameters represents a crucial area where advanced techniques
could yield significant improvements. The current study employs random search for
hyperparameter optimization, but more sophisticated approaches such as Bayesian
optimization, genetic algorithms, or automated machine learning (AutoML) frameworks could
identify better parameter configurations. These advanced optimization techniques could
simultaneously optimize both the Random Forest parameters and the sentiment integration
weights, leading to more effective overall model performance.

e Data Integration and Multi-Modal Enhancement
Expanding the data integration capabilities of SARF represents a significant opportunity for
improvement. Financial markets are influenced by diverse information sources beyond
traditional price data and text-based sentiment. Incorporating alternative data sources such as
satellite imagery for economic activity monitoring, social media engagement metrics, search
trend data, and macroeconomic indicators could provide additional predictive signals that
complement the existing technical and sentiment features.
The development of multi-modal learning architectures could enable SARF to process diverse
data types more effectively. For instance, combining textual sentiment analysis with image-
based sentiment extraction from financial charts, video analysis of earnings calls, and audio
sentiment analysis from financial podcasts could create a more comprehensive sentiment

profile. This multi-modal approach would require developing sophisticated feature fusion
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mechanisms that can effectively combine information from different modalities while avoiding
information redundancy.
Cross-market sentiment analysis represents another valuable enhancement opportunity. The
current study focuses on individual market indices, but global financial markets are
increasingly interconnected. Incorporating sentiment signals from related markets,
international news sources, and global economic indicators could improve prediction accuracy,
particularly for major indices that are influenced by global economic conditions.

e Implementation and Deployment Considerations
For practitioners considering implementation of SARF in production environments, several
key considerations emerge from this research. First, the computational requirements for real-
time sentiment analysis and Random Forest prediction must be carefully evaluated. While
Random Forest models are generally computationally efficient, processing large volumes of
text data through sophisticated language models like FinGPT can be resource intensive.
Organizations should invest in appropriate computing infrastructure and consider distributed
computing approaches for scalable implementation.
Data quality and preprocessing represent critical success factors for SARF implementation.
The effectiveness of sentiment analysis heavily depends on the quality and relevance of input
text data. Organizations should establish robust data collection and filtering pipelines that
ensure high-quality, relevant financial text data reaches the sentiment analysis component. This
includes implementing duplicate detection, relevance filtering, and source -credibility
assessment mechanisms.
The integration of SARF predictions into existing trading and investment decision-making
processes requires careful consideration of model output interpretation and risk management.

While the model demonstrates superior accuracy compared to traditional approaches, it should
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be viewed as a decision support tool rather than a fully automated trading system. Human
oversight and risk management protocols remain essential, particularly during periods of
unusual market volatility or unprecedented events that may not be well-represented in the
training data.

e Regulatory and Ethical Considerations
The implementation of sentiment-augmented trading models raises important regulatory and
ethical considerations that practitioners must address. Financial markets are subject to strict
regulations regarding market manipulation, insider trading, and fair access to information.
Organizations implementing SARF must ensure that their sentiment data sources comply with
relevant regulations and that their models do not inadvertently engage in prohibited practices.
The potential for sentiment manipulation represents a particular concern that requires careful
monitoring. As sentiment-based trading models become more prevalent, there may be
increased incentives for malicious actors to attempt to manipulate sentiment signals through
coordinated information campaigns or fake news dissemination. Implementing robust
sentiment source verification and anomaly detection mechanisms is essential to maintain model
integrity.
Privacy considerations also apply to sentiment analysis implementations, particularly when
incorporating social media data or other user-generated content. Organizations must ensure
compliance with relevant privacy regulations and implement appropriate data anonymization

and protection measures.

5.3 DISCUSSION QUESTIONS
Research Question 1: Theoretical Foundations
What are the most prominent theories underlying stock market prediction, such as the efficient

market hypothesis and random walk theory?
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The research demonstrated that several key theoretical foundations underpin modern stock
market prediction approaches, though traditional theories face significant challenges in
explaining market dynamics.

Efficient Market Hypothesis and Market Complexity: The SARF study acknowledges that
stock markets exhibit "dynamic, non-linear, and complex" characteristics that make effective
trend prediction persistently challenging. This recognition aligns with the efficient market
hypothesis, which posits that stock prices reflect all available information. However, the
research challenges the strict interpretation of this hypothesis by demonstrating that machine
learning models can consistently outperform traditional statistical approaches, suggesting that
exploitable patterns do exist in market data.

Random Walk Theory Limitations: While the paper does not explicitly discuss random walk
theory, it implicitly challenges its core assumptions by proving that predictable patterns can be
identified and exploited. The authors demonstrate that "machine learning models showcase
superior prediction performance and robustness" compared to traditional econometric models,
indicating that stock price movements contain detectable patterns rather than following purely

random trajectories.

Ensemble Learning Theory Integration: The research builds extensively on ensemble learning
theory, particularly leveraging the Random Forest algorithm's theoretical foundation. This
approach is grounded in the principle that combining multiple weak learners creates a stronger,
more robust predictor that is less susceptible to overfitting than individual models. Behavioral
Finance Theory Incorporation: By integrating sentiment analysis into their predictive
framework, the researchers implicitly draw from behavioral finance theory. This theory

suggests that investor emotions, market psychology, and sentiment significantly influence
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stock prices beyond fundamental economic factors, providing a theoretical justification for
incorporating textual sentiment data into quantitative models.

The findings of Research Question 1 revealed that while traditional financial theories provide
important foundational understanding, they are insufficient for capturing the full complexity of
modern financial markets. The integration of machine learning approaches with sentiment
analysis creates a more comprehensive theoretical framework that acknowledges both

quantitative patterns and behavioral factors in market dynamics.

Research Question 2: Classic Approaches to Prediction

What are the traditional methods, such as technical and fundamental analysis, used for stock
market prediction, and in which scenarios have these approaches been successfully applied?
The research demonstrated that classic prediction approaches, while foundational, have both
significant strengths and notable limitations in modern market prediction.

Technical Analysis Implementation: The SARF study extensively employs technical analysis
through 15 carefully selected technical indicators, demonstrating the continued relevance of
this traditional approach. The research utilizes Moving Averages for trend identification and
potential reversal detection, MACD for measuring relationships between moving averages to
signal trend strength and direction, RSI for indicating overbought or oversold market
conditions, Bollinger Bands for volatility and trend analysis, and Stochastic Oscillators for
momentum analysis through price range comparisons.

Successful Application Scenarios: The research confirms that technical indicators prove
"effective for medium- and long-term purposes, such as identifying entry and exit points." The

study demonstrates particular effectiveness when these indicators are applied within a 60-day
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time window for predictions spanning 62-82 days, indicating their value for medium to long-

term forecasting rather than short-term speculation.

Fundamental Analysis Integration: While not the primary focus of the SARF study, the
research references complementary studies that successfully combine "fundamental/technical
feature space" approaches, suggesting that hybrid methodologies incorporating both technical

patterns and fundamental economic data can enhance prediction accuracy.

Limitations and Challenges: The study identifies critical limitations in relying solely on
traditional approaches. The research finds that "relying solely on empirical analysis often yields
unsustainable and ineffective results," highlighting the insufficiency of traditional methods in
isolation. Classic approaches demonstrate a static nature that struggles to adapt to the dynamic
characteristics of modern financial markets. These methods typically fail to account for market
sentiment and psychological factors that significantly influence price movements.
Additionally, traditional indicator combinations frequently suffer from multicollinearity
problems, were high correlations between indicators impact model stability and parameter

estimation accuracy.

The findings of Research Question 2 revealed that while classic approaches provide valuable
foundational insights and remain effective for specific applications, they require enhancement
through modern computational techniques to address their inherent limitations and improve

prediction reliability in contemporary market conditions.
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Research Question 3: Machine Learning and Sentiment Analysis

In which cases have machine learning techniques been applied to stock market prediction, and
how effective have they been? How has sentiment analysis been used in conjunction with ML
models?

The research demonstrated extensive and highly successful applications of machine learning
techniques in stock market prediction, with particularly promising results when combined with

sentiment analysis.

Machine Learning Applications and Effectiveness: The SARF study provides comprehensive
evidence of machine learning superiority over traditional methods. Random Forest models
demonstrate exceptional effectiveness in handling non-linear relationships inherent in financial
data while preventing overfitting through ensemble learning approaches. Support Vector
Machines have been successfully implemented for classification tasks in stock trend prediction,
particularly excelling in discrete feature scenarios. Advanced gradient boosting techniques like
XGBoost and LightGBM show significant prediction error reduction compared to traditional
statistical methods. Deep learning approaches, including LSTM networks, serve as competitive
benchmarks, though the research demonstrates that ensemble methods can outperform them in
specific contexts.

Quantitative Performance Improvements: The research reveals substantial improvements
through machine learning implementation. The SARF model achieves a remarkable 9.23%
average accuracy improvement over conventional Random Forest approaches.

Specific performance metrics demonstrate the model's superiority across major market indices,
with S&P 500 predictions improving from 67% to 78% accuracy, NASDAQ predictions

advancing from 64% to 85% accuracy, and Dow Jones forecasts enhancing from 59% to 82%
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accuracy. These improvements represent significant practical value for financial decision-

making.

Sentiment Analysis Integration Strategy: The study demonstrates sophisticated sentiment
analysis implementation through the FinGPT model integration. FinGPT was selected over
alternatives like FInBERT due to its superior contextual understanding of financial language
and enhanced natural language generation capabilities. The model extracts sentiment scores
ranging from -1 (negative) to 1 (positive) from financial news articles, providing quantitative
measures of market sentiment. This sentiment data is then incorporated as additional features
in the Random Forest framework, creating a hybrid approach that captures both quantitative

technical patterns and qualitative market psychology.

Hybrid Approach Benefits: The integration of sentiment analysis with machine learning creates
several synergistic advantages. Technical indicators provide quantitative insights into historical
price patterns and market dynamics, while sentiment features capture market psychology and
investor emotion that traditional quantitative measures cannot detect. This combination offers
enhanced contextual understanding that adapts to changing market conditions and investor
behavior patterns. The dynamic nature of sentiment data allows the model to respond to real-

time market developments and news events that may not be immediately reflected in price data.

The findings of Research Question 3 revealed that machine learning techniques, particularly

when augmented with sentiment analysis, significantly outperform traditional prediction

methods. The integration of textual sentiment data with quantitative technical indicators creates
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a more comprehensive and adaptive prediction framework that better captures the multifaceted

nature of financial market dynamics.

Research Question 4: Model Design and Development

What are the critical components involved in the design and development of a stock market
prediction model, and what factors contribute to model performance?

The research demonstrated that successful stock market prediction models require
sophisticated integration of multiple components, careful feature engineering, and
comprehensive validation frameworks.

Critical Data Architecture Components: The SARF study implements a multi-source data
integration strategy that combines Alpha Vantage API data for historical price and volume
information with sentiment analysis derived from financial news sources. The temporal scope
spans from January 2015 to December 2023, providing substantial historical context for pattern
recognition. Rather than focusing on individual stocks, the research strategically selects broad
market indices including NASDAQ, S&P 500, and Dow Jones to ensure stability and reduce

company-specific volatility impacts.

Advanced Feature Engineering Framework: The model incorporates 15 carefully selected
technical indicators calculated using the TA-Lib library, ensuring standardized and reliable
technical analysis computations. Four sentiment-based features extracted through FinGPT
analysis provide qualitative market sentiment quantification. Exponential smoothing
preprocessing emphasizes recent observations while maintaining historical context. Systematic

correlation analysis eliminates highly correlated features exceeding 0.8 correlation coefficients
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to prevent multicollinearity 1issues that could destabilize model performance.

Sophisticated Model Architecture: The SARF framework builds upon ensemble learning
principles through Random Forest foundation enhanced with sentiment augmentation
capabilities. Parameter optimization employs Random Search methodology over traditional
Grid Search approaches for computational efficiency and effectiveness. Three-fold cross-
validation ensures model robustness and prevents overfitting to specific data subsets.
Comprehensive evaluation incorporates multiple metrics including accuracy, precision, recall,

F1-score, and AUC-ROC for thorough performance assessment.

Performance Contributing Factors: Data quality and preprocessing significantly impact model
effectiveness through exponential smoothing that prioritizes recent market developments,
systematic feature selection that eliminates redundant information, and multicollinearity
mitigation using Principal Component Analysis and ridge regression techniques. Model
optimization focuses on hyperparameter tuning for optimal tree count, maximum depth, and
minimum splitting samples. The research identifies a 60-day optimal time window for medium
to long-term predictions spanning 62-82 days. Random seed control ensures reproducibility

and reduces sampling variability effects.

Integration Strategy Excellence: The hybrid feature space successfully combines quantitative
technical indicators with qualitative sentiment scores, creating a comprehensive market view.
Dynamic weighting mechanisms allow adaptive adjustment of different feature types based on
prevailing market conditions. Ensemble robustness emerges from multiple decision trees

trained on diverse data subsets incorporating both technical and sentiment features.
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Comprehensive Validation Framework: Out-of-sample testing using separate test datasets
ensures unbiased performance evaluation. Multiple benchmark comparisons against traditional
Random Forest and LSTM models provide context for performance improvements. Precision-
recall curve analysis addresses imbalanced class evaluation challenges common in financial

prediction tasks.

The findings of Research Question 4 revealed that successful stock market prediction models
require careful orchestration of multiple sophisticated components. The SARF model's superior
performance stems from its ability to capture quantitative market patterns through technical
analysis while simultaneously incorporating qualitative market sentiment through advanced
natural language processing techniques. This comprehensive approach creates a more holistic
understanding of market dynamics that significantly enhances prediction accuracy compared

to traditional single-source methodologies.

5.4 Future Work

While the current research demonstrates the effectiveness of SARF, a new approach that
integrates sentiment analysis with FinGPT and an optimized Random Forest model for
enhancing stock market predictions, some paths remain open for further investigation. The
promising results encourage exploration into both the technical scalability and theoretical
underpinnings of this approach, especially in the context of real-world financial environments

characterized by data volatility, heterogeneity, and temporal dynamics.
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A primary direction for future research involves scaling SARF to handle significantly larger
and more diverse financial datasets. The current evaluation, while promising, was conducted
on a limited dataset, and it remains to be seen how well SARF generalizes across multiple
markets, financial instruments, and geopolitical regions. Expanding the dataset and
benchmarking performance on global financial markets will test the robustness and adaptability
of the model. In parallel, a more comprehensive analysis of different market conditions bull,
bear, and stagnant markets will help ascertain whether SARF's accuracy holds under various
economic scenarios.

Additionally, we intend to explore the inclusion of alternative sentiment features and signal
sources by leveraging other domain-specific Large Language Models (LLMs) trained or
instruction-tuned on financial data. This could involve using financial forums, earnings call
transcripts, and regulatory filings as additional sentiment sources. Coupling such domain-
specific sentiment streams with multi-source data fusion techniques could lead to a more

nuanced and high-fidelity sentiment index, thus enhancing predictive accuracy.

Real-time sentiment integration represents another key enhancement. Incorporating live
financial news feeds and social media data streams using APIs and lightweight LLM inference
pipelines may enable SARF to become a truly reactive system. This would allow it to reflect
rapid sentiment shifts in response to breaking news or events, a critical capability for high-

frequency trading and short-term forecasting scenarios.

From a machine learning optimization standpoint, future iterations of SARF will benefit from
advanced hyper parameter tuning techniques, such as Bayesian optimization, genetic

algorithms, or reinforcement learning-based controllers. These methods may help fine-tune the
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Random Forest component or explore alternative ensemble strategies that better capture non-

linear relationships in the data.

In parallel, our investigation into instruction tuning paradigms for LLMs in finance has laid the
groundwork for an expanded research trajectory. Upcoming efforts will focus on integrating a
broader selection of open-source LLMs, including those with parameter sizes ranging from 13
billion to over 100 billion. These larger models could offer improved reasoning abilities, deeper
contextual understanding, and more accurate sentiment classification. However, their increased
complexity also necessitates exploring new strategies to manage compute costs, inference

latency, and deployment scalability.

We also plan to delve deeper into the robustness and generalization capacity of financial LLMs
across a wider set of NLP tasks ranging from document classification to question answering,
summarization, and anomaly detection. A core challenge here is task interference, particularly
in multi-task or zero-shot settings. To address this, we will develop task-aware training and
evaluation protocols that can dynamically adapt prompts, sampling strategies, and fine-tuning

techniques to minimize negative transfer and hallucinations.

Lastly, we will explore the use of continual learning frameworks and domain adaptation
techniques to allow SARF and related models to evolve alongside changing market structures
and financial language. This adaptability is vital in the financial domain, where terminology,
sentiment signals, and risk indicators frequently shift. Future work will advance SARF into a

more scalable, intelligent, and adaptive financial forecasting framework, while contributing

93



broadly to the development of reliable, instruction-tuned LLMs for high-stakes financial

applications.

5.5 Summary

The development and validation of the Sentiment-Augmented Random Forest (SARF) model
represents a significant contribution to the field of financial prediction methodology,
demonstrating that the integration of natural language processing and machine learning
techniques can substantially improve stock market forecasting accuracy. This research
successfully addresses a fundamental limitation of traditional technical analysis approaches by
incorporating market sentiment as a quantifiable and predictive feature in the modeling process.
The primary innovation of this study lies in the systematic integration of advanced sentiment
analysis, specifically through the FinGPT model, with the robust ensemble learning capabilities
of Random Forest algorithms. This integration creates a hybrid modeling approach that
captures both the quantitative patterns present in technical indicators and the qualitative
insights embedded in market sentiment. The methodology developed represents a departure
from purely technical or purely sentiment-based approaches, instead creating a synergistic
combination that leverages the strengths of both paradigms.

The experimental validation provides compelling evidence of the SARF model's effectiveness
across diverse market conditions and index compositions. The consistent improvement in
prediction accuracy across the S&P 500, NASDAQ, and Dow Jones Industrial Average
demonstrates the generalizability of the approach beyond specific market segments or temporal

conditions. The magnitude of improvement—with average accuracy gains of 9.23% over
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traditional Random Forest models—represents a practically significant advancement that could
translate to substantial economic value in real-world trading applications.
The comprehensive evaluation methodology employed in this research sets a high standard for
future studies in this domain. By employing multiple evaluation metrics including accuracy,
precision, recall, Fl-score, and AUC-ROC analysis, the study provides a nuanced
understanding of model performance that goes beyond simple accuracy measures. This multi-
faceted evaluation approach ensures that the reported improvements are not artifacts of specific
metric choices but represent genuine enhancements in predictive capability.

e Methodological Advances and Technical Contributions
The feature selection and integration methodology developed in this study addresses several
critical challenges in financial machine learning applications. The systematic approach to
handling multicollinearity through correlation analysis, Principal Component Analysis, and
ridge regression techniques ensures model stability while preserving the informational content
of both technical and sentiment features. This methodology provides a template for future
research involving the integration of diverse feature types in financial prediction applications.
The temporal analysis revealing optimal performance in the 62-82 day prediction window
provides valuable insights into the persistence and predictive power of sentiment effects in
financial markets. This finding suggests that sentiment-based signals have more durable
predictive value than might be expected from short-term market noise, supporting the
theoretical foundation for incorporating sentiment in medium to long-term investment
strategies.
The parameter optimization approach, utilizing random search techniques with cross-
validation, demonstrates a practical methodology for handling the complex hyperparameter

space that emerges when combining multiple modeling paradigms. The systematic approach
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to parameter selection ensures that the reported performance improvements are not simply
artifacts of favorable parameter choices but represent genuine methodological advances.

e Practical Implications for Financial Industry
The practical implications of this research extend beyond academic contributions to provide
actionable insights for financial industry practitioners. The demonstration that sentiment-
augmented models can significantly outperform traditional technical analysis approaches
suggests that investment management firms, hedge funds, and financial institutions should
seriously consider incorporating sentiment analysis into their quantitative trading strategies.
The scalability of the SARF approach to handle multiple market indices simultaneously
provides a foundation for developing comprehensive market prediction systems that can
support portfolio-level decision making. The consistency of performance improvements across
different indices suggests that the methodology could be extended to individual stock
prediction, sector rotation strategies, and international market applications.
The medium to long-term prediction horizon where SARF demonstrates optimal performance
aligns well with the needs of institutional investors and portfolio managers who typically
operate on longer investment cycles. This alignment between model capabilities and practical
investment needs increases the likelthood of successful real-world implementation and
adoption.

e Limitations and Areas for Future Development
While the results of this study are highly encouraging, several limitations provide opportunities
for future research and development. The reliance on historical data for both technical
indicators and sentiment analysis means that the model's performance during unprecedented

market conditions or novel types of market events remains uncertain. Future research should
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explore the model's robustness during market crises, regulatory changes, and other
extraordinary circumstances.
The current implementation focuses on U.S. market indices, leaving questions about the
generalizability of the approach to international markets with different regulatory
environments, cultural contexts, and information dissemination patterns. Extending the
validation to international markets would strengthen the universal applicability claims of the
SARF methodology.
The static nature of the current sentiment integration approach represents another area for
future enhancement. Financial markets evolve continuously, and the relationship between
sentiment and price movements may change over time due to market maturation, technological
advances, or shifts in investor behavior patterns. Developing adaptive mechanisms that can
adjust sentiment integration weights based on changing market conditions would improve the
long-term sustainability of the approach.

e Broader Impact on Financial Technology and Research
This research contributes to the growing body of literature demonstrating the value of natural
language processing applications in financial technology. The successful integration of large
language models like FinGPT with traditional quantitative finance techniques provides a
roadmap for future fintech innovations that combine cutting-edge Al technologies with
established financial modeling approaches.
The methodology developed in this study also contributes to the broader understanding of how
alternative data sources can enhance traditional financial analysis. As the financial industry
increasingly recognizes the value of alternative data, this research provides a concrete example
of how textual data can be systematically incorporated into quantitative models to achieve

measurable performance improvements.
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The open approach to methodology description and evaluation metrics employed in this study
supports the reproducibility and extensibility of the research. By providing detailed technical
specifications and comprehensive performance analysis, the study enables other researchers to
build upon these findings and explore related applications.

e Future Research Directions and Long-term Vision
The success of the SARF model opens numerous avenues for future research that could further
advance the field of sentiment-augmented financial prediction. The integration of real-time
sentiment analysis capabilities would enable the development of dynamic trading systems that
can respond to emerging market conditions and sentiment shifts as they occur. This evolution
would require advances in both natural language processing efficiency and incremental
learning techniques for financial machine learning models.
The expansion to multi-asset and cross-market applications represents another promising
research direction. Developing sentiment-augmented models that can simultaneously predict
movements across multiple asset classes—stocks, bonds, commodities, and currencies—while
accounting for cross-asset correlations and sentiment spillover effects would provide more
comprehensive market analysis capabilities.
The integration of additional alternative data sources, including satellite imagery, social media
engagement metrics, and macroeconomic sentiment indicators, could further enhance the
predictive power of sentiment-augmented models. This multi-modal approach would require
advances in feature fusion techniques and multi-source learning algorithms specifically
designed for financial applications.
In conclusion, the Sentiment-Augmented Random Forest model represents a significant step
forward in the evolution of quantitative finance techniques. By successfully demonstrating that

sentiment analysis can be systematically integrated with traditional technical analysis to
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achieve superior prediction performance, this research provides both a practical methodology
for immediate application and a foundation for future innovations in financial technology. The
consistent and substantial performance improvements observed across multiple market indices
validate the core hypothesis that market sentiment carries significant predictive power that can
be harnessed through appropriate machine learning techniques. As financial markets continue
to evolve and become increasingly information-driven, the principles and methodologies
developed in this research will likely play an increasingly important role in the development of

next-generation financial prediction and trading systems.
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APPENDICES

INTERVIEW GUID:

Thank you for agreeing to participate in this interview. The purpose of this study is to explore
how machine learning algorithms are applied to forecast stock market trends and how these
applications influence investor decision-making. Your insights and experience are invaluable
in helping us better understand both the benefits and challenges associated with integrating
machine learning into the financial sector. The interview is expected to take approximately 30

minutes and will be recorded solely for research purposes.

Confidentiality:

Participation in this interview is entirely voluntary, and strict confidentiality will be maintained
throughout the study. Your identity will remain anonymous, and any information you provide
will be used exclusively for research. All responses will be analyzed and presented in a way

that ensures participants’ anonymity and privacy.

Interview Questions:
1. Have you utilized machine learning algorithms or predictive models to support your
investment decisions? If so, please describe the specific techniques used and their

outcomes.

2. What do you see as the main advantages and limitations of using machine learning for

stock market forecasting?

3. What strategies or methods can be employed to assess the accuracy and reliability of

machine learning models in predicting stock market behavior?
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4. What challenges have you encountered in applying machine learning within the

financial sector, and how have you addressed or mitigated these issues?

5. In your view, how important is model interpretability in stock market prediction, and

have you used any techniques to enhance interpretability?

6. Have you noticed any significant differences in predictive performance between
traditional statistical models and machine learning algorithms for stock market

forecasting?

7. How do you adapt to the dynamic nature of financial markets and account for

unexpected events that may impact the performance of predictive models?

8. Are there specific machine learning algorithms or techniques you find particularly

effective or difficult to apply in the context of stock market prediction?

9. What improvements or additional features could enhance the practicality and

reliability of machine learning models in financial market analysis?

10. What recommendations do you have for integrating machine learning approaches into

investment decision-making to optimize returns while effectively managing risks?

Conclusion:
We sincerely appreciate your time and valuable input in this interview. Your participation
significantly contributes to advancing research and development in this field. If you have any

additional comments or insights, please feel free to share them.
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RESPONSES TO INTERVIEW QUESTIONS
Response 1
Participant 1 — Quantitative Analyst at a Hedge Fund

1. Use of ML in Investing

I’ve built a multi-layered pipeline combining time series forecasting and sentiment analysis to
support my trading decisions. I process tens of thousands of news articles, earnings transcripts,
and social media posts using NLP models to extract sentiment scores. These feed into an
LSTM-based system that generates short-term price predictions based on past price movements
and sentiment signals. The results have been encouraging over the past year; I’ve seen a 15%
increase in hit rate on entry signals. That said, the models still struggle during major news
events when anomalies occur outside their training data.
2. Benefits & Drawbacks of ML
I see two key strengths: data-driven pattern recognition and adaptive scalability. Machine
learning uncovers intricate relationships and adapts quickly as new data arrives. This is vital
in fast-moving markets. However, ML comes with risks: data dependence, overfitting, and
blind spots to unforeseen events like policy shifts or geopolitical crises. Models that seem
brilliant in backtests often falter when market regimes change. I’ve learned that combining
ML with human judgment and domain expertise leads to more resilient strategies.
3. Evaluating Model Accuracy
I employ a variety of techniques:

o Backtesting on multi-year historical data to simulate model performance over full

market cycles.

o K-fold cross-validation over rolling windows to check generalization.
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Live forward-testing in a shadow portfolio to benchmark strategy performance

before deployment.

I track metrics like Sharpe ratio, information ratio, drawdown, plus classification

metrics such as accuracy, precision, and recall.

I also use ensemble methods blending multiple models to smooth volatility and apply

stress-testing under extreme scenarios (e.g., 2008 crash) to ensure robustness.

4. Challenges & Mitigations

Key challenges include:

Noisy or biased data: [ invest heavily in preprocessing—outlier removal,

normalization, feature engineering—and augment data from alternative sources.

Model complexity & interpretability: I rely on SHAP values and LIME to decode

model decisions and communicate them effectively.

Risk controls: I use stop-loss orders and automated position sizing to cap drawdowns

and diversify across models and asset classes to avoid concentration risk.

5. Importance of Interpretability

Interpretability is essential for both risk management and stakeholder trust. I use SHAP

visualizations to understand feature contributions and LIME for local explanations. These

tools help me answer questions like “Why did we buy this stock today?” a crucial

consideration for compliance, audit, and portfolio oversight.

6. ML vs. Traditional Models

I’ve observed that machine learning models outperform classical statistical models (like

ARIMA, GARCH, linear regression) when dealing with non-linear dynamics and large,
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multi-source datasets. However, I sometimes use simpler models as benchmarks or sanity
checks, especially when markets are calm—the simpler approach can be more robust and
interpretable in those scenarios.

7. Managing Market Dynamics

To handle shifting market dynamics, I implement:

e Model retraining cadence every 2—4 weeks.

o Regime detection algorithms to switch between bull, bear, and sideways models.

e Scenario and stress testing, including simulation of shocks like oil-price spikes or

interest-rate changes.

e Real-time event monitoring, integrating macroeconomic news and alerts to adjust

models or pause signals during high-volatility events.

8. Effective & Challenging ML Techniques
I rely heavily on tree-based models (like XGBoost/LightGBM) and LSTMs—they balance
accuracy with interpretability. In contrast, CNNs applied to price charts and reinforcement
learning have underperformed or been too noisy for production. I’ve seen some success with
transformer-based time series models, but they come with steep compute costs and latency
concerns.
9. Potential Enhancements
To improve usability and reliability, I’d like:

o Integrated pipelines incorporating real-time macroeconomic, earnings, and

sentiment feeds.

e Risk-aware ML models that jointly predict returns and volatility.
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o Interactive dashboards with signal explainability and anomaly alerts.

e AutoML tools fine-tuned to financial tasks for faster iteration and benchmarking.

10. ML Integration in Investment Decisions
My approach:

o Start by using ML to screen or rank investment opportunities, not for full automation.

e Always run backtesting and forward-testing in real-time shadow environments.

e Use ML signals as inputs to a broader decision framework including human oversight

and macro analysis.

o Emphasize risk controls and interpretability at every stage.

By doing this, I treat machine learning as a trusted co-analyst, not a black-box oracle.

Participant 2 — Portfolio Manager at a Mid-Size Asset Manager

1. Use of ML in Investing

I’ve implemented a hybrid platform: LightGBM and ensemble models trained on sector-level
financials, macro data, and sentiment from earnings transcripts. These models output ranking
signals for thousands of stocks weekly. By combining fundamental metrics (e.g., P/E,
EBITDA growth) with sentiment trends, I’ve improved alpha by ~8% year-over-year
compared to traditional quant models. The system is modular: if sentiment is unreliable
during a stress period, I can downweight it.

2. Benefits & Drawbacks of ML

ML excels at large-scale processing and revealing subtle signals across thousands of tickers.

It can adapt to new data faster than static rules-based systems. But it's vulnerable to regime
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shifts and black swan events and often fails to pick up on breaking news unless retrained in
real-time. Maintaining data pipelines and interpretability is also a resource-intensive effort
within our team.

3. Evaluating Model Accuracy

I rely on:

o Walk-forward cross-validation over 60-day windows.
e Realistic transaction cost and slippage modeling.
e Rolling out in paper-trading mode to test signals before full deployment.

e Monitoring continuous metrics: Sharpe, max drawdown, hit rate, and turnover.
Performance monitoring is automated, and alerts fire if any metric deviates beyond

tolerance thresholds.

4. Challenges & Mitigations
Main hurdles:

o System latency: I built low-latency inference APIs to recompute signals intraday.
o Data integrity: I use redundant vendors and cross-check schemes to avoid bad ticks.

o Explainability for compliance: I generate signal dashboards with SHAP and LIME

to explain why top 10 stock picks made the cut.

5. Importance of Interpretability

Clients ask why we bought or sold a position—SHAP waterfall plots answer that. I lead
monthly model review meetings, showing which features contributed most to portfolio
moves. This not only builds client confidence but also helps our portfolio teams spot model

drift or changes in factor dynamics.
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6. ML vs. Traditional Models

Our analysis shows that ML-based factor models outperform classic linear factor models
during high-volatility or non-linear events by ~2% alpha, but underperform in sideways,
mean-reverting periods. That’s why we switch to a traditional factor overlay whenever
regime indicators signal calm markets.

7. Managing Market Dynamics

[ use:

e Volatility regime detection (a la VIX/Yield spread) to switch modes.

e Monthly retraining on latest data carries the models forward.

e Scenario analysis: we simulate interest-rate hikes, trade war scenarios, oil shocks and

feed them through the system to check signal stability.

8. Effective & Challenging Techniques

Our strongest models are XGBoost and LightGBM, trained on tabular financial/macro data.
We’ve also experimented with RNNs for time-series trends but encountered issues with noisy
gradients and long training times. Multi-modal models (price + text) show promise but
require better data alignment.

9. Potential Enhancements

To enhance reliability, I'd like:

e Automated model versioning with interpretability summaries per release.

e Volatility-adjusted outputs that suggest both expected return and risk.

o Real-time alerting tied to macro data drops or breaking news that affect sentiment

inputs.
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10. ML Integration in Decision-Making
We integrate ML via a decision pyramid:

1. Universe creation using ML rankings

2. Human filtering

3. Risk overlay layer

4. Execution via schedule/time slicing
This approach fuses the quantitative speed of ML with portfolio manager intuition—

creating an efficient, yet controlled strategy.

Participant 3 — Data Scientist at Fintech Startup

1. Use of ML in Investing

In my fintech firm, I've built a fully automated pipeline: ingesting minute-level market data,
macro updates, and Twitter sentiment. We feed this into a transformer-based time-series
model for intraday alpha generation, complemented with a sentiment-analysis module trained
on financial news. The result: ~7% intraday alpha with <0.5% drawdown in live simulation.
It’s computationally expensive, but the edge has been convincing.

2. Benefits & Drawbacks of ML

The strength lies in rapid adaptation and multi-source integration text, price, macro all at
scale. On the flip side, the cost and complexity of training these models especially deep
networks are substantial. Also, with frequent retraining comes model drift detection, which
needs its own monitoring system.

3. Evaluating Model Accuracy

I rely on:
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o K-fold cross-validation over 1-minute windows.

o Monte Carlo backtesting over historical volatile periods.

o Live A/B testing: half a portfolio driven by the model, half by benchmark.

o Performance is assessed via alpha, beta, Sharpe, and turnover-adjusted cost metrics.

4. Challenges & Mitigations
We face challenges like:
o Data drift we built pipelines to detect changes in feature distribution and trigger

retraining.

o Explainability integrated SHAP dashboards help us troubleshoot bad days.

e Scaling latency GPU-parallelized inference handles sub-second sentiment analysis at

scale.

S. Importance of Interpretability

Every predictor in our dashboard includes a SHAP bar chart explaining its influence on the
output. We also hold weekly reviews where unusual signal patterns are investigated
manually, comparing returned SHAP explanations with real-world triggers (like earnings or
tweet storms).

6. ML vs. Traditional Models

In our R&D, ML notably transformer models outperform ARIMA and linear regression
during high-frequency prediction tasks. That said, for long-horizon forecasts, classical
econometric models sometimes outperform, especially when intraday noise dominates.

7. Managing Market Dynamics

We’ve implemented:
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e Online learning to adapt models intraday.

o Regime classifier layer: a parallel model tracks volatility and deactivates alpha

signals if market risk becomes too high.

o Stress scenarios, including real-time simulation of macro shocks, to validate

immediate risk controls.

8. Effective & Challenging Techniques
Our go-to models:

e Transformers for time-series generation

e Gradient boosting on macro + sentiment data
Deep RNNs and CNNss struggled with noisy labels and were highly resource

intensive.

9. Potential Enhancements

Better use of real-time alternative data (e.g., satellite traffic, consumer sentiment). Also,
improvements to embedded interpretability and uncertainty quantification so the system
knows when it shouldn’t trade.

10. ML Integration in Decision-Making

Our pipeline is fully automated: feature — signal — portfolio construction — order
execution—with stop-loss layers. That said, risk managers hold veto power on signals they

deem unsound, combining ML outputs with contextual expertise.

Participant 4 — Portfolio Manager at Family Office
1. Use of ML in Investing
I implemented a hybrid quant-fundamental strategy using an ensemble of random forest

110



models and shallow neural nets to rank global equities by expected return. I also augment this
with daily sentiment scores extracted from newswire via NLP pipelines. The resulting model
has improved net returns by ~6% annualized, with drawdown correlation to the S&P while
increasing diversification across sectors.

2. Benefits & Drawbacks of ML

The main benefit is that ML discovers multi-dimensional factor exposures that human-
designed factors miss. The downside: maintaining clean, normalized data across dozens of
data sources is time-consuming and expensive. Also, model blindness to sudden regime
changes remains a concern.

3. Evaluating Model Accuracy

My evaluation process includes:

o Time-series cross-validation to preserve autocorrelation

o Ensemble cross-tests between models to ensure consistency

o Live shadow portfolios before deployment

e Tracking metrics like alpha, beta, max drawdown, and conditional VaR, as well as

P&L distribution statistics.

4. Challenges & Mitigations
Problems I’ve tackled include:

e Noisy labels resolved with smoothing and manual flagging of outliers.

e Overfitting | apply L1/L2 regularization and limit depth on decision trees.

o Transparency we hold quarterly stakeholder reviews with SHAP dashboards.
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5. Importance of Interpretability

Essential—for both regulatory compliance and investor confidence. I generate SHAP reports
comparing expected vs. actual model rationales and ensure that every crowd-source manager
can read why a model made a given call.

6. ML vs. Traditional Models

While ML consistently generates ~1-2% excess alpha over traditional factor models
(especially during transitions), statistical models often show better drawdown control in
sideways markets. This underscores the need for hybrid model architecture.

7. Managing Market Dynamics

I conduct monthly retraining, augmented by regime detection triggers. I also run scenario
simulations for example, rate hikes or geopolitical events to evaluate timing and signal
reliability under stress.

8. Effective & Challenging Techniques

Random Forest and gradient boosting deliver high signal quality with relatively low
overhead. In contrast, deep learning models especially CNNs applied to technical charts were
overkill and offered no clear benefit.

9. Potential Enhancements

I’d like better tools to model nonlinear risk measures, such as drawdown risk directly within
ML frameworks. Also, unified pipelines combining alpha, risk, and execution signals would
streamline operations.

10. ML Integration in Decision-Making

Our standard process:

1. Run ML-generated ranking signals weekly

2. Review top 50 in team meeting
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3. Check risk overlay and schedule rebalances

4. Execute over a 2—3-day window
ML supports the process it doesn’t replace it, ensuring human oversight remains

central.

Participant 5 — Academic Researcher in Financial Al

1. Use of ML in Investing

I test various models (random forests, gradient boosting, RNNs) on multi-modal datasets
combining fundamentals, macro signals, and textual data (e.g. SEC filings). I then blend them
using a meta-model that provides monthly alpha predictions. My peer-reviewed studies show
a 10% improvement in prediction accuracy versus benchmark models, especially when
sentiment features are included.

2. Benefits & Drawbacks of ML

ML provides unmatched flexibility in fusing structured and unstructured data and capturing
nonlinear dependencies. Yet it’s data-hungry, resource-intensive, and prone to overfitting,
unless regularized carefully. Also, pure ML models often overlook critical economic regimes
or structural changes in markets.

3. Evaluating Model Accuracy

Evaluation includes:

e Nested cross-validation for honest error estimation.

o Backtesting on out-of-sample periods covering 2008—-09 and 2020.

e Monte Carlo scenario simulations altering macro variables.
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e Recording metrics like ROC AUC, Sharpe ratio, drawdown, and calibration plots to

assess risk-adjusted accuracy.

4. Challenges & Mitigations

Academic data is often limited, so I simulate real-time feeds using APIs, and augment with
textual sentiment features. I avoid overfitting by using dropout, regularization, early stopping,
and validation on unseen data. I also use SHAP for interpretability, ensuring my papers
include model rationales.

5. Importance of Interpretability

In academia, interpretability is critical for reproducibility and peer review. I integrate layer
wise relevance propagation and SHAP analyses in all my publications, allowing readers to
understand why certain features contribute to alpha.

6. ML vs. Traditional Models

In my controlled studies, ML models outperform econometric benchmarks by ~8%,
especially when using alternative data. But when volatility is low, the gap narrows—and
simple models often outperform in inference speed and interpretability.

7. Managing Market Dynamics

I adopt sliding-window training, incremental learning, and include macro and regime
variables in models. I stress-test with synthetic shocks (e.g., rate spikes) and ensure models
include uncertainty quantification to flag low-confidence predictions.

8. Effective & Challenging Techniques

Gradient boosting and shallow neural nets work best for my tasks. Deep networks (like CNNs
on price patterns) were too noisy, and transformer architectures required more labeled data

than [ had available.
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9. Potential Enhancements

Enhanced uncertainty modeling, tighter integration of economic theory priors, and more
sophisticated multi-task learning frameworks (predicting return, volatility, regime
simultaneously) would make ML more reliable in finance.

10. ML Integration in Decision-Making

My recommended workflow:

1. Build hybrid models that rank assets monthly
2. Produce explainability reports
3. Present top picks to portfolio committees

4. Monitor model performance and retrain before each new cycle
This approach integrates computational rigor with clear human decision-making and

oversight.
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Definition of terms and abbreviations

FFT- Fast Fourier Transform

DFT- Discrete Fourier Transform

FT- Fourier Transform

PSD- Power Spectral Density

CSV- Comma Separated Value

MACD - Moving Average Convergence Divergence

TF-IDF- Ensemble deep learning framework for stock market data prediction
NN- Neural Network

LSTM- Long short-term memory

RNNs- Recurrent neural networks

SIWOA- Self-Improved whale optimization algorithm

DBN- Deep Belief network

AR- Autoregression Model

ARMA- Autoregressive Moving Average Model

ARIMA- Autoregressive Integrated Moving Average Model
OLS- Ordinary Least Square

SARF- Sentiment Augmented Random Forest

SARF-MC - Sentiment Augmented Random Forest, Monte Carlo
RF- Random Forest

CAGR- Compounded Annual Growth Rate

BERT- Bidirectional Encoder Representations from Transformers

RAG- Retrieval-Augmented Generation
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