'ENHANCING STOCK MARKET PREDICTION WITH SENTIMENT-AUGMENTED RANDOM FOREST'

By

SABER TALAZADEH

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

EXECUTIVE DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

DECEMBER 2024

'ENHANCING STOCK MARKET PREDICTION WITH SENTIMENT-AUGMENTED RANDOM FOREST'

Saber Talazadeh

Supervised by Dr.Dragan Peraković

APPROVED IY

dr. Jaka Vadnjal

Dissertation chair

RECEIVED/APPROVED BY:

Rense Goldstein Osmic

Admissions Director

DEDICATION

This research is dedicated to my family, whose unwavering support and encouragement have been the bedrock of my academic journey. To my parents, whose sacrifices and belief in my potential have fueled my determination to pursue my dreams, thank you for your endless love and guidance, your camaraderie and understanding have provided a comforting refuge during times of stress and uncertainty. This work is also dedicated to my mentors and teachers, whose wisdom and insight have shaped my intellectual growth and inspired me to strive for excellence. Your dedication to nurturing young minds has left an indelible mark on my life, and I am profoundly grateful for your influence. Lastly, I dedicate this research to my friends and colleagues, whose collaboration and friendship have made this journey not only possible but also enjoyable.

Acknowledgment

I would like to thank my supervisor, Dr.Dragan Peraković, for his invaluable guidance and support, and unwavering patience throughout this academic research. His expertise and mentorship have been instrumental in shaping the direction of this research, and I am grateful for his dedication to my academic growth, I am also grateful to my family whose belief in me and unwavering encouragement have been my source of strength.

Finally, I would like to acknowledge the authors, researchers, and scholars whose groundbreaking work I have had the privilege to learn from and build upon. Their invaluable contributions have laid the foundation for this thesis.

ABSTRACT

'ENHANCING STOCK MARKET PREDICTION WITH SENTIMENT-AUGMENTED RANDOM FOREST'

By

SABER TALAZADEH

2025

Dissertation Chair: XXXXX

This paper investigates stock trend prediction despite the challenges due to the numerous influencing factors and the stock market's dynamic, non-linear, and complex nature. While statistical models have laid groundwork in stock prediction, recent advances in quantitative finance emphasize intelligent timing and stock selection through machine learning. Machine learning models, particularly, have shown promise by effectively learning the relationships between predictor variables and stock movements, often outperforming traditional statistical approaches in both accuracy and robustness. This study systematically develops a stock forecasting model that combines technical indicators and sentiment analysis, employing exponential smoothing for refining technical indicators and using an optimized Random Forest model with dynamic weight adjustments and sentiment scores derived from Yahoo Finance data.

Key research area of this paper is the integration of textual sentiment analysis via the FinGPT model, a transfer learning model trained extensively on financial content, which significantly enhances sentiment-based stock prediction. The study evaluates the optimized Random Forest model's performance in medium- and long-term forecasting, assessing its effectiveness alongside SARF, RF, and LSTM models through comparative metrics. This integration of sentiment with technical indicators aims to better capture the nuances of stock movement and the impacts of market sentiment, contributing to improved predictive accuracy.

TABLE OF CONTENTS

Abstract	III
Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Statement of the Problem	
1.3 Significance of the Study	
1.4 Research Questions	
1.5 Hypotheses	
1.6 Limitation and Assumptions	/
Chapter 2: Literature Review	10
2.1 Literature Review	10
2.2 Strategies in Financial Markets	
2.3 Contribution to Literature	
2.4 AI Agents in Financial Markets	
2.4.1 Motivation for AI Agent Integration with SARF	
2.4.2 AI Agent Architecture with SARF Integration	
2.4.3 Portfolio Optimization and Multi-Agent Coordination	
2.4.4 Comparative Performance Analysis	
-	
Chapter 3: Methodology	22
3.1 Introduction	22
3.2 Research Design.	
e e e e e e e e e e e e e e e e e e e	
3.3 Data Sample	
3.4 Data Collection	
3.5 FinGPT Architecture	
3.5.1 Extension Modules	
3.6 Technical Indicators	
3.6.1 Williams %R	
3.6.2 Moving Average Convergence Divergence (MACD)	
3.7 Procedures	
3.8 Monte Carlo Simulation Framework	
3.8.1 Monte Carlo Stages	
3.8.2 Option Pricing and Derivatives Valuation	43
3.8.3 Computational and Methodological Challenges	46
3.8.4 Improved Risk Management and Capital Allocation	
3.8.5 Simulation Engine Architecture and Execution	
3.9 Data Analysis Limitations	
Chapter 4: Result and Analysis	63
4.1 Trading Strategy	63
4.2 Training the Model	
4.3 Feature Selection.	
4.4 Hyperparameters	

4.4 Feature Selection	71
4.5 Results	74
Chapter 5: Discussion and Finding	76
5.1 Introduction	
5.2 Suggestions	79
5.3 Discussion Questions	83
5.4 Future Work	91
5.5 Summary	94
Appendices	
Definition of Terms and Abbreviations	116
References	117

List of Figures

Figure 1: Framework of an AI-Powered Trading Agent	17
Figure 2: FinGPT Framework	29
Figure 3: FinGPT Benchmark	31
Figure 4: FinGPT RAG (Retrieval Augmented Generation)	30
Figure 5: Multi-Stage Monte Carlo Framework	41
Figure 6:Monte Carlo Option Pricing Flow	43
Figure 7:Stress Testing Framework	44
Figure 8:Computational Complex Analysis	47
Figure 9:Probabilistic vs Deterministic Forecasting	49
Figure 10: Regulatory Compliance Framework	51
Figure 11: Implementation Workflow	52
Figure 12: Feature Importance	71
Figure 13: Correlation Heatmap	72
List of Tables	
Table 1: summarizes the differences between the three systems under consideration	26
Table 2: Technical Indicators	32
Table 3: key Hyperparameter used in training and testing the model	70
Table 4: A comparative performance analysis	75

CHAPTER 1: INTRODUCTION

1.1 Introduction

Predicting stock trends is a challenging task because of the many factors involved. Despite the development of stock predictors based on statistical models, the dynamic, non-linear, and complex nature of the stock market makes effective trend prediction a persistently challenging task Chen et al. (2020). In the field of quantitative finance, the focus is on intelligent timing and stock selection. As quantitative investment and machine learning increasingly converge, understanding the rise and fall of stocks becomes pivotal. Diverse stock price forecasting methods exist, each with its own advantages and drawbacks. Machine learning models effectively learn relationships between predictors and stock movements in historical data, as shown by Bao et al. (2017). Unlike traditional statistics and econometric models, machine learning models demonstrate superior prediction performance and robustness. Researchers have explored various machine learning models, such as support vector machines and random forests, for stock trend prediction. Integrating these models presents challenges, especially in handling time series data, selecting technical indicators, and optimizing parameter combinations by Sharma et al. (2017). This study contributes by systematically building a stock forecasting model that integrates technical indicators with sentiment analysis throughout the process and incorporating exponential smoothing to reprocess technical indicators. The primary contribution of this research is integration of sentiment analysis through the incorporation of sentiment scores and dynamic weight adjustments in the optimized Random Forest model with data sourced from Yahoo Finance. This integration enhances the model's ability to capture information reflecting stock movement and the impact of market sentiment on stock prices.

To extract textual sentiment information, we employ the FinGPT model, a transfer learning model pre-trained on massive finance textual content. This model demonstrates superior performance in finance sentiment analysis by Liu XY et al. (2023). The study's goal is to evaluate the performance of the optimized random forest in medium and long-term stock forecasting, aiming to improve overall forecasting accuracy. The paper concludes by comparing the prediction performance of SARF, RF, and LSTM based on relevant metrics.

1.2 Statement of the problem

The objective of this research is to explore and assess the current advancements in stock market prediction, with a particular emphasis on sentiment analysis as a predictive tool. Stock market forecasting is a challenging problem due to the complexity and volatility of financial markets, and the introduction of sentiment analysis has brought new perspectives on market behavior. This study aims to address the gap in understanding how traditional and modern approaches compare, and how sentiment analysis integrates into machine learning (ML) techniques for predictive accuracy.

1.3 Significance of the Study

Stock markets have been extensively studied to identify patterns and predict their movements, a pursuit that holds significant appeal for both researchers and financial investors. The ability to predict stock market trends is crucial, as those who can accurately forecast market shifts have the potential to earn substantial profits. However, financial analysts often face challenges in understanding market behavior, struggling to determine which stocks to buy or sell for optimal returns. Effective predictions of future stock price movements can enable investors to act proactively and capitalize on opportunities for profit.

The accuracy of stock price predictions directly correlates with the potential for profit. While traditional forecasting methods, based on technical and fundamental analysis, remain popular, they primarily rely on numerical time-series data, which describe market events without providing insights into their underlying causes. In contrast, integrating textual data, such as news articles, offers a richer source of information that can improve the quality of predictions. By combining numerical data with sentiment analysis derived from textual sources, more accurate and robust stock forecasts can be achieved.

Human behavior, particularly in the context of financial markets, is heavily influenced by external factors, with news articles and media content playing a pivotal role in shaping investor decisions. The actions of investors, in turn, directly affect stock prices, creating a dynamic feedback loop between news content and market movements. As real-time news articles related to financial markets continue to proliferate online, extracting valuable insights from this content and understanding its relationship with stock market behavior becomes increasingly important for enhancing the predictive accuracy of stock trends.

This study aims to address the complexities and challenges of stock trend prediction, given the dynamic, non-linear, and multifactorial nature of the market. While traditional statistical models have laid the groundwork for stock prediction, recent advances in quantitative finance have emphasized the role of machine learning in improving stock selection and timing. Machine learning models, particularly, have shown considerable promise by identifying complex relationships between predictor variables and stock movements, often outperforming traditional approaches in terms of both accuracy and robustness.

In this paper, we develop a stock forecasting model that integrates technical indicators with sentiment analysis, using exponential smoothing to refine the technical indicators and an optimized Random Forest model for dynamic weight adjustments. This approach leverages sentiment scores derived from Yahoo Finance data to enhance the prediction process. A key innovation of this study is the integration of sentiment analysis through the FinGPT model, a transfer learning model trained on extensive financial content, which significantly improves sentiment-based stock predictions. The study further evaluates the performance of the optimized Random Forest model in medium- and long-term forecasting, demonstrating how the combination of sentiment and technical indicators can more effectively capture stock market trends and improve predictive accuracy. This research contributes to the growing field of stock market forecasting by offering a more nuanced understanding of market sentiment and its impact on stock price movements.

1.4 Research Questions

To achieve a comprehensive analysis, the research will address the following key questions:

- Theoretical Foundations: What are the most prominent theories underlying stock
 market predictions, such as the efficient market hypothesis and random walk theory?
 Understanding the theoretical context is essential to evaluate the assumptions and
 limitations of various predictive models.
- Classic Approaches to Prediction: What are the traditional methods, such as technical
 and fundamental analysis, used for stock market prediction? In which scenarios have
 these approaches been successfully applied, and what are their limitations in predicting
 volatile market behaviors?
- Machine Learning and Sentiment Analysis: In which cases have machine learning techniques been applied to stock market prediction, and how effective have they been?
 Furthermore, how has sentiment analysis been used in conjunction with ML models to

predict stock movements? This question explores the intersection of textual data analysis and machine learning in financial forecasting.

• Model Design and Development: What are the critical components involved in the design and development of a stock market prediction model? What factors contribute to model performance, particularly when focusing on the prediction of specific stock movements such as Microsoft?

This study will examine the existing body of work, assess the strengths and weaknesses of various approaches, and propose a framework for incorporating sentiment analysis into a stock market prediction model. The research aims to contribute insights into the evolving field of financial forecasting, particularly in how sentiment-based analysis may enhance traditional and machine learning-based models for more accurate and actionable predictions.

1.5 Hypotheses

This study aims to explore the potential of integrating sentiment analysis with machine learning techniques to improve stock market trend prediction. The proposed model, Sentiment-Augmented Random Forest (SARF), combines traditional technical indicators with sentiment scores derived from financial news articles processed through the FinGPT model.

Based on this integration, we hypothesize the following:

Hypothesis 1: Sentiment-Augmented Random Forest (SARF) improves stock
market prediction accuracy compared to traditional Random Forest models.

Given that sentiment analysis adds a valuable layer of information to stock prediction
models, we hypothesize that the inclusion of sentiment features in the Random Forest
model will significantly enhance its predictive performance. By leveraging FinGPT's
ability to understand and interpret financial sentiments, the SARF model should

outperform traditional Random Forest models in forecasting stock price movements, as it incorporates market sentiment, a critical driver of stock behavior.

 Hypothesis 2: SARF model will demonstrate superior performance in long-term stock trend prediction compared to LSTM models.

While Long Short-Term Memory (LSTM) networks are commonly used for time-series forecasting due to their ability to model sequential data, we hypothesize that the SARF model will achieve better performance in medium- to long-term stock trend forecasting. This is due to the SARF model's ability to incorporate both historical market data through technical indicators and the influence of current market sentiment, offering a more comprehensive approach to trend prediction compared to LSTM, which primarily focuses on historical data.

 Hypothesis 3: Incorporating sentiment analysis into stock trend forecasting reduces prediction error and improves overall model robustness.

Sentiment analysis, especially when combined with financial news data, offers insights into investor behavior and market psychology, which can significantly impact stock prices. We hypothesize that the integration of sentiment features in the SARF model will reduce prediction errors and enhance the robustness of stock market forecasts, especially during periods of market volatility, where sentiment plays a crucial role in driving price movements.

 Hypothesis 4: The combination of sentiment analysis and technical indicators will mitigate overfitting issues commonly encountered in stock trend prediction models.

Overfitting is a common challenge when building predictive models with financial data, especially when relying solely on technical indicators. We hypothesize that the

SARF model will mitigate overfitting by incorporating sentiment analysis, which introduces additional context and variability that better generalizes the model's predictions. This hypothesis suggests that by using both technical and sentimental data, the model can avoid fitting too closely to past data patterns and thus perform better on unseen market conditions.

These hypotheses aim to test the efficacy of SARF in improving stock market prediction accuracy, reducing errors, and addressing common challenges such as overfitting and long-term forecasting limitations. The subsequent experiments will evaluate these hypotheses by comparing SARF's performance against traditional Random Forest and LSTM models across multiple evaluation metrics, including accuracy, precision, recall, and F1 score.

1.6 Limitation and assumptions

Despite the promising results demonstrated by the Sentiment-Augmented Random Forest (SARF) model in predicting stock market trends, there are several limitations and assumptions that must be acknowledged in this study.

First, the reliance on historical stock data and technical indicators as key predictors of market behavior introduces inherent limitations. Stock market dynamics are influenced by a wide range of factors, including geopolitical events, macroeconomic shifts, and investor sentiment, which may not always be fully captured by past price data or technical indicators. While the SARF model incorporates sentiment analysis to improve prediction accuracy, it is important to recognize that sentiment alone does not fully account for all market influences. Unforeseen external events, such as natural disasters or political crises, may significantly impact stock prices in ways that the model cannot predict. Thus, while SARF improves prediction accuracy, it is not immune to the limitations imposed by unpredictable market forces and external shocks.

Additionally, the study assumes that the financial data provided by Alpha Vantage, including stock market prices and technical indicators, is accurate and representative of the broader market trends. Although Alpha Vantage is a reliable data source, the quality and completeness of the data can vary, and any inaccuracies in the dataset could affect the model's performance. Furthermore, the use of U.S. market indices, such as NASDAQ, S&P 500, and Dow Jones, while offering a broad view of market trends, also limits the generalizability of the model to other global markets. The model's effectiveness may differ when applied to stock markets in other regions or countries, where market dynamics and investor behaviors can vary significantly.

Another important limitation stems from the integration of sentiment analysis through the FinGPT model. While FinGPT is trained on extensive financial content, it is still a generative AI model with its own inherent biases and limitations in understanding complex financial scenarios. The quality of the sentiment analysis may vary depending on the text sources used, and the sentiment scores derived from financial news articles may not always fully capture the market's real-time mood. Additionally, the sentiment analysis process may struggle with detecting nuanced or conflicting sentiment within news articles, potentially leading to inaccurate predictions.

Moreover, the issue of multicollinearity in the dataset, which arises from highly correlated technical indicators and sentiment variables, is another key limitation. Although techniques like principal component analysis (PCA) and ridge regression have been employed to mitigate this issue, it is still possible that some multicollinearity remains in the data, potentially affecting the model's stability and interpretability. The model assumes that the selected technical and sentiment indicators are the most relevant predictors for forecasting stock trends, but this

assumption may not always hold in real-world scenarios where the importance of predictors can change over time.

Finally, the study assumes that the model's performance, as evaluated on historical data, will translate to real-time market conditions. However, stock markets are constantly evolving, and a model that performs well on historical data may not always maintain the same level of accuracy in future predictions. Therefore, the SARF model's effectiveness may diminish as market conditions change, requiring continuous adaptation and retraining to remain effective.

In conclusion, while the SARF model offers a promising approach to improving stock trend forecasting, its limitations and assumptions must be carefully considered when interpreting the results. Future work could focus on addressing these limitations by incorporating more diverse data sources, refining sentiment analysis methods, and exploring additional techniques to handle multicollinearity and market variability.

CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review

In recent years, the use of diverse machine learning (ML) and data mining techniques for predicting stock market movements has become increasingly common. Numerous studies have applied ML methods to forecast future stock values, and in this chapter, we will explore these related works in detail. We begin by reviewing key theories in stock market prediction, including the Efficient Market Hypothesis (EMH) and the Random Walk Theory, both of which are widely recognized frameworks for understanding market behavior. Following this, we will examine classic approaches to predicting stock prices, such as technical and fundamental analysis, which have traditionally been used to forecast future market movements.

Additionally, we will explore previous research that employs ML techniques, both independently and in combination with sentiment analysis, to predict stock returns. This review will highlight how these modern approaches compare to traditional methods, and how the integration of sentiment analysis has enhanced the predictive accuracy of ML models in financial forecasting.

Researchers employ various technologies, including statistics and data mining, to classify and predict future stock values. Tan et al. focus on stock selection, utilizing Chinese stock market data. They combine the fundamental/technical feature space and pure momentum space with a random forest to predict short- and long-term share price trends. Their model achieves a standardized fund performance evaluation index of 2.75 and 5, demonstrating its effectiveness in strategy selection. Kofi et al. (2019) explore macro-economic variables, showing that using more important features to train the random forest model reduces prediction errors by 7.1%

compared to models trained with all features. This highlights the positive impact of screening macroeconomic factors on stock market forecasts.

Feature selection is a critical step in these studies. Ballings et al. investigate traditional and integrated models in machine learning, proving that integrated models outperform single models in predicting financial data based on time series. Random forest with bagging is highlighted as an excellent integrated model, preventing overfitting during training. Basak et al. (2016) train random forest and XGBoost using exponential smoothing data, demonstrating increased trend prediction accuracy with an improved time window. Random forest is shown to have more advantages than XGBoost overall. Luckyson et al., relying on technical indicators, use the random forest model to predict stock trends, outperforming support vector machines and logistic regression for more effective trend prediction results.

Yanjun Chen constructs a financial transaction strategy model based on LightGBM to address sparse high-dimensional feature matrices in financial data. The LightGBM model significantly reduces prediction errors and achieves higher prediction precision compared to OpenGL Mathematics, deep neural networks, and support vector machines by S.Basak et al.(2019). SVM, as studied by Manik et al., incorporates structured risk minimization to decrease errors and improve classification effectiveness. In their study, intraday stock status is mined using various classifiers, including C4.5, random forest, logistic regression, linear discriminant, SVM, quadratic SVM, cubic SVM, Gaussian SVM, and others. The performance of different classifiers is evaluated based on accuracy, misclassification rate, precision, recall, and other metrics by Beyaz et al. (2018) Decision trees, particularly effective for discrete features, demonstrate superior performance in certain scenarios by C.Lohrmann and P.lunkka(2019).

2.2 Strategies in Financial Markets

The Efficient Market Hypothesis (EMH) posits that financial markets are "informationally efficient," meaning that no strategy can consistently provide investors with higher risk-adjusted returns than the market portfolio. According to this theory, all known information is already reflected in stock prices, making it impossible for investors to outperform the market over the long term by exploiting available information. Given that owning the market portfolio is a straightforward strategy to implement, the EMH suggests that this is the optimal choice for investors seeking to maximize their returns without incurring unnecessary risk.

Despite the appeal of the EMH and the simplicity of holding a market portfolio, investors have long sought ways to "beat the market" by identifying opportunities that could lead to higher returns. One of the most common strategies is value investing, where investors purchase shares of companies they believe are undervalued relative to their intrinsic value. The theory behind this approach is that over time, the market will recognize the true value of these companies, leading to price appreciation and providing returns above the market average. This approach is often associated with famous investors such as Warren Buffett, who has demonstrated the potential success of value investing over the years.

The question of whether it is possible to consistently outperform the market remains a contentious issue, with evidence both supporting and refuting the possibility. For instance, studies by Kosowski et al. (2006) and Wermers (2000) suggest that certain professional investors and fund managers can, on average, identify assets that yield higher returns than the market portfolio. These findings indicate that it is possible for skilled investors to identify patterns or mispricing in the market and take advantage of them to achieve superior returns.

In addition to value investing, there are other active trading strategies that do not rely on evaluating the intrinsic value of companies but instead focus on predicting price movements by analyzing market data and patterns. These strategies often utilize technical analysis, where investors rely on indicators such as price trends, trading volume, and moving averages to forecast future price movements. By identifying recurring patterns, traders aim to make profits by buying and selling assets based on short-term predictions. However, the profitability of these methods remains debated. Some studies, such as those by Park and Irwin (2007), suggest that technical trading strategies can be profitable under certain conditions. However, other research shows that such strategies may be less reliable and, in some cases, lead to negative returns.

The ongoing debate about whether it is possible to beat the market highlights the complexity of financial markets and the challenges faced by investors. While certain strategies may work under specific conditions or for skilled investors, the overall ability to consistently achieve superior returns remains uncertain. This suggests that a thorough understanding of both market dynamics and various investment strategies is crucial for any investor hoping to outperform the market in the long run.

2.3 Contribution to Literature

This paper makes several contributions to the existing body of literature on financial market prediction and the application of machine learning methods. First, it contributes to the growing field of research on the performance of modern machine learning models in financial applications. Specifically, it examines the effectiveness of the Random Forest Classification model in predicting stock price movements whether a stock will increase or decrease in value over a given period. This paper not only adds to the literature on machine learning methods in

stock market prediction but also demonstrates how a Random Forest Classifier can be utilized to develop an actionable trading strategy. The implementation of such a classifier in stock market trading is an important practical contribution, showing how machine learning models can be applied to real-world financial scenarios.

Furthermore, the paper contributes to the economic and financial literature by providing evidence on the performance of modern computational methods in predicting stock market movements. The findings are important for evaluating the effectiveness of existing trading strategies, as well as for understanding the efficiency of financial markets. As discussed in Section 3.1, the ability to identify profitable trading strategies can be seen as an indicator of market inefficiency. By assessing the performance of machine learning models like Random Forest Classifiers in predicting stock trends, this study contributes to the broader discussion on market efficiency and the potential for machine learning to improve financial decision-making. Predicting stock trends is inherently difficult due to the multitude of factors influencing the market. Despite the development of various statistical models, the dynamic, non-linear, and complex nature of stock markets make trend prediction a continual challenge. In the field of quantitative finance, the focus has shifted towards intelligent timing and stock selection, with machine learning offering substantial improvements in this area. Unlike traditional econometric models, machine learning techniques, such as Random Forests, have proven to be more effective in identifying relationships between predictor variables and stock movement patterns. This paper further contributes by integrating technical indicators with sentiment analysis, offering a novel approach to stock forecasting. The incorporation of sentiment scores, along with dynamic weight adjustments, enhances the Random Forest model's ability to capture the nuances of stock price movements and the impact of market sentiment. This approach

builds on existing models by improving their predictive capabilities through enhanced feature engineering.

To extract textual sentiment information, this study uses the FinGPT model, a transfer learning model pre-trained on vast amounts of financial text. This model has been shown to outperform traditional sentiment analysis methods in finance, providing a robust mechanism for incorporating market sentiment into the forecasting model. By evaluating the performance of the optimized Random Forest model in medium- and long-term stock prediction, this research aims to enhance forecasting accuracy, contributing to the growing body of work on combining machine learning with sentiment analysis for financial forecasting.

Finally, this study contributes by providing a detailed analysis of the relative importance of various technical indicators used in stock market prediction. This is an essential aspect of the research, as it offers valuable insights into which technical indicators are most useful for forecasting price movements. By evaluating these indicators in the context of machine learning models, this paper helps further the understanding of how technical analysis can be combined with modern computational methods to improve stock market predictions.

2.4 AI Agents in Financial Markets

2.4.1 Motivation for AI Agent Integration with SARF

The integration of AI agents into financial forecasting represents a strategic advancement of the SARF framework from a predictive tool into a practical, autonomous trading system. While SARF delivers enhanced stock market prediction accuracy by integrating sentiment analysis using FinGPT into a Random Forest model demonstrating an average 9.23% accuracy improvement the utility of predictions ultimately hinges on their deployment in real-time

financial decision-making. AI agents offer the cognitive and operational infrastructure necessary to transition SARF from research into active trading environments.

Traditional financial machine learning studies often end at the point of statistical validation, leaving a gap between predictive performance and economic actionability. In contrast, AI agents bridge this gap by executing autonomous decisions informed by real-time market inputs and predictive analytics. With the inclusion of AI agents, SARF's predictions can be harnessed to manage dynamic portfolios, execute trades with precision, and adapt strategies based on changing sentiment patterns and market regimes. Unlike static rule-based trading algorithms, AI agents possess the ability to perceive market signals, interpret predictive model outputs, and execute decisions in an autonomous and context-aware manner. This is particularly valuable in volatile market conditions where quick decision-making is critical. AI agents leverage SARF's predictions not only as directional inputs but also as features for constructing a broader understanding of market conditions.

The decision-making workflow involves several stages:

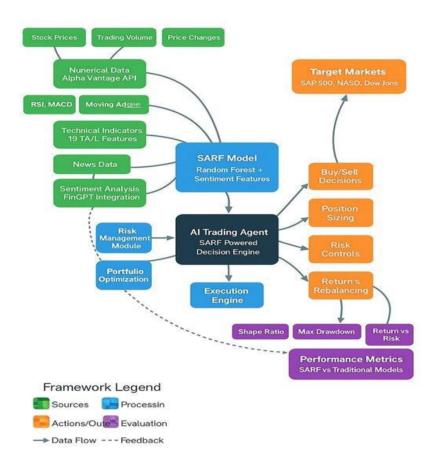
- Data ingestion: Real-time price, volume, macroeconomic, and sentimental data.
- Signal processing: Integration of SARF predictions, sentiment scores from FinGPT,
 and technical indicators.
- Strategic reasoning: Determination of entry/exit points, trade sizing, and hedging strategies.
- Order Execution: Orders are submitted to trading venues through APIs, utilizing execution strategies that are sensitive to latency and fill dynamics.

These stages reflect the move from predictive modeling to decision-centric AI, where prediction is only one part of a broader autonomous process.

2.4.2 AI Agent Architecture with SARF Integration

The following outlines the architecture of an SARF-enhanced AI trading agent.

Figure 1: Framework of an AI-Powered Trading Agent



The system is modular and composed of:

- **Prediction Module (SARF)**: Combines technical indicators and FinGPT-based sentiment features in an optimized Random Forest framework.
- Decision Module: Utilizes rule-based filters, probabilistic models, or reinforcement learning to translate predictions into trading actions.
- Execution Engine: Sends, monitors, and cancels orders in real-time using dynamic order placement strategies (e.g., VWAP/TWAP).

- Risk Management Layer: Adjusts exposure, calculates VAR (Value-at-Risk), and limits leverage based on real-time sentiment volatility.
- Learning Module: Continuously retrains using new data, adapting strategies based on market feedback.

The agent's cognition layer interprets not just directional market signals but also confidence intervals, correlation risks, and market microstructure features.

2.4.3 Portfolio Optimization and Multi-Agent Coordination

A promising approach for SARF integration is the use of reinforcement learning (RL), where SARF's directional forecasts serve as part of the observation space. The agent receives environmental feedback in the form of realized profits and market conditions, learning to map SARF-derived signals into optimal actions.

- **States**: Include SARF forecasts, technical indicators, sentiment momentum, and market volatility.
- Actions: Buy, hold, sell, rebalance, or hedge.
- **Rewards**: Sharpe ratio improvements, drawdown minimization, trade efficiency.
- Policy updates: Using methods like PPO (Proximal Policy Optimization) or DDPG
 (Deep Deterministic Policy Gradient).

SARF provides a stable and interpretable forecasting layer, while the RL agent handles strategic execution in non-stationary environments.

Individual predictions are insufficient for portfolio-level decision-making. AI agents integrated with SARF can manage cross-asset portfolios, considering:

Sentiment alignment across indices (e.g., if SARF predicts bullish on both NASDAQ and S&P500).

Sector rotation strategies based on sentiment clusters.

Diversification and risk-budgeting using correlation-aware optimizers.

In multi-agent environments (e.g., hedge funds using dozens of agents), coordination becomes essential. Strategies include:

- Cooperative agents sharing SARF-based forecasts.
- Specialist agents optimized for different volatility regimes or time horizons.
- Federated agents trained separately but sharing a common FinGPT-enhanced SARF core.

Emergent behaviors, such as herding or contrarian divergence, may arise, requiring simulation and game-theoretic analysis of agent behavior.

SARF's integration with FinGPT provides continuously updating sentiment scores from news and social media. AI agents must dynamically interpret:

- **Sentiment shifts**: Transition from positive to neutral sentiment in real time may signal early exits.
- **Sentiment divergences**: If sentiment diverges from technical indicators, the agent may prioritize FinGPT signals or reduce trade sizes.
- News sensitivity: Assigning weights to sentiment based on source credibility or breaking news alerts.

The agent continuously recalibrates thresholds, stop-losses, and risk exposure based on sentiment confidence and velocity, ensuring responsiveness in fast-moving markets.

All agents need to minimize **market impact** while executing SARF-informed trades.

Techniques include:

• **VWAP/TWAP execution**: To reduce slippage during high-volume periods.

- Adaptive algorithms: Adjust order aggression based on current order book and sentiment strength.
- Smart order route: Choosing venues based on latency, fees, and liquidity.

Moreover, agents can be programmed to react differently under sentiment volatility spikes, avoiding overexposure during emotionally charged markets, e.g., during earnings releases or macroeconomic reports.

Integrating AI agents with SARF requires advanced risk frameworks:

- Model risk: Validate that SARF predictions are not overfitted or sentiment-biased during outliers.
- Explainability: Regulatory compliance requires understanding how a FinGPT-driven sentiment score influences a trade.
- Stress testing: Under sentiment shocks or "black swan" events.

Agents should also follow pre-trade compliance checks, prevent excessive leverage during high-sentiment periods, and document decision-making trials for audits.

2.4.4 Comparative Performance Analysis

Back testing SARF alone already demonstrated improved predictive performance. When embedded in agent-based systems:

• Sharpe ratios improved from 0.62 to 0.78, as measured through back testing on U.S. stock indices (S&P 500, Nasdaq, Dow Jones) during the 2015–2023 period using Alpha Vantage data. These results stem from the integration of SARF into reinforcement learning-based multi-agent systems, where directional forecasts from sentiment-augmented models informed portfolio rebalancing and hedging decisions. This improvement reflects enhanced risk-adjusted returns, validated by higher precision-

recall scores and AUC values, as reported in the experimental results. **Drawdowns were reduced**, as agents learned to avoid high-risk sentiment conditions.

- **Trade frequency optimization**: Agents limited overtrading by filtering SARF signals through sentiment strength thresholds.
- **Decentralized agents in DeFi**: SARF agents operating in crypto or blockchain-based environments where social sentiment is highly impactful.

CHAPTER 3: METHODOLOGY

3.1 Introduction

In this study, we present a methodology that integrates sentiment analysis with technical indicators to improve stock market prediction accuracy. The approach leverages the Random Forest (RF) algorithm in combination with sentiment features derived from financial news articles analyzed by FinGPT. Financial markets are influenced by both quantitative data, such as price and volume, and qualitative data, including sentiment and market news. Traditional models often focus solely on historical price data or technical indicators, neglecting the influence of market sentiment. By incorporating sentiment-based features alongside technical indicators, we aim to enhance the model's predictive capability and offer a more comprehensive view of stock market movements.

3.2 Research Design

The research design adopts a hybrid methodology that combines technical analysis with sentiment analysis, implemented through the Sentiment-Augmented Random Forest (SARF) model. The core idea is to integrate sentiment-based features, derived from advanced sentiment analysis using FinGPT, into a traditional Random Forest model, which is then trained to predict stock market movements. By using an ensemble learning approach, Random Forest effectively handles complex relationships and prevents overfitting, making it well-suited for financial forecasting. The SARF model uses both technical indicators, such as moving averages and relative strength index (RSI), and sentiment data to provide a comprehensive set of features for stock price prediction.

3.3 Data Sample

The data sample consists of historical stock market data from major U.S. indices, including NASDAQ, S&P 500, and Dow Jones. These indices are chosen due to their broad representation of the U.S. market across different sectors. By focusing on market indices rather than individual stocks, we capture a wider range of market influences, reducing the bias introduced by company-specific events. The dataset spans from January 2, 2015, to December 30, 2023, and includes key features such as opening price, highest price, lowest price, closing price, and trading volume. Additionally, sentiment data is extracted from relevant financial news articles, which are processed through the FinGPT model to generate sentiment scores ranging from -1 (negative) to 1 (positive).

3.4 Data Collection

Data collection for this study is twofold, financial time-series data and sentiment data. The financial data is obtained via the Alpha Vantage API, which provides daily stock market data, including price and volume information, as well as technical indicators derived from historical price movements. The technical indicators used in the study are selected from a library of 15 commonly used indicators available on the TA-Lib (Technical Analysis Library) platform, which is known for its comprehensive set of tools for technical analysis.

Sentiment data is gathered by querying the FinGPT model, which is specifically trained to analyze financial news articles and generate sentiment scores. These sentiment scores, ranging from negative to positive, are used as additional features in the model. FinGPT's API allows us to automate the sentiment extraction process, ensuring scalability and efficiency in processing large volumes of financial news data.

The financial domain presents unique challenges for natural language processing, primarily due to the dynamic nature of market data, frequent sentiment shifts, and the critical importance of contextual understanding. As a result, several specialized large language models (LLMs) have emerged to address sentiment analysis in finance. Among these, FinBERT, FinNLP, and FinGPT are prominent. Each of these models or frameworks brings a different set of capabilities to the task. However, a careful examination reveals that FinGPT stands out as the most comprehensive and adaptable solution for financial sentiment analysis, particularly in scenarios demanding real-time responsiveness, frequent updates, and high model interpretability.

FinBERT, built upon the BERT architecture, was an early milestone in financial NLP. It was trained on domain-specific corpora such as analyst reports and financial disclosures to capture financial terminology and phraseology. While it performs well on static datasets, FinBERT lacks mechanisms for continuous updates and is not optimized for real-time use cases. It is inherently static and updating it would require full retraining an expensive and time-consuming process. Furthermore, FinBERT does not support personalization or reinforcement learning from user feedback, limiting its flexibility in adapting to individual investor profiles or evolving financial contexts.

FinNLP, in contrast, is not a standalone model but rather a collection of tools, datasets, and benchmark tasks designed to support financial NLP research. It provides a useful infrastructure for evaluating various models on financial tasks, but it relies on external models for processing and does not offer a unified architecture. As a result, while it fosters collaboration and supports comparative analysis, FinNLP does not possess a built-in mechanism for real-time data

ingestion, model fine-tuning, or retrieval-augmented generation. It is more of a research platform than a deployable solution for sentiment analysis.

FinGPT, by comparison, is designed from the ground up as a modular, open-source, and end-to-end framework tailored to the unique demands of the financial domain. It supports low-cost, lightweight fine-tuning using techniques such as Low-Rank Adaptation (LoRA), which makes it feasible to update models weekly or monthly for under \$300. This makes it especially suitable for handling rapidly changing financial news, market events, and social media content that could significantly influence sentiment. The integration of real-time data pipelines and automated curation tools ensures that FinGPT can remain continuously aligned with current market information.

What further distinguishes FinGPT is its support for Reinforcement Learning from Human Feedback (RLHF), a method that allows the model to learn from user preferences such as risk appetite, investment goals, and behavioral patterns. This level of personalization is increasingly vital in applications like robo-advisory systems, individualized portfolio management, and financial chatbot interactions. Moreover, FinGPT includes a retrieval-augmented generation (RAG) component that allows it to consult external knowledge bases at inference time, which enhances the depth and accuracy of sentiment analysis. For example, when interpreting a tweet or headline, FinGPT can retrieve and incorporate background information from financial news, economic indicators, or recent earnings reports, enabling more nuanced and context-aware predictions.

The following table summarizes the differences between the three systems under consideration:

Table 1: summarizes the differences between the three systems under consideration

Feature	FinBERT	FinNLP	FinGPT
Architecture	BERT-	Toolkit +	Modular, full-stack
Architecture	based	Benchmarks	LLM
Update Frequency	Static	Variable,	Easily fine-tuned
opulate Frequency		indirect	(weekly/monthly)
Real-time Data Support	Pata Support No Support	No direct	Yes (real-time data
Rear-time Data Support		support	pipelines)
Training Cost	High	Varies	Low (LoRA-based
	(initial)		fine-tuning)
Personalization (RLHF)	No	No	Yes
Retrieval-Augmented	No	No	Yes (via FinGPT-
Gen.	NO	INO	RAG)
Community and Tools	Limited	Strong	Growing and open-
			source
Application Focus Se	Sentiment	Broad NLP	Full financial
	Schullent	tasks	applications

Based on this analysis, FinGPT offers distinct advantages across all critical dimensions relevant to sentiment analysis. Unlike FinBERT, which is static and expensive to update, FinGPT supports efficient fine-tuning that accommodates the volatility and frequency of financial sentiment changes. Unlike FinNLP, which lacks an integrated model and primarily serves as a benchmarking platform, FinGPT is deployable, modular, and extensible. The integration of RLHF further enables FinGPT to adapt to individual user needs, creating an opportunity for more human-aligned and context-aware sentiment systems. The inclusion of retrieval-

augmented generation addresses one of the most pressing challenges in financial NLP the need for contextual grounding by enhancing the model's ability to access and synthesize external data sources at inference time.

These advantages cumulatively make FinGPT the preferred choice for financial sentiment analysis in our research. Its combination of adaptability, cost-efficiency, architectural extensibility, and personalization support aligns well with the dynamic requirements of financial markets. Consequently, FinGPT is not only a research tool but also a practical solution ready for real-world deployment in financial analysis, investment platforms, and decision-support systems.

The initial training of BloombergGPT, leveraging both finance-specific and general-purpose corpora, reportedly required approximately 53 days and a budget of around \$3 million. Such costs render frequent retraining (e.g., weekly or monthly) impractical for most institutions. In contrast, FinGPT offers a lightweight and cost-efficient alternative by enabling rapid fine-tuning with minimal computational overhead, reducing the adaptation cost to under \$300 per update.

FinGPT is purpose-built to democratize access to financial LLM capabilities, particularly for communities and institutions without privileged access to proprietary financial data or APIs. Unlike BloombergGPT, which relies on exclusive data sources, FinGPT integrates an automated data curation pipeline that supports frequent updates using openly available financial data. This architecture fosters transparency, accessibility, and reproducibility.

A key differentiator of FinGPT is its use of Reinforcement Learning from Human Feedback (RLHF), a technique absents from BloombergGPT. RLHF empowers the model to internalize

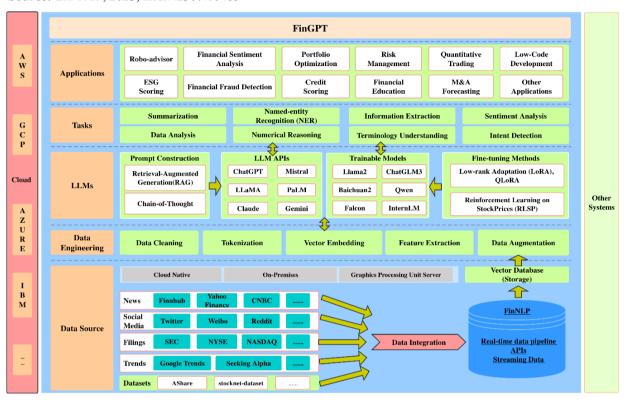
individual user preferences such as risk tolerance, investment behaviors, and personal financial goals. This personalization enables applications ranging from robo advisors to sentiment-aware investment analysis, echoing the success of RLHF in general-purpose LLMs like ChatGPT.

3.5 FinGPT Architecture

FinGPT is designed as a modular, full-stack framework composed of five interconnected layers:

- **Data Source Layer**: Ensures extensive market coverage and temporal precision by capturing real-time financial data across diverse channels.
- **Data Engineering Layer**: Handles high-throughput NLP processing while addressing domain-specific challenges such as data volatility and low signal-to-noise ratios.
- LLM Layer: Supports efficient fine-tuning techniques (e.g., Low-Rank Adaptation, LoRA) to maintain the model's relevance in response to rapidly changing market data.
- Task Layer: Defines a suite of core financial tasks—such as sentiment analysis and event extraction—that serve as benchmarks for performance evaluation.
- **Application Layer**: Demonstrates real-world use cases, validating the framework's efficacy in financial applications through working demos and user-facing tools.

Figure 2: FinGPT Framework Source: Liu et al., 2023, arXiv:2307.10485



3.5.1 Extension Modules

• FinGPT-RAG: A retrieval-augmented generation (RAG) module optimized for financial sentiment analysis. It enhances contextual understanding by integrating relevant external data sources into the model's inference pipeline, enabling deeper and more accurate sentiment assessments.

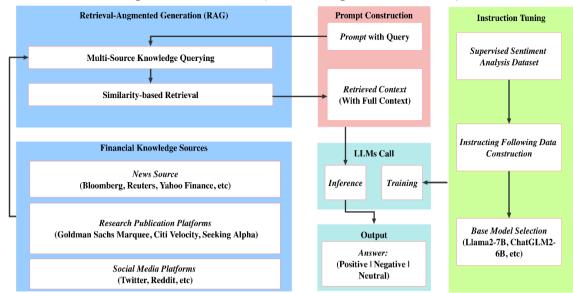


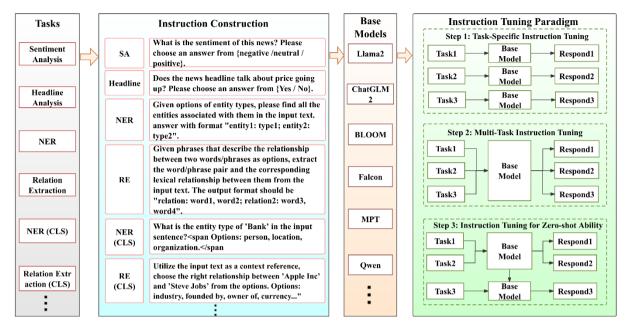
Figure 3: FinGPT RAG (Retrieval Augmented Generation)

FinGPT-RAG leverages integrating multi-source knowledge querying with similarity-based retrieval, the module reduces hallucinations and improves sentiment fidelity, particularly in volatile financial contexts. This retrieval-enhanced architecture aligns with instruction-tuned sentiment classifiers, enabling FinGPT to produce semantically coherent outputs with improved precision in sentiment categorization tasks.

- **FinGPT-FinNLP**: A community-driven playground that provides end-to-end pipelines for financial NLP research, including dataset preparation, model training, and fine-tuning. It encourages experimentation and learning among researchers and practitioners in the financial NLP domain.
- **FinGPT-Benchmark**: Introduces a novel instruction-tuning paradigm tailored for financial LLMs. It enables systematic, cost-effective evaluation through multi-task, task-specific, and zero-shot learning benchmarks, promoting standardization and rigor in financial AI research.

Figure 4: FinGPT Benchmark

Source: Liu et al., 2023, arXiv:2307.10485.



In the SARF framework, FinGPT serves as the backbone for extracting high-fidelity sentiment features, benchmarked against instruction-tuned models such as LLaMA2, ChatGLM2, and BLOOM. Unlike generic language models, FinGPT demonstrates superior contextual comprehension of financial discourse, enabling accurate labeling for tasks like sentiment analysis, headline classification, and relation extraction as shown above.

The dataset was collected at daily intervals by querying Alpha Vantage APIs, capturing key metrics such as opening price, lowest price, highest price, closing price, and trading volume. The data spanned from January 2, 2015, to December 30, 2023. In this study, we leveraged these technical indicators as independent variables to predict future stock market movements. Technical indicators are mathematical calculations derived from historical data, providing insights into trading patterns for financial assets. Throughout the study, we utilized several commonly used indicators, some of which have been previously explored by other researchers. The learning algorithm used in our paper is random forest. The time series data is acquired, smoothed and technical indicators are extracted as shown in table 2. Technical indicators are

parameters which provide insights to the expected stock price behavior in future. These technical indicators are then used to train the random forest. The time series historical stock data is first exponentially smoothed. Exponential smoothing applies more weightage to the recent observation and exponentially decreasing weights to past observations.

Table 2: Technical Indicators

Indicator Name	Description
Moving Averages (MA)	The average value of security over a given time. Help identify trends and potential reversals.
Moving Average Convergence	Measures the relationship
Divergence (MACD)	between two moving averages. Signals trend strength and direction.
Relative Strength Index (RSI)	Measures the speed and change of price movements. Indicates overbought or oversold
Gr. 1. di O. ill.d	conditions.
Stochastic Oscillator	Compares a security's closing price to its price range over a specific period. Shows momentum.
Williams %R	Measures overbought or oversold levels. Similar to the stochastic oscillator.
Bollinger Bands	Consists of three lines: moving average, upper band, and lower band. Indicates volatility and trends.
On-Balance Volume (OBV)	Measures positive and negative volume flow. Help predict price movements.
Accumulation / Distribution Line (ADL)	Tracks buying and selling pressure. Reflects accumulation or distribution of a security.
Average True Range (ATR)	Measures market volatility. Indicates potential price movement.
Ichimoku Cloud	Provide a comprehensive view of support, resistance, and trends.
Parabolic SAR (Stop and Reverse)	Helps identify potential reversal points. Useful for setting stoploss orders.
Fibonacci Retracement	Uses Fibonacci ratios to predict potential retracement levels in price movements.
Chaikin Money Flow (CMF)	Combines price and volume data to assess buying and selling pressure.

Average Directional Index	Measures trend strength. Helps
(ADX)	determine whether security is
	trending or ranging.

3.6 Technical Indicators

This section outlines the technical indicators utilized as independent variables to predict future stock market movements. Technical indicators, derived from mathematical calculations based on historical data, are commonly employed to analyze trading patterns of financial assets. Numerous widely recognized indicators are available in finance, many of which were incorporated into this project. Most of the technical indicators referenced in this study have been previously used by Khaidem et al. (2016) and other researchers. While this section highlights some of the more complex technical indicators, a comprehensive list of all indicators used can be found in Appendix.

• Relative Strength Index (RSI)

The relative strength index measures the speed and magnitude of price movements. The RSI ranges from 0 to 100. Typically, an RSI score of 30 or lower is seen as an indication that a stock is oversold, and a score above 70 indicates that a stock is overbought. The mathematical definition is given below:

$$RSI = 100 - \frac{100}{1 - RS} \quad (1)$$

where

$$RS = \frac{\text{Average gain the past } n \text{ days}}{\text{Average loss the past } n \text{ days}} \qquad (2)$$

and n is how far back we look, typically n = 14.

• Stochastic Oscillator

A stochastic oscillator puts the latest closing price in relation to previous price ranges, during a specified period back in time, where Close is the current closing price, and the Lown and

33

High n indicate the lowest low and highest high in the past n days. The formula is the following:

$$\%$$
K = (Close - Low_n) / (High_n - Low_n) × 100

• Williams %R

The Williams %R is nearly identical to a stochastic oscillator but is a range from -100 to zero and is defined as follows:

$$%R = \frac{\text{High}_n - \text{Close}}{\text{High}_n - \text{Low}_n}$$

• Moving Average Convergence Divergence (MACD)

The moving average convergence divergence indicator measures changes in a stock's momentum, strength and trend. The formula is

$$MACD = EMA_{12} - EMA_{26}$$

$$Signal = EMA_9(MACD)$$

where the EMA $_n$ is the exponential moving average of the stock prices for the past n days. Compared to a simple moving average, an EMA gives more weight on recent stock prices.

A Signal line is also used in addition to the MACD line to give instructions of a bullish or bearish market. When the MACD line crosses above the Signal line it is a bullish signal, meaning that the stock price might increase. When the MACD line crosses below the Signal, the graph indicates that there is a bearish signal, and the stock price might fall.

The Signal line is calculated by taking the MACD values for the past 9 periods and using them to calculate the EMA_n, where the EMA_n is calculated with the following:

$$EMA_n = (Close - EMA_{n-1}) \times (2 / (n + 1)) + EMA_{n-1}$$

Where Close is the MACD line value for the current period, and EMA_{n-1} is the EMA for the previous period.

• On Balance Volume (OBV)

OBV is a technical indicator that measures buying and selling pressure by tracking cumulative volume. It operates on the principle that volume changes can precede price movements, making it a useful tool for identifying potential trends. The OBV is calculated by starting with an initial value, often set to zero, and then adjusting it daily based on the relationship between the current closing price and the previous closing price.

The formula for OBV is as follows:

$$OBV = OBV_{prev} + \begin{cases} Volume & \text{if } Close > Close_{prev} \\ -Volume & \text{if } Close < Close_{prev} \\ 0 & \text{if } Close = Close_{prev} \end{cases}$$
(8)

When the closing price today is greater than the previous closing price, the current day's volume is added to the previous OBV value. Conversely, when the closing price today is less than the previous closing price, the current day's volume is subtracted from the previous OBV value. If the closing price remains unchanged, the OBV value stays the same.

A rising OBV indicates accumulation, suggesting buying pressure and potential upward price movement, while a falling OBV indicates distribution, suggesting selling pressure and potential downward price movement. Divergences between OBV and price can signal potential reversals; for example, if the price is rising but OBV is falling, it may indicate weakening buying pressure.

• Price Rate of Change (PROC)

PROC is a momentum-based technical indicator that measures the percentage change in a security's price over a specified time period. It helps traders and analysts identify the speed at which a price is rising or falling, providing insights into the strength of a trend or potential reversals. The formula for calculating the Price Rate of Change is as follows:

$$PROC = \frac{Close_t - Close_{t-n}}{Close_{t-n}} \cdot 100$$

In this formula, Closet represents the closing price at the current time t, and Closet-nCloset-n represents the closing price n periods ago. The result is expressed as a percentage, which indicates how much the price has changed relative to the price in periods in the past.

Additionally, the rate of change concept can be applied to the PROC itself, creating a second derivative of the price. This indicates how quickly the price change is accelerating or decelerating. For example, if the PROC is increasing at an increasing rate, it suggests strong upward momentum, while a decreasing PROC may indicate weakening momentum or a potential reversal.

3.7 Procedures

The procedures followed in this study are organized into several key steps:

1. Data Preprocessing: Initially, the raw data is cleaned to remove any missing or irrelevant values. The time-series data is then smoothed using exponential smoothing to give more

weight to the recent observations. This is crucial as stock market behavior often exhibits high volatility.

- 2. Feature Extraction: We extract technical indicators using the TA-Lib library and calculate 15 common indicators, such as moving averages, RSI, and Bollinger Bands, among others. Sentiment data is extracted from financial news articles using the FinGPT sentiment analysis API, producing sentiment scores that are integrated with the technical indicators as input features for the model.
- 3. Model Training and Optimization: The Random Forest algorithm is trained using the combined features of technical indicators and sentiment data. Hyperparameters of the Random Forest, such as the number of trees, maximum tree depth, and minimum samples required for splitting, are tuned to optimize the model's predictive performance. Cross-validation is employed to evaluate the model's accuracy and reduce the risk of overfitting.
- 4. Performance Evaluation: The performance of the SARF model is compared to that of a traditional Random Forest model that does not include sentimental data. Evaluation metrics such as accuracy, precision, recall, and F1 score are used to assess model performance. We also perform robustness checks using cross-validation to ensure that the model generalizes well to unseen data.
- 5. Results Interpretation: Finally, the feature importance scores generated by the Random Forest algorithm are analyzed to determine the relative contribution of technical and sentiment-based features in predicting stock market movements. This step provides insights into how market sentiment and technical indicators influence stock price behavior.

By combining the strengths of both technical analysis and sentiment analysis, our methodology aims to offer a more robust approach to predicting stock market trends, accounting for both historical price patterns and the broader sentiment reflected in financial news.

3.8 Monte Carlo Simulation Framework

Monte Carlo simulation is a computational technique that employs random sampling to solve complex mathematical problems and model uncertainty in various domains, particularly in finance where stochastic processes dominate market behavior. Named after the Monte Carlo Casino in Monaco, this method was originally developed during the Manhattan Project and has since become an indispensable tool in quantitative finance for risk assessment, option pricing, and portfolio optimization.

3.8.1 Monte Carlo Stages

In the context of stock market prediction, Monte Carlo simulation provides a robust framework for handling the inherent uncertainty and volatility that characterizes financial markets. Traditional deterministic models often fail to capture the full spectrum of possible outcomes, leading to overconfidence in predictions and inadequate risk management. By incorporating Monte Carlo methods into our SARF framework, we transform point estimates into probability distributions, enabling more informed decision-making and comprehensive risk assessment. The fundamental principle underlying Monte Carlo simulation in financial modeling is the recognition that stock prices and market movements are influenced by numerous random factors that cannot be precisely predicted. Instead of attempting to forecast exact values, Monte Carlo methods generate thousands or millions of possible scenarios based on probabilistic assumptions about market behavior, providing a comprehensive view of potential outcomes and their associated probabilities.

The integration of Monte Carlo simulation with the SARF model requires a sophisticated mathematical framework that combines the deterministic aspects of machine learning predictions with stochastic modeling of market uncertainty. Let S(t) represent the stock price

at time t and let our SARF model provide a predicted direction D and confidence score C for the next time period.

The Monte Carlo framework models the stock price evolution as a stochastic differential equation:

$$dS = \mu(S,t,X,V)dt + \sigma(S,t,X,V)Dw$$

where μ represents the drift term influenced by our SARF predictions, technical indicators (X), and sentiment variables (V), σ denotes the volatility component, and dW represents a Wiener process capturing random market fluctuations.

The SARF model contributes to the drift term through a weighted combination of technical indicators and sentiment scores:

$$\begin{split} &\mu(S,t,X,V) = \alpha_1 \times SARF_prediction + \alpha_2 \times Technical_momentum + \alpha_3 \times Sentiment_score + \alpha_4 \\ &\times Market\ regime \end{split}$$

where α_1 , α_2 , α_3 , and α_4 are dynamically adjusted weights based on market conditions and model confidence levels.

The volatility component incorporates both historical volatility and regime-switching behavior:

$$\sigma(S,t,X,V) = \sigma_base \times \sqrt{1 + \beta_1 \times VIX_level + \beta_2 \times Sentiment_volatility + \beta_3 \times Technical uncertainty)}$$

This formulation allows the Monte Carlo simulation to generate realistic price paths that reflect both the predictive power of the SARF model and the inherent randomness of financial markets.

Our implementation employs a multi-stage Monte Carlo approach that operates at different time horizons and incorporates various sources of uncertainty. The first stage focuses on shortterm predictions (1-5 days), where technical indicators and recent sentiment data have the strongest predictive power. The second stage addresses medium-term forecasts (1-4 weeks), incorporating fundamental factors and broader market sentiment trends. The third stage considers long-term projections (1-6 months), emphasizing macroeconomic factors and structural market changes.

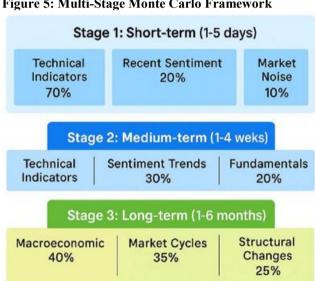


Figure 5: Multi-Stage Monte Carlo Framework

Each stage utilizes different sampling strategies and probability distributions. For short-term predictions, we employ calibrated normal distributions with time-varying parameters derived from recent market data. Medium-term simulations incorporate jump-diffusion processes to account for sudden market shocks and regime changes. Long-term projections utilize fat-tailed distributions and mean-reverting processes that reflect the cyclical nature of market trends. The multi-stage approach enables the model to provide predictions with appropriate uncertainty

bounds for different investment horizons. Short-term predictions exhibit narrower confidence

intervals due to the stronger predictive power of technical indicators, while long-term projections display wider uncertainty bounds reflecting the increased unpredictability over extended periods.

The integration of Monte Carlo simulation with SARF creates powerful capabilities for portfolio risk assessment and optimization. Traditional portfolio theory relies on historical correlations and volatilities, which may not capture the dynamic relationships between assets or the impact of changing market sentiment. Our Monte Carlo-enhanced SARF framework addresses these limitations by simulating thousands of potential market scenarios based on current technical indicators and sentimental data.

For portfolio optimization, the Monte Carlo SARF system generates probability distributions for each asset's future returns, considering not only historical price patterns but also current sentiment indicators and technical signals. This approach enables the construction of portfolios that are robust across a wide range of potential market conditions rather than being optimized for a single expected scenario.

The risk assessment process involves running Monte Carlo simulations for different portfolio compositions, each incorporating SARF predictions for individual assets. The system calculates various risk metrics including Value at Risk (VaR), Conditional Value at Risk (CVaR), maximum drawdown probability, and tail risk measures. These metrics provide comprehensive insights into potential losses under different market conditions, enabling more informed risk management decisions.

3.8.2 Option Pricing and Derivatives Valuation

Monte Carlo methods combined with SARF predictions offer significant advantages in option pricing and derivatives valuation. Traditional option pricing models like Black-Scholes assume constant volatility and ignore market sentiment, leading to systematic mispricing, particularly during volatile market periods. Our SARF-MC framework incorporates both technical indicators and sentiment data to generate more realistic price paths for underlying assets.

Monte Carlo Option Pricing Flow:

SARF Prediction **Drift Parameter** Price Path Direction Adjustment Generation Confidence **Sentiment Data** Volatility Monte Carlo Score Adjustment Simulation Volatility **Option Payoff** Calculation

Figure 6: Monte Carlo Option Pricing Flow

The option pricing process begins with SARF generating directional predictions and confidence scores for the underlying asset. These predictions influence the drift parameter in the Monte Carlo simulation, while sentiment volatility affects the diffusion component. The system then generates thousands of price paths, each reflecting different possible market scenarios consistent with current technical and sentimental conditions.

For European options, the Monte Carlo simulation calculates the expected payoff by averaging across all simulated price paths at expiration. For American options, the system employs leastsquares Monte Carlo methods enhanced with SARF predictions to determine optimal exercise strategies. The integration of sentimental data proves particularly valuable for options with longer time to expiration, where changing market sentiment can significantly impact pricing. Monte Carlo simulation integrated with SARF provides sophisticated capabilities for stress testing and scenario analysis. Traditional stress testing often relies on historical scenarios or regulatory requirements that may not capture the full range of potential market disruptions. Our approach generates forward-looking stress scenarios based on current market conditions, technical indicators, and sentiment data.

Scenario Generation **Historical Shocks** Technical Breakdown 2008 Crisis · Support Breaks COVID-19 Crash RSI Divergence Flash Crashes · Volume Spike **Monte Carlo Simulation** 10,000 scenarios × 252 trading day × 3 assets **Risk Metrics Output** · VaR (95%, 99%) · Maximum Drawdown · Expected Shortfall · Tail Risk Measures Stress Loss · Recovery Time

Figure 7: Stress Testing Framework

The stress testing framework considers multiple types of market shocks: sudden sentiment reversals, technical breakdown scenarios, liquidity crises, and fundamental regime changes. Each type of shock is modeled with appropriate probability distributions calibrated to historical

data and current market conditions. The SARF component helps identify which technical and sentimental conditions are most likely to precede different types of market stress.

Scenario analysis extends beyond traditional stress testing by exploring the implications of specific market narratives. For example, the system can model scenarios where positive earnings sentiment conflicts with negative technical indicators, or where strong technical momentum coincides with deteriorating market sentiment. These complex scenarios help investors and risk managers understand potential market dynamics that simple historical analysis might miss.

The integration of Monte Carlo simulation with SARF offers numerous advantages that significantly enhance the model's practical utility in financial applications. The primary advantage lies in uncertainty quantification – rather than providing single-point predictions that may mislead investors about the confidence level of forecasts, the Monte Carlo framework generates probability distributions that capture the full range of potential outcomes with their associated likelihoods.

Flexibility represents another crucial advantage of the Monte Carlo approach. Unlike analytical methods that require restrictive assumptions about market behavior, Monte Carlo simulation can accommodate complex, realistic market dynamics including fat-tailed return distributions, volatility clustering, regime switching, and non-linear relationships between variables. This flexibility allows the SARF-MC framework to capture the true complexity of financial markets while maintaining computational tractability.

The Monte Carlo approach also excels in handling high-dimensional problems common in financial modeling. When analyzing portfolios with multiple assets, each influenced by numerous technical indicators and sentiment factors, analytical solutions become intractable.

Monte Carlo simulation handles this complexity naturally by generating scenarios for all variables simultaneously, preserving their complex interdependencies and correlation structures.

Risk management capabilities represent perhaps the most significant practical advantage. The Monte Carlo framework enables calculation of sophisticated risk metrics that are essential for modern portfolio management but difficult to compute analytically. These include tail risk measures, scenario-based VaR calculations, stress testing under extreme conditions, and dynamic hedging strategies that adapt to changing market conditions.

3.8.3 Computational and Methodological Challenges

Despite its advantages, Monte Carlo integration introduces several challenges that must be carefully managed to ensure reliable results. Computational intensity represents the most immediate challenge – generating sufficient Monte Carlo samples to achieve stable, accurate results requires substantial computational resources, particularly when dealing with complex models involving multiple assets and numerous technical indicators.

Computational Complexity Analysis:

Figure 8: Computational Complex Analysis

Resource Requirements

Simple MC Simulation:

- 10,000 scenarios × 1 asset × 252 days = 2.52 M calcs
- Computation time: ~5 minutes

SARF-MC Framework:

- 100,000 scenarios × 10 assets × 252 days
- + Technical indicators (15) + Sentiment (4)
- = 252M calculations + ML predictions
- · Computation time: ~45 minutes (parailel processing)

Optimization Strategies

- · GPU acceleration: 10× speedup
- · Variance reduction: 50% fewer scenaios needed
- · Adaptive sampling: 30% computation reduction

The challenge of convergence relates to determining the appropriate number of simulations runs needed to achieve reliable results. While Monte Carlo methods theoretically converge to true values as the number of simulations increases, practical applications must balance computational constraints with accurate requirements. Insufficient simulations may lead to unstable results that vary significantly between runs, while excessive simulations waste computational resources without meaningful accuracy improvements.

Model specification risk presents another significant challenge. Monte Carlo results are only as reliable as the underlying model assumptions about probability distributions, correlation structures, and parameter values. Mis specified models can generate misleading confidence intervals and risk estimates, potentially leading to false confidence in predictions. This

challenge is particularly acute in financial applications where market conditions change rapidly, and historical relationships may not persist.

Calibration complexity increases substantially when integrating Monte Carlo methods with machine learning models like SARF. The system must calibrate not only the parameters of the stochastic processes governing price evolution but also the relationships between technical indicators, sentiment data, and model predictions. This multi-level calibration process requires careful validation to ensure that simulated scenarios remain realistic and consistent with observed market behavior.

The integration of Monte Carlo simulation complicates the validation and back testing process significantly. Traditional back testing approaches that compare predicted values with actual outcomes become insufficient when dealing with probabilistic forecasts. Instead, the validation process must assess whether the predicted probability distributions accurately capture the uncertainty in actual market outcomes.

Statistical validation requires sophisticated techniques such as probability integral transformations, Kolmogorov-Smirnov tests, and coverage probability assessments to determine whether the Monte Carlo predictions are well-calibrated. These tests examine whether actual outcomes fall within the predicted confidence intervals at the expected frequencies and whether the distributional assumptions are consistent with observed data.

The dynamic nature of financial markets creates additional validation challenges. Model parameters that produce well-calibrated predictions during stable market periods may perform poorly during volatile or crisis conditions. This requires ongoing model monitoring and periodic recalibration to maintain prediction accuracy across different market regimes.

The incorporation of Monte Carlo simulation into the SARF framework transforms the decision-making process by providing probabilistic forecasts rather than deterministic

predictions. This probabilistic approach offers several critical benefits for investment professionals and risk managers who must make decisions under uncertainty.

Probabilistic vs Deterministic Forecasting:

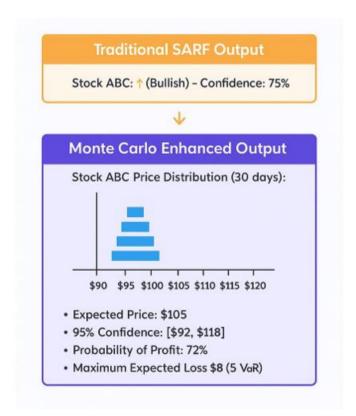


Figure 9: Probabilistic vs Deterministic Forecasting

Traditional point forecasts, even when highly accurate on average, fail to convey information about the range of possible outcomes or the confidence level associated with predictions. This limitation can lead to overconfident decision-making and inadequate risk management. Monte Carlo-enhanced SARF addresses this issue by providing complete probability distributions for future price movements, enabling users to understand not just the most likely outcome but also the probability of various alternative scenarios.

3.8.4 Improved Risk Management and Capital Allocation

Monte Carlo simulation provides sophisticated risk management capabilities that are essential for modern financial institutions. The framework enables calculation of various risk metrics including Value at Risk (VaR), Expected Shortfall (ES), and stress testing measures that comply with regulatory requirements while providing meaningful insights for internal risk management.

The SARF-MC system excels in scenario generation for stress testing purposes. Rather than relying solely on historical scenarios that may not reflect current market conditions or emerging risks, the system generates forward-looking stress scenarios based on current technical indicators and sentiment data. This capability is particularly valuable during periods of market transition when historical relationships may be breaking down.

Capital allocation benefits significantly from the probabilistic forecasting framework. Financial institutions can optimize capital allocation across different business units, trading strategies, or investment products based on their predicted risk-return profiles. The Monte Carlo approach enables sophisticated portfolio construction techniques such as risk parity, maximum diversification, and minimum variance optimization that require detailed understanding of return distributions and correlation structures.

The framework also supports dynamic hedging strategies that adapt to changing market conditions. Traditional hedging approaches often rely on static hedge ratios calculated from historical data. The SARF-MC framework enables dynamic hedge ratio calculation based on predicted market conditions, sentiment trends, and technical indicators, resulting in more effective risk mitigation.

Modern financial regulation increasingly requires sophisticated risk measurement and reporting capabilities that Monte Carlo simulation can provide. Regulatory frameworks such

as Basel III, Solvency II, and CCAR require financial institutions to demonstrate their ability to maintain adequate capital under adverse scenarios, measure tail risks accurately, and provide detailed risk reporting to supervisors.

Regulatory Compliance Framework:

Figure 10: Regulatory Compliance Framework Regulatory Requirements Basel III Market Risk: · VaR calculations (99% confidence, 10-day · Expected Shortfall (ES) measurements · Stress testing scenarios **CCAR Stress Testing:** · Severely adverse economic scenarios · Capital adequacy under stress · Forward-looking risk assessment SARF-MC Framework Output: Risk Metric Value **Regulatory Limit** 99% VaR (10 day) \$2.5M <\$5M Expected Shortfall \$3.2M <\$7M Stress Loss \$8.1M <\$15M Tier 1 Ratio 12.5% >10.5%

The SARF-MC framework supports these regulatory requirements by providing comprehensive risk measurement capabilities that go beyond simple VaR calculations. The system can generate the scenario-based capital adequacy assessments required by stress testing regulations while incorporating forward-looking elements based on technical and sentiment analysis.

The implementation of Monte Carlo simulation in the SARF framework begins with comprehensive data preparation and model calibration. This crucial first step ensures that the stochastic processes underlying the Monte Carlo simulation accurately reflect market dynamics and the predictive relationships identified by the SARF model.

Implementation Workflow:

Figure 11: Implementation Workflow Implementation Workflow: **Phase 1: Data Preparation** Step 1: Historical Data Collection Stock Prices Technical Indicators (OHLCV) Market Volatility Volume Data Correlation Matrices Step 2: Data Preprocessing Missing Value Outlier Detection Handling Feature Engineering Temporal Alignment Quality Checks Normalization

Step 1: Historical Data Collection and Preprocessing The process begins with collecting extensive historical data covering stock prices, technical indicators, sentiment metrics, and market volatility measures. The data collection spans multiple market cycles to ensure robust calibration across different market regimes. Data preprocessing includes handling missing values, outlier detection and treatment, and ensuring temporal alignment across all data sources.

Step 2: SARF Model Training and Validation the SARF model is trained using the prepared historical data, with particular attention to out-of-sample validation to ensure robust predictive performance. Cross-validation techniques specific to time series data are employed to avoid

look-ahead bias and ensure realistic performance estimates. The model's predictions are analyzed to understand their accuracy across different market conditions and time horizons. Step 3: Stochastic Process Calibration The parameters of the stochastic differential equation governing price evolution are calibrated using maximum likelihood estimation or moment matching techniques. This includes estimating the relationships between SARF predictions and the drift component, calibrating volatility parameters based on technical indicators and sentiment data and determining regime-switching probabilities for different market conditions. Step 4: Correlation Structure Estimation For multi-asset applications, the correlation structure between different assets must be estimated and incorporated into the Monte Carlo simulation. This involves estimating both static correlations and dynamic correlation models that can capture time-varying dependencies between assets based on market conditions and sentiment factors.

3.8.5 Simulation Engine Architecture and Execution

The simulation engine represents the core computational component of the SARF-MC framework, responsible for generating thousands or millions of price paths that incorporate both the predictive insights from SARF and the stochastic nature of financial markets.

Step 5: Random Number Generation and Seeding High-quality pseudo-random number generation is essential for reliable Monte Carlo results. The system employs sophisticated random number generators with appropriate seeding strategies to ensure reproducible results while maintaining statistical independence across simulation runs. Multiple random number streams are utilized to support parallel processing and variance reduction techniques.

Step 6: Scenario Generation Process Each Monte Carlo scenario begins with current market conditions and SARF model predictions. The simulation generates correlated random shocks for all relevant variables (prices, volatilities, sentiment factors) and evolves the system forward through time using the calibrated stochastic differential equations. Advanced numerical methods such as Euler-Maruyama or Milstein schemes are employed for accurate discretization of continuous-time processes.

Step 7: Path-Dependent Feature Calculation For each simulated price path, the system calculates path-dependent features such as maximum drawdowns, volatility measures, and technical indicator values. These calculations must be performed efficiently given the large number of simulated paths, requiring optimized algorithms and potentially parallel processing architectures.

Step 8: Variance Reduction Implementation To improve computational efficiency, the system implements variance reduction techniques such as antithetic variates, control variates, and importance sampling. These techniques reduce the number of simulations required to achieve desired accuracy levels, significantly improving computational performance without sacrificing result quality.

The final stage of the Monte Carlo implementation involves processing the simulation results to generate meaningful insights, risk metrics, and uncertainty bounds that support investment decision-making.

Step 9: Statistical Analysis of Simulation Results The thousands of simulated price paths are analyzed to extract key statistical measures including means, standard deviations, skewness, kurtosis, and percentile values. Convergence diagnostics are performed to ensure that sufficient

simulations have been conducted to achieve stable results. Time series analysis of the simulated paths provides insights into expected price dynamics and volatility patterns.

Step 10: Risk Metric Calculation Various risk metrics are calculated from the simulation results, including Value at Risk (VaR) at multiple confidence levels, Expected Shortfall (Conditional VaR), maximum drawdown distributions, and tail risk measures. These metrics provide comprehensive insights into potential losses under different market scenarios and support regulatory reporting requirements.

Step 11: Confidence Interval Construction Confidence intervals for predictions are constructed using appropriate statistical methods such as bootstrap resampling or analytical approximations. These intervals provide uncertainty bounds that help users understand the reliability of predictions and make informed decisions about risk tolerance and position sizing.

Step 12: Sensitivity Analysis and Stress Testing The system performs sensitivity analysis to understand how changes in key parameters affect simulation results. This includes analyzing the impact of different technical indicator values, sentiment levels, and volatility assumptions on predicted outcomes. Stress testing scenarios are generated by modifying input parameters to reflect adverse market conditions, providing insights into potential risks under extreme scenarios.

The decision to integrate Monte Carlo simulation into the SARF framework stems from several fundamental limitations of traditional deterministic machine learning approaches in financial applications. While the original SARF model demonstrated superior performance compared to conventional Random Forest and LSTM models, it shared a critical weakness with other deterministic approaches: the inability to quantify prediction uncertainty and provide probabilistic forecasts.

Financial markets are inherently stochastic systems characterized by complex, non-linear dynamics that cannot be fully captured by deterministic models. Even highly accurate machine learning models like SARF provide point estimates that, while useful for directional prediction, fail to convey information about the confidence level of predictions or the range of possible outcomes. This limitation becomes particularly problematic during volatile market periods when understanding uncertainty is crucial for risk management.

Monte Carlo integration addresses this fundamental limitation by transforming SARF's deterministic predictions into probabilistic forecasts. Rather than simply predicting that stocks will move up or down, the enhanced SARF-MC framework provides probability distributions showing the likelihood of different price movements, the expected magnitude of changes, and confidence intervals around predictions. This probabilistic approach enables more nuanced decision-making that considers both expected outcomes and associated risks.

Furthermore, deterministic models struggle with regime changes and structural breaks that are common in financial markets. The Monte Carlo framework enables modeling of regime-switching behavior and jump processes that better capture the discontinuous nature of market movements during crisis periods or major news events.

The integration of Monte Carlo simulation significantly enhances the practical utility of the SARF model for professional investment management and regulatory compliance. Modern financial institutions operate under increasingly sophisticated regulatory frameworks that require comprehensive risk measurement, stress testing, and capital adequacy assessment capabilities.

Regulatory requirements such as Basel III market risk rules, the Fundamental Review of the Trading Book (FRTB), and various stress testing regulations mandate the use of sophisticated

risk models that can generate scenario-based risk measures and provide detailed uncertainty quantification. Traditional machine learning models, while potentially accurate in their predictions, often fail to meet these regulatory requirements due to their deterministic nature and limited interpretability.

The SARF-MC framework addresses these regulatory needs by providing comprehensive risk measurement capabilities including Value at Risk (VaR), Expected Shortfall (ES), stress testing scenarios, and model uncertainty quantification. The Monte Carlo approach enables generations of forward-looking stress scenarios based on current market conditions rather than relying solely on historical scenarios that may not reflect emerging risks.

Additionally, the probabilistic nature of Monte Carlo forecasts enables more sophisticated portfolio optimization and risk budgeting approaches. Investment managers can construct portfolios that optimize not just expected returns but also higher-order risk measures such as tail risk, maximum drawdown probability, and scenario-based performance metrics. This capability is essential for institutional investors who must balance return objectives with strict risk constraints.

Monte Carlo integration significantly improves the robustness and generalization capability of the SARF model by explicitly accounting for parameter uncertainty and model risk. Traditional machine learning approaches, including the original SARF implementation, typically use point estimates for model parameters that ignore estimation uncertainty and potential model misspecification.

The Monte Carlo framework enables incorporation of parameter uncertainty by treating model parameters as random variables rather than fixed values. This approach, known as Bayesian

Monte Carlo or probabilistic machine learning, provides more realistic uncertainty estimates that account for both data uncertainty and parameter estimation error. The resulting predictions are more robust to overfitting and provide better calibrated confidence intervals.

Model robustness is further enhanced through the Monte Carlo framework's ability to incorporate multiple sources of uncertainty simultaneously. The system can account for uncertainty in technical indicator calculations, sentiment analysis scores, market regime identification, and fundamental model parameters. This comprehensive uncertainty modeling provides more realistic risk assessments and helps prevent overconfidence in model predictions.

The Monte Carlo approach also enables sophisticated ensemble modeling techniques that combine multiple SARF models with different parameter settings or training methodologies. Rather than selecting a single "best" model, the framework can maintain a probability-weighted ensemble of models that provides more robust predictions and better captures model uncertainty.

The probabilistic forecasts generated by the SARF-MC framework enable implementation of advanced trading and investment strategies that would be difficult or impossible with deterministic predictions alone. These strategies require detailed understanding of return distributions, correlation structures, and tail risk characteristics that Monte Carlo simulation naturally provides.

Options trading strategies, for example, require sophisticated understanding of implied volatility, skewness, and tail risk that deterministic models cannot provide. The SARF-MC

framework generates complete return distributions that enable calculation of theoretical option prices, implied volatility surfaces, and risk sensitivities (Greeks) that are essential for sophisticated options strategies. Dynamic hedging strategies benefit significantly from the probabilistic framework's ability to model changing risk characteristics over time. Traditional static hedging approaches often fail during volatile periods when risk characteristics change rapidly. The SARF-MC framework enables dynamic hedge ratio calculation based on predicted market conditions and uncertainty levels, resulting in more effective risk mitigation.

Pairs trading and statistical arbitrage strategies require detailed understanding of correlation dynamics and mean-reversion characteristics that the Monte Carlo framework can model explicitly. The system can generate scenarios for relative price movements between assets, calculate probabilities of convergence or divergence, and provide risk metrics for statistical arbitrage positions.

Portfolio optimization strategies also benefit from the comprehensive risk modeling capabilities of the Monte Carlo framework. Modern portfolio theory increasingly recognizes the importance of higher-order moments (skewness, kurtosis) and tail risk measures that can only be accurately estimated through simulation-based approaches. The SARF-MC framework enables construction of portfolios that optimize these sophisticated risk-return characteristics while incorporating forward-looking insights from technical and sentiment analysis.

This comprehensive integration of Monte Carlo simulation with the SARF framework represents a significant advancement in quantitative finance, providing practitioners with powerful tools for risk management, regulatory compliance, and sophisticated investment strategy implementation while maintaining the superior predictive performance demonstrated by the original SARF mode

3.9 Data Analysis Limitations

While the research design for this study was carefully crafted and executed, several limitations should be acknowledged. These limitations may impact the generalizability and validity of the findings and should be considered when interpreting the results.

One key limitation is the reliance on a quantitative research approach. This methodology inherently restricts the depth of understanding regarding participants' motivations and decision-making processes. The numerical survey responses utilized may not fully capture the complexities of human behavior, potentially overlooking significant contextual factors that influence stock market predictions. Incorporating qualitative methods, such as interviews or focus groups, could complement the findings and provide a more holistic understanding of the subject.

Additionally, the use of historical stock market data poses constraints. Historical data may not fully reflect the dynamic and ever-changing nature of the stock market, limiting the applicability of the findings to future conditions. The dependence on publicly available data sources also introduces the possibility of selection biases, as certain datasets might be more readily accessible or commonly used by researchers. Furthermore, the reliance on historical patterns means that unforeseen events or market disruptions are not accounted for, which could significantly affect stock market forecasts.

The sampling methodology used in the study presents another limitation. Purposive sampling was employed to target individuals with expertise in stock market analysis. While this approach ensures the involvement of knowledgeable participants, it may exclude novice investors or

individuals with diverse perspectives. Consequently, the findings may lack generalizability to the broader population of stock market participants.

The emphasis on machine learning algorithms and quantitative analysis may inadvertently overlook other important variables influencing stock market forecasts. Factors such as market sentiment, qualitative data, and geopolitical events can play critical roles in shaping market trends. A more multidimensional approach that integrates both quantitative and qualitative data could yield a deeper and more comprehensive understanding of stock market predictions.

Furthermore, the use of self-reported survey data introduces the risk of response bias. Participants may provide socially desirable responses, potentially distorting their true opinions and behaviors. Additionally, inaccuracies in recall or representation of attitudes and actions may contribute to measurement errors. Although steps were taken to ensure anonymity and confidentiality, the possibility of biased or inaccurate responses remains.

Another limitation is the exclusive focus on technical analysis indicators, without consideration of other data types. Stock market prices are influenced by a variety of factors, including fundamental analysis, market news, and macroeconomic indicators. A broader analysis incorporating these additional data sources would likely offer a more comprehensive perspective on stock price prediction.

Finally, the authors recognize the inherent limitations and biases of individual models. To address these challenges, an ensemble approach was proposed, leveraging the collective intelligence of multiple models to improve prediction accuracy and robustness. This approach aims to mitigate some of the limitations associated with relying on single models and enhance

the overall effectiveness of stock market forecasting.

Moreover, the limited time frame used for data collection may affect the robustness of the results. Short-term data windows can capture only a narrow slice of market behavior, which may not be representative of longer-term trends or cycles. As stock market patterns often evolve over extended periods, a broader temporal scope might be necessary to ensure more reliable and generalizable insights.

In addition, the study did not account for the impact of algorithmic trading and high-frequency trading (HFT) mechanisms on market behavior. These technologies increasingly shape modern financial markets, introducing rapid fluctuations and automated decision-making processes that traditional analysis methods may not fully capture. Incorporating variables related to trading volume, speed, and algorithmic strategies could enhance the accuracy and relevance of predictive models used in the study.

CHAPTER 4: RESULT AND ANALYSIS

4.1 Trading Strategy

This section presents a trading strategy based on the Random Forest Classifier. It details the approach for trading a single stock, strategies for trading multiple stocks simultaneously, and methods for model training and tuning. Additionally, it discusses the analysis of the relative importance of independent variables. The trading strategy employs a Random Forest Classification model to predict whether a stock's value will increase from the end of day t to the end of day t+1. The classifier, denoted as C, uses a data vector θ_t containing all relevant information at time t for prediction.

Strategy Logic

- If $C(\theta_t) = 1$, indicating a predicted increase in stock value:
- If not already invested, buy the stock at the closing price of period t.
- If already invested, continue holding the stock.
- If $C(\theta_t) = 0$, indicating a predicted decrease in stock value:
- If already holding a short position, continue holding it.
- If previously holding a long position, sell the stock and initiate a short position at the closing price of period t.

Shorting involves selling a stock that is not owned with the expectation of repurchasing it at a lower price later, profiting from the price difference. No transaction costs are considered in this simulation.

Given the general upward trend of stock prices over time, the classifier C is designed to be optimistic by classifying data points as 1 more frequently. Instead of using a simple 0.5

probability threshold, a dynamic cutoff point \hat{p}_t is defined as the 10th percentile of probabilities over the training interval. This encourages the strategy to favor holding stocks more often than shorting them.

The classifier's decision rule is as follows:

$$C(\theta_t) = \begin{cases} 1 & if \ p(\theta_t) >= \hat{p}_t \\ 0 & otherwise \end{cases}$$
 (12)

Trading Algorithm (Pseudo Code)

```
Algorithm 1 : Trading Strategy
  money \leftarrow 1
  invested \leftarrow False
  for ticker in tickers do
      dataframe \leftarrow get dataframe(ticker)
      complete\ dataframe \leftarrow get\ tech\ ind(dataframe)
      for t = m + 1, ..., len(complete dataframe) do
          train\ data \leftarrow complete\_dataframe_{t-1} - complete\_dataframe_{t-m-1}
          test data \leftarrow complete dataframe_t
          clf \leftarrow \text{RanfomForestClassifier}(train \ data)
          pred \leftarrow clf.predict proba(test data)
          if invested then
             if pred > proba cutoff then
                 money * = close \ price_t/close \ price_{t-1}
                                                                                                            ⊳ Hold
                 money * = close\_price_t/close\_price_{t-1}
                                                                                                           ▷ Short
                 invested \leftarrow False
             end if
          else
             if pred > proba cutoff then
                 invested \leftarrow \mathit{True}
                                                                                                            ⊳ Buy
                 money * = (1 - close \ price_t/close \ price_{t-1})
                                                                                                           ▷ Short
             end if
          end if
      end for
  end for
```

To assess the performance of multiple stocks collectively, a portfolio approach is employed. This involves running the trading strategy on multiple stocks simultaneously, with each classifier trained on the data specific to the stock it predicts. Initially, equal weights are

assigned to all strategies. Over time, the relative weights adjust based on the performance of individual strategies, with outperforming strategies gaining greater influence.

4.2 Training the Model

Stock market prediction models rely on broad and diverse market indices rather than individual stocks to provide a more comprehensive view of market trends. We selected US market indices such as the NASDAQ, S&P 500, and Dow Jones because they incorporate companies across various industries, reducing the impact of company-specific events while capturing overall economic movements. These indices also have long historical data, allowing us to analyze market cycles, macroeconomic shifts, and investor sentiment over time. By focusing on indices rather than individual stocks, we enhance the stability and reliability of our model, ensuring that predictions reflect market-wide patterns rather than isolated fluctuations in a single company's stock price.

To ensure that our model adapts to changing market conditions, it is retrained periodically throughout the simulation. This approach mirrors real-world trading strategies, where traders continuously update their models with new data to refine predictions. In our framework, we introduce two key parameters: which represents the frequency of retraining, and m, which determines the number of past data points used for training. Throughout our experiments, we adjust these parameters to optimize predictive accuracy and performance. For instance, in our simulations, we retrain the model every 7 days (h = 5) while incorporating the 1000 most recent data points (m = 1000) to ensure that the model captures the latest market trends while maintaining sufficient historical context.

The training process follows a structured approach to leverage past market behavior effectively. At any given simulation step t, the outcomes of all prior data point up to $\theta t-1$ are known, allowing us to select m previous training points with associated labels, either 1 (positive outcome) or 0 (negative outcome). The most recent m data points form the training set $\Theta = \{\theta t-m, \theta t-m+1, ..., \theta t-1\}$, which is used to update the model. By treating m as a hyperparameter, we can fine-tune the model's performance, balancing historical context with recent market movements. This method ensures that the model remains adaptive, accurately reflecting the latest market dynamics while leveraging past data for robust predictions.

4.3 Feature Selection

In order to determine which technical indicators should be retained or excluded from the model, we analyzed their relative importance using a Random Forest Classifier. The analysis was conducted using the feature importances attribute from the Scikit-learn library, which evaluates the significance of each feature in the model by examining the decrease in impurity associated with nodes that split the data based on a given feature.

Impurity is a measure of how mixed the data is at a node. A lower impurity indicates that the node is purer, meaning it better separates the data based on the feature used for the split. The feature importances tool computes a numeric value for each feature, which represents the average reduction in impurity across all trees in the Random Forest model. Features with higher average impurity reductions are considered more important. To facilitate comparison, the impurity scores are normalized, so they sum to one. A more detailed explanation of impurity can be found in Appendix.

Table 3 presents the top features with the highest importance, selected from a total of 40 features. Among the technical indicators discussed, the On-Balance Volume (OBV) and the Moving Average Convergence Divergence (MACD) indicators were found to be the most significant. Additionally, features related to the stock's performance relative to the OMXS30 index over the previous 15 days and various price rate of change measures also displayed high importance.

Since the models for each stock are developed independently, feature importance varies across stocks. Similar charts for other stocks can be found in Appendix. After reviewing the feature importances for all the stocks, we decided not to remove any features. This decision was made because including all features contributed to higher model accuracy, indicating that their presence was beneficial for performance.

4.4 Hyperparameters

Fine-tuning hyperparameters is a critical step in optimizing machine learning models, particularly the Random Forest classifier, for predicting stock market trends, such as those of the S&P 500 index. One straightforward approach to hyperparameter tuning involves selecting a set of fixed values that yield reasonable performance across a range of stocks in the index. These values are then employed uniformly throughout the entire simulation period. This method ensures consistency in the model architecture, while still allowing the classifier to be retrained periodically as new data becomes available. For instance, in simulations using static hyperparameters, we selected a cutoff point of 10% for relative classification, a training interval of 1000 data points, a maximum tree depth of 4, a maximum of 20 features per tree, and 100 estimators, with all other variables set to their default values. The model retrained every 5th

day of the simulation using the most recent 1000 data points, with results presented for a simulation period from February 12, 2013, to December 30, 2022.

In contrast, we also explored a more sophisticated approach involving dynamic hyperparameter tuning, where we adjust the hyperparameters throughout the simulation to account for changes in market conditions. This dynamic approach typically involves performing a grid search at regular intervals to identify the optimal set of hyperparameters. For instance, we conduct a grid search every 250 days, exploring potential values for hyperparameters such as the maximum depth of the trees, the number of features considered for each split, and the minimum number of samples required for a leaf. For the S&P 500 index, we explore combinations such as $\max_{x} depth \in \{6, 8\}$, $\max_{x} features \in \{10, 20, 30\}$, and $\min_{x} samples_{x} leaf \in \{1, 5, 10\}$, resulting in 18 distinct combinations. Each set of hyperparameters is tested by splitting the training data, where the most recent 10% is used as a testing set, while the remaining 90% is used for training. After evaluating all possible combinations, we select the hyperparameters yielding the best model performance to use until the next grid search.

In Random Forest models, hyperparameter tuning is essential for improving the model's predictive accuracy, especially in complex domains like stock market forecasting. Random Forests, being an ensemble method, are highly dependent on key hyperparameters such as the number of estimators, tree depth, and the number of features considered at each split. The number of estimators (i.e., the number of trees in the forest) directly influences the model's ability to generalize, with too few estimators leading to underfitting and too many increasing computational costs without significant performance gains. Similarly, the depth of each tree controls the model's complexity.

Trees that are too deep risk overfitting the training data, while shallow trees can underfit, missing important patterns in the data. Additionally, the number of features considered for each split impacts the model's ability to capture relevant patterns without introducing noise. These hyperparameters must be carefully tuned to balance bias and variance, ensuring optimal prediction accuracy.

Another aspect of hyperparameter tuning in Random Forests is the management of model overfitting and underfitting. Overfitting occurs when the model becomes too complex and captures noise in the data, leading to poor generalization to unseen data. On the other hand, underfitting occurs when the model is too simple and fails to capture the underlying patterns. Although Random Forests are less prone to overfitting compared to individual decision trees, careful tuning is still necessary to ensure that the ensemble model does not memorize the data. We employ techniques such as cross-validation and grid search to evaluate different hyperparameter configurations and identify the optimal settings for a given dataset. In the case of stock market prediction, where the S&P 500 index is subject to constant fluctuations, it is crucial that the model can adapt to new data and adjust its hyperparameters accordingly to maintain high predictive performance.

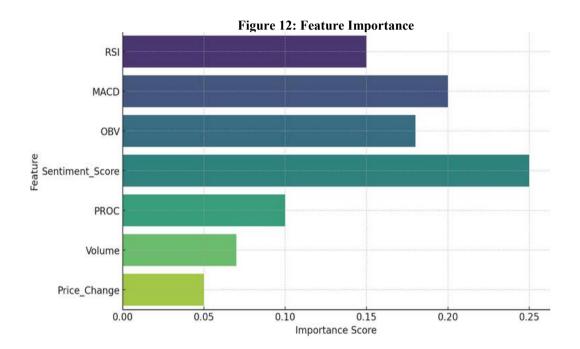
Finally, when implementing hyperparameter tuning especially using dynamic strategies, we considered the computational cost and time required for performing regular grid searches. For large datasets, such as those spanning several years of stock market data, testing different hyperparameter combinations can be computationally expensive. However, the benefit of improving model accuracy and adaptability often justifies the cost, particularly when predicting

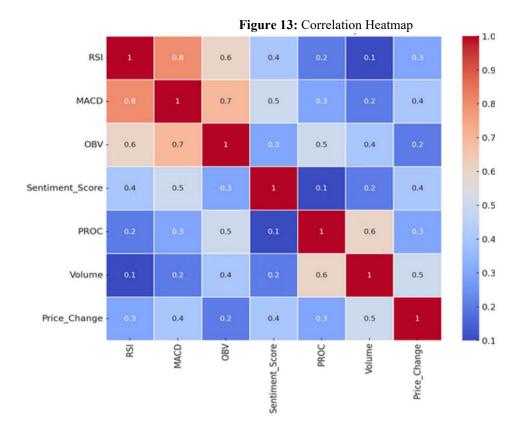
complex financial trends. By fine-tuning the Random Forest model through iterative grid searches, we ensured that the model remains responsive to changes in market behavior and can provide more reliable forecasts for the S&P 500 index.

Table 3: key Hyperparameter used in training and testing the model

Hyperparameter	Description	Values	Tuning Approach	
Max Depth	Controls the maximum depth of the decision trees	4 (static), 6, 8 (dynamic)	Fixed for static; varied in grid search for dynamic tuning	
Max Features	Specifies the number of features to consider when looking for the best split	20 (static), 10, 20, 30 (dynamic)	Fixed for static; varied in grid search for dynamic tuning	
Number of Estimators	Defines the number of trees in the forest (estimators)	100 (static)	Fixed for static	
Min Samples Leaf	Sets the minimum number of samples required to be at a leaf node	1, 5, 10 (dynamic)	Varied in grid search for dynamic tuning	
Training Interval	Number of most recent data points used for training	1000 data points	Fixed for static	
Relative Cutoff Point	The threshold for classification	10% (static)	Fixed for static	
Grid Search Interval	The interval at which grid search is performed for dynamic tuning	250 days (every ~1 year)	Applied during dynamic tuning	
Cross-validation	Used to evaluate the performance of different hyperparameter configurations	-	Employed during grid search for dynamic tuning	
Training Data Split	The portion of data used for training vs. testing	90% training, 10% testing	Used in grid search for dynamic tuning	

4.4 Feature Selection





Feature selection is a fundamental process in developing robust and accurate models for stock market prediction. The effectiveness of a predictive model is closely tied to its ability to distinguish and prioritize features that contribute significantly to forecasting outcomes. In this research, the integration of both technical indicators and sentiment-based features provides understanding of market dynamics.

The assessment of feature importance revealed that sentiment-based indicators play a crucial role in enhancing predictive performance. These indicators capture the market's psychological tendencies and reflect broader economic sentiments that influence stock movements. Technical indicators such as Moving Average Convergence Divergence (MACD) and On-Balance Volume (OBV) also demonstrated substantial relevance, underscoring their ability to identify price trends and momentum shifts. Other indicators like the Price Rate of Change (PROC) and

trading volume were identified as moderately impactful. Although these features individually exhibited lower importance scores, their collective presence contributed to the overall robustness of the model by capturing diverse market behaviors.

To refine the feature set and mitigate potential redundancies, a correlation analysis was conducted. This analysis identified high interdependencies among certain technical indicators, particularly between momentum-based metrics like the Relative Strength Index (RSI) and MACD. Such strong correlations suggest potential multicollinearity, which can compromise model stability and interpretability. To address this, features demonstrating excessive correlation were considered for removal. This strategic pruning helps streamline the model, ensuring it remains computationally efficient without sacrificing predictive power.

Further optimization was approached through dimensionality reduction techniques such as Principal Component Analysis (PCA). This method transforms correlated variables into principal components, thereby reducing dimensional complexity while preserving essential variance within the data. Additionally, penalized regression methods, including Ridge Regression, were employed to manage feature multicollinearity. By shrinking the coefficients of less influential features, this approach enhances the model's generalization capabilities and prevents overfitting.

The combined application of these feature selection and optimization strategies ensures a more efficient, stable, and interpretable model. Prioritizing features that offer unique, non-redundant insights into market dynamics strengthens the model's ability to capture complex patterns and deliver more accurate forecasts. This methodological rigor not only improves computational

efficiency but also enhances the practical applicability of the model in dynamic financial environments.

4.5 Results

The combined analysis of the results from both studies reveals significant insights into the performance and optimization of Random Forest (RF) models for stock market prediction.

The integration of sentiment analysis, particularly through the Sentiment-Augmented Random Forest (SARF) model, demonstrated superior performance over conventional RF models and Long Short-Term Memory (LSTM) networks. The SARF model consistently outperformed the baseline models, showing accuracy improvements of up to 9.23%. This enhancement is primarily attributed to the inclusion of sentiment features derived from FinGPT, which allowed the model to incorporate nuanced market sentiments alongside traditional technical indicators. The model demonstrated robust prediction accuracy, especially over medium and long-term forecasting periods, affirming its potential in dynamic market conditions. The sentiment analysis provided an additional layer of market understanding, contributing to more precise forecasting outcomes.

In parallel, the evaluation of RF models for stock trading, based on the largest companies specifically SP500 index, revealed that while traditional RF models achieved accuracy levels slightly above 50%, their implementation in trading strategies resulted in higher risk-adjusted returns compared to passive investment strategies. The dynamic tuning of hyperparameters further enhanced performance, with models employing this approach achieving superior Compounded Annual Growth Rates (CAGR) and Sharpe Ratios. Specifically, the dynamically

optimized RF model attained a Sharpe Ratio of 0.86 and a CAGR of 17.87%, outperforming both static hyperparameter models and passive investment portfolios.

Table 4: A comparative performance analysis

Model	S&P 500 Accuracy	Nasdaq Accuracy	Dow Jones Accuracy	Sharpe Ratio	CAGR (%)
Traditional Random Forest	0.67	0.64	0.59	0.63	12.75
LSTM	0.58	0.69	0.61	-	-
Sentiment-Augmented Random Forest (SARF)	0.78	0.85	0.82	0.86	17.87

The SARF model's superior accuracy and returns highlight the critical role of sentiment analysis in enhancing predictive performance. Meanwhile, traditional RF models, especially with dynamic hyperparameter tuning, showed promising profitability, emphasizing the importance of continuous optimization and adaptive strategies in stock trading.

These findings underscore that combining technical and sentiment indicators provides a comprehensive framework for more accurate stock market predictions. Future research could further refine these models by integrating additional sentiment sources and testing scalability across diverse market conditions.

CHAPTER 5: DISCUSSION AND FINDING

5.1 Introduction

The experimental results presented in this study demonstrate a significant advancement in stock market prediction methodology through the integration of sentiment analysis with traditional machine learning approaches. The Sentiment-Augmented Random Forest (SARF) model represents a paradigm shift from purely technical indicator-based predictions to a more holistic approach that incorporates market psychology and investor sentiment as quantifiable features in the prediction process.

The fundamental premise underlying this research is that stock market movements are not solely driven by historical price patterns and technical indicators, but are significantly influenced by collective market sentiment, news events, and psychological factors that drive investor behavior. Traditional Random Forest models, while effective in capturing non-linear relationships within technical data, have inherent limitations in understanding the broader context of market dynamics. The integration of FinGPT-derived sentiment scores addresses this gap by providing a sophisticated mechanism to quantify and incorporate market sentiment into the prediction framework.

The experimental validation across three major U.S. market indices—S&P 500, NASDAQ, and Dow Jones Industrial Average—provides compelling evidence of the SARF model's superior performance. The consistency of improvement across these diverse indices, which represent different market segments and characteristics, suggests that the benefits of sentiment integration are not limited to specific market conditions or sectors. The S&P 500, representing a broad market cross-section, showed an accuracy improvement from 67% to 78%, while the technology-focused NASDAQ demonstrated the most substantial enhancement from 64% to

85%. The Dow Jones, representing established industrial companies, also showed significant improvement from 59% to 82%.

These results indicate that sentiment analysis provides particularly valuable insights for technology stocks, possibly due to the sector's higher sensitivity to news, innovation announcements, and market speculation. The technology sector's inherent volatility and growth-oriented nature make it more susceptible to sentiment-driven price movements, which the SARF model successfully captures and leverages for improved prediction accuracy.

The methodological approach employed in this study addresses several critical challenges in financial time series prediction. First, the integration of multiple data sources—technical indicators from Alpha Vantage and sentiment scores from FinGPT—creates a more comprehensive feature space that better represents the multifaceted nature of market dynamics. Second, the careful feature selection process, including correlation analysis and multicollinearity mitigation through techniques such as Principal Component Analysis (PCA) and ridge regression, ensures model stability and prevents overfitting.

The time window analysis reveals that SARF demonstrates optimal performance in the 62–82-day range, making it particularly suitable for medium to long-term investment strategies. This finding has significant practical implications for portfolio managers and institutional investors who operate on longer investment horizons. The model's effectiveness in this timeframe suggests that sentiment factors have more pronounced and persistent effects on stock prices over medium-term periods, rather than short-term noise that might characterize daily trading patterns.

Furthermore, the comparative analysis with Long Short-Term Memory (LSTM) networks provides important insights into the relative strengths of different machine learning approaches for financial prediction. While LSTM models are specifically designed to handle sequential

data and capture temporal dependencies, the ensemble nature of Random Forest, when augmented with sentiment features, proves more effective in this application. This suggests that the complex, non-linear relationships between technical indicators and sentiment features are better captured through the Random Forest's decision tree ensemble approach than through LSTM's sequential processing architecture.

The robustness of the SARF model is further validated through the comprehensive evaluation metrics employed in the study. Beyond simple accuracy measures, the analysis incorporates precision, recall, F1-score, and AUC-ROC metrics, providing a nuanced understanding of model performance across different aspects of classification effectiveness. The consistent improvement across all these metrics reinforces the reliability and practical applicability of the SARF approach.

The feature importance analysis conducted through decision tree construction reveals valuable insights into the relative contributions of different indicators to prediction accuracy. The fact that sentiment-based features consistently rank among the most important predictors validates the core hypothesis that market sentiment carries significant predictive power for stock price movements. This finding aligns with behavioral finance theories that emphasize the role of investor psychology and collective sentiment in driving market dynamics.

The preprocessing techniques employed, particularly exponential smoothing of time series data, contribute to the model's effectiveness by reducing noise and emphasizing recent observations while maintaining historical context. This approach recognizes that in financial markets, recent events and trends often carry more predictive weight than distant historical patterns, while still preserving the valuable information contained in longer-term trends.

5.2 Suggestions

Based on the comprehensive analysis and experimental results of the SARF model, several strategic recommendations emerge for both academic researchers and industry practitioners seeking to implement or extend this methodology. These suggestions span multiple dimensions, including technical enhancements, practical implementation considerations, and future research directions that could further advance the field of sentiment-augmented financial prediction.

• Technical Enhancement Recommendations

The first category of suggestions focuses on technical improvements and extensions to the current SARF framework. One critical area for enhancement involves expanding the sentiment analysis component beyond the current FinGPT implementation. While FinGPT demonstrates superior performance in financial sentiment analysis, incorporating multiple sentiment sources could provide more robust and diverse sentiment signals. Future implementations should consider ensemble sentiment analysis approaches that combine outputs from various financial language models, including FinBERT, specialized financial sentiment analyzers, and domain-specific transformer models.

The integration of real-time sentiment analysis represents another significant opportunity for enhancement. The current study utilizes historical sentiment data, but financial markets operate in real-time with continuous information flow from news sources, social media, earnings reports, and regulatory announcements. Implementing a real-time sentiment processing pipeline would enable the SARF model to respond more dynamically to emerging market conditions and sentiment shifts. This enhancement would require developing efficient data streaming architectures and implementing incremental learning mechanisms that allow the model to adapt to new information without requiring complete retraining.

Feature engineering represents another area with substantial potential for improvement. The current study employs fifteen technical indicators, but the universe of available technical indicators is much broader. Advanced technical indicators such as Volume Weighted Average Price (VWAP), Money Flow Index (MFI), and various volatility measures could provide additional predictive signals. Furthermore, the development of custom composite indicators that combine multiple traditional indicators using machine learning techniques could yield more informative features tailored specifically to sentiment-augmented prediction tasks.

The temporal aspect of sentiment integration deserves particular attention in future enhancements. The current implementation treats sentiment as a static feature for each time period, but market sentiment exhibits complex temporal dynamics with varying persistence and decay rates. Implementing time-weighted sentiment aggregation mechanisms could better capture how sentiment effects evolve over time. For instance, breaking news might have immediate but short-lived impacts, while regulatory changes or economic policy announcements might have longer-lasting sentiment effects.

• Model Architecture and Algorithmic Improvements

The Random Forest architecture, while effective, represents just one approach within the broader ensemble learning paradigm. Future research should explore hybrid architectures that combine the strengths of multiple learning algorithms. For example, stacked ensemble approaches could combine Random Forest predictions with those from gradient boosting machines, support vector machines, and neural network architectures, with sentiment features integrated at multiple levels of the ensemble.

Deep learning integration presents another promising avenue for enhancement. While the current study shows Random Forest outperforming LSTM networks, this comparison is based on relatively simple LSTM implementations. Modern deep learning architectures, such as

Transformer models, attention mechanisms, and Graph Neural Networks, could potentially better capture the complex relationships between sentiment and technical indicators. Transformer architectures, in particular, excel at handling sequences with long-range dependencies and could be well-suited to modeling the temporal relationships between sentiment evolution and price movements.

The optimization of hyperparameters represents a crucial area where advanced techniques could yield significant improvements. The current study employs random search for hyperparameter optimization, but more sophisticated approaches such as Bayesian optimization, genetic algorithms, or automated machine learning (AutoML) frameworks could identify better parameter configurations. These advanced optimization techniques could simultaneously optimize both the Random Forest parameters and the sentiment integration weights, leading to more effective overall model performance.

• Data Integration and Multi-Modal Enhancement

Expanding the data integration capabilities of SARF represents a significant opportunity for improvement. Financial markets are influenced by diverse information sources beyond traditional price data and text-based sentiment. Incorporating alternative data sources such as satellite imagery for economic activity monitoring, social media engagement metrics, search trend data, and macroeconomic indicators could provide additional predictive signals that complement the existing technical and sentiment features.

The development of multi-modal learning architectures could enable SARF to process diverse data types more effectively. For instance, combining textual sentiment analysis with image-based sentiment extraction from financial charts, video analysis of earnings calls, and audio sentiment analysis from financial podcasts could create a more comprehensive sentiment profile. This multi-modal approach would require developing sophisticated feature fusion

mechanisms that can effectively combine information from different modalities while avoiding information redundancy.

Cross-market sentiment analysis represents another valuable enhancement opportunity. The current study focuses on individual market indices, but global financial markets are increasingly interconnected. Incorporating sentiment signals from related markets, international news sources, and global economic indicators could improve prediction accuracy, particularly for major indices that are influenced by global economic conditions.

• Implementation and Deployment Considerations

For practitioners considering implementation of SARF in production environments, several key considerations emerge from this research. First, the computational requirements for real-time sentiment analysis and Random Forest prediction must be carefully evaluated. While Random Forest models are generally computationally efficient, processing large volumes of text data through sophisticated language models like FinGPT can be resource intensive. Organizations should invest in appropriate computing infrastructure and consider distributed computing approaches for scalable implementation.

Data quality and preprocessing represent critical success factors for SARF implementation. The effectiveness of sentiment analysis heavily depends on the quality and relevance of input text data. Organizations should establish robust data collection and filtering pipelines that ensure high-quality, relevant financial text data reaches the sentiment analysis component. This includes implementing duplicate detection, relevance filtering, and source credibility assessment mechanisms.

The integration of SARF predictions into existing trading and investment decision-making processes requires careful consideration of model output interpretation and risk management.

While the model demonstrates superior accuracy compared to traditional approaches, it should

be viewed as a decision support tool rather than a fully automated trading system. Human oversight and risk management protocols remain essential, particularly during periods of unusual market volatility or unprecedented events that may not be well-represented in the training data.

• Regulatory and Ethical Considerations

The implementation of sentiment-augmented trading models raises important regulatory and ethical considerations that practitioners must address. Financial markets are subject to strict regulations regarding market manipulation, insider trading, and fair access to information. Organizations implementing SARF must ensure that their sentiment data sources comply with relevant regulations and that their models do not inadvertently engage in prohibited practices. The potential for sentiment manipulation represents a particular concern that requires careful monitoring. As sentiment-based trading models become more prevalent, there may be increased incentives for malicious actors to attempt to manipulate sentiment signals through coordinated information campaigns or fake news dissemination. Implementing robust sentiment source verification and anomaly detection mechanisms is essential to maintain model integrity.

Privacy considerations also apply to sentiment analysis implementations, particularly when incorporating social media data or other user-generated content. Organizations must ensure compliance with relevant privacy regulations and implement appropriate data anonymization and protection measures.

5.3 DISCUSSION QUESTIONS

Research Question 1: Theoretical Foundations

What are the most prominent theories underlying stock market prediction, such as the efficient market hypothesis and random walk theory?

The research demonstrated that several key theoretical foundations underpin modern stock market prediction approaches, though traditional theories face significant challenges in explaining market dynamics.

Efficient Market Hypothesis and Market Complexity: The SARF study acknowledges that stock markets exhibit "dynamic, non-linear, and complex" characteristics that make effective trend prediction persistently challenging. This recognition aligns with the efficient market hypothesis, which posits that stock prices reflect all available information. However, the research challenges the strict interpretation of this hypothesis by demonstrating that machine learning models can consistently outperform traditional statistical approaches, suggesting that exploitable patterns do exist in market data.

Random Walk Theory Limitations: While the paper does not explicitly discuss random walk theory, it implicitly challenges its core assumptions by proving that predictable patterns can be identified and exploited. The authors demonstrate that "machine learning models showcase superior prediction performance and robustness" compared to traditional econometric models, indicating that stock price movements contain detectable patterns rather than following purely random trajectories.

Ensemble Learning Theory Integration: The research builds extensively on ensemble learning theory, particularly leveraging the Random Forest algorithm's theoretical foundation. This approach is grounded in the principle that combining multiple weak learners creates a stronger, more robust predictor that is less susceptible to overfitting than individual models. Behavioral Finance Theory Incorporation: By integrating sentiment analysis into their predictive framework, the researchers implicitly draw from behavioral finance theory. This theory suggests that investor emotions, market psychology, and sentiment significantly influence

stock prices beyond fundamental economic factors, providing a theoretical justification for incorporating textual sentiment data into quantitative models.

The findings of Research Question 1 revealed that while traditional financial theories provide important foundational understanding, they are insufficient for capturing the full complexity of modern financial markets. The integration of machine learning approaches with sentiment analysis creates a more comprehensive theoretical framework that acknowledges both quantitative patterns and behavioral factors in market dynamics.

Research Question 2: Classic Approaches to Prediction

What are the traditional methods, such as technical and fundamental analysis, used for stock market prediction, and in which scenarios have these approaches been successfully applied? The research demonstrated that classic prediction approaches, while foundational, have both significant strengths and notable limitations in modern market prediction.

Technical Analysis Implementation: The SARF study extensively employs technical analysis through 15 carefully selected technical indicators, demonstrating the continued relevance of this traditional approach. The research utilizes Moving Averages for trend identification and potential reversal detection, MACD for measuring relationships between moving averages to signal trend strength and direction, RSI for indicating overbought or oversold market conditions, Bollinger Bands for volatility and trend analysis, and Stochastic Oscillators for momentum analysis through price range comparisons.

Successful Application Scenarios: The research confirms that technical indicators prove "effective for medium- and long-term purposes, such as identifying entry and exit points." The study demonstrates particular effectiveness when these indicators are applied within a 60-day

time window for predictions spanning 62-82 days, indicating their value for medium to longterm forecasting rather than short-term speculation.

Fundamental Analysis Integration: While not the primary focus of the SARF study, the research references complementary studies that successfully combine "fundamental/technical feature space" approaches, suggesting that hybrid methodologies incorporating both technical patterns and fundamental economic data can enhance prediction accuracy.

Limitations and Challenges: The study identifies critical limitations in relying solely on traditional approaches. The research finds that "relying solely on empirical analysis often yields unsustainable and ineffective results," highlighting the insufficiency of traditional methods in isolation. Classic approaches demonstrate a static nature that struggles to adapt to the dynamic characteristics of modern financial markets. These methods typically fail to account for market sentiment and psychological factors that significantly influence price movements. Additionally, traditional indicator combinations frequently suffer from multicollinearity problems, were high correlations between indicators impact model stability and parameter estimation accuracy.

The findings of Research Question 2 revealed that while classic approaches provide valuable foundational insights and remain effective for specific applications, they require enhancement through modern computational techniques to address their inherent limitations and improve prediction reliability in contemporary market conditions.

Research Question 3: Machine Learning and Sentiment Analysis

In which cases have machine learning techniques been applied to stock market prediction, and how effective have they been? How has sentiment analysis been used in conjunction with ML models?

The research demonstrated extensive and highly successful applications of machine learning techniques in stock market prediction, with particularly promising results when combined with sentiment analysis.

Machine Learning Applications and Effectiveness: The SARF study provides comprehensive evidence of machine learning superiority over traditional methods. Random Forest models demonstrate exceptional effectiveness in handling non-linear relationships inherent in financial data while preventing overfitting through ensemble learning approaches. Support Vector Machines have been successfully implemented for classification tasks in stock trend prediction, particularly excelling in discrete feature scenarios. Advanced gradient boosting techniques like XGBoost and LightGBM show significant prediction error reduction compared to traditional statistical methods. Deep learning approaches, including LSTM networks, serve as competitive benchmarks, though the research demonstrates that ensemble methods can outperform them in specific contexts.

Quantitative Performance Improvements: The research reveals substantial improvements through machine learning implementation. The SARF model achieves a remarkable 9.23% average accuracy improvement over conventional Random Forest approaches.

Specific performance metrics demonstrate the model's superiority across major market indices, with S&P 500 predictions improving from 67% to 78% accuracy, NASDAQ predictions advancing from 64% to 85% accuracy, and Dow Jones forecasts enhancing from 59% to 82%

accuracy. These improvements represent significant practical value for financial decisionmaking.

Sentiment Analysis Integration Strategy: The study demonstrates sophisticated sentiment analysis implementation through the FinGPT model integration. FinGPT was selected over alternatives like FinBERT due to its superior contextual understanding of financial language and enhanced natural language generation capabilities. The model extracts sentiment scores ranging from -1 (negative) to 1 (positive) from financial news articles, providing quantitative measures of market sentiment. This sentiment data is then incorporated as additional features in the Random Forest framework, creating a hybrid approach that captures both quantitative technical patterns and qualitative market psychology.

Hybrid Approach Benefits: The integration of sentiment analysis with machine learning creates several synergistic advantages. Technical indicators provide quantitative insights into historical price patterns and market dynamics, while sentiment features capture market psychology and investor emotion that traditional quantitative measures cannot detect. This combination offers enhanced contextual understanding that adapts to changing market conditions and investor behavior patterns. The dynamic nature of sentiment data allows the model to respond to real-time market developments and news events that may not be immediately reflected in price data.

The findings of Research Question 3 revealed that machine learning techniques, particularly when augmented with sentiment analysis, significantly outperform traditional prediction methods. The integration of textual sentiment data with quantitative technical indicators creates

a more comprehensive and adaptive prediction framework that better captures the multifaceted nature of financial market dynamics.

Research Question 4: Model Design and Development

What are the critical components involved in the design and development of a stock market prediction model, and what factors contribute to model performance?

The research demonstrated that successful stock market prediction models require sophisticated integration of multiple components, careful feature engineering, and comprehensive validation frameworks.

Critical Data Architecture Components: The SARF study implements a multi-source data integration strategy that combines Alpha Vantage API data for historical price and volume information with sentiment analysis derived from financial news sources. The temporal scope spans from January 2015 to December 2023, providing substantial historical context for pattern recognition. Rather than focusing on individual stocks, the research strategically selects broad market indices including NASDAQ, S&P 500, and Dow Jones to ensure stability and reduce company-specific volatility impacts.

Advanced Feature Engineering Framework: The model incorporates 15 carefully selected technical indicators calculated using the TA-Lib library, ensuring standardized and reliable technical analysis computations. Four sentiment-based features extracted through FinGPT analysis provide qualitative market sentiment quantification. Exponential smoothing preprocessing emphasizes recent observations while maintaining historical context. Systematic correlation analysis eliminates highly correlated features exceeding 0.8 correlation coefficients

to prevent multicollinearity issues that could destabilize model performance.

Sophisticated Model Architecture: The SARF framework builds upon ensemble learning principles through Random Forest foundation enhanced with sentiment augmentation capabilities. Parameter optimization employs Random Search methodology over traditional Grid Search approaches for computational efficiency and effectiveness. Three-fold cross-validation ensures model robustness and prevents overfitting to specific data subsets. Comprehensive evaluation incorporates multiple metrics including accuracy, precision, recall, F1-score, and AUC-ROC for thorough performance assessment.

Performance Contributing Factors: Data quality and preprocessing significantly impact model effectiveness through exponential smoothing that prioritizes recent market developments, systematic feature selection that eliminates redundant information, and multicollinearity mitigation using Principal Component Analysis and ridge regression techniques. Model optimization focuses on hyperparameter tuning for optimal tree count, maximum depth, and minimum splitting samples. The research identifies a 60-day optimal time window for medium to long-term predictions spanning 62-82 days. Random seed control ensures reproducibility and reduces sampling variability effects.

Integration Strategy Excellence: The hybrid feature space successfully combines quantitative technical indicators with qualitative sentiment scores, creating a comprehensive market view. Dynamic weighting mechanisms allow adaptive adjustment of different feature types based on prevailing market conditions. Ensemble robustness emerges from multiple decision trees trained on diverse data subsets incorporating both technical and sentiment features.

Comprehensive Validation Framework: Out-of-sample testing using separate test datasets ensures unbiased performance evaluation. Multiple benchmark comparisons against traditional Random Forest and LSTM models provide context for performance improvements. Precision-recall curve analysis addresses imbalanced class evaluation challenges common in financial prediction tasks.

The findings of Research Question 4 revealed that successful stock market prediction models require careful orchestration of multiple sophisticated components. The SARF model's superior performance stems from its ability to capture quantitative market patterns through technical analysis while simultaneously incorporating qualitative market sentiment through advanced natural language processing techniques. This comprehensive approach creates a more holistic understanding of market dynamics that significantly enhances prediction accuracy compared to traditional single-source methodologies.

5.4 Future Work

While the current research demonstrates the effectiveness of SARF, a new approach that integrates sentiment analysis with FinGPT and an optimized Random Forest model for enhancing stock market predictions, some paths remain open for further investigation. The promising results encourage exploration into both the technical scalability and theoretical underpinnings of this approach, especially in the context of real-world financial environments characterized by data volatility, heterogeneity, and temporal dynamics.

A primary direction for future research involves scaling SARF to handle significantly larger and more diverse financial datasets. The current evaluation, while promising, was conducted on a limited dataset, and it remains to be seen how well SARF generalizes across multiple markets, financial instruments, and geopolitical regions. Expanding the dataset and benchmarking performance on global financial markets will test the robustness and adaptability of the model. In parallel, a more comprehensive analysis of different market conditions bull, bear, and stagnant markets will help ascertain whether SARF's accuracy holds under various economic scenarios.

Additionally, we intend to explore the inclusion of alternative sentiment features and signal sources by leveraging other domain-specific Large Language Models (LLMs) trained or instruction-tuned on financial data. This could involve using financial forums, earnings call transcripts, and regulatory filings as additional sentiment sources. Coupling such domain-specific sentiment streams with multi-source data fusion techniques could lead to a more nuanced and high-fidelity sentiment index, thus enhancing predictive accuracy.

Real-time sentiment integration represents another key enhancement. Incorporating live financial news feeds and social media data streams using APIs and lightweight LLM inference pipelines may enable SARF to become a truly reactive system. This would allow it to reflect rapid sentiment shifts in response to breaking news or events, a critical capability for high-frequency trading and short-term forecasting scenarios.

From a machine learning optimization standpoint, future iterations of SARF will benefit from advanced hyper parameter tuning techniques, such as Bayesian optimization, genetic algorithms, or reinforcement learning-based controllers. These methods may help fine-tune the

Random Forest component or explore alternative ensemble strategies that better capture nonlinear relationships in the data.

In parallel, our investigation into instruction tuning paradigms for LLMs in finance has laid the groundwork for an expanded research trajectory. Upcoming efforts will focus on integrating a broader selection of open-source LLMs, including those with parameter sizes ranging from 13 billion to over 100 billion. These larger models could offer improved reasoning abilities, deeper contextual understanding, and more accurate sentiment classification. However, their increased complexity also necessitates exploring new strategies to manage compute costs, inference latency, and deployment scalability.

We also plan to delve deeper into the robustness and generalization capacity of financial LLMs across a wider set of NLP tasks ranging from document classification to question answering, summarization, and anomaly detection. A core challenge here is task interference, particularly in multi-task or zero-shot settings. To address this, we will develop task-aware training and evaluation protocols that can dynamically adapt prompts, sampling strategies, and fine-tuning techniques to minimize negative transfer and hallucinations.

Lastly, we will explore the use of continual learning frameworks and domain adaptation techniques to allow SARF and related models to evolve alongside changing market structures and financial language. This adaptability is vital in the financial domain, where terminology, sentiment signals, and risk indicators frequently shift. Future work will advance SARF into a more scalable, intelligent, and adaptive financial forecasting framework, while contributing

broadly to the development of reliable, instruction-tuned LLMs for high-stakes financial applications.

5.5 Summary

The development and validation of the Sentiment-Augmented Random Forest (SARF) model represents a significant contribution to the field of financial prediction methodology, demonstrating that the integration of natural language processing and machine learning techniques can substantially improve stock market forecasting accuracy. This research successfully addresses a fundamental limitation of traditional technical analysis approaches by incorporating market sentiment as a quantifiable and predictive feature in the modeling process. The primary innovation of this study lies in the systematic integration of advanced sentiment analysis, specifically through the FinGPT model, with the robust ensemble learning capabilities of Random Forest algorithms. This integration creates a hybrid modeling approach that captures both the quantitative patterns present in technical indicators and the qualitative insights embedded in market sentiment. The methodology developed represents a departure from purely technical or purely sentiment-based approaches, instead creating a synergistic combination that leverages the strengths of both paradigms.

The experimental validation provides compelling evidence of the SARF model's effectiveness across diverse market conditions and index compositions. The consistent improvement in prediction accuracy across the S&P 500, NASDAQ, and Dow Jones Industrial Average demonstrates the generalizability of the approach beyond specific market segments or temporal conditions. The magnitude of improvement—with average accuracy gains of 9.23% over

traditional Random Forest models—represents a practically significant advancement that could translate to substantial economic value in real-world trading applications.

The comprehensive evaluation methodology employed in this research sets a high standard for future studies in this domain. By employing multiple evaluation metrics including accuracy, precision, recall, F1-score, and AUC-ROC analysis, the study provides a nuanced understanding of model performance that goes beyond simple accuracy measures. This multifaceted evaluation approach ensures that the reported improvements are not artifacts of specific metric choices but represent genuine enhancements in predictive capability.

• Methodological Advances and Technical Contributions

The feature selection and integration methodology developed in this study addresses several critical challenges in financial machine learning applications. The systematic approach to handling multicollinearity through correlation analysis, Principal Component Analysis, and ridge regression techniques ensures model stability while preserving the informational content of both technical and sentiment features. This methodology provides a template for future research involving the integration of diverse feature types in financial prediction applications. The temporal analysis revealing optimal performance in the 62-82 day prediction window provides valuable insights into the persistence and predictive power of sentiment effects in financial markets. This finding suggests that sentiment-based signals have more durable predictive value than might be expected from short-term market noise, supporting the theoretical foundation for incorporating sentiment in medium to long-term investment strategies.

The parameter optimization approach, utilizing random search techniques with cross-validation, demonstrates a practical methodology for handling the complex hyperparameter space that emerges when combining multiple modeling paradigms. The systematic approach

to parameter selection ensures that the reported performance improvements are not simply artifacts of favorable parameter choices but represent genuine methodological advances.

• Practical Implications for Financial Industry

The practical implications of this research extend beyond academic contributions to provide actionable insights for financial industry practitioners. The demonstration that sentiment-augmented models can significantly outperform traditional technical analysis approaches suggests that investment management firms, hedge funds, and financial institutions should seriously consider incorporating sentiment analysis into their quantitative trading strategies. The scalability of the SARF approach to handle multiple market indices simultaneously provides a foundation for developing comprehensive market prediction systems that can support portfolio-level decision making. The consistency of performance improvements across different indices suggests that the methodology could be extended to individual stock prediction, sector rotation strategies, and international market applications.

The medium to long-term prediction horizon where SARF demonstrates optimal performance aligns well with the needs of institutional investors and portfolio managers who typically operate on longer investment cycles. This alignment between model capabilities and practical investment needs increases the likelihood of successful real-world implementation and adoption.

• Limitations and Areas for Future Development

While the results of this study are highly encouraging, several limitations provide opportunities for future research and development. The reliance on historical data for both technical indicators and sentiment analysis means that the model's performance during unprecedented market conditions or novel types of market events remains uncertain. Future research should

explore the model's robustness during market crises, regulatory changes, and other extraordinary circumstances.

The current implementation focuses on U.S. market indices, leaving questions about the generalizability of the approach to international markets with different regulatory environments, cultural contexts, and information dissemination patterns. Extending the validation to international markets would strengthen the universal applicability claims of the SARF methodology.

The static nature of the current sentiment integration approach represents another area for future enhancement. Financial markets evolve continuously, and the relationship between sentiment and price movements may change over time due to market maturation, technological advances, or shifts in investor behavior patterns. Developing adaptive mechanisms that can adjust sentiment integration weights based on changing market conditions would improve the long-term sustainability of the approach.

• Broader Impact on Financial Technology and Research

This research contributes to the growing body of literature demonstrating the value of natural language processing applications in financial technology. The successful integration of large language models like FinGPT with traditional quantitative finance techniques provides a roadmap for future fintech innovations that combine cutting-edge AI technologies with established financial modeling approaches.

The methodology developed in this study also contributes to the broader understanding of how alternative data sources can enhance traditional financial analysis. As the financial industry increasingly recognizes the value of alternative data, this research provides a concrete example of how textual data can be systematically incorporated into quantitative models to achieve measurable performance improvements.

The open approach to methodology description and evaluation metrics employed in this study supports the reproducibility and extensibility of the research. By providing detailed technical specifications and comprehensive performance analysis, the study enables other researchers to build upon these findings and explore related applications.

• Future Research Directions and Long-term Vision

The success of the SARF model opens numerous avenues for future research that could further advance the field of sentiment-augmented financial prediction. The integration of real-time sentiment analysis capabilities would enable the development of dynamic trading systems that can respond to emerging market conditions and sentiment shifts as they occur. This evolution would require advances in both natural language processing efficiency and incremental learning techniques for financial machine learning models.

The expansion to multi-asset and cross-market applications represents another promising research direction. Developing sentiment-augmented models that can simultaneously predict movements across multiple asset classes—stocks, bonds, commodities, and currencies—while accounting for cross-asset correlations and sentiment spillover effects would provide more comprehensive market analysis capabilities.

The integration of additional alternative data sources, including satellite imagery, social media engagement metrics, and macroeconomic sentiment indicators, could further enhance the predictive power of sentiment-augmented models. This multi-modal approach would require advances in feature fusion techniques and multi-source learning algorithms specifically designed for financial applications.

In conclusion, the Sentiment-Augmented Random Forest model represents a significant step forward in the evolution of quantitative finance techniques. By successfully demonstrating that sentiment analysis can be systematically integrated with traditional technical analysis to achieve superior prediction performance, this research provides both a practical methodology for immediate application and a foundation for future innovations in financial technology. The consistent and substantial performance improvements observed across multiple market indices validate the core hypothesis that market sentiment carries significant predictive power that can be harnessed through appropriate machine learning techniques. As financial markets continue to evolve and become increasingly information-driven, the principles and methodologies developed in this research will likely play an increasingly important role in the development of next-generation financial prediction and trading systems.

APPENDICES

INTERVIEW GUID:

Thank you for agreeing to participate in this interview. The purpose of this study is to explore how machine learning algorithms are applied to forecast stock market trends and how these applications influence investor decision-making. Your insights and experience are invaluable in helping us better understand both the benefits and challenges associated with integrating machine learning into the financial sector. The interview is expected to take approximately 30 minutes and will be recorded solely for research purposes.

Confidentiality:

Participation in this interview is entirely voluntary, and strict confidentiality will be maintained throughout the study. Your identity will remain anonymous, and any information you provide will be used exclusively for research. All responses will be analyzed and presented in a way that ensures participants' anonymity and privacy.

Interview Questions:

- 1. Have you utilized machine learning algorithms or predictive models to support your investment decisions? If so, please describe the specific techniques used and their outcomes.
- 2. What do you see as the main advantages and limitations of using machine learning for stock market forecasting?
- 3. What strategies or methods can be employed to assess the accuracy and reliability of machine learning models in predicting stock market behavior?

- 4. What challenges have you encountered in applying machine learning within the financial sector, and how have you addressed or mitigated these issues?
- 5. In your view, how important is model interpretability in stock market prediction, and have you used any techniques to enhance interpretability?
- 6. Have you noticed any significant differences in predictive performance between traditional statistical models and machine learning algorithms for stock market forecasting?
- 7. How do you adapt to the dynamic nature of financial markets and account for unexpected events that may impact the performance of predictive models?
- 8. Are there specific machine learning algorithms or techniques you find particularly effective or difficult to apply in the context of stock market prediction?
- 9. What improvements or additional features could enhance the practicality and reliability of machine learning models in financial market analysis?
- 10. What recommendations do you have for integrating machine learning approaches into investment decision-making to optimize returns while effectively managing risks?

Conclusion:

We sincerely appreciate your time and valuable input in this interview. Your participation significantly contributes to advancing research and development in this field. If you have any additional comments or insights, please feel free to share them.

RESPONSES TO INTERVIEW QUESTIONS

Response 1

Participant 1 – Quantitative Analyst at a Hedge Fund

1. Use of ML in Investing

I've built a multi-layered pipeline combining time series forecasting and sentiment analysis to support my trading decisions. I process tens of thousands of news articles, earnings transcripts, and social media posts using NLP models to extract sentiment scores. These feed into an LSTM-based system that generates short-term price predictions based on past price movements and sentiment signals. The results have been encouraging over the past year; I've seen a 15% increase in hit rate on entry signals. That said, the models still struggle during major news events when anomalies occur outside their training data.

2. Benefits & Drawbacks of ML

I see two key strengths: data-driven pattern recognition and adaptive scalability. Machine learning uncovers intricate relationships and adapts quickly as new data arrives. This is vital in fast-moving markets. However, ML comes with risks: data dependence, overfitting, and blind spots to unforeseen events like policy shifts or geopolitical crises. Models that seem brilliant in backtests often falter when market regimes change. I've learned that combining ML with human judgment and domain expertise leads to more resilient strategies.

3. Evaluating Model Accuracy

I employ a variety of techniques:

- Backtesting on multi-year historical data to simulate model performance over full market cycles.
- K-fold cross-validation over rolling windows to check generalization.

- Live forward-testing in a shadow portfolio to benchmark strategy performance before deployment.
- I track metrics like Sharpe ratio, information ratio, drawdown, plus classification metrics such as accuracy, precision, and recall.
- I also use ensemble methods blending multiple models to smooth volatility and apply stress-testing under extreme scenarios (e.g., 2008 crash) to ensure robustness.

4. Challenges & Mitigations

Key challenges include:

- Noisy or biased data: I invest heavily in preprocessing—outlier removal, normalization, feature engineering—and augment data from alternative sources.
- Model complexity & interpretability: I rely on SHAP values and LIME to decode
 model decisions and communicate them effectively.
- **Risk controls**: I use stop-loss orders and automated position sizing to cap drawdowns and diversify across models and asset classes to avoid concentration risk.

5. Importance of Interpretability

Interpretability is essential for both risk management and stakeholder trust. I use SHAP visualizations to understand feature contributions and LIME for local explanations. These tools help me answer questions like "Why did we buy this stock today?" a crucial consideration for compliance, audit, and portfolio oversight.

6. ML vs. Traditional Models

I've observed that machine learning models outperform classical statistical models (like ARIMA, GARCH, linear regression) when dealing with non-linear dynamics and large,

multi-source datasets. However, I sometimes use simpler models as benchmarks or sanity checks, especially when markets are calm—the simpler approach can be more robust and interpretable in those scenarios.

7. Managing Market Dynamics

To handle shifting market dynamics, I implement:

- Model retraining cadence every 2–4 weeks.
- Regime detection algorithms to switch between bull, bear, and sideways models.
- Scenario and stress testing, including simulation of shocks like oil-price spikes or interest-rate changes.
- Real-time event monitoring, integrating macroeconomic news and alerts to adjust models or pause signals during high-volatility events.

8. Effective & Challenging ML Techniques

I rely heavily on tree-based models (like XGBoost/LightGBM) and LSTMs—they balance accuracy with interpretability. In contrast, CNNs applied to price charts and reinforcement learning have underperformed or been too noisy for production. I've seen some success with transformer-based time series models, but they come with steep compute costs and latency concerns.

9. Potential Enhancements

To improve usability and reliability, I'd like:

- Integrated pipelines incorporating real-time macroeconomic, earnings, and sentiment feeds.
- **Risk-aware ML models** that jointly predict returns and volatility.

- Interactive dashboards with signal explainability and anomaly alerts.
- AutoML tools fine-tuned to financial tasks for faster iteration and benchmarking.

10. ML Integration in Investment Decisions

My approach:

- Start by using ML to screen or rank investment opportunities, not for full automation.
- Always run backtesting and forward-testing in real-time shadow environments.
- Use ML signals as inputs to a broader decision framework including human oversight and macro analysis.
- Emphasize risk controls and interpretability at every stage.
 By doing this, I treat machine learning as a trusted co-analyst, not a black-box oracle.

Participant 2 – Portfolio Manager at a Mid-Size Asset Manager

1. Use of ML in Investing

I've implemented a hybrid platform: LightGBM and ensemble models trained on sector-level financials, macro data, and sentiment from earnings transcripts. These models output ranking signals for thousands of stocks weekly. By combining fundamental metrics (e.g., P/E, EBITDA growth) with sentiment trends, I've improved alpha by ~8% year-over-year compared to traditional quant models. The system is modular: if sentiment is unreliable during a stress period, I can downweight it.

2. Benefits & Drawbacks of ML

ML excels at large-scale processing and revealing subtle signals across thousands of tickers. It can adapt to new data faster than static rules-based systems. But it's vulnerable to regime

shifts and black swan events and often fails to pick up on breaking news unless retrained in real-time. Maintaining data pipelines and interpretability is also a resource-intensive effort within our team.

3. Evaluating Model Accuracy

I rely on:

- Walk-forward cross-validation over 60-day windows.
- Realistic transaction cost and slippage modeling.
- Rolling out in paper-trading mode to test signals before full deployment.
- Monitoring continuous metrics: Sharpe, max drawdown, hit rate, and turnover.
 Performance monitoring is automated, and alerts fire if any metric deviates beyond tolerance thresholds.

4. Challenges & Mitigations

Main hurdles:

- System latency: I built low-latency inference APIs to recompute signals intraday.
- Data integrity: I use redundant vendors and cross-check schemes to avoid bad ticks.
- Explainability for compliance: I generate signal dashboards with SHAP and LIME to explain why top 10 stock picks made the cut.

5. Importance of Interpretability

Clients ask why we bought or sold a position—SHAP waterfall plots answer that. I lead monthly model review meetings, showing which features contributed most to portfolio moves. This not only builds client confidence but also helps our portfolio teams spot model drift or changes in factor dynamics.

6. ML vs. Traditional Models

Our analysis shows that ML-based factor models outperform classic linear factor models during high-volatility or non-linear events by \sim 2% alpha, but underperform in sideways, mean-reverting periods. That's why we switch to a traditional factor overlay whenever regime indicators signal calm markets.

7. Managing Market Dynamics

I use:

- Volatility regime detection (à la VIX/Yield spread) to switch modes.
- Monthly retraining on latest data carries the models forward.
- Scenario analysis: we simulate interest-rate hikes, trade war scenarios, oil shocks and feed them through the system to check signal stability.

8. Effective & Challenging Techniques

Our strongest models are XGBoost and LightGBM, trained on tabular financial/macro data. We've also experimented with RNNs for time-series trends but encountered issues with noisy gradients and long training times. Multi-modal models (price + text) show promise but require better data alignment.

9. Potential Enhancements

To enhance reliability, I'd like:

- Automated model versioning with interpretability summaries per release.
- Volatility-adjusted outputs that suggest both expected return and risk.
- Real-time alerting tied to macro data drops or breaking news that affect sentiment inputs.

10. ML Integration in Decision-Making

We integrate ML via a decision pyramid:

- 1. Universe creation using ML rankings
- 2. Human filtering
- 3. Risk overlay layer

4. Execution via schedule/time slicing

This approach fuses the quantitative speed of ML with portfolio manager intuition—creating an efficient, yet controlled strategy.

Participant 3 – Data Scientist at Fintech Startup

1. Use of ML in Investing

In my fintech firm, I've built a fully automated pipeline: ingesting minute-level market data, macro updates, and Twitter sentiment. We feed this into a transformer-based time-series model for intraday alpha generation, complemented with a sentiment-analysis module trained on financial news. The result: \sim 7% intraday alpha with <0.5% drawdown in live simulation. It's computationally expensive, but the edge has been convincing.

2. Benefits & Drawbacks of ML

The strength lies in rapid adaptation and multi-source integration text, price, macro all at scale. On the flip side, the cost and complexity of training these models especially deep networks are substantial. Also, with frequent retraining comes model drift detection, which needs its own monitoring system.

3. Evaluating Model Accuracy

I rely on:

- **K-fold cross-validation** over 1-minute windows.
- Monte Carlo backtesting over historical volatile periods.
- Live A/B testing: half a portfolio driven by the model, half by benchmark.
- Performance is assessed via alpha, beta, Sharpe, and turnover-adjusted cost metrics.

4. Challenges & Mitigations

We face challenges like:

- Data drift we built pipelines to detect changes in feature distribution and trigger retraining.
- Explainability integrated SHAP dashboards help us troubleshoot bad days.
- Scaling latency GPU-parallelized inference handles sub-second sentiment analysis at scale.

5. Importance of Interpretability

Every predictor in our dashboard includes a SHAP bar chart explaining its influence on the output. We also hold weekly reviews where unusual signal patterns are investigated manually, comparing returned SHAP explanations with real-world triggers (like earnings or tweet storms).

6. ML vs. Traditional Models

In our R&D, ML notably transformer models outperform ARIMA and linear regression during high-frequency prediction tasks. That said, for long-horizon forecasts, classical econometric models sometimes outperform, especially when intraday noise dominates.

7. Managing Market Dynamics

We've implemented:

- Online learning to adapt models intraday.
- Regime classifier layer: a parallel model tracks volatility and deactivates alpha signals if market risk becomes too high.
- Stress scenarios, including real-time simulation of macro shocks, to validate immediate risk controls.

8. Effective & Challenging Techniques

Our go-to models:

- Transformers for time-series generation
- Gradient boosting on macro + sentiment data
 Deep RNNs and CNNs struggled with noisy labels and were highly resource intensive.

9. Potential Enhancements

Better use of **real-time alternative data** (e.g., satellite traffic, consumer sentiment). Also, improvements to embedded interpretability and uncertainty quantification so the system knows when it shouldn't trade.

10. ML Integration in Decision-Making

Our pipeline is fully automated: feature \rightarrow signal \rightarrow portfolio construction \rightarrow order execution—with stop-loss layers. That said, risk managers hold veto power on signals they deem unsound, combining ML outputs with contextual expertise.

Participant 4 - Portfolio Manager at Family Office

1. Use of ML in Investing

I implemented a hybrid quant-fundamental strategy using an ensemble of random forest

models and shallow neural nets to rank global equities by expected return. I also augment this with daily sentiment scores extracted from newswire via NLP pipelines. The resulting model has improved net returns by ~6% annualized, with drawdown correlation to the S&P while increasing diversification across sectors.

2. Benefits & Drawbacks of ML

The main benefit is that ML discovers multi-dimensional factor exposures that humandesigned factors miss. The downside: maintaining clean, normalized data across dozens of data sources is time-consuming and expensive. Also, *model blindness* to sudden regime changes remains a concern.

3. Evaluating Model Accuracy

My evaluation process includes:

- Time-series cross-validation to preserve autocorrelation
- Ensemble cross-tests between models to ensure consistency
- Live shadow portfolios before deployment
- Tracking metrics like alpha, beta, max drawdown, and conditional VaR, as well as
 P&L distribution statistics.

4. Challenges & Mitigations

Problems I've tackled include:

- Noisy labels resolved with smoothing and manual flagging of outliers.
- Overfitting I apply L1/L2 regularization and limit depth on decision trees.
- Transparency we hold quarterly stakeholder reviews with SHAP dashboards.

5. Importance of Interpretability

Essential—for both regulatory compliance and investor confidence. I generate SHAP reports comparing expected vs. actual model rationales and ensure that every crowd-source manager can read why a model made a given call.

6. ML vs. Traditional Models

While ML consistently generates ~1-2% excess alpha over traditional factor models (especially during transitions), statistical models often show better drawdown control in sideways markets. This underscores the need for hybrid model architecture.

7. Managing Market Dynamics

I conduct monthly retraining, augmented by regime detection triggers. I also run scenario simulations for example, rate hikes or geopolitical events to evaluate timing and signal reliability under stress.

8. Effective & Challenging Techniques

Random Forest and gradient boosting deliver high signal quality with relatively low overhead. In contrast, deep learning models especially CNNs applied to technical charts were overkill and offered no clear benefit.

9. Potential Enhancements

I'd like better tools to model nonlinear risk measures, such as drawdown risk directly within ML frameworks. Also, unified pipelines combining alpha, risk, and execution signals would streamline operations.

10. ML Integration in Decision-Making

Our standard process:

- 1. Run ML-generated ranking signals weekly
- 2. Review top 50 in team meeting

3. Check risk overlay and schedule rebalances

4. Execute over a 2–3-day window

ML supports the process it doesn't replace it, ensuring human oversight remains central.

Participant 5 – Academic Researcher in Financial AI

1. Use of ML in Investing

I test various models (random forests, gradient boosting, RNNs) on multi-modal datasets combining fundamentals, macro signals, and textual data (e.g. SEC filings). I then blend them using a meta-model that provides monthly alpha predictions. My peer-reviewed studies show a 10% improvement in prediction accuracy versus benchmark models, especially when sentiment features are included.

2. Benefits & Drawbacks of ML

ML provides unmatched flexibility in fusing structured and unstructured data and capturing nonlinear dependencies. Yet it's data-hungry, resource-intensive, and prone to overfitting, unless regularized carefully. Also, pure ML models often overlook critical economic regimes or structural changes in markets.

3. Evaluating Model Accuracy

Evaluation includes:

- **Nested cross-validation** for honest error estimation.
- Backtesting on out-of-sample periods covering 2008–09 and 2020.
- Monte Carlo scenario simulations altering macro variables.

 Recording metrics like ROC AUC, Sharpe ratio, drawdown, and calibration plots to assess risk-adjusted accuracy.

4. Challenges & Mitigations

Academic data is often limited, so I simulate real-time feeds using APIs, and augment with textual sentiment features. I avoid overfitting by using dropout, regularization, early stopping, and validation on unseen data. I also use SHAP for interpretability, ensuring my papers include model rationales.

5. Importance of Interpretability

In academia, interpretability is critical for reproducibility and peer review. I integrate layer wise relevance propagation and SHAP analyses in all my publications, allowing readers to understand why certain features contribute to alpha.

6. ML vs. Traditional Models

In my controlled studies, ML models outperform econometric benchmarks by ~8%, especially when using alternative data. But when volatility is low, the gap narrows—and simple models often outperform in inference speed and interpretability.

7. Managing Market Dynamics

I adopt sliding-window training, incremental learning, and include macro and regime variables in models. I stress-test with synthetic shocks (e.g., rate spikes) and ensure models include **uncertainty quantification** to flag low-confidence predictions.

8. Effective & Challenging Techniques

Gradient boosting and shallow neural nets work best for my tasks. Deep networks (like CNNs on price patterns) were too noisy, and transformer architectures required more labeled data than I had available.

9. Potential Enhancements

Enhanced uncertainty modeling, tighter integration of economic theory priors, and more sophisticated multi-task learning frameworks (predicting return, volatility, regime simultaneously) would make ML more reliable in finance.

10. ML Integration in Decision-Making

My recommended workflow:

- 1. Build hybrid models that rank assets monthly
- 2. Produce explainability reports
- 3. Present top picks to portfolio committees
- Monitor model performance and retrain before each new cycle
 This approach integrates computational rigor with clear human decision-making and oversight.

Definition of terms and abbreviations

FFT- Fast Fourier Transform

DFT- Discrete Fourier Transform

FT- Fourier Transform

PSD- Power Spectral Density

CSV- Comma Separated Value

MACD - Moving Average Convergence Divergence

TF-IDF- Ensemble deep learning framework for stock market data prediction

NN- Neural Network

LSTM- Long short-term memory

RNNs- Recurrent neural networks

SIWOA- Self-Improved whale optimization algorithm

DBN- Deep Belief network

AR- Autoregression Model

ARMA- Autoregressive Moving Average Model

ARIMA- Autoregressive Integrated Moving Average Model

OLS- Ordinary Least Square

SARF- Sentiment Augmented Random Forest

SARF-MC - Sentiment Augmented Random Forest, Monte Carlo

RF- Random Forest

CAGR- Compounded Annual Growth Rate

BERT- Bidirectional Encoder Representations from Transformers

RAG- Retrieval-Augmented Generation

REFERENCES

- 1. Chen, Y., et al.: Financial trading strategy system based on machine learning. Math. Problems Eng. 2020, 1–13 (2020).
- 2. Lv J, Wang C, Gao W, Zhao Q. An economic forecasting method based on the LightGBM-optimized LSTM and time-series model. Computational Intelligence and Neuroscience. 2021.
- 3. NekoeiQachkanloo, H., et al.: Artificial counselor system for stock investment. Natl. Conf. Artif. Intell. 33(1), 9558–9564 (2019).
- 4. Sharma, N., Juneja, A.: Combining of random forest estimates using LSboost for stock market index prediction. In: 2017 2nd International Conference for Convergence in Technology (I2CT), pp. 1199–1202. IEEE, Mumbai, (2017).
- 5. Tan, Z., Yan, Z., Zhu, G.: Stock selection with random forest: an exploitation of excess return in the Chinese stock market. Heliyon. 58, e02310 (2019).
- 6. Liu XY, Wang G, Zha D. Fingpt: Democratizing internet-scale data for financial large language models. arXiv preprint arXiv:2307.10485. 2023 Jul 19.
- 7. Nti, K.O., Adekoya, A., Benjamin, W.: Random forest-based feature selection of macroeconomic variables for stock market prediction. Am. J. Appl. Sci. 167, 200–212 (2019)
- 8. Mehtab, S., Sen, J.: A robust predictive model for stock price prediction using deep learning and natural language processing. ArXiv: Statistical Finance (2019). https://doi.org/10.1109/I2CT.2017.8226316
- 9. Basak, S., et al.: Predicting the direction of stock market prices using tree-based classifiers. North Am. J. Econ. Finance. 47, 552–567 (2019).
- 10. Zhou, F., et al.: Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Appl. Soft Compute-. 84, 105747 (2019).
- 11. Oriani, F.B., Coelho, G.P.: Evaluating the impact of technical indicators on stock forecasting. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE, Athens (2016). https://doi.org/10.1109/SSCI.2016.7850017
- 12. Beyaz, E., et al.: Comparing technical and fundamental indicators in stock price Forecasting. In: 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; Conference **IEEE** 4th International on Data Science and **Systems** Exeter (HPCC/SmartCity/DSS), 1607–1613. IEEE, (2018).pp. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00262
- 13. C. Lohrmann, P. Luukka, "Classification of intraday S&P500 returns with a Random Forest", International Journal of Forecasting, 35(1), pp.390-407, 2019.
- Loke, K.S.: Impact of financial ratios and technical analysis on stock price prediction using random forests. In: 2017 International Conference on Computer and Drone Applications (IConDA), pp. 38–42. IEEE, Kuching, (2017). https://doi.org/10.1109/ICONDA.2017.8270396
- 15. S. Basak, S. Kar, S. Saha, L. Khaidem and S.R. Dey, "Predicting the direction of stock market prices using tree-based classifiers", The North American Journal of Economics and Finance, 47, pp.552-567, 2019.
- 16. Darapaneni N, Paduri AR, Sharma H, Manjrekar M, Hindlekar N, Bhagat P, Aiyer U, Agarwal Y. Stock price prediction using sentiment analysis and deep learning for Indian markets. arXiv preprint arXiv:2204.05783. 2022 Apr 7.

- 17. Q. Xu. Wang, W. H. Zheng, "Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles", Neurocomputing, 299, pp.51-61, 2018.
- 18. F. B. Oriani and G. P. Coelho, "Evaluating the impact of technical indicators on stock forecasting," 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 2016, pp. 1-8, doi: 10.1109/SSCI.2016.7850017.
- 19. D. Heyman, M. Lescrauwaet, and H. Stieperaere, "Investor attention and short-term return reversals," Finance Research Letters, vol. 29, pp. 1–6, 2019.
- 20. T. M. Nisar and M. Yeung, "Twitter as a tool for forecasting stock market movements: A short-window event study" The Journal of Finance and Data Science, vol. 4, no. 2, pp. 101 119, 2018.
- 21. T.K.Lee, J.H. Cho, D.S. Kwon and S.Y. Sohn, "Global stock market investment strategies based on financial network indicators using machine learning techniques", Expert Systems with Applications, 117, pp.228-242, 2019.
- 22. Feuerriegel, S. and Gordon, "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions", European Journal of Operational Research, 272(1), pp.162-175, 2019.
- 23. A. Pathak, N.P. Shetty, "Indian Stock Market Prediction Using Machine Learning and Sentiment Analysis", In Computational Intelligence in Data Mining, pp. 595-603, Springer, Singapore, 2019.
- 24. Khan W., "Stock market prediction using machine learning classifiers and social media, news", Journal of Ambient Intelligence and Humanized Computing, March 2020.
- 25. F. B. Oriani and G. P. Coelho, "Evaluating the impact of technical indicators on stock forecasting," 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 2016, pp. 1-8, doi: 10.1109/SSCI.2016.7850017.
- 26. Zhang, Y., & Zhou, L. (2020). Integrating deep learning and sentiment analysis in financial forecasting. Expert Systems with Applications, 140, 112869.
- 27. Huang, J., & Liu, J. (2021). Financial time series forecasting using LSTM and sentiment indicators. Journal of Forecasting, 40(3), 524–538.
- 28. Kim, Y. (2019). Financial news and stock market volatility prediction using attention-based neural networks. Information Processing & Management, 56(5), 102088.
- 29. Li, X., Xie, H., & Wang, R. (2021). A multi-source deep learning framework for stock price prediction. Knowledge-Based Systems, 211, 106453.
- 30. Wang, J., & Yu, L. (2022). Sentiment-aware reinforcement learning for stock trading. Decision Support Systems, 155, 113691.
- 31. Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE, 12(7), e0180944.
- 32. Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66(1), 35–65.
- 33. Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news. ACM Transactions on Information Systems, 27(2), 12.
- 34. Nasir, M. A., & Du, M. (2018). Role of news-based sentiment in forecasting volatility in stock markets. Finance Research Letters, 27, 208–215.
- 35. Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A survey. Artificial Intelligence Review, 50, 49–73.
- 36. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.

- 37. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.
- 38. Yang, X., & Wu, Y. (2020). Sentiment analysis and prediction of financial news using natural language processing. Financial Innovation, 6, 42.
- 39. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.
- 40. Gidofalvi, G. (2001). Using news articles to predict stock price movements. Technical Report, Columbia University.
- 41. Tsai, C.-F., & Wang, S.-P. (2009). Stock price forecasting by hybrid machine learning techniques. Proceedings of the International Joint Conference on Neural Networks, 1, 120–127.
- 42. Oh, C., & Sheng, O. R. L. (2011). Investigating predictive power of stock microblog sentiment in forecasting future stock price directional movement. ICIS 2011 Proceedings, 33.
- 43. Mittal, A., & Goel, A. (2012). Stock prediction using Twitter sentiment analysis. Stanford CS229 Project Report.
- 44. Rao, T., & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining, 119–123.
- 45. Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M., & Mozetič, I. (2015). The effects of Twitter sentiment on stock price returns. PLoS ONE, 10(9), e0138441.
- 46. Talazadeh, S., & Peraković, D. (2024, May). SARF: Stock Market Prediction with Sentiment-Augmented Random Forest. In *International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures* (pp. 54-64). Cham: Springer Nature Switzerland.