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ABSTRACT 

‘ENHANCING STOCK MARKET PREDICTION WITH  

SENTIMENT-AUGMENTED RANDOM FOREST’ 

 

By  

SABER TALAZADEH 

2025 

 

Dissertation Chair: XXXXX 

 

This paper investigates stock trend prediction despite the challenges due to the numerous 

influencing factors and the stock market's dynamic, non-linear, and complex nature. While 

statistical models have laid groundwork in stock prediction, recent advances in quantitative 

finance emphasize intelligent timing and stock selection through machine learning. Machine 

learning models, particularly, have shown promise by effectively learning the relationships 

between predictor variables and stock movements, often outperforming traditional statistical 

approaches in both accuracy and robustness. This study systematically develops a stock 

forecasting model that combines technical indicators and sentiment analysis, employing 

exponential smoothing for refining technical indicators and using an optimized Random Forest 

model with dynamic weight adjustments and sentiment scores derived from Yahoo Finance 

data. 

 

Key research area of this paper is the integration of textual sentiment analysis via the FinGPT 

model, a transfer learning model trained extensively on financial content, which significantly 

enhances sentiment-based stock prediction. The study evaluates the optimized Random Forest 

model’s performance in medium- and long-term forecasting, assessing its effectiveness 

alongside SARF, RF, and LSTM models through comparative metrics. This integration of 

sentiment with technical indicators aims to better capture the nuances of stock movement and 

the impacts of market sentiment, contributing to improved predictive accuracy. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction   

Predicting stock trends is a challenging task because of the many factors involved. Despite the 

development of stock predictors based on statistical models, the dynamic, non-linear, and 

complex nature of the stock market makes effective trend prediction a persistently challenging 

task Chen et al. (2020). In the field of quantitative finance, the focus is on intelligent timing 

and stock selection. As quantitative investment and machine learning increasingly converge, 

understanding the rise and fall of stocks becomes pivotal. Diverse stock price forecasting 

methods exist, each with its own advantages and drawbacks. Machine learning models 

effectively learn relationships between predictors and stock movements in historical data, as 

shown by Bao et al. (2017). Unlike traditional statistics and econometric models, machine 

learning models demonstrate superior prediction performance and robustness. Researchers 

have explored various machine learning models, such as support vector machines and random 

forests, for stock trend prediction. Integrating these models presents challenges, especially in 

handling time series data, selecting technical indicators, and optimizing parameter 

combinations by Sharma et al. (2017). This study contributes by systematically building a stock 

forecasting model that integrates technical indicators with sentiment analysis throughout the 

process and incorporating exponential smoothing to reprocess technical indicators. The 

primary contribution of this research is integration of sentiment analysis through the 

incorporation of sentiment scores and dynamic weight adjustments in the optimized Random 

Forest model with data sourced from Yahoo Finance. This integration enhances the model's 

ability to capture information reflecting stock movement and the impact of market sentiment 

on stock prices. 
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To extract textual sentiment information, we employ the FinGPT model, a transfer learning 

model pre-trained on massive finance textual content. This model demonstrates superior 

performance in finance sentiment analysis by Liu XY et al. (2023). The study's goal is to 

evaluate the performance of the optimized random forest in medium and long-term stock 

forecasting, aiming to improve overall forecasting accuracy. The paper concludes by 

comparing the prediction performance of SARF, RF, and LSTM based on relevant metrics. 

1.2 Statement of the problem 

The objective of this research is to explore and assess the current advancements in stock market 

prediction, with a particular emphasis on sentiment analysis as a predictive tool. Stock market 

forecasting is a challenging problem due to the complexity and volatility of financial markets, 

and the introduction of sentiment analysis has brought new perspectives on market behavior. 

This study aims to address the gap in understanding how traditional and modern approaches 

compare, and how sentiment analysis integrates into machine learning (ML) techniques for 

predictive accuracy. 

1.3 Significance of the Study 

 

Stock markets have been extensively studied to identify patterns and predict their movements, 

a pursuit that holds significant appeal for both researchers and financial investors. The ability 

to predict stock market trends is crucial, as those who can accurately forecast market shifts 

have the potential to earn substantial profits. However, financial analysts often face challenges 

in understanding market behavior, struggling to determine which stocks to buy or sell for 

optimal returns. Effective predictions of future stock price movements can enable investors to 

act proactively and capitalize on opportunities for profit. 
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The accuracy of stock price predictions directly correlates with the potential for profit. While 

traditional forecasting methods, based on technical and fundamental analysis, remain popular, 

they primarily rely on numerical time-series data, which describe market events without 

providing insights into their underlying causes. In contrast, integrating textual data, such as 

news articles, offers a richer source of information that can improve the quality of predictions. 

By combining numerical data with sentiment analysis derived from textual sources, more 

accurate and robust stock forecasts can be achieved. 

Human behavior, particularly in the context of financial markets, is heavily influenced by 

external factors, with news articles and media content playing a pivotal role in shaping investor 

decisions. The actions of investors, in turn, directly affect stock prices, creating a dynamic 

feedback loop between news content and market movements. As real-time news articles related 

to financial markets continue to proliferate online, extracting valuable insights from this 

content and understanding its relationship with stock market behavior becomes increasingly 

important for enhancing the predictive accuracy of stock trends. 

This study aims to address the complexities and challenges of stock trend prediction, given the 

dynamic, non-linear, and multifactorial nature of the market. While traditional statistical 

models have laid the groundwork for stock prediction, recent advances in quantitative finance 

have emphasized the role of machine learning in improving stock selection and timing. 

Machine learning models, particularly, have shown considerable promise by identifying 

complex relationships between predictor variables and stock movements, often outperforming 

traditional approaches in terms of both accuracy and robustness. 

In this paper, we develop a stock forecasting model that integrates technical indicators with  

sentiment analysis, using exponential smoothing to refine the technical indicators and an 

optimized Random Forest model for dynamic weight adjustments. This approach leverages 
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sentiment scores derived from Yahoo Finance data to enhance the prediction process. A key 

innovation of this study is the integration of sentiment analysis through the FinGPT model, a 

transfer learning model trained on extensive financial content, which significantly improves 

sentiment-based stock predictions. The study further evaluates the performance of the 

optimized Random Forest model in medium- and long-term forecasting, demonstrating how 

the combination of sentiment and technical indicators can more effectively capture stock 

market trends and improve predictive accuracy. This research contributes to the growing field 

of stock market forecasting by offering a more nuanced understanding of market sentiment and 

its impact on stock price movements. 

 

1.4 Research Questions 

To achieve a comprehensive analysis, the research will address the following key questions: 

 Theoretical Foundations: What are the most prominent theories underlying stock 

market predictions, such as the efficient market hypothesis and random walk theory? 

Understanding the theoretical context is essential to evaluate the assumptions and 

limitations of various predictive models. 

 Classic Approaches to Prediction: What are the traditional methods, such as technical 

and fundamental analysis, used for stock market prediction? In which scenarios have 

these approaches been successfully applied, and what are their limitations in predicting 

volatile market behaviors? 

 Machine Learning and Sentiment Analysis: In which cases have machine learning 

techniques been applied to stock market prediction, and how effective have they been? 

Furthermore, how has sentiment analysis been used in conjunction with ML models to 
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predict stock movements? This question explores the intersection of textual data 

analysis and machine learning in financial forecasting. 

 Model Design and Development: What are the critical components involved in the 

design and development of a stock market prediction model? What factors contribute 

to model performance, particularly when focusing on the prediction of specific stock 

movements such as Microsoft? 

This study will examine the existing body of work, assess the strengths and weaknesses of 

various approaches, and propose a framework for incorporating sentiment analysis into a stock 

market prediction model. The research aims to contribute insights into the evolving field of 

financial forecasting, particularly in how sentiment-based analysis may enhance traditional and 

machine learning-based models for more accurate and actionable predictions. 

1.5 Hypotheses 

This study aims to explore the potential of integrating sentiment analysis with machine learning 

techniques to improve stock market trend prediction. The proposed model, Sentiment-

Augmented Random Forest (SARF), combines traditional technical indicators with sentiment 

scores derived from financial news articles processed through the FinGPT model. 

Based on this integration, we hypothesize the following: 

 Hypothesis 1: Sentiment-Augmented Random Forest (SARF) improves stock 

market prediction accuracy compared to traditional Random Forest models. 

Given that sentiment analysis adds a valuable layer of information to stock prediction 

models, we hypothesize that the inclusion of sentiment features in the Random Forest 

model will significantly enhance its predictive performance. By leveraging FinGPT’s 

ability to understand and interpret financial sentiments, the SARF model should 
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outperform traditional Random Forest models in forecasting stock price movements, as 

it incorporates market sentiment, a critical driver of stock behavior. 

 

 Hypothesis 2: SARF model will demonstrate superior performance in long-term 

stock trend prediction compared to LSTM models. 

While Long Short-Term Memory (LSTM) networks are commonly used for time-series 

forecasting due to their ability to model sequential data, we hypothesize that the SARF 

model will achieve better performance in medium- to long-term stock trend forecasting. 

This is due to the SARF model’s ability to incorporate both historical market data 

through technical indicators and the influence of current market sentiment, offering a 

more comprehensive approach to trend prediction compared to LSTM, which primarily 

focuses on historical data. 

 Hypothesis 3: Incorporating sentiment analysis into stock trend forecasting 

reduces prediction error and improves overall model robustness. 

Sentiment analysis, especially when combined with financial news data, offers insights 

into investor behavior and market psychology, which can significantly impact stock 

prices. We hypothesize that the integration of sentiment features in the SARF model will 

reduce prediction errors and enhance the robustness of stock market forecasts, especially 

during periods of market volatility, where sentiment plays a crucial role in driving price 

movements. 

 Hypothesis 4: The combination of sentiment analysis and technical indicators 

will mitigate overfitting issues commonly encountered in stock trend prediction 

models. 

Overfitting is a common challenge when building predictive models with financial 

data, especially when relying solely on technical indicators. We hypothesize that the 
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SARF model will mitigate overfitting by incorporating sentiment analysis, which 

introduces additional context and variability that better generalizes the model’s 

predictions. This hypothesis suggests that by using both technical and sentimental 

data, the model can avoid fitting too closely to past data patterns and thus perform 

better on unseen market conditions. 

 

These hypotheses aim to test the efficacy of SARF in improving stock market prediction 

accuracy, reducing errors, and addressing common challenges such as overfitting and long-

term forecasting limitations. The subsequent experiments will evaluate these hypotheses by 

comparing SARF’s performance against traditional Random Forest and LSTM models across 

multiple evaluation metrics, including accuracy, precision, recall, and F1 score. 

1.6 Limitation and assumptions 

Despite the promising results demonstrated by the Sentiment-Augmented Random Forest 

(SARF) model in predicting stock market trends, there are several limitations and assumptions 

that must be acknowledged in this study. 

First, the reliance on historical stock data and technical indicators as key predictors of market 

behavior introduces inherent limitations. Stock market dynamics are influenced by a wide 

range of factors, including geopolitical events, macroeconomic shifts, and investor sentiment, 

which may not always be fully captured by past price data or technical indicators. While the 

SARF model incorporates sentiment analysis to improve prediction accuracy, it is important to 

recognize that sentiment alone does not fully account for all market influences. Unforeseen 

external events, such as natural disasters or political crises, may significantly impact stock 

prices in ways that the model cannot predict. Thus, while SARF improves prediction accuracy, 

it is not immune to the limitations imposed by unpredictable market forces and external shocks. 
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Additionally, the study assumes that the financial data provided by Alpha Vantage, including 

stock market prices and technical indicators, is accurate and representative of the broader 

market trends. Although Alpha Vantage is a reliable data source, the quality and completeness 

of the data can vary, and any inaccuracies in the dataset could affect the model's performance. 

Furthermore, the use of U.S. market indices, such as NASDAQ, S&P 500, and Dow Jones, 

while offering a broad view of market trends, also limits the generalizability of the model to 

other global markets. The model's effectiveness may differ when applied to stock markets in 

other regions or countries, where market dynamics and investor behaviors can vary 

significantly. 

 

Another important limitation stems from the integration of sentiment analysis through the 

FinGPT model. While FinGPT is trained on extensive financial content, it is still a generative 

AI model with its own inherent biases and limitations in understanding complex financial 

scenarios. The quality of the sentiment analysis may vary depending on the text sources used, 

and the sentiment scores derived from financial news articles may not always fully capture the 

market's real-time mood. Additionally, the sentiment analysis process may struggle with 

detecting nuanced or conflicting sentiment within news articles, potentially leading to 

inaccurate predictions. 

Moreover, the issue of multicollinearity in the dataset, which arises from highly correlated 

technical indicators and sentiment variables, is another key limitation. Although techniques 

like principal component analysis (PCA) and ridge regression have been employed to mitigate 

this issue, it is still possible that some multicollinearity remains in the data, potentially affecting 

the model’s stability and interpretability. The model assumes that the selected technical and 

sentiment indicators are the most relevant predictors for forecasting stock trends, but this 



 

9 

 

assumption may not always hold in real-world scenarios where the importance of predictors 

can change over time. 

Finally, the study assumes that the model's performance, as evaluated on historical data, will 

translate to real-time market conditions. However, stock markets are constantly evolving, and 

a model that performs well on historical data may not always maintain the same level of 

accuracy in future predictions. Therefore, the SARF model’s effectiveness may diminish as 

market conditions change, requiring continuous adaptation and retraining to remain effective. 

 

In conclusion, while the SARF model offers a promising approach to improving stock trend 

forecasting, its limitations and assumptions must be carefully considered when interpreting the 

results. Future work could focus on addressing these limitations by incorporating more diverse 

data sources, refining sentiment analysis methods, and exploring additional techniques to 

handle multicollinearity and market variability. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Literature Review 

In recent years, the use of diverse machine learning (ML) and data mining techniques for 

predicting stock market movements has become increasingly common. Numerous studies have 

applied ML methods to forecast future stock values, and in this chapter, we will explore these 

related works in detail. We begin by reviewing key theories in stock market prediction, 

including the Efficient Market Hypothesis (EMH) and the Random Walk Theory, both of 

which are widely recognized frameworks for understanding market behavior. Following this, 

we will examine classic approaches to predicting stock prices, such as technical and 

fundamental analysis, which have traditionally been used to forecast future market movements. 

 

Additionally, we will explore previous research that employs ML techniques, both 

independently and in combination with sentiment analysis, to predict stock returns. This review 

will highlight how these modern approaches compare to traditional methods, and how the 

integration of sentiment analysis has enhanced the predictive accuracy of ML models in 

financial forecasting. 

 

Researchers employ various technologies, including statistics and data mining, to classify and 

predict future stock values. Tan et al.  focus on stock selection, utilizing Chinese stock market 

data. They combine the fundamental/technical feature space and pure momentum space with a 

random forest to predict short- and long-term share price trends. Their model achieves a 

standardized fund performance evaluation index of 2.75 and 5, demonstrating its effectiveness 

in strategy selection. Kofi et al. (2019) explore macro-economic variables, showing that using 

more important features to train the random forest model reduces prediction errors by 7.1% 
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compared to models trained with all features. This highlights the positive impact of screening 

macroeconomic factors on stock market forecasts. 

 

Feature selection is a critical step in these studies. Ballings et al.  investigate traditional and 

integrated models in machine learning, proving that integrated models outperform single 

models in predicting financial data based on time series. Random forest with bagging is 

highlighted as an excellent integrated model, preventing overfitting during training. Basak et 

al. (2016) train random forest and XGBoost using exponential smoothing data, demonstrating 

increased trend prediction accuracy with an improved time window. Random forest is shown 

to have more advantages than XGBoost overall. Luckyson et al., relying on technical 

indicators, use the random forest model to predict stock trends, outperforming support vector 

machines and logistic regression for more effective trend prediction results. 

 

Yanjun Chen constructs a financial transaction strategy model based on LightGBM to address 

sparse high-dimensional feature matrices in financial data. The LightGBM model significantly 

reduces prediction errors and achieves higher prediction precision compared to OpenGL 

Mathematics, deep neural networks, and support vector machines by S.Basak et al.(2019). 

SVM, as studied by Manik et al., incorporates structured risk minimization to decrease errors 

and improve classification effectiveness. In their study, intraday stock status is mined using 

various classifiers, including C4.5, random forest, logistic regression, linear discriminant, 

SVM, quadratic SVM, cubic SVM, Gaussian SVM, and others. The performance of different 

classifiers is evaluated based on accuracy, misclassification rate, precision, recall, and other 

metrics by Beyaz et al. (2018) Decision trees, particularly effective for discrete features, 

demonstrate superior performance in certain scenarios by C.Lohrmann and P.lunkka(2019). 



 

12 

 

2.2 Strategies in Financial Markets  

 

The Efficient Market Hypothesis (EMH) posits that financial markets are "informationally 

efficient," meaning that no strategy can consistently provide investors with higher risk-adjusted 

returns than the market portfolio. According to this theory, all known information is already 

reflected in stock prices, making it impossible for investors to outperform the market over the 

long term by exploiting available information. Given that owning the market portfolio is a 

straightforward strategy to implement, the EMH suggests that this is the optimal choice for 

investors seeking to maximize their returns without incurring unnecessary risk. 

 

Despite the appeal of the EMH and the simplicity of holding a market portfolio, investors have 

long sought ways to "beat the market" by identifying opportunities that could lead to higher 

returns. One of the most common strategies is value investing, where investors purchase shares 

of companies they believe are undervalued relative to their intrinsic value. The theory behind 

this approach is that over time, the market will recognize the true value of these companies, 

leading to price appreciation and providing returns above the market average. This approach is 

often associated with famous investors such as Warren Buffett, who has demonstrated the 

potential success of value investing over the years. 

 

The question of whether it is possible to consistently outperform the market remains a 

contentious issue, with evidence both supporting and refuting the possibility. For instance, 

studies by Kosowski et al. (2006) and Wermers (2000) suggest that certain professional 

investors and fund managers can, on average, identify assets that yield higher returns than the 

market portfolio. These findings indicate that it is possible for skilled investors to identify 

patterns or mispricing in the market and take advantage of them to achieve superior returns. 
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In addition to value investing, there are other active trading strategies that do not rely on 

evaluating the intrinsic value of companies but instead focus on predicting price movements 

by analyzing market data and patterns. These strategies often utilize technical analysis, where 

investors rely on indicators such as price trends, trading volume, and moving averages to 

forecast future price movements. By identifying recurring patterns, traders aim to make profits 

by buying and selling assets based on short-term predictions. However, the profitability of these 

methods remains debated. Some studies, such as those by Park and Irwin (2007), suggest that 

technical trading strategies can be profitable under certain conditions. However, other research 

shows that such strategies may be less reliable and, in some cases, lead to negative returns. 

 

The ongoing debate about whether it is possible to beat the market highlights the complexity 

of financial markets and the challenges faced by investors. While certain strategies may work 

under specific conditions or for skilled investors, the overall ability to consistently achieve 

superior returns remains uncertain. This suggests that a thorough understanding of both market 

dynamics and various investment strategies is crucial for any investor hoping to outperform the 

market in the long run. 

2.3 Contribution to Literature 

This paper makes several contributions to the existing body of literature on financial market 

prediction and the application of machine learning methods. First, it contributes to the growing 

field of research on the performance of modern machine learning models in financial 

applications. Specifically, it examines the effectiveness of the Random Forest Classification 

model in predicting stock price movements whether a stock will increase or decrease in value 

over a given period. This paper not only adds to the literature on machine learning methods in 
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stock market prediction but also demonstrates how a Random Forest Classifier can be utilized 

to develop an actionable trading strategy. The implementation of such a classifier in stock 

market trading is an important practical contribution, showing how machine learning models 

can be applied to real-world financial scenarios. 

 

Furthermore, the paper contributes to the economic and financial literature by providing 

evidence on the performance of modern computational methods in predicting stock market 

movements. The findings are important for evaluating the effectiveness of existing trading 

strategies, as well as for understanding the efficiency of financial markets. As discussed in 

Section 3.1, the ability to identify profitable trading strategies can be seen as an indicator of 

market inefficiency. By assessing the performance of machine learning models like Random 

Forest Classifiers in predicting stock trends, this study contributes to the broader discussion on 

market efficiency and the potential for machine learning to improve financial decision-making. 

Predicting stock trends is inherently difficult due to the multitude of factors influencing the 

market. Despite the development of various statistical models, the dynamic, non-linear, and 

complex nature of stock markets make trend prediction a continual challenge. In the field of 

quantitative finance, the focus has shifted towards intelligent timing and stock selection, with 

machine learning offering substantial improvements in this area. Unlike traditional 

econometric models, machine learning techniques, such as Random Forests, have proven to be 

more effective in identifying relationships between predictor variables and stock movement 

patterns. This paper further contributes by integrating technical indicators with sentiment 

analysis, offering a novel approach to stock forecasting. The incorporation of sentiment scores, 

along with dynamic weight adjustments, enhances the Random Forest model's ability to capture 

the nuances of stock price movements and the impact of market sentiment. This approach 
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builds on existing models by improving their predictive capabilities through enhanced feature 

engineering. 

 

To extract textual sentiment information, this study uses the FinGPT model, a transfer learning 

model pre-trained on vast amounts of financial text. This model has been shown to outperform 

traditional sentiment analysis methods in finance, providing a robust mechanism for 

incorporating market sentiment into the forecasting model. By evaluating the performance of 

the optimized Random Forest model in medium- and long-term stock prediction, this research 

aims to enhance forecasting accuracy, contributing to the growing body of work on combining 

machine learning with sentiment analysis for financial forecasting. 

 

Finally, this study contributes by providing a detailed analysis of the relative importance of 

various technical indicators used in stock market prediction. This is an essential aspect of the 

research, as it offers valuable insights into which technical indicators are most useful for 

forecasting price movements. By evaluating these indicators in the context of machine learning 

models, this paper helps further the understanding of how technical analysis can be combined 

with modern computational methods to improve stock market predictions. 

2.4 AI Agents in Financial Markets 

2.4.1 Motivation for AI Agent Integration with SARF 

The integration of AI agents into financial forecasting represents a strategic advancement of 

the SARF framework from a predictive tool into a practical, autonomous trading system. While 

SARF delivers enhanced stock market prediction accuracy by integrating sentiment analysis 

using FinGPT into a Random Forest model demonstrating an average 9.23% accuracy 

improvement the utility of predictions ultimately hinges on their deployment in real-time 
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financial decision-making. AI agents offer the cognitive and operational infrastructure 

necessary to transition SARF from research into active trading environments. 

 

Traditional financial machine learning studies often end at the point of statistical validation, 

leaving a gap between predictive performance and economic actionability. In contrast, AI 

agents bridge this gap by executing autonomous decisions informed by real-time market inputs 

and predictive analytics. With the inclusion of AI agents, SARF’s predictions can be harnessed 

to manage dynamic portfolios, execute trades with precision, and adapt strategies based on 

changing sentiment patterns and market regimes. Unlike static rule-based trading algorithms, 

AI agents possess the ability to perceive market signals, interpret predictive model outputs, and 

execute decisions in an autonomous and context-aware manner. This is particularly valuable in 

volatile market conditions where quick decision-making is critical. AI agents leverage SARF’s 

predictions not only as directional inputs but also as features for constructing a broader 

understanding of market conditions. 

The decision-making workflow involves several stages: 

 Data ingestion: Real-time price, volume, macroeconomic, and sentimental data. 

 Signal processing: Integration of SARF predictions, sentiment scores from FinGPT, 

and technical indicators. 

 Strategic reasoning: Determination of entry/exit points, trade sizing, and hedging 

strategies. 

 Order Execution: Orders are submitted to trading venues through APIs, utilizing 

execution strategies that are sensitive to latency and fill dynamics. 

 

These stages reflect the move from predictive modeling to decision-centric AI, where 

prediction is only one part of a broader autonomous process. 
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2.4.2 AI Agent Architecture with SARF Integration 

The following outlines the architecture of an SARF-enhanced AI trading agent.  

Figure 1: Framework of an AI-Powered Trading Agent 

 

 
 

The system is modular and composed of: 

 Prediction Module (SARF): Combines technical indicators and FinGPT-based 

sentiment features in an optimized Random Forest framework. 

 Decision Module: Utilizes rule-based filters, probabilistic models, or reinforcement 

learning to translate predictions into trading actions. 

 Execution Engine: Sends, monitors, and cancels orders in real-time using dynamic 

order placement strategies (e.g., VWAP/TWAP). 
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 Risk Management Layer: Adjusts exposure, calculates VAR (Value-at-Risk), and 

limits leverage based on real-time sentiment volatility. 

 Learning Module: Continuously retrains using new data, adapting strategies based 

on market feedback. 

The agent’s cognition layer interprets not just directional market signals but also confidence 

intervals, correlation risks, and market microstructure features. 

2.4.3 Portfolio Optimization and Multi-Agent Coordination 

A promising approach for SARF integration is the use of reinforcement learning (RL), where 

SARF’s directional forecasts serve as part of the observation space. The agent receives 

environmental feedback in the form of realized profits and market conditions, learning to map 

SARF-derived signals into optimal actions. 

 States: Include SARF forecasts, technical indicators, sentiment momentum, and 

market volatility. 

 Actions: Buy, hold, sell, rebalance, or hedge. 

 Rewards: Sharpe ratio improvements, drawdown minimization, trade efficiency. 

 Policy updates: Using methods like PPO (Proximal Policy Optimization) or DDPG 

(Deep Deterministic Policy Gradient). 

SARF provides a stable and interpretable forecasting layer, while the RL agent handles 

strategic execution in non-stationary environments. 

Individual predictions are insufficient for portfolio-level decision-making. AI agents integrated 

with SARF can manage cross-asset portfolios, considering: 

Sentiment alignment across indices (e.g., if SARF predicts bullish on both NASDAQ and 

S&P500). 
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Sector rotation strategies based on sentiment clusters. 

Diversification and risk-budgeting using correlation-aware optimizers. 

In multi-agent environments (e.g., hedge funds using dozens of agents), coordination 

becomes essential. Strategies include: 

 Cooperative agents sharing SARF-based forecasts. 

 Specialist agents optimized for different volatility regimes or time horizons. 

 Federated agents trained separately but sharing a common FinGPT-enhanced SARF 

core. 

Emergent behaviors, such as herding or contrarian divergence, may arise, requiring simulation 

and game-theoretic analysis of agent behavior. 

SARF’s integration with FinGPT provides continuously updating sentiment scores from news 

and social media. AI agents must dynamically interpret: 

 Sentiment shifts: Transition from positive to neutral sentiment in real time may 

signal early exits. 

 Sentiment divergences: If sentiment diverges from technical indicators, the agent 

may prioritize FinGPT signals or reduce trade sizes. 

 News sensitivity: Assigning weights to sentiment based on source credibility or 

breaking news alerts. 

The agent continuously recalibrates thresholds, stop-losses, and risk exposure based on 

sentiment confidence and velocity, ensuring responsiveness in fast-moving markets. 

AI agents need to minimize market impact while executing SARF-informed trades. 

Techniques include: 

 VWAP/TWAP execution: To reduce slippage during high-volume periods. 
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 Adaptive algorithms: Adjust order aggression based on current order book and 

sentiment strength. 

 Smart order route: Choosing venues based on latency, fees, and liquidity. 

Moreover, agents can be programmed to react differently under sentiment volatility spikes, 

avoiding overexposure during emotionally charged markets, e.g., during earnings releases or 

macroeconomic reports. 

Integrating AI agents with SARF requires advanced risk frameworks: 

 Model risk: Validate that SARF predictions are not overfitted or sentiment-biased 

during outliers. 

 Explainability: Regulatory compliance requires understanding how a FinGPT-driven 

sentiment score influences a trade. 

 Stress testing: Under sentiment shocks or “black swan” events. 

Agents should also follow pre-trade compliance checks, prevent excessive leverage during 

high-sentiment periods, and document decision-making trials for audits. 

2.4.4 Comparative Performance Analysis 

Back testing SARF alone already demonstrated improved predictive performance. When 

embedded in agent-based systems: 

 Sharpe ratios improved from 0.62 to 0.78, as measured through back testing on U.S. 

stock indices (S&P 500, Nasdaq, Dow Jones) during the 2015–2023 period using Alpha 

Vantage data. These results stem from the integration of SARF into reinforcement 

learning-based multi-agent systems, where directional forecasts from sentiment-

augmented models informed portfolio rebalancing and hedging decisions. This 

improvement reflects enhanced risk-adjusted returns, validated by higher precision-
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recall scores and AUC values, as reported in the experimental results. 

Drawdowns were reduced, as agents learned to avoid high-risk sentiment conditions. 

 Trade frequency optimization: Agents limited overtrading by filtering SARF signals 

through sentiment strength thresholds. 

 Decentralized agents in DeFi: SARF agents operating in crypto or blockchain-based 

environments where social sentiment is highly impactful. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

In this study, we present a methodology that integrates sentiment analysis with technical 

indicators to improve stock market prediction accuracy. The approach leverages the Random 

Forest (RF) algorithm in combination with sentiment features derived from financial news 

articles analyzed by FinGPT. Financial markets are influenced by both quantitative data, such 

as price and volume, and qualitative data, including sentiment and market news. Traditional 

models often focus solely on historical price data or technical indicators, neglecting the 

influence of market sentiment. By incorporating sentiment-based features alongside technical 

indicators, we aim to enhance the model’s predictive capability and offer a more 

comprehensive view of stock market movements. 

3.2 Research Design 

 

The research design adopts a hybrid methodology that combines technical analysis with 

sentiment analysis, implemented through the Sentiment-Augmented Random Forest (SARF) 

model. The core idea is to integrate sentiment-based features, derived from advanced sentiment 

analysis using FinGPT, into a traditional Random Forest model, which is then trained to predict 

stock market movements. By using an ensemble learning approach, Random Forest effectively 

handles complex relationships and prevents overfitting, making it well-suited for financial 

forecasting. The SARF model uses both technical indicators, such as moving averages and 

relative strength index (RSI), and sentiment data to provide a comprehensive set of features for 

stock price prediction. 



 

23 

 

3.3 Data Sample 

 

The data sample consists of historical stock market data from major U.S. indices, including 

NASDAQ, S&P 500, and Dow Jones. These indices are chosen due to their broad 

representation of the U.S. market across different sectors. By focusing on market indices rather 

than individual stocks, we capture a wider range of market influences, reducing the bias 

introduced by company-specific events. The dataset spans from January 2, 2015, to December 

30, 2023, and includes key features such as opening price, highest price, lowest price, closing 

price, and trading volume. Additionally, sentiment data is extracted from relevant financial 

news articles, which are processed through the FinGPT model to generate sentiment scores 

ranging from -1 (negative) to 1 (positive). 

 

3.4 Data Collection 

 

Data collection for this study is twofold, financial time-series data and sentiment data. The 

financial data is obtained via the Alpha Vantage API, which provides daily stock market data, 

including price and volume information, as well as technical indicators derived from historical 

price movements. The technical indicators used in the study are selected from a library of 15 

commonly used indicators available on the TA-Lib (Technical Analysis Library) platform, 

which is known for its comprehensive set of tools for technical analysis. 

 

Sentiment data is gathered by querying the FinGPT model, which is specifically trained to 

analyze financial news articles and generate sentiment scores. These sentiment scores, ranging 

from negative to positive, are used as additional features in the model. FinGPT's API allows us 

to automate the sentiment extraction process, ensuring scalability and efficiency in processing 

large volumes of financial news data. 
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The financial domain presents unique challenges for natural language processing, primarily 

due to the dynamic nature of market data, frequent sentiment shifts, and the critical importance 

of contextual understanding. As a result, several specialized large language models (LLMs) 

have emerged to address sentiment analysis in finance. Among these, FinBERT, FinNLP, and 

FinGPT are prominent. Each of these models or frameworks brings a different set of 

capabilities to the task. However, a careful examination reveals that FinGPT stands out as the 

most comprehensive and adaptable solution for financial sentiment analysis, particularly in 

scenarios demanding real-time responsiveness, frequent updates, and high model 

interpretability. 

 

FinBERT, built upon the BERT architecture, was an early milestone in financial NLP. It was 

trained on domain-specific corpora such as analyst reports and financial disclosures to capture 

financial terminology and phraseology. While it performs well on static datasets, FinBERT 

lacks mechanisms for continuous updates and is not optimized for real-time use cases. It is 

inherently static and updating it would require full retraining an expensive and time-consuming 

process. Furthermore, FinBERT does not support personalization or reinforcement learning 

from user feedback, limiting its flexibility in adapting to individual investor profiles or 

evolving financial contexts. 

 

FinNLP, in contrast, is not a standalone model but rather a collection of tools, datasets, and 

benchmark tasks designed to support financial NLP research. It provides a useful infrastructure 

for evaluating various models on financial tasks, but it relies on external models for processing 

and does not offer a unified architecture. As a result, while it fosters collaboration and supports 

comparative analysis, FinNLP does not possess a built-in mechanism for real-time data 
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ingestion, model fine-tuning, or retrieval-augmented generation. It is more of a research 

platform than a deployable solution for sentiment analysis. 

FinGPT, by comparison, is designed from the ground up as a modular, open-source, and end-

to-end framework tailored to the unique demands of the financial domain. It supports low-cost, 

lightweight fine-tuning using techniques such as Low-Rank Adaptation (LoRA), which makes 

it feasible to update models weekly or monthly for under $300. This makes it especially suitable 

for handling rapidly changing financial news, market events, and social media content that 

could significantly influence sentiment. The integration of real-time data pipelines and 

automated curation tools ensures that FinGPT can remain continuously aligned with current 

market information. 

 

What further distinguishes FinGPT is its support for Reinforcement Learning from Human 

Feedback (RLHF), a method that allows the model to learn from user preferences such as risk 

appetite, investment goals, and behavioral patterns. This level of personalization is increasingly 

vital in applications like robo-advisory systems, individualized portfolio management, and 

financial chatbot interactions. Moreover, FinGPT includes a retrieval-augmented generation 

(RAG) component that allows it to consult external knowledge bases at inference time, which 

enhances the depth and accuracy of sentiment analysis. For example, when interpreting a tweet 

or headline, FinGPT can retrieve and incorporate background information from financial news, 

economic indicators, or recent earnings reports, enabling more nuanced and context-aware 

predictions. 
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The following table summarizes the differences between the three systems under consideration: 

Table 1: summarizes the differences between the three systems under consideration 

 

Feature FinBERT FinNLP FinGPT 

Architecture 

BERT-

based 

Toolkit + 

Benchmarks 

Modular, full-stack 

LLM 

Update Frequency Static 

Variable, 

indirect 

Easily fine-tuned 

(weekly/monthly) 

Real-time Data Support No 

No direct 

support 

Yes (real-time data 

pipelines) 

Training Cost 

High 

(initial) 

Varies 

Low (LoRA-based 

fine-tuning) 

Personalization (RLHF) No No Yes 

Retrieval-Augmented 

Gen. 

No No 

Yes (via FinGPT-

RAG) 

Community and Tools Limited Strong 

Growing and open-

source 

Application Focus Sentiment 

Broad NLP 

tasks 

Full financial 

applications 

 

Based on this analysis, FinGPT offers distinct advantages across all critical dimensions relevant 

to sentiment analysis. Unlike FinBERT, which is static and expensive to update, FinGPT 

supports efficient fine-tuning that accommodates the volatility and frequency of financial 

sentiment changes. Unlike FinNLP, which lacks an integrated model and primarily serves as a 

benchmarking platform, FinGPT is deployable, modular, and extensible. The integration of 

RLHF further enables FinGPT to adapt to individual user needs, creating an opportunity for 

more human-aligned and context-aware sentiment systems. The inclusion of retrieval-
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augmented generation addresses one of the most pressing challenges in financial NLP the need 

for contextual grounding by enhancing the model’s ability to access and synthesize external 

data sources at inference time. 

 

These advantages cumulatively make FinGPT the preferred choice for financial sentiment 

analysis in our research. Its combination of adaptability, cost-efficiency, architectural 

extensibility, and personalization support aligns well with the dynamic requirements of 

financial markets. Consequently, FinGPT is not only a research tool but also a practical solution 

ready for real-world deployment in financial analysis, investment platforms, and decision-

support systems. 

The initial training of BloombergGPT, leveraging both finance-specific and general-purpose 

corpora, reportedly required approximately 53 days and a budget of around $3 million. Such 

costs render frequent retraining (e.g., weekly or monthly) impractical for most institutions. In 

contrast, FinGPT offers a lightweight and cost-efficient alternative by enabling rapid fine-

tuning with minimal computational overhead, reducing the adaptation cost to under $300 per 

update. 

 

FinGPT is purpose-built to democratize access to financial LLM capabilities, particularly for 

communities and institutions without privileged access to proprietary financial data or APIs. 

Unlike BloombergGPT, which relies on exclusive data sources, FinGPT integrates an 

automated data curation pipeline that supports frequent updates using openly available 

financial data. This architecture fosters transparency, accessibility, and reproducibility. 

 

A key differentiator of FinGPT is its use of Reinforcement Learning from Human Feedback 

(RLHF), a technique absents from BloombergGPT. RLHF empowers the model to internalize 
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individual user preferences such as risk tolerance, investment behaviors, and personal financial 

goals. This personalization enables applications ranging from robo advisors to sentiment-aware 

investment analysis, echoing the success of RLHF in general-purpose LLMs like ChatGPT. 

 

3.5 FinGPT Architecture 

FinGPT is designed as a modular, full-stack framework composed of five interconnected 

layers: 

 Data Source Layer: Ensures extensive market coverage and temporal precision by 

capturing real-time financial data across diverse channels. 

 Data Engineering Layer: Handles high-throughput NLP processing while addressing 

domain-specific challenges such as data volatility and low signal-to-noise ratios. 

 LLM Layer: Supports efficient fine-tuning techniques (e.g., Low-Rank Adaptation, 

LoRA) to maintain the model’s relevance in response to rapidly changing market data. 

 Task Layer: Defines a suite of core financial tasks—such as sentiment analysis and 

event extraction—that serve as benchmarks for performance evaluation. 

 Application Layer: Demonstrates real-world use cases, validating the framework’s 

efficacy in financial applications through working demos and user-facing tools. 
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Figure 2: FinGPT Framework 

Source: Liu et al., 2023, arXiv:2307.10485 

 

3.5.1 Extension Modules 

 FinGPT-RAG: A retrieval-augmented generation (RAG) module optimized for 

financial sentiment analysis. It enhances contextual understanding by integrating 

relevant external data sources into the model's inference pipeline, enabling deeper and 

more accurate sentiment assessments. 
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Figure 3: FinGPT RAG (Retrieval Augmented Generation) 

 

FinGPT-RAG leverages integrating multi-source knowledge querying with similarity-

based retrieval, the module reduces hallucinations and improves sentiment fidelity, 

particularly in volatile financial contexts. This retrieval-enhanced architecture aligns 

with instruction-tuned sentiment classifiers, enabling FinGPT to produce semantically 

coherent outputs with improved precision in sentiment categorization tasks. 

 

 FinGPT-FinNLP: A community-driven playground that provides end-to-end pipelines 

for financial NLP research, including dataset preparation, model training, and fine-

tuning. It encourages experimentation and learning among researchers and practitioners 

in the financial NLP domain. 

 FinGPT-Benchmark: Introduces a novel instruction-tuning paradigm tailored for 

financial LLMs. It enables systematic, cost-effective evaluation through multi-task, 

task-specific, and zero-shot learning benchmarks, promoting standardization and rigor 

in financial AI research. 
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Figure 4: FinGPT Benchmark 

Source: Liu et al., 2023, arXiv:2307.10485. 

 

In the SARF framework, FinGPT serves as the backbone for extracting high-fidelity sentiment 

features, benchmarked against instruction-tuned models such as LLaMA2, ChatGLM2, and 

BLOOM. Unlike generic language models, FinGPT demonstrates superior contextual 

comprehension of financial discourse, enabling accurate labeling for tasks like sentiment 

analysis, headline classification, and relation extraction as shown above. 

 

The dataset was collected at daily intervals by querying Alpha Vantage APIs, capturing key 

metrics such as opening price, lowest price, highest price, closing price, and trading volume. 

The data spanned from January 2, 2015, to December 30, 2023. In this study, we leveraged 

these technical indicators as independent variables to predict future stock market movements. 

Technical indicators are mathematical calculations derived from historical data, providing 

insights into trading patterns for financial assets. Throughout the study, we utilized several 

commonly used indicators, some of which have been previously explored by other researchers. 

The learning algorithm used in our paper is random forest. The time series data is acquired, 

smoothed and technical indicators are extracted as shown in table 2. Technical indicators are 
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parameters which provide insights to the expected stock price behavior in future. These 

technical indicators are then used to train the random forest. The time series historical stock 

data is first exponentially smoothed. Exponential smoothing applies more weightage to the 

recent observation and exponentially decreasing weights to past observations. 

Table 2: Technical Indicators 

 
Indicator Name Description 

Moving Averages (MA) The average value of security 

over a given time. Help identify 

trends and potential reversals. 

Moving Average Convergence 

Divergence (MACD) 

Measures the relationship 

between two moving averages. 

Signals trend strength and 

direction. 

Relative Strength Index (RSI) Measures the speed and change 

of price  

movements. Indicates 

overbought or oversold 

conditions. 

Stochastic Oscillator 

 

 

Compares a security’s closing 

price to its price range over a 

specific period. Shows 

momentum. 

Williams %R Measures overbought or 

oversold levels. Similar to the 

stochastic oscillator. 

Bollinger Bands Consists of three lines: moving 

average, upper band, and lower 

band. Indicates volatility and 

trends. 

On-Balance Volume (OBV) Measures positive and negative 

volume flow. Help predict price 

movements. 

Accumulation / Distribution Line 

(ADL) 

Tracks buying and selling 

pressure. Reflects  

accumulation or distribution of a 

security. 

Average True Range (ATR) Measures market volatility. 

Indicates potential price 

movement. 

Ichimoku Cloud Provide a comprehensive view 

of support, resistance, and 

trends. 

Parabolic SAR (Stop and 

Reverse) 

Helps identify potential reversal 

points. Useful for setting stop-

loss orders. 

Fibonacci Retracement Uses Fibonacci ratios to predict 

potential retracement levels in 

price movements. 

Chaikin Money Flow (CMF) Combines price and volume data 

to assess buying and selling 

pressure. 
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Average Directional Index 

(ADX) 

Measures trend strength. Helps 

determine whether security is 

trending or ranging. 

3.6 Technical Indicators 

This section outlines the technical indicators utilized as independent variables to predict future 

stock market movements. Technical indicators, derived from mathematical calculations based 

on historical data, are commonly employed to analyze trading patterns of financial assets. 

Numerous widely recognized indicators are available in finance, many of which were 

incorporated into this project. Most of the technical indicators referenced in this study have 

been previously used by Khaidem et al. (2016) and other researchers. While this section 

highlights some of the more complex technical indicators, a comprehensive list of all indicators 

used can be found in Appendix. 

 Relative Strength Index (RSI) 

The relative strength index measures the speed and magnitude of price movements. The RSI 

ranges from 0 to 100. Typically, an RSI score of 30 or lower is seen as an indication that a 

stock is oversold, and a score above 70 indicates that a stock is overbought. The mathematical 

definition is given below: 

𝑅𝑆𝐼 = 100 −  
100

1−RS
  (1) 

where 

𝑅𝑆 =
Average gain the past 𝑛 days

Average loss the past 𝑛 days
      (2) 

and n is how far back we look, typically n = 14. 

 Stochastic Oscillator 

A stochastic oscillator puts the latest closing price in relation to previous price ranges, during 

a specified period back in time, where Close is the current closing price, and the Lown and 
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High n indicate the lowest low and highest high in the past n days. The formula is the 

following: 

%K = (Close - Lowₙ) / (Highₙ - Lowₙ) × 100 

 Williams %R 

The Williams %R is nearly identical to a stochastic oscillator but is a range from -100 to zero and is 
defined as follows: 

 

%𝑅 =
High𝑛−Close

High𝑛−Low𝑛
  

 Moving Average Convergence Divergence (MACD) 

The moving average convergence divergence indicator measures changes in a stock’s momentum, 

strength and trend. The formula is 

MACD = EMA12 − EMA26 

Signal = EMA9(MACD)   

where the EMAn is the exponential moving average of the stock prices for the past n days. Compared 

to a simple moving average, an EMA gives more weight on recent stock prices. 

 

A Signal line is also used in addition to the MACD line to give instructions of a bullish or bearish market. 

When the MACD line crosses above the Signal line it is a bullish signal, meaning that the stock price 

might increase. When the MACD line crosses below the Signal, the graph indicates that there is a bearish 

signal, and the stock price might fall. 

 

The Signal line is calculated by taking the MACD values for the past 9 periods and using them to  

calculate the EMA9, where the EMAn is calculated with the following: 

 

 

EMAₙ = (Close − EMAₙ₋₁) × (2 / (n + 1)) + EMAₙ₋₁  
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Where Close is the MACD line value for the current period, and EMAn−1 is the EMA for the 

previous period. 

 

 On Balance Volume (OBV) 

OBV is a technical indicator that measures buying and selling pressure by tracking cumulative 

volume. It operates on the principle that volume changes can precede price movements, 

making it a useful tool for identifying potential trends. The OBV is calculated by starting with 

an initial value, often set to zero, and then adjusting it daily based on the relationship between 

the current closing price and the previous closing price.  

 

The formula for OBV is as follows: 

                     (8) 

 
When the closing price today is greater than the previous closing price, the current day’s volume is 

added to the previous OBV value. Conversely, when the closing price today is less than the previous 

closing price, the current day’s volume is subtracted from the previous OBV value. If the closing price 

remains unchanged, the OBV value stays the same.
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A rising OBV indicates accumulation, suggesting buying pressure and potential upward price 

movement, while a falling OBV indicates distribution, suggesting selling pressure and potential 

downward price movement. Divergences between OBV and price can signal potential reversals; for 

example, if the price is rising but OBV is falling, it may indicate weakening buying pressure.  

 

 Price Rate of Change (PROC)  

PROC is a momentum-based technical indicator that measures the percentage change in a 

security's price over a specified time period. It helps traders and analysts identify the speed at 

which a price is rising or falling, providing insights into the strength of a trend or potential 

reversals. The formula for calculating the Price Rate of Change is as follows: 

PROC = 
Closet − Closet−n · 100 

                     Closet−n 

 

In this formula, Closet represents the closing price at the current time t, and Closet−nCloset−n

 represents the closing price n periods ago. The result is expressed as a percentage, which indicates how 

much the price has changed relative to the price in periods in the past. 

 

Additionally, the rate of change concept can be applied to the PROC itself, creating a second derivative 

of the price. This indicates how quickly the price change is accelerating or decelerating.  For example, if 

the PROC is increasing at an increasing rate, it suggests strong upward momentum, while a decreasing 

PROC may indicate weakening momentum or a potential reversal. 

3.7 Procedures 

The procedures followed in this study are organized into several key steps: 

1. Data Preprocessing: Initially, the raw data is cleaned to remove any missing or irrelevant 

values. The time-series data is then smoothed using exponential smoothing to give more 
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weight to the recent observations. This is crucial as stock market behavior often exhibits high 

volatility. 

2. Feature Extraction: We extract technical indicators using the TA-Lib library and calculate 

15 common indicators, such as moving averages, RSI, and Bollinger Bands, among others. 

Sentiment data is extracted from financial news articles using the FinGPT sentiment analysis 

API, producing sentiment scores that are integrated with the technical indicators as input 

features for the model. 

3. Model Training and Optimization: The Random Forest algorithm is trained using the 

combined features of technical indicators and sentiment data. Hyperparameters of the Random 

Forest, such as the number of trees, maximum tree depth, and minimum samples required for 

splitting, are tuned to optimize the model's predictive performance. Cross-validation is 

employed to evaluate the model's accuracy and reduce the risk of overfitting. 

4. Performance Evaluation: The performance of the SARF model is compared to that of a 

traditional Random Forest model that does not include sentimental data. Evaluation metrics 

such as accuracy, precision, recall, and F1 score are used to assess model performance. We 

also perform robustness checks using cross-validation to ensure that the model generalizes well 

to unseen data. 

5. Results Interpretation: Finally, the feature importance scores generated by the Random 

Forest algorithm are analyzed to determine the relative contribution of technical and sentiment-

based features in predicting stock market movements. This step provides insights into how 

market sentiment and technical indicators influence stock price behavior. 

By combining the strengths of both technical analysis and sentiment analysis, our methodology 

aims to offer a more robust approach to predicting stock market trends, accounting for both 

historical price patterns and the broader sentiment reflected in financial news. 
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3.8 Monte Carlo Simulation Framework 

Monte Carlo simulation is a computational technique that employs random sampling to solve 

complex mathematical problems and model uncertainty in various domains, particularly in 

finance where stochastic processes dominate market behavior. Named after the Monte Carlo 

Casino in Monaco, this method was originally developed during the Manhattan Project and has 

since become an indispensable tool in quantitative finance for risk assessment, option pricing, 

and portfolio optimization. 

3.8.1 Monte Carlo Stages 

In the context of stock market prediction, Monte Carlo simulation provides a robust framework 

for handling the inherent uncertainty and volatility that characterizes financial markets. 

Traditional deterministic models often fail to capture the full spectrum of possible outcomes, 

leading to overconfidence in predictions and inadequate risk management. By incorporating 

Monte Carlo methods into our SARF framework, we transform point estimates into probability 

distributions, enabling more informed decision-making and comprehensive risk assessment. 

The fundamental principle underlying Monte Carlo simulation in financial modeling is the 

recognition that stock prices and market movements are influenced by numerous random 

factors that cannot be precisely predicted. Instead of attempting to forecast exact values, Monte 

Carlo methods generate thousands or millions of possible scenarios based on probabilistic 

assumptions about market behavior, providing a comprehensive view of potential outcomes 

and their associated probabilities. 

The integration of Monte Carlo simulation with the SARF model requires a sophisticated 

mathematical framework that combines the deterministic aspects of machine learning 

predictions with stochastic modeling of market uncertainty. Let S(t) represent the stock price 
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at time t and let our SARF model provide a predicted direction D and confidence score C for 

the next time period. 

The Monte Carlo framework models the stock price evolution as a stochastic differential 

equation: 

dS = μ(S,t,X,V)dt + σ(S,t,X,V)Dw  

where μ represents the drift term influenced by our SARF predictions, technical indicators (X), 

and sentiment variables (V), σ denotes the volatility component, and dW represents a Wiener 

process capturing random market fluctuations. 

The SARF model contributes to the drift term through a weighted combination of technical 

indicators and sentiment scores: 

 

μ(S,t,X,V) = α₁ × SARF_prediction + α₂ × Technical_momentum + α₃ × Sentiment_score + α₄ 

× Market_regime 

 

where α₁, α₂, α₃, and α₄ are dynamically adjusted weights based on market conditions and model 

confidence levels. 

The volatility component incorporates both historical volatility and regime-switching behavior:  

 

σ(S,t,X,V) = σ_base × √(1 + β₁ × VIX_level + β₂ × Sentiment_volatility + β₃ × 

Technical_uncertainty) 

 

This formulation allows the Monte Carlo simulation to generate realistic price paths that reflect 

both the predictive power of the SARF model and the inherent randomness of financial 

markets. 
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Our implementation employs a multi-stage Monte Carlo approach that operates at different 

time horizons and incorporates various sources of uncertainty. The first stage focuses on short-

term predictions (1-5 days), where technical indicators and recent sentiment data have the 

strongest predictive power. The second stage addresses medium-term forecasts (1-4 weeks), 

incorporating fundamental factors and broader market sentiment trends. The third stage 

considers long-term projections (1-6 months), emphasizing macroeconomic factors and 

structural market changes.  

 
Figure 5: Multi-Stage Monte Carlo Framework 

 
 

 

Each stage utilizes different sampling strategies and probability distributions. For short-term 

predictions, we employ calibrated normal distributions with time-varying parameters derived 

from recent market data. Medium-term simulations incorporate jump-diffusion processes to 

account for sudden market shocks and regime changes. Long-term projections utilize fat-tailed 

distributions and mean-reverting processes that reflect the cyclical nature of market trends. 

The multi-stage approach enables the model to provide predictions with appropriate uncertainty 

bounds for different investment horizons. Short-term predictions exhibit narrower confidence 
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intervals due to the stronger predictive power of technical indicators, while long-term 

projections display wider uncertainty bounds reflecting the increased unpredictability over 

extended periods. 

 

The integration of Monte Carlo simulation with SARF creates powerful capabilities for 

portfolio risk assessment and optimization. Traditional portfolio theory relies on historical 

correlations and volatilities, which may not capture the dynamic relationships between assets 

or the impact of changing market sentiment. Our Monte Carlo-enhanced SARF framework 

addresses these limitations by simulating thousands of potential market scenarios based on 

current technical indicators and sentimental data. 

 

For portfolio optimization, the Monte Carlo SARF system generates probability distributions 

for each asset's future returns, considering not only historical price patterns but also current 

sentiment indicators and technical signals. This approach enables the construction of portfolios 

that are robust across a wide range of potential market conditions rather than being optimized 

for a single expected scenario. 

The risk assessment process involves running Monte Carlo simulations for different portfolio 

compositions, each incorporating SARF predictions for individual assets. The system 

calculates various risk metrics including Value at Risk (VaR), Conditional Value at Risk 

(CVaR), maximum drawdown probability, and tail risk measures. These metrics provide 

comprehensive insights into potential losses under different market conditions, enabling more 

informed risk management decisions. 
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3.8.2 Option Pricing and Derivatives Valuation 

Monte Carlo methods combined with SARF predictions offer significant advantages in option 

pricing and derivatives valuation. Traditional option pricing models like Black-Scholes assume 

constant volatility and ignore market sentiment, leading to systematic mispricing, particularly 

during volatile market periods. Our SARF-MC framework incorporates both technical 

indicators and sentiment data to generate more realistic price paths for underlying assets. 

Monte Carlo Option Pricing Flow: 

Figure 6: Monte Carlo Option Pricing Flow 

 
The option pricing process begins with SARF generating directional predictions and 

confidence scores for the underlying asset. These predictions influence the drift parameter in 

the Monte Carlo simulation, while sentiment volatility affects the diffusion component. The 

system then generates thousands of price paths, each reflecting different possible market 

scenarios consistent with current technical and sentimental conditions. 

 

For European options, the Monte Carlo simulation calculates the expected payoff by averaging 

across all simulated price paths at expiration. For American options, the system employs least-

squares Monte Carlo methods enhanced with SARF predictions to determine optimal exercise 
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strategies. The integration of sentimental data proves particularly valuable for options with 

longer time to expiration, where changing market sentiment can significantly impact pricing. 

Monte Carlo simulation integrated with SARF provides sophisticated capabilities for stress 

testing and scenario analysis. Traditional stress testing often relies on historical scenarios or 

regulatory requirements that may not capture the full range of potential market disruptions. Our 

approach generates forward-looking stress scenarios based on current market conditions, 

technical indicators, and sentiment data. 

 

Figure 7: Stress Testing Framework 

 
 

The stress testing framework considers multiple types of market shocks: sudden sentiment 

reversals, technical breakdown scenarios, liquidity crises, and fundamental regime changes. 

Each type of shock is modeled with appropriate probability distributions calibrated to historical 
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data and current market conditions. The SARF component helps identify which technical and 

sentimental conditions are most likely to precede different types of market stress. 

Scenario analysis extends beyond traditional stress testing by exploring the implications of 

specific market narratives. For example, the system can model scenarios where positive 

earnings sentiment conflicts with negative technical indicators, or where strong technical 

momentum coincides with deteriorating market sentiment. These complex scenarios help 

investors and risk managers understand potential market dynamics that simple historical 

analysis might miss. 

 

The integration of Monte Carlo simulation with SARF offers numerous advantages that 

significantly enhance the model's practical utility in financial applications. The primary 

advantage lies in uncertainty quantification – rather than providing single-point predictions that 

may mislead investors about the confidence level of forecasts, the Monte Carlo framework 

generates probability distributions that capture the full range of potential outcomes with their 

associated likelihoods. 

 

Flexibility represents another crucial advantage of the Monte Carlo approach. Unlike analytical 

methods that require restrictive assumptions about market behavior, Monte Carlo simulation 

can accommodate complex, realistic market dynamics including fat-tailed return distributions, 

volatility clustering, regime switching, and non-linear relationships between variables. This 

flexibility allows the SARF-MC framework to capture the true complexity of financial markets 

while maintaining computational tractability. 

The Monte Carlo approach also excels in handling high-dimensional problems common in 

financial modeling. When analyzing portfolios with multiple assets, each influenced by 
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numerous technical indicators and sentiment factors, analytical solutions become intractable. 

Monte Carlo simulation handles this complexity naturally by generating scenarios for all 

variables simultaneously, preserving their complex interdependencies and correlation 

structures. 

 

Risk management capabilities represent perhaps the most significant practical advantage. The 

Monte Carlo framework enables calculation of sophisticated risk metrics that are essential for 

modern portfolio management but difficult to compute analytically. These include tail risk 

measures, scenario-based VaR calculations, stress testing under extreme conditions, and 

dynamic hedging strategies that adapt to changing market conditions. 

3.8.3 Computational and Methodological Challenges 

Despite its advantages, Monte Carlo integration introduces several challenges that must be 

carefully managed to ensure reliable results. Computational intensity represents the most 

immediate challenge – generating sufficient Monte Carlo samples to achieve stable, accurate 

results requires substantial computational resources, particularly when dealing with complex 

models involving multiple assets and numerous technical indicators. 

Computational Complexity Analysis: 
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Figure 8: Computational Complex Analysis 

 

The challenge of convergence relates to determining the appropriate number of simulations 

runs needed to achieve reliable results. While Monte Carlo methods theoretically converge to 

true values as the number of simulations increases, practical applications must balance 

computational constraints with accurate requirements. Insufficient simulations may lead to 

unstable results that vary significantly between runs, while excessive simulations waste 

computational resources without meaningful accuracy improvements. 

Model specification risk presents another significant challenge. Monte Carlo results are only 

as reliable as the underlying model assumptions about probability distributions, correlation 

structures, and parameter values. Mis specified models can generate misleading confidence 

intervals and risk estimates, potentially leading to false confidence in predictions. This 
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challenge is particularly acute in financial applications where market conditions change 

rapidly, and historical relationships may not persist. 

Calibration complexity increases substantially when integrating Monte Carlo methods with 

machine learning models like SARF. The system must calibrate not only the parameters of the 

stochastic processes governing price evolution but also the relationships between technical 

indicators, sentiment data, and model predictions. This multi-level calibration process requires 

careful validation to ensure that simulated scenarios remain realistic and consistent with 

observed market behavior. 

The integration of Monte Carlo simulation complicates the validation and back testing process 

significantly. Traditional back testing approaches that compare predicted values with actual 

outcomes become insufficient when dealing with probabilistic forecasts. Instead, the validation 

process must assess whether the predicted probability distributions accurately capture the 

uncertainty in actual market outcomes. 

Statistical validation requires sophisticated techniques such as probability integral 

transformations, Kolmogorov-Smirnov tests, and coverage probability assessments to 

determine whether the Monte Carlo predictions are well-calibrated. These tests examine 

whether actual outcomes fall within the predicted confidence intervals at the expected 

frequencies and whether the distributional assumptions are consistent with observed data. 

The dynamic nature of financial markets creates additional validation challenges. Model 

parameters that produce well-calibrated predictions during stable market periods may perform 

poorly during volatile or crisis conditions. This requires ongoing model monitoring and 

periodic recalibration to maintain prediction accuracy across different market regimes. 

The incorporation of Monte Carlo simulation into the SARF framework transforms the 

decision-making process by providing probabilistic forecasts rather than deterministic 
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predictions. This probabilistic approach offers several critical benefits for investment 

professionals and risk managers who must make decisions under uncertainty. 

Probabilistic vs Deterministic Forecasting: 

 

Figure 9: Probabilistic vs Deterministic Forecasting 

 

 
 

Traditional point forecasts, even when highly accurate on average, fail to convey information 

about the range of possible outcomes or the confidence level associated with predictions. This 

limitation can lead to overconfident decision-making and inadequate risk management. Monte 

Carlo-enhanced SARF addresses this issue by providing complete probability distributions for 

future price movements, enabling users to understand not just the most likely outcome but also 

the probability of various alternative scenarios. 



 

 

 

 

 

50 
 

3.8.4 Improved Risk Management and Capital Allocation 

Monte Carlo simulation provides sophisticated risk management capabilities that are essential 

for modern financial institutions. The framework enables calculation of various risk metrics 

including Value at Risk (VaR), Expected Shortfall (ES), and stress testing measures that 

comply with regulatory requirements while providing meaningful insights for internal risk 

management. 

The SARF-MC system excels in scenario generation for stress testing purposes. Rather than 

relying solely on historical scenarios that may not reflect current market conditions or emerging 

risks, the system generates forward-looking stress scenarios based on current technical 

indicators and sentiment data. This capability is particularly valuable during periods of market 

transition when historical relationships may be breaking down. 

Capital allocation benefits significantly from the probabilistic forecasting framework. 

Financial institutions can optimize capital allocation across different business units, trading 

strategies, or investment products based on their predicted risk-return profiles. The Monte 

Carlo approach enables sophisticated portfolio construction techniques such as risk parity, 

maximum diversification, and minimum variance optimization that require detailed 

understanding of return distributions and correlation structures. 

The framework also supports dynamic hedging strategies that adapt to changing market 

conditions. Traditional hedging approaches often rely on static hedge ratios calculated from 

historical data. The SARF-MC framework enables dynamic hedge ratio calculation based on 

predicted market conditions, sentiment trends, and technical indicators, resulting in more 

effective risk mitigation. 

Modern financial regulation increasingly requires sophisticated risk measurement and 

reporting capabilities that Monte Carlo simulation can provide. Regulatory frameworks such 
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as Basel III, Solvency II, and CCAR require financial institutions to demonstrate their ability 

to maintain adequate capital under adverse scenarios, measure tail risks accurately, and provide 

detailed risk reporting to supervisors. 

Regulatory Compliance Framework: 

 

Figure 10: Regulatory Compliance Framework 

 
 

The SARF-MC framework supports these regulatory requirements by providing 

comprehensive risk measurement capabilities that go beyond simple VaR calculations. The 

system can generate the scenario-based capital adequacy assessments required by stress testing 

regulations while incorporating forward-looking elements based on technical and sentiment 

analysis. 

The implementation of Monte Carlo simulation in the SARF framework begins with 

comprehensive data preparation and model calibration. This crucial first step ensures that the 
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stochastic processes underlying the Monte Carlo simulation accurately reflect market dynamics 

and the predictive relationships identified by the SARF model. 

Implementation Workflow: 

 

Figure 11: Implementation Workflow 

 

  
Step 1: Historical Data Collection and Preprocessing The process begins with collecting 

extensive historical data covering stock prices, technical indicators, sentiment metrics, and 

market volatility measures. The data collection spans multiple market cycles to ensure robust 

calibration across different market regimes. Data preprocessing includes handling missing 

values, outlier detection and treatment, and ensuring temporal alignment across all data 

sources. 

Step 2: SARF Model Training and Validation the SARF model is trained using the prepared 

historical data, with particular attention to out-of-sample validation to ensure robust predictive 

performance. Cross-validation techniques specific to time series data are employed to avoid 
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look-ahead bias and ensure realistic performance estimates. The model's predictions are 

analyzed to understand their accuracy across different market conditions and time horizons. 

Step 3: Stochastic Process Calibration The parameters of the stochastic differential equation 

governing price evolution are calibrated using maximum likelihood estimation or moment 

matching techniques. This includes estimating the relationships between SARF predictions and 

the drift component, calibrating volatility parameters based on technical indicators and 

sentiment data and determining regime-switching probabilities for different market conditions. 

Step 4: Correlation Structure Estimation For multi-asset applications, the correlation structure 

between different assets must be estimated and incorporated into the Monte Carlo simulation. 

This involves estimating both static correlations and dynamic correlation models that can 

capture time-varying dependencies between assets based on market conditions and sentiment 

factors. 

 

3.8.5 Simulation Engine Architecture and Execution  

The simulation engine represents the core computational component of the SARF-MC 

framework, responsible for generating thousands or millions of price paths that incorporate 

both the predictive insights from SARF and the stochastic nature of financial markets. 

Step 5: Random Number Generation and Seeding High-quality pseudo-random number 

generation is essential for reliable Monte Carlo results. The system employs sophisticated 

random number generators with appropriate seeding strategies to ensure reproducible results 

while maintaining statistical independence across simulation runs. Multiple random number 

streams are utilized to support parallel processing and variance reduction techniques. 



 

 

 

 

 

54 
 

Step 6: Scenario Generation Process Each Monte Carlo scenario begins with current market 

conditions and SARF model predictions. The simulation generates correlated random shocks 

for all relevant variables (prices, volatilities, sentiment factors) and evolves the system forward 

through time using the calibrated stochastic differential equations. Advanced numerical 

methods such as Euler-Maruyama or Milstein schemes are employed for accurate discretization 

of continuous-time processes. 

Step 7: Path-Dependent Feature Calculation For each simulated price path, the system 

calculates path-dependent features such as maximum drawdowns, volatility measures, and 

technical indicator values. These calculations must be performed efficiently given the large 

number of simulated paths, requiring optimized algorithms and potentially parallel processing 

architectures. 

Step 8: Variance Reduction Implementation To improve computational efficiency, the system 

implements variance reduction techniques such as antithetic variates, control variates, and 

importance sampling. These techniques reduce the number of simulations required to achieve 

desired accuracy levels, significantly improving computational performance without 

sacrificing result quality. 

The final stage of the Monte Carlo implementation involves processing the simulation results 

to generate meaningful insights, risk metrics, and uncertainty bounds that support investment 

decision-making. 

 

Step 9: Statistical Analysis of Simulation Results The thousands of simulated price paths are 

analyzed to extract key statistical measures including means, standard deviations, skewness, 

kurtosis, and percentile values. Convergence diagnostics are performed to ensure that sufficient 
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simulations have been conducted to achieve stable results. Time series analysis of the simulated 

paths provides insights into expected price dynamics and volatility patterns. 

Step 10: Risk Metric Calculation Various risk metrics are calculated from the simulation 

results, including Value at Risk (VaR) at multiple confidence levels, Expected Shortfall 

(Conditional VaR), maximum drawdown distributions, and tail risk measures. These metrics 

provide comprehensive insights into potential losses under different market scenarios and 

support regulatory reporting requirements. 

Step 11: Confidence Interval Construction Confidence intervals for predictions are constructed 

using appropriate statistical methods such as bootstrap resampling or analytical 

approximations. These intervals provide uncertainty bounds that help users understand the 

reliability of predictions and make informed decisions about risk tolerance and position sizing. 

 

Step 12: Sensitivity Analysis and Stress Testing The system performs sensitivity analysis to 

understand how changes in key parameters affect simulation results. This includes analyzing 

the impact of different technical indicator values, sentiment levels, and volatility assumptions 

on predicted outcomes. Stress testing scenarios are generated by modifying input parameters 

to reflect adverse market conditions, providing insights into potential risks under extreme 

scenarios. 

The decision to integrate Monte Carlo simulation into the SARF framework stems from several 

fundamental limitations of traditional deterministic machine learning approaches in financial 

applications. While the original SARF model demonstrated superior performance compared to 

conventional Random Forest and LSTM models, it shared a critical weakness with other 

deterministic approaches: the inability to quantify prediction uncertainty and provide 

probabilistic forecasts. 
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Financial markets are inherently stochastic systems characterized by complex, non-linear 

dynamics that cannot be fully captured by deterministic models. Even highly accurate machine 

learning models like SARF provide point estimates that, while useful for directional prediction, 

fail to convey information about the confidence level of predictions or the range of possible 

outcomes. This limitation becomes particularly problematic during volatile market periods 

when understanding uncertainty is crucial for risk management. 

Monte Carlo integration addresses this fundamental limitation by transforming SARF's 

deterministic predictions into probabilistic forecasts. Rather than simply predicting that stocks 

will move up or down, the enhanced SARF-MC framework provides probability distributions 

showing the likelihood of different price movements, the expected magnitude of changes, and 

confidence intervals around predictions. This probabilistic approach enables more nuanced 

decision-making that considers both expected outcomes and associated risks. 

 

Furthermore, deterministic models struggle with regime changes and structural breaks that are 

common in financial markets. The Monte Carlo framework enables modeling of regime-

switching behavior and jump processes that better capture the discontinuous nature of market 

movements during crisis periods or major news events. 

The integration of Monte Carlo simulation significantly enhances the practical utility of the 

SARF model for professional investment management and regulatory compliance. Modern 

financial institutions operate under increasingly sophisticated regulatory frameworks that 

require comprehensive risk measurement, stress testing, and capital adequacy assessment 

capabilities. 

Regulatory requirements such as Basel III market risk rules, the Fundamental Review of the 

Trading Book (FRTB), and various stress testing regulations mandate the use of sophisticated 



 

 

 

 

 

57 
 

risk models that can generate scenario-based risk measures and provide detailed uncertainty 

quantification. Traditional machine learning models, while potentially accurate in their 

predictions, often fail to meet these regulatory requirements due to their deterministic nature 

and limited interpretability. 

 

The SARF-MC framework addresses these regulatory needs by providing comprehensive risk 

measurement capabilities including Value at Risk (VaR), Expected Shortfall (ES), stress testing 

scenarios, and model uncertainty quantification. The Monte Carlo approach enables 

generations of forward-looking stress scenarios based on current market conditions rather than 

relying solely on historical scenarios that may not reflect emerging risks. 

Additionally, the probabilistic nature of Monte Carlo forecasts enables more sophisticated 

portfolio optimization and risk budgeting approaches. Investment managers can construct 

portfolios that optimize not just expected returns but also higher-order risk measures such as 

tail risk, maximum drawdown probability, and scenario-based performance metrics. This 

capability is essential for institutional investors who must balance return objectives with strict 

risk constraints. 

 

Monte Carlo integration significantly improves the robustness and generalization capability of 

the SARF model by explicitly accounting for parameter uncertainty and model risk. Traditional 

machine learning approaches, including the original SARF implementation, typically use point 

estimates for model parameters that ignore estimation uncertainty and potential model 

misspecification. 

The Monte Carlo framework enables incorporation of parameter uncertainty by treating model 

parameters as random variables rather than fixed values. This approach, known as Bayesian 
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Monte Carlo or probabilistic machine learning, provides more realistic uncertainty estimates 

that account for both data uncertainty and parameter estimation error. The resulting predictions 

are more robust to overfitting and provide better calibrated confidence intervals. 

 

Model robustness is further enhanced through the Monte Carlo framework's ability to 

incorporate multiple sources of uncertainty simultaneously. The system can account for 

uncertainty in technical indicator calculations, sentiment analysis scores, market regime 

identification, and fundamental model parameters. This comprehensive uncertainty modeling 

provides more realistic risk assessments and helps prevent overconfidence in model 

predictions. 

 

The Monte Carlo approach also enables sophisticated ensemble modeling techniques that 

combine multiple SARF models with different parameter settings or training methodologies. 

Rather than selecting a single "best" model, the framework can maintain a probability-weighted 

ensemble of models that provides more robust predictions and better captures model 

uncertainty. 

The probabilistic forecasts generated by the SARF-MC framework enable implementation of 

advanced trading and investment strategies that would be difficult or impossible with 

deterministic predictions alone. These strategies require detailed understanding of return 

distributions, correlation structures, and tail risk characteristics that Monte Carlo simulation 

naturally provides. 

 

Options trading strategies, for example, require sophisticated understanding of implied 

volatility, skewness, and tail risk that deterministic models cannot provide. The SARF-MC 
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framework generates complete return distributions that enable calculation of theoretical option 

prices, implied volatility surfaces, and risk sensitivities (Greeks) that are essential for 

sophisticated options strategies. Dynamic hedging strategies benefit significantly from the 

probabilistic framework's ability to model changing risk characteristics over time. Traditional 

static hedging approaches often fail during volatile periods when risk characteristics change 

rapidly. The SARF-MC framework enables dynamic hedge ratio calculation based on predicted 

market conditions and uncertainty levels, resulting in more effective risk mitigation. 

 

Pairs trading and statistical arbitrage strategies require detailed understanding of correlation 

dynamics and mean-reversion characteristics that the Monte Carlo framework can model 

explicitly. The system can generate scenarios for relative price movements between assets, 

calculate probabilities of convergence or divergence, and provide risk metrics for statistical 

arbitrage positions. 

Portfolio optimization strategies also benefit from the comprehensive risk modeling 

capabilities of the Monte Carlo framework. Modern portfolio theory increasingly recognizes 

the importance of higher-order moments (skewness, kurtosis) and tail risk measures that can 

only be accurately estimated through simulation-based approaches. The SARF-MC framework 

enables construction of portfolios that optimize these sophisticated risk-return characteristics 

while incorporating forward-looking insights from technical and sentiment analysis. 

This comprehensive integration of Monte Carlo simulation with the SARF framework 

represents a significant advancement in quantitative finance, providing practitioners with 

powerful tools for risk management, regulatory compliance, and sophisticated investment 

strategy implementation while maintaining the superior predictive performance demonstrated 

by the original SARF mode 
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3.9 Data Analysis Limitations 

While the research design for this study was carefully crafted and executed, several limitations 

should be acknowledged. These limitations may impact the generalizability and validity of the 

findings and should be considered when interpreting the results. 

One key limitation is the reliance on a quantitative research approach. This methodology 

inherently restricts the depth of understanding regarding participants' motivations and decision-

making processes. The numerical survey responses utilized may not fully capture the 

complexities of human behavior, potentially overlooking significant contextual factors that 

influence stock market predictions. Incorporating qualitative methods, such as interviews or 

focus groups, could complement the findings and provide a more holistic understanding of the 

subject. 

 

Additionally, the use of historical stock market data poses constraints. Historical data may not 

fully reflect the dynamic and ever-changing nature of the stock market, limiting the 

applicability of the findings to future conditions. The dependence on publicly available data 

sources also introduces the possibility of selection biases, as certain datasets might be more 

readily accessible or commonly used by researchers. Furthermore, the reliance on historical 

patterns means that unforeseen events or market disruptions are not accounted for, which could 

significantly affect stock market forecasts. 

 

The sampling methodology used in the study presents another limitation. Purposive sampling 

was employed to target individuals with expertise in stock market analysis. While this approach 

ensures the involvement of knowledgeable participants, it may exclude novice investors or 
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individuals with diverse perspectives. Consequently, the findings may lack generalizability to 

the broader population of stock market participants. 

The emphasis on machine learning algorithms and quantitative analysis may inadvertently 

overlook other important variables influencing stock market forecasts. Factors such as market 

sentiment, qualitative data, and geopolitical events can play critical roles in shaping market 

trends. A more multidimensional approach that integrates both quantitative and qualitative data 

could yield a deeper and more comprehensive understanding of stock market predictions. 

 

Furthermore, the use of self-reported survey data introduces the risk of response bias. 

Participants may provide socially desirable responses, potentially distorting their true opinions 

and behaviors. Additionally, inaccuracies in recall or representation of attitudes and actions 

may contribute to measurement errors. Although steps were taken to ensure anonymity and 

confidentiality, the possibility of biased or inaccurate responses remains. 

 

Another limitation is the exclusive focus on technical analysis indicators, without consideration 

of other data types. Stock market prices are influenced by a variety of factors, including 

fundamental analysis, market news, and macroeconomic indicators. A broader analysis 

incorporating these additional data sources would likely offer a more comprehensive 

perspective on stock price prediction. 

 

Finally, the authors recognize the inherent limitations and biases of individual models. To 

address these challenges, an ensemble approach was proposed, leveraging the collective 

intelligence of multiple models to improve prediction accuracy and robustness. This approach 

aims to mitigate some of the limitations associated with relying on single models and enhance 
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the overall effectiveness of stock market forecasting. 

 

 

Moreover, the limited time frame used for data collection may affect the robustness of the 

results. Short-term data windows can capture only a narrow slice of market behavior, which 

may not be representative of longer-term trends or cycles. As stock market patterns often 

evolve over extended periods, a broader temporal scope might be necessary to ensure more 

reliable and generalizable insights. 

 

In addition, the study did not account for the impact of algorithmic trading and high-frequency 

trading (HFT) mechanisms on market behavior. These technologies increasingly shape modern 

financial markets, introducing rapid fluctuations and automated decision-making processes that 

traditional analysis methods may not fully capture. Incorporating variables related to trading 

volume, speed, and algorithmic strategies could enhance the accuracy and relevance of 

predictive models used in the study. 
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CHAPTER 4: RESULT AND ANALYSIS 

4.1 Trading Strategy 

This section presents a trading strategy based on the Random Forest Classifier. It details the 

approach for trading a single stock, strategies for trading multiple stocks simultaneously, and 

methods for model training and tuning. Additionally, it discusses the analysis of the relative 

importance of independent variables. The trading strategy employs a Random Forest 

Classification model to predict whether a stock's value will increase from the end of day t to 

the end of day t + 1. The classifier, denoted as C, uses a data vector θₜ containing all relevant 

information at time t for prediction. 

 

Strategy Logic 

 If C(θₜ) = 1, indicating a predicted increase in stock value: 

 If not already invested, buy the stock at the closing price of period t. 

 If already invested, continue holding the stock. 

 If C(θₜ) = 0, indicating a predicted decrease in stock value: 

 If already holding a short position, continue holding it. 

 If previously holding a long position, sell the stock and initiate a short position at the 

closing price of period t. 

 

Shorting involves selling a stock that is not owned with the expectation of repurchasing it at a 

lower price later, profiting from the price difference. No transaction costs are considered in this 

simulation. 

Given the general upward trend of stock prices over time, the classifier C is designed to be 

optimistic by classifying data points as 1 more frequently. Instead of using a simple 0.5 
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probability threshold, a dynamic cutoff point p̂ₜ is defined as the 10th percentile of probabilities 

over the training interval. This encourages the strategy to favor holding stocks more often than 

shorting them. 

The classifier's decision rule is as follows: 

C(θₜ) = {
1   𝑖𝑓 p(θₜ) >=  p̂ₜ)
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (12) 

 

 

Trading Algorithm (Pseudo Code) 

 

 

To assess the performance of multiple stocks collectively, a portfolio approach is employed. 

This involves running the trading strategy on multiple stocks simultaneously, with each 

classifier trained on the data specific to the stock it predicts. Initially, equal weights are 
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assigned to all strategies. Over time, the relative weights adjust based on the performance of 

individual strategies, with outperforming strategies gaining greater influence. 

 

 

4.2 Training the Model 

Stock market prediction models rely on broad and diverse market indices rather than individual 

stocks to provide a more comprehensive view of market trends. We selected US market indices 

such as the NASDAQ, S&P 500, and Dow Jones because they incorporate companies across 

various industries, reducing the impact of company-specific events while capturing overall 

economic movements. These indices also have long historical data, allowing us to analyze 

market cycles, macroeconomic shifts, and investor sentiment over time. By focusing on indices 

rather than individual stocks, we enhance the stability and reliability of our model, ensuring 

that predictions reflect market-wide patterns rather than isolated fluctuations in a single 

company’s stock price. 

 

To ensure that our model adapts to changing market conditions, it is retrained periodically 

throughout the simulation. This approach mirrors real-world trading strategies, where traders 

continuously update their models with new data to refine predictions. In our framework, we 

introduce two key parameters: which represents the frequency of retraining, and m, which 

determines the number of past data points used for training. Throughout our experiments, we 

adjust these parameters to optimize predictive accuracy and performance. For instance, in our 

simulations, we retrain the model every 7 days (h = 5) while incorporating the 1000 most recent 

data points (m = 1000) to ensure that the model captures the latest market trends while 

maintaining sufficient historical context. 



 

 

 

 

 

66 
 

 

The training process follows a structured approach to leverage past market behavior effectively. 

At any given simulation step t, the outcomes of all prior data point up to θt−1 are known, 

allowing us to select m previous training points with associated labels, either 1 (positive 

outcome) or 0 (negative outcome). The most recent m data points form the training set Θ = 

{θt−m, θt−m+1, ..., θt−1}, which is used to update the model. By treating m as a 

hyperparameter, we can fine-tune the model’s performance, balancing historical context with 

recent market movements. This method ensures that the model remains adaptive, accurately 

reflecting the latest market dynamics while leveraging past data for robust predictions. 

 

4.3 Feature Selection 

In order to determine which technical indicators should be retained or excluded from the model, 

we analyzed their relative importance using a Random Forest Classifier. The analysis was 

conducted using the feature importances attribute from the Scikit-learn library, which evaluates 

the significance of each feature in the model by examining the decrease in impurity associated 

with nodes that split the data based on a given feature. 

 

Impurity is a measure of how mixed the data is at a node. A lower impurity indicates that the 

node is purer, meaning it better separates the data based on the feature used for the split. The 

feature importances tool computes a numeric value for each feature, which represents the 

average reduction in impurity across all trees in the Random Forest model. Features with higher 

average impurity reductions are considered more important. To facilitate comparison, the 

impurity scores are normalized, so they sum to one. A more detailed explanation of impurity 

can be found in Appendix. 
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Table 3 presents the top features with the highest importance, selected from a total of 40 

features. Among the technical indicators discussed, the On-Balance Volume (OBV) and the 

Moving Average Convergence Divergence (MACD) indicators were found to be the most 

significant. Additionally, features related to the stock's performance relative to the OMXS30 

index over the previous 15 days and various price rate of change measures also displayed high 

importance. 

Since the models for each stock are developed independently, feature importance varies across 

stocks. Similar charts for other stocks can be found in Appendix. After reviewing the feature 

importances for all the stocks, we decided not to remove any features. This decision was made 

because including all features contributed to higher model accuracy, indicating that their 

presence was beneficial for performance. 

4.4 Hyperparameters 

Fine-tuning hyperparameters is a critical step in optimizing machine learning models, 

particularly the Random Forest classifier, for predicting stock market trends, such as those of 

the S&P 500 index. One straightforward approach to hyperparameter tuning involves selecting 

a set of fixed values that yield reasonable performance across a range of stocks in the index. 

These values are then employed uniformly throughout the entire simulation period. This 

method ensures consistency in the model architecture, while still allowing the classifier to be 

retrained periodically as new data becomes available. For instance, in simulations using static 

hyperparameters, we selected a cutoff point of 10% for relative classification, a training interval 

of 1000 data points, a maximum tree depth of 4, a maximum of 20 features per tree, and 100 

estimators, with all other variables set to their default values. The model retrained every 5th 



 

 

 

 

 

68 
 

day of the simulation using the most recent 1000 data points, with results presented for a 

simulation period from February 12, 2013, to December 30, 2022. 

 

In contrast, we also explored a more sophisticated approach involving dynamic hyperparameter 

tuning, where we adjust the hyperparameters throughout the simulation to account for changes 

in market conditions. This dynamic approach typically involves performing a grid search at 

regular intervals to identify the optimal set of hyperparameters. For instance, we conduct a grid 

search every 250 days, exploring potential values for hyperparameters such as the maximum 

depth of the trees, the number of features considered for each split, and the minimum number 

of samples required for a leaf. For the S&P 500 index, we explore combinations such as 

max_depth ∈ {6, 8}, max_features ∈ {10, 20, 30}, and min_samples_leaf ∈ {1, 5, 10}, resulting 

in 18 distinct combinations. Each set of hyperparameters is tested by splitting the training data, 

where the most recent 10% is used as a testing set, while the remaining 90% is used for training. 

After evaluating all possible combinations, we select the hyperparameters yielding the best 

model performance to use until the next grid search. 

 

In Random Forest models, hyperparameter tuning is essential for improving the model’s 

predictive accuracy, especially in complex domains like stock market forecasting. Random 

Forests, being an ensemble method, are highly dependent on key hyperparameters such as the 

number of estimators, tree depth, and the number of features considered at each split. The 

number of estimators (i.e., the number of trees in the forest) directly influences the model's 

ability to generalize, with too few estimators leading to underfitting and too many increasing 

computational costs without significant performance gains. Similarly, the depth of each tree 

controls the model's complexity. 
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Trees that are too deep risk overfitting the training data, while shallow trees can underfit, 

missing important patterns in the data. Additionally, the number of features considered for each 

split impacts the model's ability to capture relevant patterns without introducing noise. These 

hyperparameters must be carefully tuned to balance bias and variance, ensuring optimal 

prediction accuracy. 

 

Another aspect of hyperparameter tuning in Random Forests is the management of model 

overfitting and underfitting. Overfitting occurs when the model becomes too complex and 

captures noise in the data, leading to poor generalization to unseen data. On the other hand, 

underfitting occurs when the model is too simple and fails to capture the underlying patterns. 

Although Random Forests are less prone to overfitting compared to individual decision trees, 

careful tuning is still necessary to ensure that the ensemble model does not memorize the data. 

We employ techniques such as cross-validation and grid search to evaluate different 

hyperparameter configurations and identify the optimal settings for a given dataset. In the case 

of stock market prediction, where the S&P 500 index is subject to constant fluctuations, it is 

crucial that the model can adapt to new data and adjust its hyperparameters accordingly to 

maintain high predictive performance. 

 

Finally, when implementing hyperparameter tuning especially using dynamic strategies, we 

considered the computational cost and time required for performing regular grid searches. For 

large datasets, such as those spanning several years of stock market data, testing different 

hyperparameter combinations can be computationally expensive. However, the benefit of 

improving model accuracy and adaptability often justifies the cost, particularly when predicting 
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complex financial trends. By fine-tuning the Random Forest model through iterative grid 

searches, we ensured that the model remains responsive to changes in market behavior and can 

provide more reliable forecasts for the S&P 500 index. 

 

Table 3: key Hyperparameter used in training and testing the model 

Hyperparameter Description Values Tuning Approach 

Max Depth 

 

Controls the 

maximum depth of 

the decision trees 

4 (static), 6, 8 

(dynamic) 

Fixed for static; 

varied in grid search 

for dynamic tuning 

Max Features Specifies the number 

of features to 

consider when 

looking for the best 

split 

20 (static), 10, 20, 30 

(dynamic) 

Fixed for static; 

varied in grid search 

for dynamic tuning 

Number of 

Estimators 

Defines the number 

of trees in the forest 

(estimators) 

100 (static) Fixed for static 

Min Samples Leaf Sets the minimum 

number of samples 

required to be at a 

leaf node 

1, 5, 10 (dynamic) Varied in grid search 

for dynamic tuning 

Training Interval Number of most 

recent data points 

used for training 

1000 data points Fixed for static 

Relative Cutoff Point The threshold for 

classification 

10% (static) Fixed for static 

Grid Search Interval The interval at which 

grid search is 

performed for 

dynamic tuning 

250 days (every ~1 

year) 

Applied during 

dynamic tuning 

Cross-validation Used to evaluate the 

performance of 

different 

hyperparameter 

configurations 

- Employed during 

grid search for 

dynamic tuning 

Training Data Split The portion of data 

used for training vs. 

testing 

90% training, 10% 

testing 

Used in grid search 

for dynamic tuning 
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4.4 Feature Selection 

 

Figure 12: Feature Importance 
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Figure 13: Correlation Heatmap 

 

 

Feature selection is a fundamental process in developing robust and accurate models for stock 

market prediction. The effectiveness of a predictive model is closely tied to its ability to 

distinguish and prioritize features that contribute significantly to forecasting outcomes. In this 

research, the integration of both technical indicators and sentiment-based features provides 

understanding of market dynamics. 

 

The assessment of feature importance revealed that sentiment-based indicators play a crucial 

role in enhancing predictive performance. These indicators capture the market's psychological 

tendencies and reflect broader economic sentiments that influence stock movements. Technical 

indicators such as Moving Average Convergence Divergence (MACD) and On-Balance 

Volume (OBV) also demonstrated substantial relevance, underscoring their ability to identify 

price trends and momentum shifts. Other indicators like the Price Rate of Change (PROC) and 
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trading volume were identified as moderately impactful. Although these features individually 

exhibited lower importance scores, their collective presence contributed to the overall 

robustness of the model by capturing diverse market behaviors. 

 

To refine the feature set and mitigate potential redundancies, a correlation analysis was 

conducted. This analysis identified high interdependencies among certain technical indicators, 

particularly between momentum-based metrics like the Relative Strength Index (RSI) and 

MACD. Such strong correlations suggest potential multicollinearity, which can compromise 

model stability and interpretability. To address this, features demonstrating excessive 

correlation were considered for removal. This strategic pruning helps streamline the model, 

ensuring it remains computationally efficient without sacrificing predictive power. 

 

Further optimization was approached through dimensionality reduction techniques such as 

Principal Component Analysis (PCA). This method transforms correlated variables into 

principal components, thereby reducing dimensional complexity while preserving essential 

variance within the data. Additionally, penalized regression methods, including Ridge 

Regression, were employed to manage feature multicollinearity. By shrinking the coefficients 

of less influential features, this approach enhances the model’s generalization capabilities and 

prevents overfitting. 

 

The combined application of these feature selection and optimization strategies ensures a more 

efficient, stable, and interpretable model. Prioritizing features that offer unique, non-redundant 

insights into market dynamics strengthens the model's ability to capture complex patterns and 

deliver more accurate forecasts. This methodological rigor not only improves computational 
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efficiency but also enhances the practical applicability of the model in dynamic financial 

environments. 

 

4.5 Results 

The combined analysis of the results from both studies reveals significant insights into the 

performance and optimization of Random Forest (RF) models for stock market prediction. 

The integration of sentiment analysis, particularly through the Sentiment-Augmented Random 

Forest (SARF) model, demonstrated superior performance over conventional RF models and 

Long Short-Term Memory (LSTM) networks. The SARF model consistently outperformed the 

baseline models, showing accuracy improvements of up to 9.23%. This enhancement is 

primarily attributed to the inclusion of sentiment features derived from FinGPT, which allowed 

the model to incorporate nuanced market sentiments alongside traditional technical indicators. 

The model demonstrated robust prediction accuracy, especially over medium and long-term 

forecasting periods, affirming its potential in dynamic market conditions. The sentiment 

analysis provided an additional layer of market understanding, contributing to more precise 

forecasting outcomes. 

 

In parallel, the evaluation of RF models for stock trading, based on the largest companies 

specifically SP500 index, revealed that while traditional RF models achieved accuracy levels 

slightly above 50%, their implementation in trading strategies resulted in higher risk-adjusted 

returns compared to passive investment strategies. The dynamic tuning of hyperparameters 

further enhanced performance, with models employing this approach achieving superior 

Compounded Annual Growth Rates (CAGR) and Sharpe Ratios. Specifically, the dynamically 
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optimized RF model attained a Sharpe Ratio of 0.86 and a CAGR of 17.87%, outperforming 

both static hyperparameter models and passive investment portfolios. 

Table 4: A comparative performance analysis 

Model 

 

 

S&P 500 

Accuracy 

Nasdaq 

Accuracy 

Dow Jones 

Accuracy 

Sharpe 

Ratio 

CAGR 

(%) 

Traditional Random 

Forest 

0.67 0.64 0.59 0.63 12.75 

LSTM 0.58 0.69 0.61 - - 

Sentiment-Augmented 

Random Forest 

(SARF) 

0.78 0.85 0.82 0.86 17.87 

 

The SARF model's superior accuracy and returns highlight the critical role of sentiment 

analysis in enhancing predictive performance. Meanwhile, traditional RF models, especially 

with dynamic hyperparameter tuning, showed promising profitability, emphasizing the 

importance of continuous optimization and adaptive strategies in stock trading. 

 

These findings underscore that combining technical and sentiment indicators provides a 

comprehensive framework for more accurate stock market predictions. Future research could 

further refine these models by integrating additional sentiment sources and testing scalability 

across diverse market conditions. 
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CHAPTER 5: DISCUSSION AND FINDING 

5.1 Introduction 

The experimental results presented in this study demonstrate a significant advancement in stock 

market prediction methodology through the integration of sentiment analysis with traditional 

machine learning approaches. The Sentiment-Augmented Random Forest (SARF) model 

represents a paradigm shift from purely technical indicator-based predictions to a more holistic 

approach that incorporates market psychology and investor sentiment as quantifiable features 

in the prediction process. 

The fundamental premise underlying this research is that stock market movements are not 

solely driven by historical price patterns and technical indicators, but are significantly 

influenced by collective market sentiment, news events, and psychological factors that drive 

investor behavior. Traditional Random Forest models, while effective in capturing non-linear 

relationships within technical data, have inherent limitations in understanding the broader 

context of market dynamics. The integration of FinGPT-derived sentiment scores addresses 

this gap by providing a sophisticated mechanism to quantify and incorporate market sentiment 

into the prediction framework. 

The experimental validation across three major U.S. market indices—S&P 500, NASDAQ, 

and Dow Jones Industrial Average—provides compelling evidence of the SARF model's 

superior performance. The consistency of improvement across these diverse indices, which 

represent different market segments and characteristics, suggests that the benefits of sentiment 

integration are not limited to specific market conditions or sectors. The S&P 500, representing 

a broad market cross-section, showed an accuracy improvement from 67% to 78%, while the 

technology-focused NASDAQ demonstrated the most substantial enhancement from 64% to 
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85%. The Dow Jones, representing established industrial companies, also showed significant 

improvement from 59% to 82%. 

These results indicate that sentiment analysis provides particularly valuable insights for 

technology stocks, possibly due to the sector's higher sensitivity to news, innovation 

announcements, and market speculation. The technology sector's inherent volatility and 

growth-oriented nature make it more susceptible to sentiment-driven price movements, which 

the SARF model successfully captures and leverages for improved prediction accuracy. 

The methodological approach employed in this study addresses several critical challenges in 

financial time series prediction. First, the integration of multiple data sources—technical 

indicators from Alpha Vantage and sentiment scores from FinGPT—creates a more 

comprehensive feature space that better represents the multifaceted nature of market dynamics. 

Second, the careful feature selection process, including correlation analysis and 

multicollinearity mitigation through techniques such as Principal Component Analysis (PCA) 

and ridge regression, ensures model stability and prevents overfitting. 

The time window analysis reveals that SARF demonstrates optimal performance in the 62–82-

day range, making it particularly suitable for medium to long-term investment strategies. This 

finding has significant practical implications for portfolio managers and institutional investors 

who operate on longer investment horizons. The model's effectiveness in this timeframe 

suggests that sentiment factors have more pronounced and persistent effects on stock prices 

over medium-term periods, rather than short-term noise that might characterize daily trading 

patterns. 

Furthermore, the comparative analysis with Long Short-Term Memory (LSTM) networks 

provides important insights into the relative strengths of different machine learning approaches 

for financial prediction. While LSTM models are specifically designed to handle sequential 
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data and capture temporal dependencies, the ensemble nature of Random Forest, when 

augmented with sentiment features, proves more effective in this application. This suggests 

that the complex, non-linear relationships between technical indicators and sentiment features 

are better captured through the Random Forest's decision tree ensemble approach than through 

LSTM's sequential processing architecture. 

The robustness of the SARF model is further validated through the comprehensive evaluation 

metrics employed in the study. Beyond simple accuracy measures, the analysis incorporates 

precision, recall, F1-score, and AUC-ROC metrics, providing a nuanced understanding of 

model performance across different aspects of classification effectiveness. The consistent 

improvement across all these metrics reinforces the reliability and practical applicability of the 

SARF approach. 

The feature importance analysis conducted through decision tree construction reveals valuable 

insights into the relative contributions of different indicators to prediction accuracy. The fact 

that sentiment-based features consistently rank among the most important predictors validates 

the core hypothesis that market sentiment carries significant predictive power for stock price 

movements. This finding aligns with behavioral finance theories that emphasize the role of 

investor psychology and collective sentiment in driving market dynamics. 

The preprocessing techniques employed, particularly exponential smoothing of time series 

data, contribute to the model's effectiveness by reducing noise and emphasizing recent 

observations while maintaining historical context. This approach recognizes that in financial 

markets, recent events and trends often carry more predictive weight than distant historical 

patterns, while still preserving the valuable information contained in longer-term trends. 

 



 

 

 

 

 

79 
 

5.2 Suggestions 

Based on the comprehensive analysis and experimental results of the SARF model, several 

strategic recommendations emerge for both academic researchers and industry practitioners 

seeking to implement or extend this methodology. These suggestions span multiple 

dimensions, including technical enhancements, practical implementation considerations, and 

future research directions that could further advance the field of sentiment-augmented financial 

prediction. 

 Technical Enhancement Recommendations 

The first category of suggestions focuses on technical improvements and extensions to the 

current SARF framework. One critical area for enhancement involves expanding the sentiment 

analysis component beyond the current FinGPT implementation. While FinGPT demonstrates 

superior performance in financial sentiment analysis, incorporating multiple sentiment sources 

could provide more robust and diverse sentiment signals. Future implementations should 

consider ensemble sentiment analysis approaches that combine outputs from various financial 

language models, including FinBERT, specialized financial sentiment analyzers, and domain-

specific transformer models. 

The integration of real-time sentiment analysis represents another significant opportunity for 

enhancement. The current study utilizes historical sentiment data, but financial markets operate 

in real-time with continuous information flow from news sources, social media, earnings 

reports, and regulatory announcements. Implementing a real-time sentiment processing 

pipeline would enable the SARF model to respond more dynamically to emerging market 

conditions and sentiment shifts. This enhancement would require developing efficient data 

streaming architectures and implementing incremental learning mechanisms that allow the 

model to adapt to new information without requiring complete retraining. 
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Feature engineering represents another area with substantial potential for improvement. The 

current study employs fifteen technical indicators, but the universe of available technical 

indicators is much broader. Advanced technical indicators such as Volume Weighted Average 

Price (VWAP), Money Flow Index (MFI), and various volatility measures could provide 

additional predictive signals. Furthermore, the development of custom composite indicators 

that combine multiple traditional indicators using machine learning techniques could yield 

more informative features tailored specifically to sentiment-augmented prediction tasks. 

The temporal aspect of sentiment integration deserves particular attention in future 

enhancements. The current implementation treats sentiment as a static feature for each time 

period, but market sentiment exhibits complex temporal dynamics with varying persistence and 

decay rates. Implementing time-weighted sentiment aggregation mechanisms could better 

capture how sentiment effects evolve over time. For instance, breaking news might have 

immediate but short-lived impacts, while regulatory changes or economic policy 

announcements might have longer-lasting sentiment effects. 

 Model Architecture and Algorithmic Improvements 

The Random Forest architecture, while effective, represents just one approach within the 

broader ensemble learning paradigm. Future research should explore hybrid architectures that 

combine the strengths of multiple learning algorithms. For example, stacked ensemble 

approaches could combine Random Forest predictions with those from gradient boosting 

machines, support vector machines, and neural network architectures, with sentiment features 

integrated at multiple levels of the ensemble. 

Deep learning integration presents another promising avenue for enhancement. While the 

current study shows Random Forest outperforming LSTM networks, this comparison is based 

on relatively simple LSTM implementations. Modern deep learning architectures, such as 
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Transformer models, attention mechanisms, and Graph Neural Networks, could potentially 

better capture the complex relationships between sentiment and technical indicators. 

Transformer architectures, in particular, excel at handling sequences with long-range 

dependencies and could be well-suited to modeling the temporal relationships between 

sentiment evolution and price movements. 

The optimization of hyperparameters represents a crucial area where advanced techniques 

could yield significant improvements. The current study employs random search for 

hyperparameter optimization, but more sophisticated approaches such as Bayesian 

optimization, genetic algorithms, or automated machine learning (AutoML) frameworks could 

identify better parameter configurations. These advanced optimization techniques could 

simultaneously optimize both the Random Forest parameters and the sentiment integration 

weights, leading to more effective overall model performance. 

 Data Integration and Multi-Modal Enhancement 

Expanding the data integration capabilities of SARF represents a significant opportunity for 

improvement. Financial markets are influenced by diverse information sources beyond 

traditional price data and text-based sentiment. Incorporating alternative data sources such as 

satellite imagery for economic activity monitoring, social media engagement metrics, search 

trend data, and macroeconomic indicators could provide additional predictive signals that 

complement the existing technical and sentiment features. 

The development of multi-modal learning architectures could enable SARF to process diverse 

data types more effectively. For instance, combining textual sentiment analysis with image-

based sentiment extraction from financial charts, video analysis of earnings calls, and audio 

sentiment analysis from financial podcasts could create a more comprehensive sentiment 

profile. This multi-modal approach would require developing sophisticated feature fusion 
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mechanisms that can effectively combine information from different modalities while avoiding 

information redundancy. 

Cross-market sentiment analysis represents another valuable enhancement opportunity. The 

current study focuses on individual market indices, but global financial markets are 

increasingly interconnected. Incorporating sentiment signals from related markets, 

international news sources, and global economic indicators could improve prediction accuracy, 

particularly for major indices that are influenced by global economic conditions. 

 Implementation and Deployment Considerations 

For practitioners considering implementation of SARF in production environments, several 

key considerations emerge from this research. First, the computational requirements for real-

time sentiment analysis and Random Forest prediction must be carefully evaluated. While 

Random Forest models are generally computationally efficient, processing large volumes of 

text data through sophisticated language models like FinGPT can be resource intensive. 

Organizations should invest in appropriate computing infrastructure and consider distributed 

computing approaches for scalable implementation. 

Data quality and preprocessing represent critical success factors for SARF implementation. 

The effectiveness of sentiment analysis heavily depends on the quality and relevance of input 

text data. Organizations should establish robust data collection and filtering pipelines that 

ensure high-quality, relevant financial text data reaches the sentiment analysis component. This 

includes implementing duplicate detection, relevance filtering, and source credibility 

assessment mechanisms. 

The integration of SARF predictions into existing trading and investment decision-making 

processes requires careful consideration of model output interpretation and risk management. 

While the model demonstrates superior accuracy compared to traditional approaches, it should 
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be viewed as a decision support tool rather than a fully automated trading system. Human 

oversight and risk management protocols remain essential, particularly during periods of 

unusual market volatility or unprecedented events that may not be well-represented in the 

training data. 

 Regulatory and Ethical Considerations 

The implementation of sentiment-augmented trading models raises important regulatory and 

ethical considerations that practitioners must address. Financial markets are subject to strict 

regulations regarding market manipulation, insider trading, and fair access to information. 

Organizations implementing SARF must ensure that their sentiment data sources comply with 

relevant regulations and that their models do not inadvertently engage in prohibited practices. 

The potential for sentiment manipulation represents a particular concern that requires careful 

monitoring. As sentiment-based trading models become more prevalent, there may be 

increased incentives for malicious actors to attempt to manipulate sentiment signals through 

coordinated information campaigns or fake news dissemination. Implementing robust 

sentiment source verification and anomaly detection mechanisms is essential to maintain model 

integrity. 

Privacy considerations also apply to sentiment analysis implementations, particularly when 

incorporating social media data or other user-generated content. Organizations must ensure 

compliance with relevant privacy regulations and implement appropriate data anonymization 

and protection measures. 

 

5.3 DISCUSSION QUESTIONS 

Research Question 1: Theoretical Foundations 

What are the most prominent theories underlying stock market prediction, such as the efficient 

market hypothesis and random walk theory? 
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The research demonstrated that several key theoretical foundations underpin modern stock 

market prediction approaches, though traditional theories face significant challenges in 

explaining market dynamics. 

Efficient Market Hypothesis and Market Complexity: The SARF study acknowledges that 

stock markets exhibit "dynamic, non-linear, and complex" characteristics that make effective 

trend prediction persistently challenging. This recognition aligns with the efficient market 

hypothesis, which posits that stock prices reflect all available information. However, the 

research challenges the strict interpretation of this hypothesis by demonstrating that machine 

learning models can consistently outperform traditional statistical approaches, suggesting that 

exploitable patterns do exist in market data. 

Random Walk Theory Limitations: While the paper does not explicitly discuss random walk 

theory, it implicitly challenges its core assumptions by proving that predictable patterns can be 

identified and exploited. The authors demonstrate that "machine learning models showcase 

superior prediction performance and robustness" compared to traditional econometric models, 

indicating that stock price movements contain detectable patterns rather than following purely 

random trajectories. 

 

Ensemble Learning Theory Integration: The research builds extensively on ensemble learning 

theory, particularly leveraging the Random Forest algorithm's theoretical foundation. This 

approach is grounded in the principle that combining multiple weak learners creates a stronger, 

more robust predictor that is less susceptible to overfitting than individual models. Behavioral 

Finance Theory Incorporation: By integrating sentiment analysis into their predictive 

framework, the researchers implicitly draw from behavioral finance theory. This theory 

suggests that investor emotions, market psychology, and sentiment significantly influence 
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stock prices beyond fundamental economic factors, providing a theoretical justification for 

incorporating textual sentiment data into quantitative models. 

The findings of Research Question 1 revealed that while traditional financial theories provide 

important foundational understanding, they are insufficient for capturing the full complexity of 

modern financial markets. The integration of machine learning approaches with sentiment 

analysis creates a more comprehensive theoretical framework that acknowledges both 

quantitative patterns and behavioral factors in market dynamics. 

 

Research Question 2: Classic Approaches to Prediction 

What are the traditional methods, such as technical and fundamental analysis, used for stock 

market prediction, and in which scenarios have these approaches been successfully applied? 

The research demonstrated that classic prediction approaches, while foundational, have both 

significant strengths and notable limitations in modern market prediction. 

Technical Analysis Implementation: The SARF study extensively employs technical analysis 

through 15 carefully selected technical indicators, demonstrating the continued relevance of 

this traditional approach. The research utilizes Moving Averages for trend identification and 

potential reversal detection, MACD for measuring relationships between moving averages to 

signal trend strength and direction, RSI for indicating overbought or oversold market 

conditions, Bollinger Bands for volatility and trend analysis, and Stochastic Oscillators for 

momentum analysis through price range comparisons. 

Successful Application Scenarios: The research confirms that technical indicators prove 

"effective for medium- and long-term purposes, such as identifying entry and exit points." The 

study demonstrates particular effectiveness when these indicators are applied within a 60-day 
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time window for predictions spanning 62-82 days, indicating their value for medium to long-

term forecasting rather than short-term speculation. 

 

Fundamental Analysis Integration: While not the primary focus of the SARF study, the 

research references complementary studies that successfully combine "fundamental/technical 

feature space" approaches, suggesting that hybrid methodologies incorporating both technical 

patterns and fundamental economic data can enhance prediction accuracy. 

 

Limitations and Challenges: The study identifies critical limitations in relying solely on 

traditional approaches. The research finds that "relying solely on empirical analysis often yields 

unsustainable and ineffective results," highlighting the insufficiency of traditional methods in 

isolation. Classic approaches demonstrate a static nature that struggles to adapt to the dynamic 

characteristics of modern financial markets. These methods typically fail to account for market 

sentiment and psychological factors that significantly influence price movements. 

Additionally, traditional indicator combinations frequently suffer from multicollinearity 

problems, were high correlations between indicators impact model stability and parameter 

estimation accuracy. 

 

The findings of Research Question 2 revealed that while classic approaches provide valuable 

foundational insights and remain effective for specific applications, they require enhancement 

through modern computational techniques to address their inherent limitations and improve 

prediction reliability in contemporary market conditions. 
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Research Question 3: Machine Learning and Sentiment Analysis 

In which cases have machine learning techniques been applied to stock market prediction, and 

how effective have they been? How has sentiment analysis been used in conjunction with ML 

models? 

The research demonstrated extensive and highly successful applications of machine learning 

techniques in stock market prediction, with particularly promising results when combined with 

sentiment analysis. 

 

Machine Learning Applications and Effectiveness: The SARF study provides comprehensive 

evidence of machine learning superiority over traditional methods. Random Forest models 

demonstrate exceptional effectiveness in handling non-linear relationships inherent in financial 

data while preventing overfitting through ensemble learning approaches. Support Vector 

Machines have been successfully implemented for classification tasks in stock trend prediction, 

particularly excelling in discrete feature scenarios. Advanced gradient boosting techniques like 

XGBoost and LightGBM show significant prediction error reduction compared to traditional 

statistical methods. Deep learning approaches, including LSTM networks, serve as competitive 

benchmarks, though the research demonstrates that ensemble methods can outperform them in 

specific contexts. 

Quantitative Performance Improvements: The research reveals substantial improvements 

through machine learning implementation. The SARF model achieves a remarkable 9.23% 

average accuracy improvement over conventional Random Forest approaches.  

Specific performance metrics demonstrate the model's superiority across major market indices, 

with S&P 500 predictions improving from 67% to 78% accuracy, NASDAQ predictions 

advancing from 64% to 85% accuracy, and Dow Jones forecasts enhancing from 59% to 82% 
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accuracy. These improvements represent significant practical value for financial decision-

making. 

 

Sentiment Analysis Integration Strategy: The study demonstrates sophisticated sentiment 

analysis implementation through the FinGPT model integration. FinGPT was selected over 

alternatives like FinBERT due to its superior contextual understanding of financial language 

and enhanced natural language generation capabilities. The model extracts sentiment scores 

ranging from -1 (negative) to 1 (positive) from financial news articles, providing quantitative 

measures of market sentiment. This sentiment data is then incorporated as additional features 

in the Random Forest framework, creating a hybrid approach that captures both quantitative 

technical patterns and qualitative market psychology. 

 

Hybrid Approach Benefits: The integration of sentiment analysis with machine learning creates 

several synergistic advantages. Technical indicators provide quantitative insights into historical 

price patterns and market dynamics, while sentiment features capture market psychology and 

investor emotion that traditional quantitative measures cannot detect. This combination offers 

enhanced contextual understanding that adapts to changing market conditions and investor 

behavior patterns. The dynamic nature of sentiment data allows the model to respond to real-

time market developments and news events that may not be immediately reflected in price data. 

 

The findings of Research Question 3 revealed that machine learning techniques, particularly 

when augmented with sentiment analysis, significantly outperform traditional prediction 

methods. The integration of textual sentiment data with quantitative technical indicators creates 
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a more comprehensive and adaptive prediction framework that better captures the multifaceted 

nature of financial market dynamics. 

 

Research Question 4: Model Design and Development 

What are the critical components involved in the design and development of a stock market 

prediction model, and what factors contribute to model performance? 

The research demonstrated that successful stock market prediction models require 

sophisticated integration of multiple components, careful feature engineering, and 

comprehensive validation frameworks. 

Critical Data Architecture Components: The SARF study implements a multi-source data 

integration strategy that combines Alpha Vantage API data for historical price and volume 

information with sentiment analysis derived from financial news sources. The temporal scope 

spans from January 2015 to December 2023, providing substantial historical context for pattern 

recognition. Rather than focusing on individual stocks, the research strategically selects broad 

market indices including NASDAQ, S&P 500, and Dow Jones to ensure stability and reduce 

company-specific volatility impacts. 

 

Advanced Feature Engineering Framework: The model incorporates 15 carefully selected 

technical indicators calculated using the TA-Lib library, ensuring standardized and reliable 

technical analysis computations. Four sentiment-based features extracted through FinGPT 

analysis provide qualitative market sentiment quantification. Exponential smoothing 

preprocessing emphasizes recent observations while maintaining historical context. Systematic 

correlation analysis eliminates highly correlated features exceeding 0.8 correlation coefficients 
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to prevent multicollinearity issues that could destabilize model performance. 

 

Sophisticated Model Architecture: The SARF framework builds upon ensemble learning 

principles through Random Forest foundation enhanced with sentiment augmentation 

capabilities. Parameter optimization employs Random Search methodology over traditional 

Grid Search approaches for computational efficiency and effectiveness. Three-fold cross-

validation ensures model robustness and prevents overfitting to specific data subsets. 

Comprehensive evaluation incorporates multiple metrics including accuracy, precision, recall, 

F1-score, and AUC-ROC for thorough performance assessment. 

 

Performance Contributing Factors: Data quality and preprocessing significantly impact model 

effectiveness through exponential smoothing that prioritizes recent market developments, 

systematic feature selection that eliminates redundant information, and multicollinearity 

mitigation using Principal Component Analysis and ridge regression techniques. Model 

optimization focuses on hyperparameter tuning for optimal tree count, maximum depth, and 

minimum splitting samples. The research identifies a 60-day optimal time window for medium 

to long-term predictions spanning 62-82 days. Random seed control ensures reproducibility 

and reduces sampling variability effects. 

 

Integration Strategy Excellence: The hybrid feature space successfully combines quantitative 

technical indicators with qualitative sentiment scores, creating a comprehensive market view. 

Dynamic weighting mechanisms allow adaptive adjustment of different feature types based on 

prevailing market conditions. Ensemble robustness emerges from multiple decision trees 

trained on diverse data subsets incorporating both technical and sentiment features. 
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Comprehensive Validation Framework: Out-of-sample testing using separate test datasets 

ensures unbiased performance evaluation. Multiple benchmark comparisons against traditional 

Random Forest and LSTM models provide context for performance improvements. Precision-

recall curve analysis addresses imbalanced class evaluation challenges common in financial 

prediction tasks. 

 

The findings of Research Question 4 revealed that successful stock market prediction models 

require careful orchestration of multiple sophisticated components. The SARF model's superior 

performance stems from its ability to capture quantitative market patterns through technical 

analysis while simultaneously incorporating qualitative market sentiment through advanced 

natural language processing techniques. This comprehensive approach creates a more holistic 

understanding of market dynamics that significantly enhances prediction accuracy compared 

to traditional single-source methodologies. 

 

5.4 Future Work 

While the current research demonstrates the effectiveness of SARF, a new approach that 

integrates sentiment analysis with FinGPT and an optimized Random Forest model for 

enhancing stock market predictions, some paths remain open for further investigation. The 

promising results encourage exploration into both the technical scalability and theoretical 

underpinnings of this approach, especially in the context of real-world financial environments 

characterized by data volatility, heterogeneity, and temporal dynamics. 
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A primary direction for future research involves scaling SARF to handle significantly larger 

and more diverse financial datasets. The current evaluation, while promising, was conducted 

on a limited dataset, and it remains to be seen how well SARF generalizes across multiple 

markets, financial instruments, and geopolitical regions. Expanding the dataset and 

benchmarking performance on global financial markets will test the robustness and adaptability 

of the model. In parallel, a more comprehensive analysis of different market conditions bull, 

bear, and stagnant markets will help ascertain whether SARF's accuracy holds under various 

economic scenarios. 

Additionally, we intend to explore the inclusion of alternative sentiment features and signal 

sources by leveraging other domain-specific Large Language Models (LLMs) trained or 

instruction-tuned on financial data. This could involve using financial forums, earnings call 

transcripts, and regulatory filings as additional sentiment sources. Coupling such domain-

specific sentiment streams with multi-source data fusion techniques could lead to a more 

nuanced and high-fidelity sentiment index, thus enhancing predictive accuracy. 

 

Real-time sentiment integration represents another key enhancement. Incorporating live 

financial news feeds and social media data streams using APIs and lightweight LLM inference 

pipelines may enable SARF to become a truly reactive system. This would allow it to reflect 

rapid sentiment shifts in response to breaking news or events, a critical capability for high-

frequency trading and short-term forecasting scenarios. 

 

From a machine learning optimization standpoint, future iterations of SARF will benefit from 

advanced hyper parameter tuning techniques, such as Bayesian optimization, genetic 

algorithms, or reinforcement learning-based controllers. These methods may help fine-tune the 
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Random Forest component or explore alternative ensemble strategies that better capture non-

linear relationships in the data. 

 

In parallel, our investigation into instruction tuning paradigms for LLMs in finance has laid the 

groundwork for an expanded research trajectory. Upcoming efforts will focus on integrating a 

broader selection of open-source LLMs, including those with parameter sizes ranging from 13 

billion to over 100 billion. These larger models could offer improved reasoning abilities, deeper 

contextual understanding, and more accurate sentiment classification. However, their increased 

complexity also necessitates exploring new strategies to manage compute costs, inference 

latency, and deployment scalability. 

 

We also plan to delve deeper into the robustness and generalization capacity of financial LLMs 

across a wider set of NLP tasks ranging from document classification to question answering, 

summarization, and anomaly detection. A core challenge here is task interference, particularly 

in multi-task or zero-shot settings. To address this, we will develop task-aware training and 

evaluation protocols that can dynamically adapt prompts, sampling strategies, and fine-tuning 

techniques to minimize negative transfer and hallucinations. 

 

Lastly, we will explore the use of continual learning frameworks and domain adaptation 

techniques to allow SARF and related models to evolve alongside changing market structures 

and financial language. This adaptability is vital in the financial domain, where terminology, 

sentiment signals, and risk indicators frequently shift. Future work will advance SARF into a 

more scalable, intelligent, and adaptive financial forecasting framework, while contributing 
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broadly to the development of reliable, instruction-tuned LLMs for high-stakes financial 

applications. 

 

5.5 Summary 

The development and validation of the Sentiment-Augmented Random Forest (SARF) model 

represents a significant contribution to the field of financial prediction methodology, 

demonstrating that the integration of natural language processing and machine learning 

techniques can substantially improve stock market forecasting accuracy. This research 

successfully addresses a fundamental limitation of traditional technical analysis approaches by 

incorporating market sentiment as a quantifiable and predictive feature in the modeling process. 

The primary innovation of this study lies in the systematic integration of advanced sentiment 

analysis, specifically through the FinGPT model, with the robust ensemble learning capabilities 

of Random Forest algorithms. This integration creates a hybrid modeling approach that 

captures both the quantitative patterns present in technical indicators and the qualitative 

insights embedded in market sentiment. The methodology developed represents a departure 

from purely technical or purely sentiment-based approaches, instead creating a synergistic 

combination that leverages the strengths of both paradigms. 

The experimental validation provides compelling evidence of the SARF model's effectiveness 

across diverse market conditions and index compositions. The consistent improvement in 

prediction accuracy across the S&P 500, NASDAQ, and Dow Jones Industrial Average 

demonstrates the generalizability of the approach beyond specific market segments or temporal 

conditions. The magnitude of improvement—with average accuracy gains of 9.23% over 
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traditional Random Forest models—represents a practically significant advancement that could 

translate to substantial economic value in real-world trading applications. 

The comprehensive evaluation methodology employed in this research sets a high standard for 

future studies in this domain. By employing multiple evaluation metrics including accuracy, 

precision, recall, F1-score, and AUC-ROC analysis, the study provides a nuanced 

understanding of model performance that goes beyond simple accuracy measures. This multi-

faceted evaluation approach ensures that the reported improvements are not artifacts of specific 

metric choices but represent genuine enhancements in predictive capability. 

 Methodological Advances and Technical Contributions 

The feature selection and integration methodology developed in this study addresses several 

critical challenges in financial machine learning applications. The systematic approach to 

handling multicollinearity through correlation analysis, Principal Component Analysis, and 

ridge regression techniques ensures model stability while preserving the informational content 

of both technical and sentiment features. This methodology provides a template for future 

research involving the integration of diverse feature types in financial prediction applications. 

The temporal analysis revealing optimal performance in the 62-82 day prediction window 

provides valuable insights into the persistence and predictive power of sentiment effects in 

financial markets. This finding suggests that sentiment-based signals have more durable 

predictive value than might be expected from short-term market noise, supporting the 

theoretical foundation for incorporating sentiment in medium to long-term investment 

strategies. 

The parameter optimization approach, utilizing random search techniques with cross-

validation, demonstrates a practical methodology for handling the complex hyperparameter 

space that emerges when combining multiple modeling paradigms. The systematic approach 
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to parameter selection ensures that the reported performance improvements are not simply 

artifacts of favorable parameter choices but represent genuine methodological advances. 

 Practical Implications for Financial Industry 

The practical implications of this research extend beyond academic contributions to provide 

actionable insights for financial industry practitioners. The demonstration that sentiment-

augmented models can significantly outperform traditional technical analysis approaches 

suggests that investment management firms, hedge funds, and financial institutions should 

seriously consider incorporating sentiment analysis into their quantitative trading strategies. 

The scalability of the SARF approach to handle multiple market indices simultaneously 

provides a foundation for developing comprehensive market prediction systems that can 

support portfolio-level decision making. The consistency of performance improvements across 

different indices suggests that the methodology could be extended to individual stock 

prediction, sector rotation strategies, and international market applications. 

The medium to long-term prediction horizon where SARF demonstrates optimal performance 

aligns well with the needs of institutional investors and portfolio managers who typically 

operate on longer investment cycles. This alignment between model capabilities and practical 

investment needs increases the likelihood of successful real-world implementation and 

adoption. 

 Limitations and Areas for Future Development 

While the results of this study are highly encouraging, several limitations provide opportunities 

for future research and development. The reliance on historical data for both technical 

indicators and sentiment analysis means that the model's performance during unprecedented 

market conditions or novel types of market events remains uncertain. Future research should 
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explore the model's robustness during market crises, regulatory changes, and other 

extraordinary circumstances. 

The current implementation focuses on U.S. market indices, leaving questions about the 

generalizability of the approach to international markets with different regulatory 

environments, cultural contexts, and information dissemination patterns. Extending the 

validation to international markets would strengthen the universal applicability claims of the 

SARF methodology. 

The static nature of the current sentiment integration approach represents another area for 

future enhancement. Financial markets evolve continuously, and the relationship between 

sentiment and price movements may change over time due to market maturation, technological 

advances, or shifts in investor behavior patterns. Developing adaptive mechanisms that can 

adjust sentiment integration weights based on changing market conditions would improve the 

long-term sustainability of the approach. 

 Broader Impact on Financial Technology and Research 

This research contributes to the growing body of literature demonstrating the value of natural 

language processing applications in financial technology. The successful integration of large 

language models like FinGPT with traditional quantitative finance techniques provides a 

roadmap for future fintech innovations that combine cutting-edge AI technologies with 

established financial modeling approaches. 

The methodology developed in this study also contributes to the broader understanding of how 

alternative data sources can enhance traditional financial analysis. As the financial industry 

increasingly recognizes the value of alternative data, this research provides a concrete example 

of how textual data can be systematically incorporated into quantitative models to achieve 

measurable performance improvements. 
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The open approach to methodology description and evaluation metrics employed in this study 

supports the reproducibility and extensibility of the research. By providing detailed technical 

specifications and comprehensive performance analysis, the study enables other researchers to 

build upon these findings and explore related applications. 

 Future Research Directions and Long-term Vision 

The success of the SARF model opens numerous avenues for future research that could further 

advance the field of sentiment-augmented financial prediction. The integration of real-time 

sentiment analysis capabilities would enable the development of dynamic trading systems that 

can respond to emerging market conditions and sentiment shifts as they occur. This evolution 

would require advances in both natural language processing efficiency and incremental 

learning techniques for financial machine learning models. 

The expansion to multi-asset and cross-market applications represents another promising 

research direction. Developing sentiment-augmented models that can simultaneously predict 

movements across multiple asset classes—stocks, bonds, commodities, and currencies—while 

accounting for cross-asset correlations and sentiment spillover effects would provide more 

comprehensive market analysis capabilities. 

The integration of additional alternative data sources, including satellite imagery, social media 

engagement metrics, and macroeconomic sentiment indicators, could further enhance the 

predictive power of sentiment-augmented models. This multi-modal approach would require 

advances in feature fusion techniques and multi-source learning algorithms specifically 

designed for financial applications. 

In conclusion, the Sentiment-Augmented Random Forest model represents a significant step 

forward in the evolution of quantitative finance techniques. By successfully demonstrating that 

sentiment analysis can be systematically integrated with traditional technical analysis to 
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achieve superior prediction performance, this research provides both a practical methodology 

for immediate application and a foundation for future innovations in financial technology. The 

consistent and substantial performance improvements observed across multiple market indices 

validate the core hypothesis that market sentiment carries significant predictive power that can 

be harnessed through appropriate machine learning techniques. As financial markets continue 

to evolve and become increasingly information-driven, the principles and methodologies 

developed in this research will likely play an increasingly important role in the development of 

next-generation financial prediction and trading systems. 
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APPENDICES 

INTERVIEW GUID: 

Thank you for agreeing to participate in this interview. The purpose of this study is to explore 

how machine learning algorithms are applied to forecast stock market trends and how these 

applications influence investor decision-making. Your insights and experience are invaluable 

in helping us better understand both the benefits and challenges associated with integrating 

machine learning into the financial sector. The interview is expected to take approximately 30 

minutes and will be recorded solely for research purposes. 

 

Confidentiality: 

Participation in this interview is entirely voluntary, and strict confidentiality will be maintained 

throughout the study. Your identity will remain anonymous, and any information you provide 

will be used exclusively for research. All responses will be analyzed and presented in a way 

that ensures participants’ anonymity and privacy. 

 

Interview Questions: 

1. Have you utilized machine learning algorithms or predictive models to support your 

investment decisions? If so, please describe the specific techniques used and their 

outcomes. 

2. What do you see as the main advantages and limitations of using machine learning for 

stock market forecasting? 

3. What strategies or methods can be employed to assess the accuracy and reliability of 

machine learning models in predicting stock market behavior? 
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4. What challenges have you encountered in applying machine learning within the 

financial sector, and how have you addressed or mitigated these issues? 

5. In your view, how important is model interpretability in stock market prediction, and 

have you used any techniques to enhance interpretability? 

6. Have you noticed any significant differences in predictive performance between 

traditional statistical models and machine learning algorithms for stock market 

forecasting? 

7. How do you adapt to the dynamic nature of financial markets and account for 

unexpected events that may impact the performance of predictive models? 

8. Are there specific machine learning algorithms or techniques you find particularly 

effective or difficult to apply in the context of stock market prediction? 

9. What improvements or additional features could enhance the practicality and 

reliability of machine learning models in financial market analysis? 

10. What recommendations do you have for integrating machine learning approaches into 

investment decision-making to optimize returns while effectively managing risks? 

 

Conclusion: 

We sincerely appreciate your time and valuable input in this interview. Your participation 

significantly contributes to advancing research and development in this field. If you have any 

additional comments or insights, please feel free to share them. 
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RESPONSES TO INTERVIEW QUESTIONS 

Response 1 

Participant 1 – Quantitative Analyst at a Hedge Fund 

1. Use of ML in Investing 

 

I’ve built a multi-layered pipeline combining time series forecasting and sentiment analysis to 

support my trading decisions. I process tens of thousands of news articles, earnings transcripts, 

and social media posts using NLP models to extract sentiment scores. These feed into an 

LSTM-based system that generates short-term price predictions based on past price movements 

and sentiment signals. The results have been encouraging over the past year; I’ve seen a 15% 

increase in hit rate on entry signals. That said, the models still struggle during major news 

events when anomalies occur outside their training data. 

2. Benefits & Drawbacks of ML 

I see two key strengths: data-driven pattern recognition and adaptive scalability. Machine 

learning uncovers intricate relationships and adapts quickly as new data arrives. This is vital 

in fast-moving markets. However, ML comes with risks: data dependence, overfitting, and 

blind spots to unforeseen events like policy shifts or geopolitical crises. Models that seem 

brilliant in backtests often falter when market regimes change. I’ve learned that combining 

ML with human judgment and domain expertise leads to more resilient strategies. 

3. Evaluating Model Accuracy 

I employ a variety of techniques: 

 Backtesting on multi-year historical data to simulate model performance over full 

market cycles. 

 K-fold cross-validation over rolling windows to check generalization. 
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 Live forward-testing in a shadow portfolio to benchmark strategy performance 

before deployment. 

 I track metrics like Sharpe ratio, information ratio, drawdown, plus classification 

metrics such as accuracy, precision, and recall. 

 I also use ensemble methods blending multiple models to smooth volatility and apply 

stress-testing under extreme scenarios (e.g., 2008 crash) to ensure robustness. 

4. Challenges & Mitigations 

Key challenges include: 

 Noisy or biased data: I invest heavily in preprocessing—outlier removal, 

normalization, feature engineering—and augment data from alternative sources. 

 Model complexity & interpretability: I rely on SHAP values and LIME to decode 

model decisions and communicate them effectively. 

 Risk controls: I use stop-loss orders and automated position sizing to cap drawdowns 

and diversify across models and asset classes to avoid concentration risk. 

5. Importance of Interpretability 

Interpretability is essential for both risk management and stakeholder trust. I use SHAP 

visualizations to understand feature contributions and LIME for local explanations. These 

tools help me answer questions like “Why did we buy this stock today?” a crucial 

consideration for compliance, audit, and portfolio oversight. 

6. ML vs. Traditional Models 

I’ve observed that machine learning models outperform classical statistical models (like 

ARIMA, GARCH, linear regression) when dealing with non-linear dynamics and large, 
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multi-source datasets. However, I sometimes use simpler models as benchmarks or sanity 

checks, especially when markets are calm—the simpler approach can be more robust and 

interpretable in those scenarios. 

7. Managing Market Dynamics 

To handle shifting market dynamics, I implement: 

 Model retraining cadence every 2–4 weeks. 

 Regime detection algorithms to switch between bull, bear, and sideways models. 

 Scenario and stress testing, including simulation of shocks like oil-price spikes or 

interest-rate changes. 

 Real-time event monitoring, integrating macroeconomic news and alerts to adjust 

models or pause signals during high-volatility events. 

8. Effective & Challenging ML Techniques 

I rely heavily on tree-based models (like XGBoost/LightGBM) and LSTMs—they balance 

accuracy with interpretability. In contrast, CNNs applied to price charts and reinforcement 

learning have underperformed or been too noisy for production. I’ve seen some success with 

transformer-based time series models, but they come with steep compute costs and latency 

concerns. 

9. Potential Enhancements 

To improve usability and reliability, I’d like: 

 Integrated pipelines incorporating real-time macroeconomic, earnings, and 

sentiment feeds. 

 Risk-aware ML models that jointly predict returns and volatility. 
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 Interactive dashboards with signal explainability and anomaly alerts. 

 AutoML tools fine-tuned to financial tasks for faster iteration and benchmarking. 

10. ML Integration in Investment Decisions 

My approach: 

 Start by using ML to screen or rank investment opportunities, not for full automation. 

 Always run backtesting and forward-testing in real-time shadow environments. 

 Use ML signals as inputs to a broader decision framework including human oversight 

and macro analysis. 

 Emphasize risk controls and interpretability at every stage. 

By doing this, I treat machine learning as a trusted co-analyst, not a black-box oracle. 

 

Participant 2 – Portfolio Manager at a Mid-Size Asset Manager 

1. Use of ML in Investing 

I’ve implemented a hybrid platform: LightGBM and ensemble models trained on sector-level 

financials, macro data, and sentiment from earnings transcripts. These models output ranking 

signals for thousands of stocks weekly. By combining fundamental metrics (e.g., P/E, 

EBITDA growth) with sentiment trends, I’ve improved alpha by ~8% year-over-year 

compared to traditional quant models. The system is modular: if sentiment is unreliable 

during a stress period, I can downweight it. 

2. Benefits & Drawbacks of ML 

ML excels at large-scale processing and revealing subtle signals across thousands of tickers. 

It can adapt to new data faster than static rules-based systems. But it's vulnerable to regime 



 

 

 

 

 

106 
 

shifts and black swan events and often fails to pick up on breaking news unless retrained in 

real-time. Maintaining data pipelines and interpretability is also a resource-intensive effort 

within our team. 

3. Evaluating Model Accuracy 

I rely on: 

 Walk-forward cross-validation over 60-day windows. 

 Realistic transaction cost and slippage modeling. 

 Rolling out in paper-trading mode to test signals before full deployment. 

 Monitoring continuous metrics: Sharpe, max drawdown, hit rate, and turnover. 

Performance monitoring is automated, and alerts fire if any metric deviates beyond 

tolerance thresholds. 

4. Challenges & Mitigations 

Main hurdles: 

 System latency: I built low-latency inference APIs to recompute signals intraday. 

 Data integrity: I use redundant vendors and cross-check schemes to avoid bad ticks. 

 Explainability for compliance: I generate signal dashboards with SHAP and LIME 

to explain why top 10 stock picks made the cut. 

5. Importance of Interpretability 

Clients ask why we bought or sold a position—SHAP waterfall plots answer that. I lead 

monthly model review meetings, showing which features contributed most to portfolio 

moves. This not only builds client confidence but also helps our portfolio teams spot model 

drift or changes in factor dynamics. 
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6. ML vs. Traditional Models 

Our analysis shows that ML-based factor models outperform classic linear factor models 

during high-volatility or non-linear events by ~2% alpha, but underperform in sideways, 

mean-reverting periods. That’s why we switch to a traditional factor overlay whenever 

regime indicators signal calm markets. 

7. Managing Market Dynamics 

I use: 

 Volatility regime detection (à la VIX/Yield spread) to switch modes. 

 Monthly retraining on latest data carries the models forward. 

 Scenario analysis: we simulate interest-rate hikes, trade war scenarios, oil shocks and 

feed them through the system to check signal stability. 

8. Effective & Challenging Techniques 

Our strongest models are XGBoost and LightGBM, trained on tabular financial/macro data. 

We’ve also experimented with RNNs for time-series trends but encountered issues with noisy 

gradients and long training times. Multi-modal models (price + text) show promise but 

require better data alignment. 

9. Potential Enhancements 

To enhance reliability, I'd like: 

 Automated model versioning with interpretability summaries per release. 

 Volatility-adjusted outputs that suggest both expected return and risk. 

 Real-time alerting tied to macro data drops or breaking news that affect sentiment 

inputs. 
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10. ML Integration in Decision-Making 

We integrate ML via a decision pyramid: 

1. Universe creation using ML rankings 

2. Human filtering 

3. Risk overlay layer 

4. Execution via schedule/time slicing 

This approach fuses the quantitative speed of ML with portfolio manager intuition—

creating an efficient, yet controlled strategy. 

 

Participant 3 – Data Scientist at Fintech Startup 

1. Use of ML in Investing 

In my fintech firm, I've built a fully automated pipeline: ingesting minute-level market data, 

macro updates, and Twitter sentiment. We feed this into a transformer-based time-series 

model for intraday alpha generation, complemented with a sentiment-analysis module trained 

on financial news. The result: ~7% intraday alpha with <0.5% drawdown in live simulation. 

It’s computationally expensive, but the edge has been convincing. 

2. Benefits & Drawbacks of ML 

The strength lies in rapid adaptation and multi-source integration text, price, macro all at 

scale. On the flip side, the cost and complexity of training these models especially deep 

networks are substantial. Also, with frequent retraining comes model drift detection, which 

needs its own monitoring system. 

3. Evaluating Model Accuracy 

I rely on: 
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 K-fold cross-validation over 1-minute windows. 

 Monte Carlo backtesting over historical volatile periods. 

 Live A/B testing: half a portfolio driven by the model, half by benchmark. 

 Performance is assessed via alpha, beta, Sharpe, and turnover-adjusted cost metrics. 

4. Challenges & Mitigations 

We face challenges like: 

 Data drift we built pipelines to detect changes in feature distribution and trigger 

retraining. 

 Explainability integrated SHAP dashboards help us troubleshoot bad days. 

 Scaling latency GPU-parallelized inference handles sub-second sentiment analysis at 

scale. 

5. Importance of Interpretability 

Every predictor in our dashboard includes a SHAP bar chart explaining its influence on the 

output. We also hold weekly reviews where unusual signal patterns are investigated 

manually, comparing returned SHAP explanations with real-world triggers (like earnings or 

tweet storms). 

6. ML vs. Traditional Models 

In our R&D, ML notably transformer models outperform ARIMA and linear regression 

during high-frequency prediction tasks. That said, for long-horizon forecasts, classical 

econometric models sometimes outperform, especially when intraday noise dominates. 

7. Managing Market Dynamics 

We’ve implemented: 
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 Online learning to adapt models intraday. 

 Regime classifier layer: a parallel model tracks volatility and deactivates alpha 

signals if market risk becomes too high. 

 Stress scenarios, including real-time simulation of macro shocks, to validate 

immediate risk controls. 

8. Effective & Challenging Techniques 

Our go-to models: 

 Transformers for time-series generation 

 Gradient boosting on macro + sentiment data 

Deep RNNs and CNNs struggled with noisy labels and were highly resource 

intensive. 

9. Potential Enhancements 

Better use of real-time alternative data (e.g., satellite traffic, consumer sentiment). Also, 

improvements to embedded interpretability and uncertainty quantification so the system 

knows when it shouldn’t trade. 

10. ML Integration in Decision-Making 

Our pipeline is fully automated: feature → signal → portfolio construction → order 

execution—with stop-loss layers. That said, risk managers hold veto power on signals they 

deem unsound, combining ML outputs with contextual expertise. 

 

Participant 4 – Portfolio Manager at Family Office 

1. Use of ML in Investing 

I implemented a hybrid quant-fundamental strategy using an ensemble of random forest 
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models and shallow neural nets to rank global equities by expected return. I also augment this 

with daily sentiment scores extracted from newswire via NLP pipelines. The resulting model 

has improved net returns by ~6% annualized, with drawdown correlation to the S&P while 

increasing diversification across sectors. 

2. Benefits & Drawbacks of ML 

The main benefit is that ML discovers multi-dimensional factor exposures that human-

designed factors miss. The downside: maintaining clean, normalized data across dozens of 

data sources is time-consuming and expensive. Also, model blindness to sudden regime 

changes remains a concern. 

3. Evaluating Model Accuracy 

My evaluation process includes: 

 Time-series cross-validation to preserve autocorrelation 

 Ensemble cross-tests between models to ensure consistency 

 Live shadow portfolios before deployment 

 Tracking metrics like alpha, beta, max drawdown, and conditional VaR, as well as 

P&L distribution statistics. 

4. Challenges & Mitigations 

Problems I’ve tackled include: 

 Noisy labels resolved with smoothing and manual flagging of outliers. 

 Overfitting I apply L1/L2 regularization and limit depth on decision trees. 

 Transparency we hold quarterly stakeholder reviews with SHAP dashboards. 
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5. Importance of Interpretability 

Essential—for both regulatory compliance and investor confidence. I generate SHAP reports 

comparing expected vs. actual model rationales and ensure that every crowd-source manager 

can read why a model made a given call. 

6. ML vs. Traditional Models 

While ML consistently generates ~1-2% excess alpha over traditional factor models 

(especially during transitions), statistical models often show better drawdown control in 

sideways markets. This underscores the need for hybrid model architecture. 

7. Managing Market Dynamics 

I conduct monthly retraining, augmented by regime detection triggers. I also run scenario 

simulations for example, rate hikes or geopolitical events to evaluate timing and signal 

reliability under stress. 

8. Effective & Challenging Techniques 

Random Forest and gradient boosting deliver high signal quality with relatively low 

overhead. In contrast, deep learning models especially CNNs applied to technical charts were 

overkill and offered no clear benefit. 

9. Potential Enhancements 

I’d like better tools to model nonlinear risk measures, such as drawdown risk directly within 

ML frameworks. Also, unified pipelines combining alpha, risk, and execution signals would 

streamline operations. 

10. ML Integration in Decision-Making 

Our standard process: 

1. Run ML-generated ranking signals weekly 

2. Review top 50 in team meeting 
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3. Check risk overlay and schedule rebalances 

4. Execute over a 2–3-day window 

ML supports the process it doesn’t replace it, ensuring human oversight remains 

central. 

 

Participant 5 – Academic Researcher in Financial AI 

1. Use of ML in Investing 

I test various models (random forests, gradient boosting, RNNs) on multi-modal datasets 

combining fundamentals, macro signals, and textual data (e.g. SEC filings). I then blend them 

using a meta-model that provides monthly alpha predictions. My peer-reviewed studies show 

a 10% improvement in prediction accuracy versus benchmark models, especially when 

sentiment features are included. 

2. Benefits & Drawbacks of ML 

ML provides unmatched flexibility in fusing structured and unstructured data and capturing 

nonlinear dependencies. Yet it’s data-hungry, resource-intensive, and prone to overfitting, 

unless regularized carefully. Also, pure ML models often overlook critical economic regimes 

or structural changes in markets. 

3. Evaluating Model Accuracy 

Evaluation includes: 

 Nested cross-validation for honest error estimation. 

 Backtesting on out-of-sample periods covering 2008–09 and 2020. 

 Monte Carlo scenario simulations altering macro variables. 
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 Recording metrics like ROC AUC, Sharpe ratio, drawdown, and calibration plots to 

assess risk-adjusted accuracy. 

4. Challenges & Mitigations 

Academic data is often limited, so I simulate real-time feeds using APIs, and augment with 

textual sentiment features. I avoid overfitting by using dropout, regularization, early stopping, 

and validation on unseen data. I also use SHAP for interpretability, ensuring my papers 

include model rationales. 

5. Importance of Interpretability 

In academia, interpretability is critical for reproducibility and peer review. I integrate layer 

wise relevance propagation and SHAP analyses in all my publications, allowing readers to 

understand why certain features contribute to alpha. 

6. ML vs. Traditional Models 

In my controlled studies, ML models outperform econometric benchmarks by ~8%, 

especially when using alternative data. But when volatility is low, the gap narrows—and 

simple models often outperform in inference speed and interpretability. 

7. Managing Market Dynamics 

I adopt sliding-window training, incremental learning, and include macro and regime 

variables in models. I stress-test with synthetic shocks (e.g., rate spikes) and ensure models 

include uncertainty quantification to flag low-confidence predictions. 

8. Effective & Challenging Techniques 

Gradient boosting and shallow neural nets work best for my tasks. Deep networks (like CNNs 

on price patterns) were too noisy, and transformer architectures required more labeled data 

than I had available. 
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9. Potential Enhancements 

Enhanced uncertainty modeling, tighter integration of economic theory priors, and more 

sophisticated multi-task learning frameworks (predicting return, volatility, regime 

simultaneously) would make ML more reliable in finance. 

10. ML Integration in Decision-Making 

My recommended workflow: 

1. Build hybrid models that rank assets monthly 

2. Produce explainability reports 

3. Present top picks to portfolio committees 

4. Monitor model performance and retrain before each new cycle 

This approach integrates computational rigor with clear human decision-making and 

oversight. 
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Definition of terms and abbreviations 

FFT- Fast Fourier Transform 

DFT- Discrete Fourier Transform 

FT- Fourier Transform 

PSD- Power Spectral Density 

CSV- Comma Separated Value 

MACD - Moving Average Convergence Divergence 

TF-IDF- Ensemble deep learning framework for stock market data prediction 

NN- Neural Network 

LSTM- Long short-term memory 

RNNs- Recurrent neural networks 

SIWOA- Self-Improved whale optimization algorithm 

DBN- Deep Belief network 

AR- Autoregression Model 

ARMA- Autoregressive Moving Average Model 

ARIMA- Autoregressive Integrated Moving Average Model 

OLS- Ordinary Least Square 

SARF- Sentiment Augmented Random Forest 

SARF-MC - Sentiment Augmented Random Forest, Monte Carlo 

RF- Random Forest 

CAGR- Compounded Annual Growth Rate 

BERT- Bidirectional Encoder Representations from Transformers 

RAG- Retrieval-Augmented Generation 
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