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ABSTRACT 

LEVERAGING DEEP REINFORCEMENT LEARNING FOR REAL-TIME TRADING 

IN EMERGING MARKETS: INSIGHTS FROM NIFTY50 

 

 

 

 

 

Stock trading is a complex decision-making problem influenced by market 

volatility, macroeconomic conditions, and investor sentiment. Traditional strategies, such 

as technical analysis and statistical models, rely on predefined rules and historical 

patterns but often struggle to adapt to dynamic markets. Reinforcement learning (RL) 

offers an adaptive approach by enabling trading agents to learn from past experiences and 

optimize decisions over time. This study applies Q-learning (QN), Deep Q-Network 

(DQN), and Double Deep Q-Network (DDQN) to intraday trading on NIFTY 50 stocks, 

evaluating performance based on total profit, risk-adjusted returns, and trade execution 

efficiency. The models were trained on four years of historical data and tested on one 

year to assess adaptability to real-world conditions. Results show that DDQN 

outperforms both QN and DQN, achieving the highest total profit (₹1,151,325), best 

Sharpe ratio (0.3450), lowest max drawdown (-1.12%), and highest trade accuracy 

(67.72%). DQN improves over QN but suffers from higher drawdowns due to Q-value 

overestimation, while QN struggles with profitability and risk control. These findings 

confirm that RL-based trading models can significantly enhance decision-making and 

profitability in algorithmic trading. 
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CHAPTER I:  

INTRODUCTION 

1.1 Background 

Financial markets are highly dynamic, influenced by various factors such as 

economic policies, global events, and investor sentiment. Traditional stock trading 

strategies rely on either fundamental or technical analysis, both of which have limitations 

in adapting to rapidly changing market conditions. The introduction of machine learning 

(ML) and artificial intelligence (AI) in finance has led to significant advancements in 

algorithmic trading. Among these, reinforcement learning (RL) has emerged as a 

powerful tool for decision-making in complex and uncertain environments (Ansari et al., 

2024). 

1.1.1 Evolution of Algorithmic Trading 

 

 

Figure 1: Evolution of Algorithmic Trading 

Algorithmic trading has transformed financial markets by automating trade 

execution based on predefined rules. Early models used statistical approaches such as 
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moving averages and regression analysis, but these lacked adaptability to real-time 

market fluctuations. The rise of machine learning-based trading systems allowed for more 

dynamic strategies, leveraging historical price patterns and market indicators to predict 

future price movements (Awad et al., 2023). 

1.1.1.1 From Manual Trading to High-Frequency Trading 

 Manual trading involved human decision-making based on experience and 

market knowledge. 

 The advent of electronic trading enabled faster trade execution, but decisions 

were still rule-based. 

 High-Frequency Trading (HFT) emerged, utilizing algorithms to execute 

thousands of trades per second, reducing human intervention significantly. 

1.1.1.2 Role of Machine Learning in Financial Markets 

 Machine learning models, such as LSTMs and CNNs, have been widely 

applied to financial forecasting. 

 Supervised learning models depend on labeled data but struggle with unseen 

market conditions. 

 Reinforcement learning surpasses traditional methods by allowing the model 

to learn optimal strategies through trial and error (Byun et al., 2023). 

1.1.2 Reinforcement Learning in Financial Markets 

Reinforcement learning (RL) is an advanced decision-making framework where 

an agent interacts with an environment and learns from rewards and penalties. It is well-

suited for financial markets, where traders must adapt to uncertain and dynamic 

conditions. RL-based models can self-improve over time, making them ideal for trading 

applications (Cui et al., 2023). 
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1.1.2.1 Why Reinforcement Learning for Stock Trading? 

 Unlike traditional models, RL-based trading agents do not require predefined 

rules. 

 RL continuously adapts to market conditions by optimizing trading actions 

(buy, hold, or sell). 

 Advanced RL models such as Deep Q-Networks (DQN) and Double Deep Q-

Networks (DDQN) have shown superior performance in handling market 

volatility (Choi & Kim, 2024). 

1.1.2.2 Reinforcement Learning vs. Traditional Trading Strategies 

 

 

Figure 2: Reinforcement Learning Based Frameworks in Stock Market  
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Below table provides a comparison of different trading strategies, highlighting 

their approaches and limitations. It shows how traditional methods like technical analysis 

and statistical models struggle with adaptability, while reinforcement learning offers real-

time learning capabilities, making it more suitable for dynamic market conditions. 

 

Table 1: Comparison of trading strategies and their limitations. 

 

Trading Strategy Approach Limitations 

Technical Analysis 
Uses indicators like RSI, 

MACD, moving averages 

Struggles with sudden market 

shifts 

Statistical Models Regression, ARIMA, GARCH 
Fails in high volatility 

scenarios 

Supervised ML Models Uses labeled historical data 
Cannot adapt to new trends 

easily 

Reinforcement Learning 
Learns dynamically from actions 

and rewards 

Adapts to changing conditions 

in real-time 

 

1.2 Problem Statement  

Stock market prediction and algorithmic trading have been extensively studied, 

yet achieving consistently profitable trades remains a challenge due to market volatility, 

unpredictable price movements, and high-frequency fluctuations. Traditional rule-based 

strategies often fail to generalize across different market conditions, and even advanced 

machine learning models struggle to adapt to sudden market changes. Reinforcement 

learning (RL) offers a promising solution by enabling AI agents to learn optimal trading 

strategies through interaction with the environment (Feizi-Derakhshi et al., 2024). Most 

existing models rely on historical price patterns, technical indicators, or statistical 

relationships, which often fail to capture the real-time complexities of stock market 

behavior. The stock market is highly nonlinear, and the relationship between different 

market variables is not always explicitly defined. In such cases, rule-based approaches 
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and even supervised learning techniques struggle to make accurate predictions (Guarino 

et al., 2024). 

This study aims to address the limitations of traditional trading strategies by 

developing an RL-based AI agent trained on four years of NIFTY 50 stock data. The 

agent utilizes Deep Q-Networks (DQN) and Double Deep Q-Networks (DDQN) to 

improve its ability to learn and adapt to dynamic market conditions. The study evaluates 

the effectiveness of RL-based trading strategies compared to traditional approaches, 

focusing on profitability, risk management, and stability in financial decision-making. 

1.2.1 Challenges in Stock Market Prediction 

The unpredictability of stock prices arises from numerous factors, including 

economic policies, geopolitical events, investor psychology, and sudden market shocks. 

Traditional forecasting models such as linear regression, ARIMA, GARCH, and decision 

trees often fail to generalize across different market conditions, leading to poor real-

world performance (Huang et al., 2023). 

1.2.1.1 Market Volatility and Uncertainty 

Financial markets exhibit extreme volatility, making it difficult to predict future 

price movements with high confidence. Volatility can be caused by: 

 Macroeconomic events such as interest rate changes, inflation, or GDP 

fluctuations. 

 Geopolitical risks like international conflicts, trade wars, or regulatory 

changes. 

 Market sentiment and investor behavior, which can lead to panic selling or 

speculative bubbles. 

Traditional machine learning models trained on historical price data often fail to 

account for these uncertainties, leading to overfitting on past trends. In contrast, RL-
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based trading systems can learn to adapt to new market conditions and adjust their 

strategies dynamically (Bai et al., 2023). 

1.2.1.2 Data Complexity and Noise in Market Trends 

Financial datasets are high-dimensional and noisy, making it difficult to extract 

meaningful patterns. Several challenges exist in handling stock market data: 

 Price fluctuations contain high levels of noise, leading to inaccurate 

predictions. 

 Technical indicators (e.g., MACD, RSI, Bollinger Bands) add complexity, 

making feature selection crucial. 

 Extreme market events (e.g., flash crashes) create outliers, which can distort 

model performance. 

 To improve data quality, this study applies data preprocessing techniques such 

as: 

 Filtering chaotic data by removing stocks with extreme volume spikes. 

 Feature engineering to extract meaningful patterns from price movements. 

 Normalization and scaling to ensure stable learning for RL models (Guarino et 

al., 2024). 

Below table outlines key challenges in stock trading and their impact on trading 

models. It highlights how high volatility, market noise, data sparsity, and overfitting 

create difficulties for algorithmic trading, affecting prediction accuracy and model 

reliability in real-time market conditions. 

 

Table 2: Key challenges in processing stock market data and their impact on predictive 

models 

 

Challenge Description Impact on Trading Models 
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High volatility Sudden price fluctuations Difficult to predict short-term trends 

Market noise 
Random fluctuations unrelated to 

fundamentals 
Can mislead trading algorithms 

Data sparsity 
Missing data points or irregular 

reporting 
Inconsistent training data 

Overfitting risk 
Models learn past trends but fail in 

real-time 
Poor generalization to new conditions 

 

1.2.2 Gaps in Existing Reinforcement Learning Trading Models 

Despite the success of DQN-based trading systems, several challenges remain. 

Many models fail to generalize across different market scenarios, leading to inconsistent 

performance. Furthermore, overestimation bias in Q-learning algorithms affects decision-

making accuracy (Espiga-Fernández et al., 2024). 

1.2.2.1 Over-Reliance on Historical Data 

Most trading models are trained on historical market data, making them 

susceptible to overfitting. The primary issues include: 

 Market conditions are constantly changing, and models trained on old data 

may fail in new environments. 

 Supervised learning models depend on labeled datasets, which are often 

biased toward past trends. 

 Traditional Q-learning models memorize past trades rather than adapting to 

new patterns. 

Reinforcement learning provides a solution by continuously updating its strategy 

based on real-time feedback from market conditions (Du & Shen, 2024). 
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Figure 3: Comparison of Traditional Machine Learning vs. Reinforcement Learning in 

Trading 

 

1.2.2.2 Lack of Stability in Q-Learning Approaches 

Standard Q-learning algorithms suffer from high variance and instability, making 

them unreliable for trading applications. Challenges include: 

 Overestimation bias: The Q-learning agent often assigns unrealistically high 

values to certain actions, leading to suboptimal trading decisions. 

 Unstable training: The model may experience high fluctuations in 

performance during training, leading to inconsistent trading behavior. 

 Delayed rewards: In financial markets, the impact of a trade may not be 

immediately visible, making it difficult for standard RL models to learn 

effectively. 
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Figure 4: Q-learning vs. DQN vs. DDQN – A Comparative Study on Trading 

Performance 

 

Deep Q-Networks (DQN) improve Q-learning by incorporating: 

 Experience replay, which helps stabilize training by storing and reusing past 

experiences. 

 Target networks, which prevent the model from becoming too sensitive to 

recent rewards. 

However, DQN still has limitations, leading to the need for Double Deep Q-

Networks (DDQN), which further improves performance by: 

 Decoupling action selection from Q-value estimation, reducing overestimation 

bias. 

 Enhancing stability in learning, leading to more consistent trading strategies 

(Papageorgiou et al., 2024). 
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1.2.3 Addressing These Challenges with RL-Based Trading Strategies 

To overcome these challenges, this research proposes an RL-based AI agent for 

intraday trading, specifically designed to: 

 Handle market volatility by dynamically adjusting trading strategies. 

 Reduce data noise and overfitting by integrating technical indicators and 

advanced feature selection techniques. 

 Improve learning stability by implementing DDQN instead of standard Q-

learning. 

 Optimize risk management by evaluating Sharpe ratio, win-loss ratio, and 

cumulative profit as performance metrics. 

1.3 Research Questions 

This research aims to explore whether reinforcement learning, particularly the 

Double Deep Q-Network (DDQN) framework, can outperform traditional intraday 

trading strategies and be adapted to the specific market conditions of an emerging 

economy like India’s NIFTY 50 index. The study will focus on optimizing buy, hold, and 

sell decisions, enhancing risk management, and improving generalization across different 

market conditions. 

 

1. How effectively can a Double Deep Q-Network (DDQN)-based reinforcement 

learning agent autonomously execute optimal buy, hold, and sell decisions in 

the NIFTY50 intraday trading market? 

2. How can the DDQN-based RL agent be optimized to balance maximizing 

profitability with minimizing market risk, particularly during volatile periods? 
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3. How well does the DDQN model generalize across different market 

conditions (e.g., bull markets, bear markets, and periods of high volatility) in 

the NIFTY50 index? 

4. Can reinforcement learning models like DDQN handle market anomalies 

events that deviate significantly from normal market behavior? 

5. What is the impact of experience replay and target networks on improving the 

stability and learning efficiency of the DDQN model in the context of intraday 

trading? 

6. How does the exploration-exploitation tradeoff affect the performance of the 

DDQN agent in intraday trading, and how can it be managed for optimal 

decision-making? 

 

1.3.1 Primary Objectives 

Develop a DDQN-based reinforcement learning agent for intraday trading 

 Train the agent to autonomously execute buy, hold, and sell decisions in the 

NIFTY 50 market. 

 Implement Q-learning, DQN, and DDQN for comparative performance 

analysis. 

Optimize the DDQN agent for balancing profitability and risk management 

 Design reward functions that maximize cumulative profit while minimizing 

market exposure risks. 

 Evaluate agent performance during high-volatility periods and unexpected 

market fluctuations. 

Assess the generalization ability of the DDQN model 
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 Test the RL agent’s adaptability across bull markets, bear markets, and 

volatile periods. 

 Investigate how market conditions impact the learning behavior of the model. 

Analyze the impact of experience replay and target networks 

 Measure the effect of experience replay on learning efficiency and model 

stability. 

 Evaluate how target networks reduce Q-value overestimation, leading to more 

stable trading decisions. 

Optimize the exploration-exploitation tradeoff for decision-making 

 Tune epsilon decay strategies to balance exploration (learning new patterns) 

and exploitation (executing profitable trades). 

 Assess how different exploration strategies impact trade frequency, returns, 

and market adaptability. 

 

Table 3: Key research areas and expected improvements in RL-based trading. 

 

Research Focus Key Considerations Expected Outcome 

DDQN trading performance 
Buy, hold, and sell execution 

in NIFTY 50 

More profitable and efficient 

trading decisions 

Risk management strategies 
Handling volatility, 

drawdowns, and stop-loss 

Improved capital protection 

and lower risk 

Generalization ability 
Performance in bull, bear, and 

volatile markets 

More stable profits across 

different market conditions 

Experience replay & target 

networks 

Stability and learning 

efficiency 

Reduced overestimation bias, 

better model training 

Exploration-exploitation 

tradeoff 

Tuning epsilon decay for 

decision-making 

Optimized trade frequency and 

adaptability 

 



 

 

13 

Above table presents the key research focus areas in reinforcement learning-based 

trading, along with their considerations and expected outcomes. It highlights how DDQN 

trading performance, risk management, generalization ability, experience replay, and 

exploration-exploitation balance contribute to building a more stable, efficient, and 

adaptable trading model for intraday stock markets. This research will provide valuable 

insights into the practical application of reinforcement learning in intraday trading, 

ensuring profitability, risk management, and adaptability to market conditions. 

1.3.2 Secondary Objectives 

Improve data preprocessing for better RL model training 

 Use technical indicators like moving averages, RSI, and Bollinger Bands. 

 Filter out market noise and extreme volume fluctuations. 

Enhance RL agent stability through improved training techniques 

 Implement experience replay and target networks to stabilize learning. 

 Use epsilon decay strategies to refine exploration-exploitation balance. 

Optimize hyperparameters for efficient model performance 

 Tune learning rate, discount factor, batch size, and number of episodes. 

 Experiment with different reward functions to encourage profitable trading 

behavior. 

Benchmark RL-based strategies against standard market indicators 

 Compare the RL agent’s performance with technical analysis indicators. 

 Test against common trading benchmarks (e.g., SMA crossovers, MACD). 

1.4 Scope of the Study 

This research focuses on developing and evaluating a reinforcement learning-

based trading agent, specifically using the Double Deep Q-Network (DDQN) framework, 

for intraday trading in the NIFTY 50 stock market. The study aims to enhance trading 



 

 

14 

strategies by leveraging reinforcement learning techniques to optimize buy, hold, and sell 

decisions while balancing profitability and risk management. The study covers data 

collection, preprocessing, model development, and performance evaluation using four 

years of historical market data for training and one year for testing. The trading agent will 

operate in a simulated trading environment, where its decisions will be evaluated against 

traditional trading strategies and benchmark models. 

1.4.1 Inclusion Criteria 

Stock Market Focus: NIFTY 50 

 The study is limited to NIFTY 50 stocks, which represent India's top 50 

publicly traded companies. 

 The dataset includes intraday OHLCV data (Open, High, Low, Close, 

Volume) extracted using Zerodha API. 

Timeframe of Study 

 Four years of data (training period): Used to train the RL agent and refine 

trading policies. 

 One year of data (testing period): Used to assess generalization and 

profitability in real-world conditions. 

Reinforcement Learning Models 

 The study focuses on Q-learning, Deep Q-Networks (DQN), and Double Deep 

Q-Networks (DDQN). 

 Comparative analysis will be performed against rule-based strategies (e.g., 

Moving Averages) and supervised learning models (e.g., LSTMs, Random 

Forests). 
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Table 4: Summary of study scope and model evaluation criteria 

 

Aspect Details 

Market Index NIFTY 50 (Top 50 Indian stocks) 

Trading Type Intraday trading (9:15 AM – 3:00 PM IST) 

Data Source Zerodha API (Historical OHLCV data) 

Training Period 4 years of stock data 

Testing Period 1 year of stock data 

Trading Models Q-learning, DQN, DDQN 

Performance Metrics Cumulative Profit, Sharpe Ratio, Win-Loss Ratio, Drawdown 

Above table provides an overview of the key aspects of the study, including the 

market index, trading type, data source, training and testing periods, trading models, 

comparison models, and performance metrics. It outlines the scope of the research, 

ensuring a structured evaluation of reinforcement learning-based trading strategies in the 

NIFTY 50 intraday market. 

1.4.2 Exclusions 

Exclusion of Fundamental Analysis 

 The study does not incorporate fundamental indicators such as company 

earnings, P/E ratios, or macroeconomic factors. 

 The focus is solely on technical analysis and price-action-based trading 

strategies. 

Exclusion of Alternative Asset Classes 

 The research does not consider cryptocurrencies, forex, commodities, or 

derivatives. 
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 It is strictly limited to equity stocks listed on the NIFTY 50 index. 

No Real-World Deployment 

 The RL agent is tested only in a simulated environment using historical 

market data. 

 Live deployment on real trading accounts is outside the scope of this study. 

The scope of this research ensures a focused and practical evaluation of 

reinforcement learning in intraday trading, allowing for a controlled comparison between 

traditional and AI-based trading models. 

1.5 Contributions of the Research 

This research makes significant contributions to the field of reinforcement 

learning in financial markets, particularly in intraday trading using the NIFTY 50 index. 

By leveraging Double Deep Q-Networks (DDQN), the study enhances trading decision-

making, ensuring a balance between profitability, risk management, and market 

adaptability. The research provides both theoretical and practical insights into how RL-

based trading systems can outperform traditional models and adapt to dynamic market 

conditions. 

1.5.1 Theoretical Contributions 

Advancing Reinforcement Learning for Stock Market Trading 

 Demonstrates the effectiveness of DDQN over traditional Q-learning and 

Deep Q-Networks (DQN). 

 Investigates how experience replay, and target networks stabilize trading 

decisions. 

Understanding the Role of RL in High-Volatility Markets 

 Analyzes the adaptability of RL agents during bull, bear, and highly volatile 

periods. 
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 Examines how reinforcement learning models handle market anomalies 

compared to rule-based strategies. 

Enhancing Exploration-Exploitation Strategies in Intraday Trading 

 Investigates how epsilon decay strategies affect RL trading behavior. 

 Optimizes the balance between exploring new strategies and exploiting 

profitable ones. 

 

Table 5: Summary of theoretical advancements in reinforcement learning-based trading 

models 

 

Contribution Description Impact 

DDQN in Stock Trading 
Evaluates DDQN performance 

over Q-learning and DQN 

More stable and profitable 

trading strategies 

Risk and Volatility Adaptation 
Studies RL models in various 

market conditions 

Helps in developing risk-

aware trading systems 

Exploration-Exploitation 

Tuning 

Optimizes epsilon decay for 

RL decision-making 

Enhances adaptability and 

trading efficiency 

Above table highlights the key contributions of the study, describing their purpose 

and impact. It demonstrates how evaluating DDQN, improving risk adaptation, and 

optimizing exploration-exploitation tradeoffs contribute to the development of more 

stable, efficient, and risk-aware reinforcement learning-based trading strategies. 

1.5.2 Practical Contributions 

Development of a Scalable RL-Based Trading System 

 Implements an AI-driven reinforcement learning agent that can be integrated 

into algorithmic trading platforms. 

 Uses real-world financial data (NIFTY 50) to train and evaluate the RL agent. 

Optimizing Risk-Adjusted Trading Strategies 
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 Designs a reward function that incorporates profitability, volatility, and 

drawdown constraints. 

 Implements Sharpe ratio and drawdown-based optimization to reduce trading 

risks. 

1.5.3 Implications for Future Financial Markets 

 Automation in Trading: RL-based agents can help in automating high-

frequency and intraday trading decisions. 

 Risk-Aware AI Strategies: RL models can be fine-tuned to reduce risk 

exposure in volatile markets. 

 Scalability to Other Financial Markets: While this study focuses on NIFTY 

50, the framework can be extended to other stock indices, cryptocurrencies, 

and forex markets. 

This study contributes to the advancement of reinforcement learning in financial 

applications, bridging the gap between academic research and real-world trading. 

1.5.4 Risk Disclosure & Non-Advisory Note  

This thesis is a research document, not investment advice. The systems studied 

operate under controlled assumptions and historical data. Live trading introduces 

additional risks (execution, outages, regulation) that are outside scope. Any application of 

these methods to real capital must undergo independent validation, risk review, and 

compliance approvals. 

 

1.6 Business Relevance for AMCs and Large Institutional Desks 

Asset managers live in a world of daily subscriptions and redemptions, 

benchmark pressure, fee compression, and intense oversight. Intraday, the problem is 

simple but unforgiving: turn capital and client flows into steady cash generation while 
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protecting execution quality and auditability. This thesis is relevant because it turns the 

firm’s own reward logic (post-cost, after spread and latency) into actionable supervision 

for models and does so using asset-agnostic technical indicators that travel cleanly across 

equities, futures, FX, and crypto. 

What problem does it solve for an AMC? 

 Speed to strategy. PM teams and central research can spin up intraday ideas 

quickly because supervision comes from the same objective used to judge 

P&L. That shortens the path from idea to desk-ready pilot—no endless 

debates about ad-hoc tags or thresholds. 

 Cashflow and flow-of-volume. Daily flows (in/out) force AMCs to buy and 

sell on the tape. The framework helps time those micro-decisions within the 

day, aligning with typical U-shaped volume curves and pockets of liquidity, 

which reduces slippage and stabilizes net basis points retained. 

 Execution discipline. Because the labels are tied to post-cost returns, the 

same logic that trains the model can enforce don’t trade when the tape is thin 

or spreads are wide. Doing nothing at the wrong moment is often the best 

trade; the system makes that choice explicit. 

 Audit and model-risk. Every decision carries a recorded “why”: which 

action won and by how much. This makes investment-committee reviews, 

client due-diligence, and regulator questions faster to close—no folklore, just 

a traceable margin by which one action beat the alternatives. 

How would a large desk actually use it day-to-day? 

 Pre-trade: Before the open, PMs and the central execution desk review a short 

scenario brief (“where is the model decisive/ambivalent today?”). Flows from 
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client orders or internal rebalances are bucketed against those decisiveness 

windows to plan participation rates and venue selection. 

 In-trade: The model’s intraday signals sit alongside broker algos 

(VWAP/POV/IS) in the EMS. When label margins compress (market 

uncertain), the desk automatically leans toward lower participation or passive 

queues; when margins are decisive, it leans in. Human oversight remains near-

ties are flagged for trader discretion, and all overrides are logged with reasons. 

 Post-trade: Attribution splits P&L into alpha earned and costs saved. Losses 

with large historical margins trigger a spec review; losses on near-ties are 

treated as noise. This changes the tone of post-mortems from blame to 

diagnosis. 

 

Why this matters for scale and cross-asset rollout. AMCs rarely want one-off 

toys; they want platforms. Because inputs here are only technical indicators—

and everything is measured in returns, z-scores, and ATR/volatility units—the 

same stack can be re-used across strategies and asset classes. What changes are 

execution assumptions (fees, spread, latency) and capacity limits. That means a 

single investment in research engineering supports multiple desks: large-cap 

equities today, sector sleeves next quarter, a futures overlay later, and even 

crypto liquidity programs where 24×7 flow demands round-the-clock intraday 

discipline. 

Commercial outcomes an AMC can expect. 
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 Faster approvals. Investment committees get a cleaner memo: “We trained 

on the same objective we report; here are the decisive vs. ambiguous regions; 

here’s the audit log.” Approval cycles shrink. 

 Basis-points retained. Better timing relative to flow-of-volume and spreads 

shows up as lower implementation shortfall and tighter slippage bands—

material in high-turnover books and cash equitization mandates. 

 Capacity awareness. ADV-based caps and margin-aware throttles are built 

into the governance design, reducing the risk of crowding and flow toxicity as 

AUM grows. 

 Client trust. Transparent decision logs and consistent post-trade narratives 

make it easier to defend process quality with boards, consultants, and 

regulators. 

Where this sits in the operating model. 

 PMs get a faster way to turn hypotheses into intraday tactics that respect their 

risk budgets. 

 Execution gains a “traffic-light” layer that tells them when to push, when to 

shade, and when to stand down—fully logged. 

 Risk and Compliance receive versioned configs, decision logs, and margin 

distributions that map directly to policies on limits, outages, and incident 

response. 

 Data/Tech avoid brittle pipelines: only OHLCV is needed; the same code 

runs across desks; releases follow a shadow → canary → full pattern with 

instant rollback. 
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Why now. Spreads are thin, venues fragment, and oversight tightens yearly. 

AMCs must manufacture bps through timing, cost control, and clean process. 

This thesis provides a method that is economically coherent (labels match the 

objective), portable (features are asset-agnostic), and auditable (decisions 

explain themselves). In other words, it’s not just a research result—it is a practical 

playbook for converting flow and volatility into repeatable, defensible intraday 

returns at scale. 

 

1.7 Thesis Organization 

This thesis is structured to provide a comprehensive study on reinforcement 

learning-based intraday trading using the Double Deep Q-Network (DDQN) framework. 

Each chapter follows a logical progression, from the background and literature review to 

the methodology, results, and conclusions. 

Chapter 1: Introduction 

 Introduces the motivation, challenges, and research objectives of the study. 

 Defines the scope of research and key contributions in reinforcement learning-

based trading. 

Chapter 2: Literature Review 

 Reviews existing work on reinforcement learning in financial markets. 

 Explores Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN), and 

their applications in stock trading. 

 Identifies gaps in literature and justifies the need for this study. 

Chapter 3: Methodology 
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 Describes the data collection process using Zerodha API and preprocessing 

techniques. 

 Details the reinforcement learning architecture, including Q-learning, DQN, 

and DDQN models. 

 Outlines the training process, hyperparameter tuning, and model evaluation 

criteria. 

Chapter 4: Results and Discussion 

 Presents experimental results of the RL agent’s performance. 

 Compares RL-based trading strategies with rule-based and supervised learning 

models. 

 Evaluates trading performance using financial metrics like Sharpe ratio, 

cumulative profit, and win-loss ratio. 

Chapter 5: Conclusion and Future Work 

 Summarizes key findings and contributions of the research. 

 Discusses limitations of the study and proposes future research directions for 

improving RL-based trading models. 

 

This structured approach ensures a clear, logical progression in understanding 

how reinforcement learning can enhance trading strategies. 
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CHAPTER II:  

LITERATURE REVIEW 

 

2.1 Overview of Reinforcement Learning in Business and Finance 

The rapid advancements in artificial intelligence (AI) and machine learning (ML) 

have transformed financial markets, enabling the automation of trading strategies, risk 

assessment, and portfolio management. One of the most promising AI techniques in 

finance is reinforcement learning (RL), which allows trading systems to learn and adapt 

dynamically based on past market experiences. Unlike traditional trading models, which 

rely on predefined rules or statistical assumptions, RL-based models continuously refine 

their decision-making process by interacting with real-time market data (Ansari et al., 

2024). 

2.1.1 Evolution of AI and Reinforcement Learning in Financial Markets 

The integration of AI in stock market trading has evolved over the years, 

progressing through different computational techniques: 

 Rule-Based Systems (Pre-2000s): Early trading algorithms relied on 

predefined rules, such as moving average crossovers and Bollinger Bands, to 

determine buy/sell signals. These models lacked adaptability to new market 

conditions. 

 Machine Learning-Based Trading (2000s–2015): Introduction of supervised 

learning models (e.g., Support Vector Machines, Random Forests) that 

learned patterns from historical data. However, these models required labeled 

datasets and could not dynamically adapt. 

 Reinforcement Learning-Based Trading (2015–Present): RL models, 

particularly Deep Q-Networks (DQN) and Double Deep Q-Networks 
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(DDQN), introduced self-learning capabilities, enabling trading agents to 

adjust their strategies in response to market fluctuations (Choi & Kim, 2024). 

2.1.2 Fundamental Concepts of Reinforcement Learning 

Reinforcement learning is a subfield of AI that optimizes decision-making by 

learning through interactions with the environment. In the context of stock trading, an RL 

agent observes market conditions, executes trades, and adjusts its strategy based on 

reward signals. The core components of RL include: 

 State (S): Represents the market conditions, such as price movements, 

technical indicators, and historical trends. 

 Action (A): The decision taken by the RL agent, such as buy, hold, or sell. 

 Reward (R): The feedback received based on the trade outcome (e.g., 

profit/loss after a trade). 

 Policy (π): The strategy that the agent follows to maximize rewards over time. 

 

 

Figure 5:Fundamental Concepts of Reinforcement Learning 

 

One of the key challenges in RL-based trading is the exploration vs. exploitation 

dilemma. The model must explore new trading strategies to learn, while also exploiting 

profitable patterns to maximize gains (Cornalba et al., 2024). Below table explains key 

reinforcement learning concepts and their application in stock trading. It shows how 

states, actions, rewards, policies, exploration, and exploitation influence the decision-
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making process of an RL-based trading model, helping it adapt to market conditions, 

optimize trade execution, and balance risk and reward effectively. 

 

Table 6: Reinforcement learning components and their relevance to financial trading 

 

Concept Description Application in Trading 

State (S) 
Market condition (OHLC data, 

indicators) 

Determines the environment the RL 

agent perceives 

Action (A) Buy, hold, sell Executes a trading decision 

Reward (R) Profit/loss feedback after a trade 
Guides the agent to optimize 

profitability 

Policy (π) Decision-making strategy 
Defines how the agent selects 

actions 

Exploration 
Trying new strategies to discover 

better ones 

Helps find new profitable market 

patterns 

Exploitation Using known profitable strategies Ensures stable and reliable returns 

 

This section has introduced the evolution of AI in stock trading and the 

fundamentals of RL. Next, we will examine Deep Q-Networks (DQN) and Double Deep 

Q-Networks (DDQN) in algorithmic trading. 

2.2 Deep Q-Networks (DQN) and Double Deep Q-Networks (DDQN) in 

Algorithmic Trading 

Reinforcement learning has gained traction in financial markets, particularly in 

intraday trading and algorithmic decision-making. Among RL-based approaches, Deep 

Q-Networks (DQN) and Double Deep Q-Networks (DDQN) have emerged as effective 

frameworks for optimizing stock trading strategies. These models improve upon 

traditional Q-learning by integrating deep learning architectures that enable trading 
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agents to handle high-dimensional market data and complex trading patterns (Cui et al., 

2023). 

2.2.1 Deep Q-Networks (DQN) in Algorithmic Trading 

Deep Q-Networks (DQN) have gained popularity in algorithmic trading due to 

their ability to learn complex trading strategies from historical data. Unlike traditional Q-

learning, which struggles with large state spaces, DQN leverages deep neural networks to 

approximate Q-values, enabling more effective decision-making in dynamic market 

conditions. This section explores the application of DQN in trading, highlighting its 

structure, advantages, and limitations. 

2.2.1.1 Overview of Q-Learning and Its Limitations 

Q-learning is a foundational RL technique that helps agents learn optimal 

decision-making policies by updating Q-values for each state-action pair. However, in 

complex environments like financial markets, traditional Q-learning struggles with 

scalability and stability issues due to: 

 Large state-action space: The number of possible market conditions and 

actions is vast, making it impractical to maintain a Q-table. 

 High variance in stock prices: Rapid price fluctuations lead to unstable 

learning, causing poor convergence. 

 Delayed rewards: Unlike environments with immediate feedback, financial 

trading involves uncertain long-term rewards, making it difficult for Q-

learning models to learn effective policies (Du & Shen, 2024). 

To overcome these challenges, Deep Q-Networks (DQN) leverage deep learning 

techniques to approximate Q-values, enabling trading agents to learn more efficiently 

from complex stock market data. 
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2.2.1.2 How DQN Improves Traditional Q-Learning 

Deep Q-Networks (DQN) extend Q-learning by incorporating neural networks to 

approximate the Q-value function, allowing the agent to handle large state-action spaces 

more effectively. The key improvements introduced by DQN include: 

 Experience Replay 

o Stores past experiences (state, action, reward, next state) in a memory 

buffer. 

o Randomly samples past experiences during training to reduce 

correlation between consecutive trades. 

 Target Network Stabilization 

o Maintains a separate target network to compute the Q-value updates, 

preventing rapid fluctuations. 

o Reduces instability in learning, allowing for better convergence. 

 Neural Network Function Approximation 

o Uses deep learning models (e.g., CNNs, LSTMs) to predict Q-values, 

eliminating the need for explicit Q-tables. 

These enhancements allow DQN-based trading agents to learn complex patterns, 

make data-driven trading decisions, and improve market adaptability (Enkhsaikhan & Jo, 

2024). 

2.2.2 Double Deep Q-Networks (DDQN) for Stock Trading 

Despite its success, DQN suffers from overestimation bias, where the agent 

overestimates the expected reward of an action, leading to suboptimal trading decisions. 

This overestimation often results in: 

 Aggressive trading behavior: The agent may execute frequent, high-risk 

trades due to inflated reward expectations. 
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 Poor decision-making in volatile markets: Overestimated Q-values can 

cause unrealistic price predictions, leading to losses. 

To address these issues, Double Deep Q-Networks (DDQN) introduce a more 

stable learning mechanism by decoupling action selection and evaluation (Papageorgiou 

et al., 2024). 

2.2.2.1 How DDQN Addresses Overestimation Bias 

The key improvement in DDQN is the separation of action selection and Q-value 

computation, reducing the likelihood of overestimated trading rewards. The DDQN 

framework consists of: 

 Two Neural Networks for Q-Value Estimation 

o The online network selects the action. 

o The target network evaluates the Q-value of the selected action. 

o This separation prevents the model from assigning overly optimistic 

rewards to risky trades. 

 More Stable Learning in Volatile Markets 

o By reducing overestimation, DDQN ensures more reliable trading 

decisions during market fluctuations. 

o The model is better suited for high-volatility scenarios like earnings 

announcements, economic events, and sudden market shifts. 

 Improved Risk Management 

o The model discourages high-risk trades by ensuring that the agent 

selects actions with realistic expected returns. 

2.2.3 Comparing DQN and DDQN in Financial Applications 

Recent studies have evaluated the effectiveness of DQN and DDQN in stock 

trading, comparing their performance across different market conditions. Empirical 
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results suggest that DDQN offers superior decision-making stability, particularly in high-

volatility markets (Feizi-Derakhshi et al., 2024). 

 

Figure 6:Comparing DQN and DDQN in Financial Applications 

 

2.2.3.1 Key Performance Metrics for Evaluating RL-Based Trading Agents 

Below table compares Deep Q-Network (DQN) and Double Deep Q-Network 

(DDQN) across key performance metrics. It highlights how DDQN improves over DQN 

by reducing overestimation bias, enhancing risk management, and ensuring more stable 

performance in volatile markets, whereas DQN tends to be more aggressive with frequent 

trades but struggles in high-risk conditions. 

 

Table 7: Comparison of DQN vs. DDQN for financial trading applications 

 

Metric Deep Q-Network (DQN) 
Double Deep Q-Network 

(DDQN) 

Overestimation Bias 
High (prone to aggressive 

trading) 
Low (more stable Q-values) 

Profitability Good in stable markets Higher in volatile markets 

Risk Management 
Weak (prone to high-risk 

trades) 

Strong (discourages risky 

trades) 
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Trade Execution Frequency High (frequent trades) 
Optimized (fewer but better 

trades) 

Performance Stability Fluctuates in volatile markets 
More stable in changing 

conditions 

 

2.2.4 Research Gaps and Challenges in RL-Based Trading Systems 

Although DDQN improves upon DQN, there are still challenges that need further 

exploration in reinforcement learning-based trading: 

 Data Efficiency and Sample Complexity - RL models require large amounts 

of training data, making real-time implementation computationally expensive. 

 Handling Market Anomalies and Black Swan Events - RL models may 

struggle to react effectively to rare, extreme market events, such as flash 

crashes. 

 Optimal Reward Function Design - Designing risk-aware reward functions 

that optimize both profitability and capital protection remains a challenge. 

These limitations highlight the need for further refinements in RL-based trading 

models, particularly in risk management and real-time adaptation (Wang et al., 2024). 

This section has provided an in-depth analysis of DQN and DDQN in algorithmic 

trading, highlighting their advantages, challenges, and empirical comparisons. 

2.3 Reinforcement Learning in Different Business Domains 

Reinforcement learning (RL) has expanded beyond financial trading to various 

business sectors, where it enhances decision-making, automation, and efficiency. While 

RL is widely studied in stock market prediction, its applications extend to banking, 

supply chain management, healthcare, and energy optimization (Santos et al., 2023). This 

section explores how RL is applied in different industries, drawing insights that can be 

adapted to algorithmic trading models. 
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2.3.1 RL in Stock Market and Algorithmic Trading 

 

Figure 7:RL-Based Stock Trading and Portfolio Optimization Framework 

Financial markets have embraced RL to optimize trading strategies, execute 

trades efficiently, and manage risk dynamically. The primary applications of RL in stock 

trading include: 

 Intraday and High-Frequency Trading (HFT) 

o RL models are used to automate rapid trade execution while 

minimizing slippage and transaction costs. 

o Multi-Agent Reinforcement Learning (MARL) is applied in HFT to 

compete with other market participants. 

 Portfolio Management and Asset Allocation 

o RL-based models learn optimal asset allocation strategies, adjusting 

portfolios based on market conditions. 

o Studies have shown RL can outperform traditional portfolio 

rebalancing methods (Millea & Edalat, 2023). 
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 Sentiment Analysis and Market Prediction 

o RL agents integrate news sentiment analysis and social media trends to 

anticipate price movements. 

2.3.2 RL in Banking and Credit Risk Analysis 

Banks use RL models to optimize credit approval decisions, loan pricing, and risk 

assessment. Key applications include: 

 Credit Scoring and Loan Approvals - RL optimizes loan approval processes 

by analyzing repayment probabilities and credit risk (Guarino et al., 2024). 

 Fraud Detection and Prevention - RL-based anomaly detection helps 

identify fraudulent transactions in real time. 

 Dynamic Loan Pricing - RL adjusts interest rates based on customer profiles 

and macroeconomic factors. 

Below table presents real-world applications of reinforcement learning (RL) 

across different industries, highlighting its benefits in finance and banking. RL enhances 

stock trading through adaptive strategies, portfolio management by optimizing asset 

allocation, credit scoring with improved decision-making, and fraud detection through 

real-time anomaly detection, making financial systems more efficient and data-driven. 

 

Table 8: Key applications of reinforcement learning in financial services. 

 

Application Industry RL Benefit 

Stock Trading Finance Adaptive trading strategies, risk management 

Portfolio Management Finance Asset reallocation based on market trends 

Credit Scoring Banking Improved loan approval efficiency 

Fraud Detection Banking Real-time identification of fraud patterns 
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2.3.3 RL in Supply Chain and Logistics 

Supply chain management benefits from RL’s ability to optimize inventory 

management, demand forecasting, and route planning. 

 Inventory Optimization 

o RL adjusts stock levels dynamically based on historical demand 

patterns. 

o Helps reduce storage costs and avoid stockouts (Demir et al., 2023). 

 Logistics and Route Optimization 

o RL-based route planning minimizes delivery delays and fuel costs. 

2.3.4 RL in Healthcare and Drug Discovery 

Reinforcement learning plays a transformative role in personalized medicine, 

treatment optimization, and drug discovery. 

 Personalized Treatment Recommendations 

o RL tailors treatments based on patient history and medical conditions. 

 Drug Discovery and Clinical Trials 

o RL models optimize clinical trial design to reduce costs and improve 

drug efficacy (Hirano & Izumi, 2023). 

2.3.5 RL in Energy and Smart Grid Optimization 

In the energy sector, RL is used to balance energy demand, improve efficiency, 

and enhance renewable energy integration. 

 Energy Demand Forecasting - RL models predict electricity demand and 

optimize power distribution. 

 Autonomous Power Trading - RL-based grid management systems adjust 

electricity supply based on consumption patterns. 
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2.3.6 Summary and Relevance to Algorithmic Trading 

While RL is transforming various industries, its applications in banking, logistics, 

and energy offer valuable insights for financial trading models: 

 Risk Management in Banking → Better Portfolio Risk Assessment in 

Trading 

 Logistics Optimization → Optimized Trade Execution and Order Routing 

 Energy Demand Forecasting → Predicting Market Trends and Volatility 

These cross-industry learnings will be explored further in the methodology and 

implementation sections of this study. 

2.4 Review of Related Work in RL for Stock Trading 

The application of reinforcement learning (RL) in stock trading has been an area 

of extensive research, with various models developed to enhance decision-making, risk 

management, and profitability. This section reviews key studies on RL-based trading 

strategies, comparing their methodologies, limitations, and performance in financial 

markets. 

2.4.1 Key Papers on RL-Based Trading Strategies 

Several studies have explored RL-based trading agents, evaluating their 

effectiveness against traditional strategies. Below are some notable research contributions 

in the field: 

 

Table 9:Summary of key RL-based trading research and their contributions 

 

Study RL Model Used Key Contributions 

Awad et al. (2023) 
Deep Q-Network 

(DQN) 

Applied DQN for stock market prediction, 

showing improved performance over supervised 

learning models. 
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Cui et al. (2023) Double DQN (DDQN) 

Demonstrated that DDQN reduces 

overestimation bias, leading to better risk-

adjusted returns. 

Enkhsaikhan & Jo 

(2024) 
PPO & Actor-Critic 

Evaluated policy gradient methods for trading, 

showing improved adaptability to market trends. 

Papageorgiou et al. 

(2024) 

Multi-Agent RL 

(MARL) 

Applied multi-agent reinforcement learning for 

high-frequency trading (HFT). 

Santos et al. (2023) 
RL Portfolio 

Optimization 

Optimized asset allocation strategies using RL-

based portfolio rebalancing. 

 

2.4.2 Reinforcement Learning vs. Traditional Trading Strategies 

Traditional stock trading approaches rely on technical analysis, statistical models, 

and supervised learning techniques. However, RL-based strategies offer adaptability, 

continuous learning, and automated decision-making, making them more robust in 

dynamic market conditions (Guarino et al., 2024). 

2.4.2.1 Comparison of RL-Based and Traditional Trading Models 

Below table provides a comparison of different trading strategies, outlining their 

key features and limitations. Traditional approaches like technical analysis and 

supervised learning models rely on historical data but struggle with adaptability. 

Reinforcement learning methods, such as Q-learning and DQN, offer dynamic learning 

capabilities but face challenges like overestimation bias and scalability issues. DDQN 

improves stability by reducing overestimation bias, but it requires significant 

computational resources and large datasets for effective training. This comparison 

highlights the trade-offs between different trading strategies and the advantages of 

reinforcement learning in algorithmic trading. 

 

Table 10: Comparison of RL-based trading models with traditional approaches 
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Trading Strategy Key Features Limitations 

Technical Analysis 
Uses indicators (e.g., RSI, 

MACD) for decisions 

Struggles in volatile and 

unpredictable markets 

Supervised Learning Models 
Predicts price movements 

based on historical data 

Requires labeled data, poor 

adaptability to new trends 

Q-Learning (Basic RL) 
Learns trading strategies 

through trial & error 

Poor scalability, unstable 

training 

DQN (Deep Q-Networks) 
Uses deep learning to estimate 

Q-values 

Suffers from overestimation 

bias 

DDQN (Double Deep Q-

Networks) 

Reduces overestimation bias, 

improves stability 

High computational cost, data-

hungry training 

 

2.4.3 Research Gaps in Existing Literature 

Despite the advancements in RL-based trading, several research gaps remain: 

 Handling Market Volatility and Extreme Events 

o Existing RL models struggle with sudden market crashes, flash 

crashes, and unexpected news events. 

o Need for risk-aware RL frameworks that can mitigate financial losses 

during black swan events. 

 Optimizing Reward Function for Financial Markets 

o Many RL-based trading models optimize for short-term profits rather 

than long-term portfolio stability. 

o Improved reward function engineering is needed to balance 

profitability with risk management (Feizi-Derakhshi et al., 2024). 

 Computational Complexity and Real-Time Trading Feasibility 

o RL models require large-scale historical data and extensive 

computational power for training. 
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o The challenge remains in deploying RL agents in real-time, low-

latency trading environments. 

 Generalization of RL Models Across Different Market Conditions 

o Existing models perform well in specific datasets but struggle in 

different market regimes (bull vs. bear markets). 

o Further research is needed to enhance the adaptability of RL-based 

agents across varying financial conditions (Huang et al., 2023). 

2.5 Justification for Research 

Given the gaps identified in existing literature, this study seeks to enhance 

reinforcement learning-based trading models, particularly for intraday trading on the 

NIFTY 50 index. The research focuses on optimizing risk-adjusted trading strategies 

using Double Deep Q-Networks (DDQN). 

2.5.1 Why DDQN for Intraday Trading? 

 Addresses Overestimation Bias: Reduces unrealistic trade expectations, 

making decision-making more reliable. 

 More Stable Trading Performance: Ensures better handling of high-frequency 

market fluctuations. 

 Improved Risk-Awareness: Incorporates Sharpe ratio and drawdown-based 

optimization to minimize financial losses. 

2.5.2 Bridging the Gap in RL-Based Trading Models 

 Developing an Adaptive RL Model: Integrating epsilon decay strategies and 

target network refinements. 

 Evaluating Performance Across Market Cycles: Testing the DDQN-based RL 

agent in bull, bear, and volatile markets. 



 

 

39 

 Ensuring Scalability and Real-Time Feasibility: Optimizing computation 

efficiency for live market execution. 

 

 

Figure 8: Conceptual Framework for DDQN-Based Trading Agent 

 

This literature review has established the importance of RL-based trading, 

highlighted current research gaps, and justified why this study focuses on DDQN for 

intraday trading. 
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CHAPTER III: 

METHODOLOGY 

 

3.1 Data Collection and Preprocessing 

To develop an effective reinforcement learning-based trading model, high-quality 

and structured financial data is essential. This study collects intraday stock market data 

from the Zerodha API, covering five years of NIFTY 50 stocks. The dataset consists of 

one-minute interval OHLCV (Open, High, Low, Close, and Volume) data, which 

provides fine-grained price movements for training the RL agent. Before using the data 

for model training, several preprocessing steps are applied to clean and structure the 

dataset. These include handling missing values, removing extreme fluctuations, 

normalizing price movements, and filtering data within valid trading hours. Additionally, 

the dataset is segmented into individual trading days, ensuring that each day is treated as 

a separate episode for reinforcement learning. 

 

Figure 9: Data Collection and Preprocessing 
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3.1.1 Data Source 

The dataset is obtained from Zerodha API, a widely used platform for stock 

market data. The focus of this study is on NIFTY 50 stocks, which are the most liquid 

and actively traded stocks in India. 

 Timeframe: The dataset spans five years (four years for training, one year for 

testing). 

 Data Interval: One-minute intraday price data. 

 Features Collected: Open, High, Low, Close, Volume (OHLCV), along with 

technical indicators. 

This dataset provides a rich historical record of stock price movements, allowing 

the RL agent to learn patterns, trends, and optimal trading actions. 

3.1.2 Handling Missing Data 

Stock market data can sometimes have missing values due to exchange 

downtimes or irregular trading activity. To ensure consistency, missing values are filled 

using past or future values, a process known as: 

 Forward Fill: If a price is missing at time tt, it is replaced with the price from 

t−1t-1. 

 Backward Fill: If no past data is available, the missing value is filled using 

the next available price. 

This ensures that no gaps exist in the dataset, which helps the RL model process 

smooth price movements. 

3.1.3 Removing Extreme Price Movements 

Sometimes, stock prices show sudden spikes or drops due to rare events. These 

can mislead the RL model, causing it to learn incorrect patterns. To detect and remove 
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extreme values, the study applies outlier detection techniques, ensuring that only realistic 

price movements are included. 

3.1.4 Normalizing Stock Prices and Volume 

Stock prices vary significantly between companies. A stock priced at ₹1000 

moves differently than a stock priced at ₹50. To make sure the RL model treats all stocks 

fairly, prices are scaled between 0 and 1 using a simple formula: 

 

   
   min

 max   min
 

 

Equation ( 1 ) : Formula for data normalization 

This ensures that all stocks are processed on the same scale, improving the RL 

model’s learning process. 

3.1.5 Filtering Data by Market Hours 

The Indian stock market operates from 9:30 AM to 3:00 PM. Any data outside 

these hours is removed, so that the RL agent learns only from real-time trading sessions. 

This ensures that the model does not train on after-hours price fluctuations, which do not 

impact intraday trading. 

3.1.6 Splitting Data into Training and Testing Sets 

To check if the RL model can predict trades correctly, the dataset is divided into: 

 Training Data (80%): The first four years of data, used to teach the model. 

 Testing Data (20%): The final year, used to check if the model works on 

unseen data. 

Additionally, each day is treated as a separate learning episode, meaning the 

model learns from one trading day at a time. 
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3.2 Technical Indicator Generation 

Stock prices move in patterns, and traders use technical indicators to identify 

trends, momentum, and volatility. These indicators help the RL agent understand the 

market conditions and make informed trading decisions. In this study, various technical 

indicators are computed and added to the dataset to provide additional insights for the 

reinforcement learning model. Technical indicators are derived from OHLCV (Open, 

High, Low, Close, and Volume) data and are used to determine buy, hold, or sell signals. 

The indicators are classified into three main categories: 

 Trend Indicators – Identify market direction. 

 Momentum Indicators – Measure the speed and strength of price 

movements. 

 Volatility Indicators – Analyze price fluctuations over time. 

 Volume-Based Indicators – Evaluate trading activity and liquidity levels. 

3.2.1 Trend Indicators 

Trend indicators help determine whether a stock is in an uptrend, downtrend, or 

moving sideways. The most commonly used trend indicators in this study are Moving 

Averages and the MACD (Moving Average Convergence Divergence). 

3.2.1.1 Moving Averages 

Moving Averages (MA) smooth out price fluctuations by calculating the average 

price over a specific period. There are two main types: 

Simple Moving Average (SMA): The average closing price over NN periods: 

 

SMA  
 

 
   

 

   

 

Equation ( 2 ) : Simple Moving Average 
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where    is the closing price at time ii. 

Exponential Moving Average (EMA): Places more weight on recent prices, 

making it more responsive to price changes: 

 

EMA       EMA          

Equation ( 3 ) : Exponential Moving Average 

where   
 

   
 is the smoothing factor. 

These indicators help determine the market trend by identifying whether prices 

are consistently rising or falling. 

 

3.2.1.2 Moving Average Convergence Divergence (MACD) 

MACD helps identify trend strength by comparing two moving averages. It is 

calculated as: 

MACD  EMAshort  EMAlong 

Equation ( 4 ) : Moving Average Convergence Divergence 

where EMA short (usually 12 periods) reacts faster to price changes than EMA 

long(usually 26 periods). A positive MACD indicates an uptrend, while a negative 

MACD signals a downtrend. 

3.2.2 Momentum Indicators 

Momentum indicators measure how fast prices are moving. They help identify 

when a stock is overbought (rising too fast) or oversold (falling too fast). 

3.2.2.1 Relative Strength Index (RSI) 

RSI evaluates whether a stock is overbought or oversold using the formula: 
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RSI       
   

    
  

Equation ( 5 ) : Relative Strength Index 

where 

   
Average  ain over   periods

Average Loss over   periods
 

 RSI > 70 suggests that the stock may be overbought (a price drop is likely). 

 RSI < 30 suggests that the stock may be oversold (a price rise is likely). 

 

3.2.2.2 Stochastic RSI (StochRSI) 

A more sensitive variation of RSI, Stochastic RSI identifies short-term 

momentum shifts: 

 

Stochastic  RSI  
RSI Min RSI 

Max RSI  Min RSI 
 

Equation ( 6 ) : Stochastic RSI 

where Max RSI and Min RSI are the highest and lowest RSI values over NNN 

periods. This indicator helps detect faster trend reversals compared to standard RSI. 

 

3.2.2.3 True Strength Index (TSI) 

TSI smooths out momentum signals, measuring longer-term trend strength: 

 

TSI      
EMA  EMA      

EMA  EMA        
 

Equation ( 7 ) :  True Strength Index 



 

 

46 

where ΔP is the price change. TSI > 0 suggests bullish momentum, while TSI < 0 

signals bearish momentum. 

3.2.2.4 Rate of Change (ROC) 

ROC calculates the percentage change in price over NNN periods: 

 

ROC  
       
    

     

Equation ( 8 ) :  Rate of Change 

A positive ROC suggests upward momentum, while a negative ROC signals a 

price decline. 

3.2.2.5 Ultimate Oscillator (UO) 

The Ultimate Oscillator prevents false momentum signals by combining short, 

medium, and long-term price changes: 

 

 O      
                 
                 

 

Equation ( 9 ) : Ultimate Oscillator 

where BP is buying pressure and TR is the true range. This indicator helps reduce 

the lagging effect of momentum oscillators. 

3.2.3 Volatility and Volume Indicators 

Volatility and volume indicators measure price fluctuations and market activity. 

These indicators help determine whether a stock is experiencing high or low trading 

activity. 

3.2.3.1 Bollinger Bands 
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Bollinger Bands measure price volatility using a moving average and standard 

deviations: 

 pper Band  SMA     σ 

Lower Band  SMA     σ 

Equation ( 10 ) : Bollinger bands 

where σ is the standard deviation, and kk is a constant (usually 2). 

 When prices touch the upper band, the stock may be overbought. 

 When prices touch the lower band, the stock may be oversold. 

 

3.2.3.2  Average True Range (ATR) 

ATR measures market volatility by calculating the average price range over NN 

periods: 

ATR  
 

 
   igh

 
 Low  

 

   

 

Equation ( 11 ) : Average True Range 

Higher ATR values indicate higher market volatility, while lower ATR values 

indicate a stable market. 

3.2.3.3 Chaikin Money Flow (CMF) 

CMF tracks money flow strength, helping determine institutional buying or 

selling activity: 

 

CMF  
          
 
   

   
 
   

 

Equation ( 12 ) : Chaikin Money Flow 
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where MFI (Money Flow Index) evaluates how much volume flows into or out of 

a stock. 

3.2.4 Computation and Integration into the Dataset 

All technical indicators are computed using the TA (Technical Analysis) library 

in Python. These indicators are added as new features in the dataset, allowing the RL 

agent to analyze them while making trading decisions. These indicators give the 

reinforcement learning model a better understanding of market conditions, helping it 

recognize patterns and potential trading opportunities. All 80 technical indicators are 

computed using the Python ta library, which simplifies the extraction of trend, 

momentum, and volatility indicators. These indicators are added as new columns in the 

dataset, making them available for the reinforcement learning model.  

3.3 Q-Value Simulation for RL Training 

 

 

Figure 10: Q-Value Simulation Architecture 
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Intraday data rarely offers a clean answer to the question “what should have been 

done here?” Prices move, reverse, and pause in ways that make any single, rule-based 

label feel brittle the moment market conditions shift. In this thesis, we treat that 

ambiguity head-on by letting the learning objective itself define the label. Each state is 

passed through the Q-value simulation—the same dynamics that will ultimately judge 

performance—and the action with the highest expected return becomes the label for that 

moment. In other words, instead of arguing after the fact about whether a threshold was 

too loose or too strict, we ask the simulator, under our reward definition, “Which action is 

most valuable here?” and record that answer. The experiment does not change; we simply 

make explicit what was already implicit: labels are reward-consistent and born from the 

same objective that will later evaluate the policy. 

This framing has a quiet but important consequence for ground truth. Markets do 

not hand out gold-standard tags, but the simulation does produce a consistent notion of 

“truth” relative to the trading objective. By taking the arg-max over QBuy, QHold, QSell 

we align supervision with the very payoff we care about. The label is not a heuristic 

proxy—it is the action that the objective itself prefers in that state. When the market 

regime changes, the simulator’s returns change with it, and so do the labels; the 

supervision therefore remains coupled to economic reality rather than to a static rule that 

ages poorly. 

Because each trading day is treated as an episode, we gain something else that 

simple historical passes cannot offer parallel knowledge discovery. Replaying the same 

day many times with varied seeds, replay order, and exploration noise exposes multiple 

plausible trajectories through identical market backdrops. We are not changing any 

mechanics; we are simply exploiting the episodic design to surface alternative “what-ifs” 

around the same states. Over time this produces a denser, more informative set of state–
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action–return impressions—small differences in timing, small differences in path—which 

help the learner understand not just what worked once, but what tends to work across 

many nearby possibilities. 

The architecture of training—ε-greedy exploration with experience replay—

reinforces this effect. High-episodic training ensures that informative moments do not 

vanish after a single sweep; they are remembered, resampled, and contrasted against less 

informative ones. This recycling of experience is not embellishment; it is fidelity. It 

acknowledges that intraday dynamics are path-dependent and that learning benefits from 

seeing the same context under slightly different perturbations. The result is not only more 

coverage of the state space, but more stability: the supervision signal is less hostage to 

any one run or one burst of volatility. 

Another virtue of simulation-supervised labeling is full reward-based control. The 

training target and the trading goal are literally the same function. Many pipelines drift 

because they are optimized to hit an intermediate surrogate (a thresholder return, a 

margin around a moving average) and only later judged by actual profit-and-loss. Here, 

the surrogate is the objective. The Q-value engine that scores actions is the same 

mechanism that proposes labels. That unity removes a common source of mismatch, 

especially around regime edges where hand-crafted thresholds behave erratically. It also 

makes performance discussions cleaner: if the learned classifier or the later DQN/DDQN 

deviates from labels, it is deviating from the payoff rule—not from an external proxy. 

Crucially, the method keeps a human touch. While Q-values automate label 

selection, they do so with transparent components. At any timestep a reviewer can see 

which action won, by how much, and whether the margin was decisive or marginal. Edge 

cases—near-ties during fast moves, sudden liquidity gaps—become auditable rather than 

mysterious. This auditability is practical: it supports spot-checks, post-mortems, and the 
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kind of qualitative sense-making that market practitioners expect when a model behaves 

surprisingly. Nothing in the experiment is altered to achieve this; we are only making 

explicit the rationale already present in the Q-value comparisons. 

Finally, this supervision confers an operational advantage: faster network 

modeling. Once labels exist, the baseline network can be trained as a supervised 

classifier, which is computationally lighter than on-policy RL and quicker to iterate. That 

speed does not dilute rigor; it enables it. We can perform more careful validations, more 

granular ablations, and more conservative early stops before handing the baton to 

DQN/DDQN. In effect, simulation-supervised labels serve as a map: they do not replace 

the journey of interaction-driven learning, but they chart a sensible route so that the 

policy search starts near promising neighborhoods rather than wandering blindly. 

Taken together, these choices—reward-consistent labels, episodic replays, stable 

reuse of experience, and transparent Q-based rationale—do not modify the experimental 

pipeline described elsewhere in this thesis. They explain it. The novelty is not a new 

switch or a hidden parameter; it is the decision to let the objective function write the 

labels, to let episodes multiply our understanding of each day, and to keep the supervision 

signal human auditable. In a domain where “ground truth” is contested and regimes shift 

without warning, that combination is the difference between a rule that happens to work 

and a learning target that continues to make economic sense. 

To train the reinforcement learning (RL) agent for stock trading, it is essential to 

simulate market interactions and generate Q-values for various trading actions. The goal 

of Q-value simulation is to allow the RL model to evaluate trading decisions, refine its 

predictions over multiple learning episodes, and ultimately optimize its strategy for 

maximizing profits while minimizing risks. Q-values represent the expected future 

rewards of taking a specific action in a given market state. These values are updated 
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iteratively through multiple training episodes, where the agent continuously learns from 

past experiences and adjusts its decision-making accordingly. 

The Q-value simulation process consists of the following key steps: 

 Segmenting historical market data into individual trading days. 

 Generating Q-values for Buy, Hold, and Sell actions. 

 Running multiple training episodes per day to enhance learning. 

 Applying an exploration-exploitation strategy to balance learning and 

decision-making. 

 Using experience replay to stabilize learning and improve model convergence. 

3.3.1 Generating Simulated Trading Data Using Q-Values 

The Q-value function enables the RL model to evaluate different actions and 

refine its decision-making over time. The Q-value update rule is formulated as: 

 

                                       

Equation ( 13 ) : Reinforcement Learning Q-Value Formula 

where: 

        is the current Q-value for taking action aa at state ss. 

   is the learning rate, which controls how quickly new experiences influence 

the model. 

   is the reward obtained for executing the action. 

   is the discount factor, determining how much future rewards impact the 

current decision. 

             is the highest estimated Q-value for the next state   . 
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This update ensures that the RL model learns to associate specific market 

conditions with profitable trading actions. 

 

Pseudocode for Q-Value Computation 

FOR each trading day: 

    FOR each time step in market data: 

        OBSERVE the current market state s 

        CHOOSE an action a using exploration-exploitation  

   EXECUTE the selected action 

        OBSERVE the next market state s' and reward r 

        UPDATE Q-values using the Bellman equation: 

        Q(s, a) += α * [r + γ * max(Q(s', a')) - Q(s, a)] 

        STORE predicted Q-values in dataset 

    END FOR 

END FOR 

 

This iterative process ensures that the RL agent refines its Q-values over multiple 

learning episodes, improving its decision-making capabilities. 

 

3.3.2 Breaking Market Data into Daily Segments 

Since intraday trading resets daily, the RL model must learn from each trading 

day independently. Market data is segmented into separate trading days, treating each day 

as an individual episode. This ensures that the agent learns patterns specific to daily stock 

movements without carrying over unnecessary information from previous days. 
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Pseudocode for Daily Market Data Segmentation 

FOR each trading day: 

    EXTRACT all market data within 9:30 AM - 3:00 PM 

    STORE as an independent learning episode 

END FOR 

 

Each trading day is broken down into minute-by-minute intervals, ensuring that 

the RL agent can process real-time stock price movements and make sequential trading 

decisions accordingly. 

3.3.3 Running Multiple Episodes Per Day 

To maximize learning, the RL agent replays each trading day 100 times with 

different initial conditions. This process, known as episodic reinforcement learning, 

allows the agent to explore various strategies before committing to a fixed decision-

making pattern. 

By running multiple episodes per day, the model learns: 

 How different trading strategies perform in identical market conditions. 

 The impact of different reward structures on decision-making. 

 How early mistakes affect overall profitability, leading to optimized trading 

behaviour. 

Pseudocode for Running Multiple Episodes Per Day 

FOR each trading day: 

    FOR episode in range(100): 

        RESET environment to the start of the trading day 

        FOR each time step: 

            SELECT an action based on Q-values 
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            EXECUTE the action 

            RECEIVE reward and update Q-values 

        END FOR 

    END FOR 

END FOR 

 

3.3.4 Exploration vs. Exploitation Trade-off 

During training, the RL model must decide whether to explore new strategies or 

exploit learned strategies. This is handled using an epsilon-greedy approach, where the 

probability of selecting a random action decreases over time: 

 

    min    max   min  
    

 

Equation ( 14 ) : Exploration vs Exploitation Trade-off 

where: 

    is the exploration rate at time step t. 

  max is the initial exploration rate (higher chance of taking random trades). 

  min is the minimum exploration rate (agent selects best-known actions). 

   is the decay rate, controlling how fast the model shifts from exploration to 

exploitation. 

 

Pseudocode for Exploration-Exploitation Strategy 

FOR each time step: 

    GENERATE a random number z 
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    IF z > epsilon: 

        SELECT the action with the highest Q-value (Exploitation) 

    ELSE: 

        SELECT a random action (Exploration) 

    END IF 

    UPDATE epsilon based on decay rate 

END FOR 

 

At the start of training, the model explores more to discover new strategies. As 

training progresses, it gradually shifts towards exploiting profitable strategies, improving 

its trading accuracy. 

3.3.5 Experience Replay for Stable Learning 

To improve learning stability, the RL model uses an experience replay buffer, 

where past transactions are stored and randomly sampled to train the model. This 

prevents the model from overfitting to short-term patterns and ensures that it learns 

generalized trading strategies. 

The replay buffer stores past experiences as: 

                       
                   

 

Equation ( 15 ) : Experience Replay for Stable Learning 

where each tuple represents: 

   = current market state. 

   = action taken (Buy, Hold, Sell). 

   = reward received. 

    = next market state. 
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Pseudocode for Experience Replay 

FOR each training iteration: 

    SAMPLE a batch of past experiences from replay buffer 

    UPDATE Q-values based on sampled experiences 

    APPLY updates to improve trading strategy 

END FOR 

 

By randomly sampling experiences, the RL agent avoids overfitting to short-term 

trends, leading to better long-term generalization. 

The Q-value simulation process plays a vital role in reinforcement learning by 

enabling the RL agent to interact with a simulated market environment before making 

real trading decisions. By simulating different trading actions and observing their 

outcomes, the agent gradually learns which strategies lead to profitable trades and which 

ones result in losses. This learning process is essential because financial markets are 

highly dynamic, and a trading strategy that works in one scenario may not perform well 

in another. Through Q-value updates over multiple episodes, the RL model can analyze 

how buying, holding, or selling at specific moments affects cumulative returns, helping it 

develop a better decision-making framework over time.  

One of the primary benefits of Q-value simulation is that it allows the RL agent to 

train on historical stock data without financial risk. Unlike traditional backtesting 

methods, where predefined rules are tested on past data, reinforcement learning 

dynamically adjusts trading strategies based on past experiences. The RL agent observes 

past market trends, evaluates possible outcomes for different trading actions, and 

optimizes its future decisions accordingly. By running multiple training episodes per 
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trading day, the model can explore various possible market scenarios, allowing it to 

refine its strategy to maximize long-term profitability. 

Another key aspect of Q-value simulation is the balance between exploration and 

exploitation, which is managed through epsilon decay strategies. At the beginning of 

training, the model explores a wide range of actions, even if they are suboptimal, to 

discover new trading patterns. As training progresses, the agent gradually shifts toward 

exploiting the best-known strategies, reducing random actions and making data-driven 

trading decisions. This controlled transition ensures that the RL model does not get stuck 

in local optima, allowing it to continuously improve its performance. 

To ensure stability during learning, the Q-value simulation process incorporates 

experience replay, where past transactions are stored and randomly sampled for training. 

This technique prevents the RL model from relying too heavily on recent experiences, 

which could lead to overfitting specific market conditions. Instead, the agent learns from 

a diverse set of past experiences, improving its ability to adapt to new market trends and 

unexpected fluctuations. By randomizing the learning process, experience replay 

enhances the robustness of the RL trading strategy, making it more effective in real-world 

stock trading. 

In summary, Q-value simulation is a structured learning process that allows the RL agent 

to interact with the market, optimize trading decisions, and refine its strategy over time. 

Through multiple training episodes, exploration-exploitation balance, and experience 

replay, the model develops a robust, data-driven trading approach before being deployed 

in live financial markets. This ensures that the RL-based trading system is not only 

profitable but also stable, risk-aware, and adaptable to evolving stock market conditions. 

 

3.4 Reinforcement Learning Model Development 

Developing an effective reinforcement learning (RL) model for stock trading 

requires a structured approach where the agent understands market conditions, makes 

trading decisions, and refines its strategies over time. The core idea behind reinforcement 
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learning is that the agent interacts with an environment (the stock market), takes actions, 

and learns from the rewards or penalties it receives. In this study, the RL model is 

formulated as a Markov Decision Process (MDP), where trading is modeled as a 

sequential decision-making problem. The agent must determine the best possible 

action—Buy, Hold, or Sell—at each time step while considering historical price patterns, 

technical indicators, and market trends. The learning process is driven by Q-value 

updates, which allow the model to evaluate different trading strategies and optimize its 

decision-making over multiple learning episodes. 

To ensure optimal trade execution, three different reinforcement learning models 

are implemented: 

 

 Q-Learning (Baseline Model) – A fundamental RL model that serves as the 

foundation for learning trading actions. 

 Deep Q-Networks (DQN) – An advanced model that replaces the Q-table with a 

neural network, enabling learning from large-scale financial data. 

 Double Deep Q-Networks (DDQN) – An improved version of DQN that 

eliminates overestimation bias, leading to more stable trading decisions. 

Each of these models has unique properties that influence how the RL agent 

learns and makes trading decisions. The following sections provide a detailed breakdown 

of each model, explaining their mathematical foundations, learning mechanisms, and 

implementation in stock trading. 
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Figure 11: MDP Framework for Intraday Trading 

 

3.4.1 Q-Learning Baseline Model (Deep Learning-Based Training on 

Simulated Data) 

The Q-learning baseline model used in this study is a supervised deep learning 

model trained on simulated Q-values rather than a traditional Q-learning approach that 

uses a Q-table. Instead of updating Q-values iteratively during live market interactions, 

the model learns from precomputed Q-values generated in the Q-value simulation phase 

(Section 3.3). The goal is to classify Buy, Hold, or Sell decisions based on past market 

conditions, making this a classification problem rather than a reinforcement learning 

problem. 

3.4.1.1 Converting Q-Values to Action Labels 

During the Q-value simulation phase, three Q-values are computed for every time 

step: 

 Q(Buy) – The expected reward if the agent chooses to buy. 
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 Q(Hold) – The expected reward if the agent chooses to hold. 

 Q(Sell) – The expected reward if the agent chooses to sell. 

For each data point, the highest Q-value determines the final action label: 

 

           buy  hold  sell  

Equation ( 16 ) : Converting Q-Values to Action Labels 

where    represents the selected action at time step  . If: 

 Q(Buy) is the highest, the label is Buy. 

 Q(Hold) is the highest, the label is Hold. 

 Q(Sell) is the highest, the label is Sell. 

This conversion transforms the dataset into a classification problem, where the 

model is trained to predict which action has the highest Q-value based on historical 

market indicators. 

 

Pseudocode for Q-Value to Label Conversion 

FOR each row in dataset: 

    COMPUTE Q-values for Buy, Hold, and Sell 

    SELECT the action with the highest Q-value 

    ASSIGN label as Buy, Hold, or Sell 

STORE processed dataset for training 

 

This step ensures that the deep learning model learns from precomputed Q-values, 

allowing it to classify trading actions efficiently. 

3.4.1.2 Imbalance Issue in Buy, Hold, and Sell Labels 
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Stock market data naturally contains far more Hold actions than Buy or Sell 

actions. Since markets often remain stable, traders hold their positions most of the time, 

leading to an imbalance in the dataset where: 

 Hold (~70-80%) is the most frequent label. 

 Buy (~10-15%) occurs less frequently. 

 Sell (~10-15%) also occurs less frequently. 

This imbalance can lead the model to Favor Hold predictions, reducing its ability 

to recognize Buy and Sell opportunities. To balance the dataset, the Synthetic Minority 

Over-sampling Technique (SMOTE) is applied. 

3.4.1.3 Importance of SMOTE for Handling Class Imbalance 

SMOTE (Synthetic Minority Over-sampling Technique) is used to generate 

synthetic samples for underrepresented classes (Buy and Sell), ensuring that all labels 

have a more balanced distribution. Instead of simply duplicating existing Buy and Sell 

samples, SMOTE creates synthetic new samples by interpolating between real 

observations. 

The SMOTE algorithm works as follows: 

 Identify Minority Classes (Buy and Sell). 

 Find K-nearest neighbours for each minority sample. 

 Synthetically generate new data points by interpolating between existing 

neighbours. 

Mathematically, the synthetic sample is generated using: 

 new   minority     neighbor   minority  

Equation ( 17 ) : SMOTE Algorithm 

where: 
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  minority is an existing Buy or Sell sample. 

  neighbor is one of its nearest neighbors. 

   is a random number between 0 and 1. 

This ensures that new synthetic data points remain realistic and follow market 

patterns while addressing class imbalance. 

 

Pseudocode for Applying SMOTE 

IDENTIFY Buy and Sell classes as minority classes 

FIND K-nearest neighbors for each minority sample 

GENERATE new synthetic Buy and Sell data points 

ADD synthetic samples to dataset 

ENSURE balanced dataset before training 

 

By applying SMOTE, the model is trained on a more balanced dataset, improving 

its ability to predict Buy and Sell decisions accurately. 

3.4.1.4 Deep Learning Model Architecture 

The Q-learning baseline model is implemented as a deep neural network (DNN) 

that learns to classify Buy, Hold, or Sell based on stock technical features. The 

architecture consists of: 

 Input Layer – Receives stock market features (technical indicators). 

 Hidden Layers – Uses ReLU activation and dropout regularization to prevent 

overfitting. 

 Output Layer – Uses Softmax activation to classify actions. 

Mathematical Representation of Neural Network Layers. Each hidden layer applies a 

transformation to the input data: 
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Equation ( 18 ) : Representation of Neural Networks 

where: 

    is the output of the hidden layer. 

    is the weight matrix. 

   is the input feature vector. 

    is the bias term. 

      is the ReLU activation function: 

              

For the final classification layer, the Softmax function converts raw scores into 

probabilities: 

     
   

     
 

Equation ( 19 ) : Softmax Equation for classification 

where: 

      is the probability of choosing action aa (Buy, Hold, or Sell). 

   is the raw network output for action  . 

 

Pseudocode for Model Training 

INITIALIZE deep neural network with multiple dense layers 

APPLY dropout regularization to prevent overfitting 

COMPILE model with Adam optimizer and Categorical Cross-Entropy loss 

TRAIN model for 128 epochs with batch size of 64 

SAVE trained model for later predictions 

 



 

 

65 

The model is trained using the Categorical Cross-Entropy loss function, which 

measures how well the predicted probabilities match the true action labels: 

 

      

 

   

         

Equation ( 20 ) : Categorical Cross-Entropy loss function 

where: 

    is the actual class label. 

     is the predicted probability for the correct class. 

By minimizing this loss, the model improves its classification accuracy, learning 

to correctly identify profitable trading actions. 

 

3.4.1.5 Asset-Agnostic Feature Design: Technical Indicators Only 

This thesis makes a deliberate choice: the only inputs to every network—the 

supervised baseline, DQN, and DDQN—are technical indicators computed from OHLCV 

bars (open, high, low, close, volume). There is no use of fundamentals, earnings, analyst 

reports, options Greeks, order-book depth, news, social feeds, or any asset-specific 

metadata. 

 

 Generalization across markets. Technical indicators form a common language for 

price and volume behaviour. The same patterns—trend, momentum, volatility 

changes, range compression and expansion, participation—exist in equities, 

futures, FX, and crypto. 

 Clarity and portability. By keeping inputs universal, the full pipeline (feature 

build, simulation-supervised labels, supervised pre-training, RL refinement) can 

be applied to any instrument that has OHLCV data, without altering experiments 

or code structure. 

 This design does not “dumb down” the problem—it widens the boundary of the 

study to any marketplace where OHLCV is available. 
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3.4.1.6 The indicator set and how it’s used 

Indicators are chosen for role and clarity, not brand names. Each group captures a 

different aspect of the tape: 

 Returns and momentum. Simple and cumulative returns over short windows, 

rate-of-change measures. 

 Averages and trend. Short and long moving averages (simple or exponential), 

distance between them, and the slope of a longer average to indicate broad trend 

strength. 

 Volatility and range. Rolling standard deviation of returns, true range and 

average true range (ATR), normalized high-low and close-open ranges to spot 

compression and expansion. 

 Oscillators. RSI, stochastic signals, and distance to dynamic channels (for 

example, how far price sits from a moving-average band), always expressed in 

normalized units. 

 Participation and volume. Volume z-scores, deviation from VWAP, and simple 

volume-price concordance signals. 

 Structure and timing. Flags for higher-high/lower-low sequences, small bar-

shape summaries, and time-of-day encodings so the model can recognise intraday 

regularities without peeking ahead. 

Every transform is calculated with causal windows only (past bars up to the decision 

point) and recorded with its exact window length and normalization. The goal is a 

compact, stable state vector that describes market shape, not a kitchen-sink of formulas. 

3.4.1.7 Scale-free by design 

To make indicators comparable across assets with different price levels and 

volatility, all features are expressed in dimensionless or relative terms: 

 

 Work with returns or differences instead of raw prices. 

 Standardize rolling values into z-scores using past-only means and standard 

deviations. 

 Express distances (for example, from price to a moving average or VWAP) in 

standard-deviation or ATR units, not in points or ticks. 
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Because of this, a large-cap stock at 3,500 and a currency pair at 1.2450 can look like 

the learner when their patterns are similar. 

 

3.4.1.7 Venue awareness without hardwiring venue rules 

The feature build respects market sessions but never bakes in asset-specific tricks: 

 

 Sessional markets (equities). Time encodings are tied to the local session clock; 

features reset or mark the open explicitly. 

 24×7 markets (crypto). The same encodings fall back to a 24-hour cycle; there is 

no notion of “open,” and nothing in the features assumes one. 

 Gaps and halts. Gaps are treated as missing time; there is no forward-fill or any 

transformation that would move future information into the past. 

Because every feature depends only on a fixed number of past bars, switching to a 

new asset class simply means pointing the same code at a new OHLCV stream. 

 

3.4.1.8 Why this generalizes to any marketplace (including crypto) 

Technical indicators summaries shape rather than identity. A momentum burst 

after a tight range, or a mean-reversion snap after an extended run, is the same idea 

whether you look at a bank stock, crude oil, EURUSD, or BTC-perpetuals. With returns, 

z-scores, and ATR-scaled distances, the model learns those ideas without being confused 

by different price scales or tick sizes. 

Two practical benefits follow: 

 

 Label logic travels. The simulation-supervised labeller ranks actions by 

expected, post-cost return. When the features speak a common, normalized 

language, that ranking remains understandable across assets. 

 Policy reuse is realistic. Even if you retrain per asset (you should), you don’t 

need new architectures or asset-specific feature engineering. Hyperparameters and 

training flow transfer cleanly. 

 

3.4.1.9 Preventing leakage and keeping causality 

All rolling calculations use past-only data. There is no look-ahead to future bars, 

no use of end-of-day information inside the day, and no adjustments that would sneak 

tomorrow’s knowledge into today’s features. Resampling (for example, ticks to 1-minute 
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bars) is time-forward and deterministic. The guiding rule is simple: the model may only 

see what a trader could have known at that moment. 

 

3.4.1.10 What stays the same and what changes when you switch assets 

Because inputs are just technical indicators: 

 

 Unchanged: feature code, model architectures, training loops, replay and 

label logic, evaluation procedures. 

 Restated outside the model: execution assumptions in the simulator (fees, 

spread, slippage, latency), calendar or session logic, and capacity constraints. 

These live in the reward specification, not in the features—exactly why the 

feature layer is portable. 

3.4.1.10 Summary 

The Q-learning baseline model is a deep learning-based classification system 

trained on simulated Q-values, making it capable of predicting Buy, Hold, or Sell actions 

based on historical stock market data. Unlike traditional Q-learning, which dynamically 

updates a Q-table through exploration, this model follows a supervised learning 

approach, where it learns from precomputed Q-values generated during the Q-value 

simulation phase. This transformation allows the reinforcement learning problem to be 

framed as a classification task, where the model is trained to identify optimal trading 

decisions using historical market patterns and technical indicators. The training dataset 

consists of input features such as OHLC prices, volume, and technical indicators, while 

the labels are determined by selecting the action with the highest Q-value at each time 

step. 

To address the imbalance in action distribution, where the Hold action naturally 

occurs more frequently than Buy or Sell, the Synthetic Minority Over-sampling 

Technique (SMOTE) is applied. Financial market data often exhibits long periods of low 

volatility, leading to an overwhelming number of Hold labels compared to Buy and Sell. 



 

 

69 

If left unaddressed, this imbalance would cause the model to favor Hold actions, reducing 

its ability to correctly identify profitable entry and exit points. By using SMOTE, 

synthetic samples for underrepresented classes (Buy and Sell) are generated by 

interpolating between real observations, ensuring a more balanced dataset. This 

adjustment enhances the model’s ability to distinguish meaningful trading opportunities 

rather than simply predicting Hold as the default action. 

Once trained, the deep learning model acts as a foundation for more advanced 

reinforcement learning models, such as Deep Q-Networks (DQN) and Double Deep Q-

Networks (DDQN). Unlike this baseline approach, which learns from precomputed Q-

values, DQN and DDQN dynamically update Q-values during training, allowing the 

model to adapt in real-time to market conditions. The baseline model, however, provides 

a starting point for trade prediction, enabling a structured approach for testing market 

patterns before implementing more complex reinforcement learning strategies. By using 

this classification-based approach, the study establishes a strong foundation for 

transitioning to advanced RL-based trading models, ensuring that the reinforcement 

learning agent has a pre-trained understanding of profitable trading actions before 

engaging in dynamic learning and real-time decision-making. 

 

3.4.2 Deep Q-Network (DQN) for Stock Trading 
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Figure 12: Deep Q-Network (DQN) for Stock Trading 

The Deep Q-Network (DQN) is an advanced reinforcement learning model that 

enhances traditional Q-learning by replacing the static Q-table with a deep neural 

network. Unlike the Q-learning baseline model, which learns from precomputed Q-

values, DQN dynamically updates its Q-values based on real-time trading experiences, 

making it more adaptable to changing stock market conditions. DQN is implemented in 

this study using a deep neural network, combined with experience replay and an epsilon-

greedy policy to optimize trade execution. The model learns to predict the best action 

(Buy, Hold, or Sell) by analyzing historical stock indicators, price trends, and volume 

changes. 

 

3.4.2.1 Limitations of the Q-learning Baseline Model 

While the Q-learning baseline model provides a structured approach for 

predicting trading actions, it suffers from several limitations: 

 Lack of Real-Time Q-Value Updates - The baseline model learns from static 

Q-values generated during simulation but does not dynamically update them 

during market interactions. 

 Scalability Issues - Stock market data has high-dimensional features, making 

it inefficient to store and update Q-values for all possible states using 

traditional methods. 

 Overfitting to Past Market Trends - The baseline model relies solely on 

historical Q-values, which may not generalize well to new market conditions. 

To overcome these challenges, DQN introduces deep neural networks to 

approximate Q-values, enabling the RL agent to learn directly from market interactions. 
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3.4.2.2 Introduction to Deep Q-Networks (DQN) 

The Deep Q-Network (DQN) extends traditional Q-learning by: 

 Using deep neural networks to estimate Q-values instead of a precomputed 

table. 

 Implementing experience replay to stabilize training and improve learning. 

 Applying an epsilon-greedy policy to balance exploration and exploitation. 

 At each time step  , the RL agent: 

 Observes the current stock market state   . 

 Chooses an action    (Buy, Hold, or Sell) using an epsilon-greedy policy. 

 Receives a reward    and transitions to the next state     . 

 Stores experience                 in an experience replay buffer. 

 Samples past experiences from the buffer and updates the neural network. 

Q-Value Update Rule in DQN 

The Q-value function in DQN is updated as follows: 

                                       

where: 

        is the predicted Q-value for state ss and action aa. 

   is the learning rate, controlling how much the model learns from new 

experiences. 

   is the reward for executing action aa. 

   is the discount factor, which determines the importance of future rewards. 

             is the highest predicted Q-value in the next state   . 

By continuously updating these Q-values, the model learns to make profitable 

trading decisions over time. 

3.4.2.3 DQN Model Architecture 
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DQN uses a deep neural network to approximate Q-values for each possible 

action (Buy, Hold, Sell). The model consists of: 

Network Components 

 Input Layer 

o Takes in stock market indicators (OHLC prices, volume, and technical 

indicators). 

o Applies feature scaling using Standard Scaler for stable learning. 

 Hidden Layers 

o Multiple fully connected layers with ReLU activation for pattern 

recognition. 

o Dropout layers to prevent overfitting. 

 Output Layer 

o Uses a SoftMax activation function to output Q-values for Buy, Hold, 

and Sell actions. 

Mathematical Representation: Each hidden layer applies a transformation: 

             

Equation ( 21 ) : Neural Network Hidden Layer Formula 

where: 

    is the output of the hidden layer. 

    is the weight matrix. 

   is the input feature vector. 

    is the bias term. 

      is the ReLU activation function: 
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The final output layer of the DQN model applies a Softmax function to generate 

normalized Q-values, ensuring that the Q-values for the three possible trading actions 

sum to 1. This allows the model to output probabilistic Q-values, making the decision-

making process more interpretable.The Softmax function is defined as: 

 

     
       

          

 

Equation ( 22 ) : Softmax Function for DQN network 

where: 

      is the probability of selecting action aa (Buy, Hold, or Sell). 

        is the Q-value for action   in state . 

 The denominator ensures that the sum of probabilities for all actions is 1, 

making it a valid probability distribution.  

 This approach allows the RL agent to: 

 Ensure exploration: Even if one action has a higher Q-value, the agent still 

assigns non-zero probabilities to other actions. 

 Avoid extreme overestimation: By normalizing Q-values, the Softmax 

function prevents the model from assigning unrealistically high Q-values 

to one action. 

 Smooth action selection: Unlike greedy selection, Softmax ensures that the 

model gradually shifts toward optimal actions rather than making abrupt 

changes. 

3.4.2.4 Experience Replay Mechanism 
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One of the challenges in reinforcement learning is that consecutive market trades 

are highly correlated, causing the model to overfit short-term price fluctuations. 

Experience replay: 

 Stores past experiences in a memory buffer. 

 Randomly samples past experiences for training. 

 Breaks correlation between consecutive trades, improving stability. 

 

Pseudocode for Experience Replay Mechanism 

INITIALIZE replay buffer 

FOR each training step: 

    STORE (state, action, reward, next state) in buffer 

    IF buffer is full: 

        SAMPLE a batch of past experiences 

        COMPUTE Q-value updates 

        APPLY gradient updates to network 

END FOR 

By learning from a mix of past experiences, the RL model avoids overfitting to 

recent price movements, improving generalization. 

3.4.2.5 Training Process of DQN 

The training loop follows these steps: 

 Initialize replay buffer and neural network. 

 Observe the initial market state. 

 Select an action using the epsilon-greedy policy. 

 Execute the action, receive reward, and transition to the next state. 

 Store experience in replay buffer. 
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 Sample a batch from the replay buffer for training. 

 Update the Q-network using the loss function. 

 Repeat until training is complete. 

 

Pseudocode for Training Process of DQN  

INITIALIZE replay buffer 

FOR each episode: 

    RESET environment 

    FOR each time step: 

        OBSERVE current state S_t 

        CHOOSE action A_t using epsilon-greedy policy 

        EXECUTE action and receive reward R_t 

        STORE experience in replay buffer 

        SAMPLE a batch of past experiences 

        UPDATE Q-network using loss function 

    END FOR 

END FOR 

 

3.4.2.6 Summary 

The Deep Q-Network (DQN) model significantly improves upon the Q-learning 

baseline model by introducing neural networks for Q-value approximation. Unlike the 

baseline approach, which relies on precomputed Q-values, DQN dynamically updates its 

Q-values based on real-time market interactions, allowing the model to adapt to changing 

stock market conditions. The Q-learning table used in traditional reinforcement learning 

becomes infeasible for financial data due to the high dimensionality of stock features, 
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making DQN an essential advancement. By using a deep neural network, the model can 

efficiently process historical price data, technical indicators, and trading volume, learning 

to make more informed Buy, Hold, and Sell decisions. This approach enables the model 

to handle large-scale financial data while generalizing across different market conditions, 

ensuring better predictive accuracy and decision-making flexibility. 

One of the most significant enhancements in DQN is the introduction of 

experience replay, a mechanism that helps break the correlation between consecutive 

stock trades. In traditional RL models, each new experience is immediately used to 

update Q-values, leading to instability in learning, especially in volatile markets. 

Experience replay mitigates this by storing past experiences in a replay buffer, allowing 

the model to sample random experiences for training. This process prevents overfitting to 

short-term market fluctuations, ensuring that the model learns from diverse trading 

conditions rather than memorizing specific price trends. By training on a variety of past 

experiences, DQN becomes more resilient to sudden market changes, improving its 

ability to execute profitable trades across different time frames. 

While DQN offers substantial improvements over the baseline model, it suffers 

from Q-value overestimation, where the model tends to assign excessively high values to 

certain trading actions, leading to suboptimal trades. This issue arises because the same 

network is used for both selecting and evaluating Q-values, causing inaccurate 

estimations that impact trading performance. To address this, the next section explores 

Double Deep Q-Networks (DDQN), an enhancement over DQN that introduces a 

separate target network to stabilize learning and prevent overestimation bias. By 

leveraging this improved training strategy, DDQN ensures that Q-values are more 

realistic and balanced, leading to better trading stability and long-term profitability in 

financial markets. 



 

 

77 

3.4.3 Double Deep Q-Network (DDQN) for Stock Trading 

Figure 13:Double Deep Q-Network (DDQN) for Stock Trading 

The Double Deep Q-Network (DDQN) is an improved version of the Deep Q-

Network (DQN) that resolves one of the major challenges in reinforcement learning: Q-

value overestimation. While DQN effectively replaces the static Q-table with a deep 

neural network, it suffers from a bias where it overestimates the Q-values, leading to 

suboptimal trading decisions. DDQN addresses this issue by decoupling action selection 

from Q-value evaluation, making learning more stable and accurate. In stock trading, 

overestimating the potential reward of a Buy, Hold, or Sell action can lead to unrealistic 

trading behaviors, causing the RL agent to execute high-risk trades based on incorrect 

value estimates. DDQN prevents this by introducing a separate target network, ensuring 

that Q-values remain more balanced and representative of real market conditions. 

The DDQN file implements this improved reinforcement learning approach by 

incorporating: 
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 Two separate networks for action selection and Q-value estimation. 

 Target network updates to stabilize learning and reduce Q-value fluctuations. 

 Experience replay to further refine trade execution over multiple episodes. 

3.4.3.1 Limitations of DQN and the Need for DDQN 

The Q-value Overestimation Problem. DQN updates its Q-values using the 

same network for both: 

 Selecting the best action. 

 Evaluating the Q-value of the selected action. 

This creates a positive bias, where the network overestimates the value of certain 

actions, causing the agent to: 

 Take excessive risks by choosing overvalued trades. 

 Misjudge market signals, leading to incorrect Buy or Sell decisions. 

Mathematically, DQN selects and evaluates actions using: 

                      

Since the same Q-network is used for both choosing and evaluating the action, it 

often inflates Q-values, making poor trades seem more profitable than they actually are. 

How DDQN Fixes Q-value Overestimation 

DDQN solves this by introducing a separate target network that prevents the 

model from using its own overestimated values to update Q-values. Instead of using: 

 

                      

DDQN decouples action selection and evaluation by introducing two networks: 

 Online Network – Selects the action. 

 Target Network – Evaluates the Q-value of the selected action. 

Now, Q-values are updated using: 
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           target  
         online   

       

Equation ( 23 ) : DDQN Q-value updating formula 

where: 

  online  
      selects the best action. 

  tar et  
      evaluates its value. 

By separating action selection and evaluation, DDQN prevents inflated Q-values, 

leading to: 

 More realistic trading decisions. 

 Better risk management. 

 Improved trading stability in volatile markets. 

 

3.4.3.2 Double Deep Q-Network (DDQN) Architecture 

The Double Deep Q-Network (DDQN) architecture follows the same general 

structure as DQN but with two neural networks instead of one. 

Network Components 

 Online Network 

o Learns optimal Q-values for stock market trading. 

o Used to select the best trading action. 

 Target Network 

o A copy of the online network, but updated less frequently. 

o Used to evaluate Q-values, preventing overestimation. 

 Experience Replay 

o Stores past transactions to improve learning stability. 
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3.4.3.3 Target Network Strategy in DDQN 

The target network is a crucial addition to DDQN, helping stabilize Q-value 

updates. Instead of updating after every trade, the target network is updated periodically 

using: 

 target    online        target 

Equation ( 24 ) : DDQN target network update policy 

where: 

  tar et represents the weights of the target network. 

  online represents the weights of the online network. 

   is a small update rate (e.g., 0.01 - 0.05), ensuring gradual learning. 

This update rule smoothly blends new knowledge with past experiences, 

preventing sudden, unstable Q-value changes. 

3.4.3.4 DDQN Training Process 

The DDQN agent follows these steps: 

 Initialize online and target networks with identical weights. 

 Observe market conditions and select an action using the epsilon-greedy 

strategy. 

 Execute the action and observe the resulting market state. 

 Store the experience (state, action, reward, next state) in the replay buffer. 

 Sample a batch of past experiences and update the online network using: 

            target  
         online   

       

 Periodically update the target network using the weighted averaging 

technique. 

 Repeat until the model is fully trained. 
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Pseudocode for DDQN Implementation 

INITIALIZE online network and target network with identical weights 

INITIALIZE replay buffer 

FOR each episode: 

    RESET environment 

    FOR each time step: 

        OBSERVE current state S_t 

        CHOOSE action A_t using epsilon-greedy policy 

        EXECUTE action and receive reward R_t 

        STORE experience (S_t, A_t, R_t, S_t+1) in replay buffer 

        IF replay buffer has enough samples: 

            SAMPLE a batch of experiences 

            COMPUTE target Q-value: 

            Q(s, a) = r + γ Q_target(s', argmax Q_online(s', a')) 

            UPDATE online network with new Q-values 

       EVERY few steps: 

            UPDATE target network using: 

            θ_target = τ θ_online + (1 - τ) θ_target 

    END FOR 

END FOR 

 

3.4.3.5 Comparison of DDQN vs. DQN 

Below table compares Deep Q-Networks (DQN) and Double Deep Q-Networks 

(DDQN), highlighting their differences in action selection, Q-value estimation, learning 
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stability, and trading performance. DQN suffers from Q-value overestimation, leading to 

aggressive trading decisions, whereas DDQN mitigates this issue by using a separate 

target network, resulting in more stable and risk-aware trading strategies. These 

improvements make DDQN better suited for volatile and dynamic market conditions. 

 

Table 11: Comparision of DDQN vs DQN 

 

Feature DQN DDQN 

Action Selection 
Uses the same network for 

selection and evaluation. 

Separates action selection and 

evaluation using two 

networks. 

Q-value Overestimation High, leading to risky trades. 
Reduced, making decisions 

more stable. 

Learning Stability Prone to unstable updates. 
More stable due to the target 

network. 

Trading Performance 
Can make overconfident 

trading decisions. 

More balanced and risk-aware 

trading decisions. 

 

3.4.3.6 Summary 

The Double Deep Q-Network (DDQN) enhances reinforcement learning by 

addressing a critical issue in Deep Q-Networks (DQN)—Q-value overestimation. In 

standard DQN, the same neural network is responsible for both selecting the best action 

and evaluating its Q-value, which often leads to inflated value estimates. This 

overestimation can cause the RL agent to favor high-risk trades that seem profitable but 

may not yield consistent long-term rewards. By introducing a separate target network, 

DDQN ensures that Q-values remain realistic and unbiased, leading to more stable 
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trading strategies. This improvement is particularly important in financial markets, where 

incorrectly valuing trades can lead to significant financial losses. 

Another key enhancement in DDQN is the target network update strategy, which 

prevents abrupt changes in Q-values, making learning smoother and more reliable. 

Unlike DQN, where the Q-values fluctuate excessively due to constant network updates, 

DDQN gradually updates the target network over multiple training steps. This approach 

ensures that the model learns trading patterns effectively while avoiding overfitting to 

short-term market noise. Additionally, by decoupling action selection from Q-value 

estimation, DDQN allows the RL agent to make better-informed trade decisions, 

reducing the likelihood of executing suboptimal Buy, Hold, or Sell actions. 

Overall, DDQN provides a more stable, risk-aware, and efficient reinforcement 

learning framework for stock trading. It enables the RL agent to adapt to volatile market 

conditions, handle long-term investment strategies, and make better trading decisions 

based on realistic reward estimations. By incorporating experience replay, target network 

updates, and an improved Q-value update mechanism, DDQN outperforms standard 

DQN in terms of decision accuracy, risk management, and trading profitability. As a 

result, DDQN serves as an essential step toward building advanced AI-driven trading 

strategies that are not only profitable but also sustainable in real-world financial markets. 
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3.5 Training the RL Agent 

 

Figure 14:Training and Evaluation Workflow for RL Agent 

The training phase is the most critical step in reinforcement learning, where the 

Q-learning, Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) models 

learn to make trading decisions based on historical stock market data. Each model 

follows a different training approach, and this section details how they are trained to 

optimize trading decisions. Since Q-learning (baseline model) follows a supervised deep 

learning approach, while DQN and DDQN are reinforcement learning-based, the training 

methodology varies significantly. However, they share some common elements, such as: 

 Stock market simulation as the training environment. 

 Exploration vs. exploitation tradeoff using epsilon decay. 

 Gradient-based learning with experience replay (for DQN and DDQN). 

 Hyperparameter tuning to optimize learning performance. 
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3.5.1 Training the Q-Learning Baseline Model (Supervised Deep Learning 

Approach) 

The Q-learning baseline model does not use reinforcement learning techniques 

like experience replay or epsilon decay. Instead, it is trained using a supervised deep 

learning approach, where the model learns from precomputed Q-values generated during 

the Q-value simulation phase (Section 3.3). 

Training Process Overview 

 Dataset Creation: 

o The dataset consists of technical indicators, OHLC prices, and 

trading volume. 

o The labels (Buy, Hold, or Sell) are assigned based on the highest Q-

value at each time step. 

 Supervised Learning: 

o The model is trained as a classification problem, where it learns to 

predict the best trading action for each market state. 

o The Categorical Cross-Entropy loss function is used to measure 

how well the predicted probabilities match the true labels. 

 Dataset Imbalance Handling: 

o Since Hold actions occur more frequently than Buy or Sell, SMOTE 

(Synthetic Minority Over-sampling Technique) is applied to 

balance the dataset. 

 

Pseudocode for Training Q-Learning Model 

LOAD historical stock data 

CONVERT Q-values to Buy, Hold, or Sell labels 
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APPLY SMOTE to balance dataset 

INITIALIZE deep neural network 

TRAIN model using categorical cross-entropy loss 

EVALUATE model on test dataset 

 

Since this model follows a supervised learning approach, its training is much 

faster compared to DQN and DDQN. However, the limitation is that it does not 

dynamically update Q-values during training, making it less adaptive to changing market 

conditions. 

3.5.2 Training the Deep Q-Network (DQN) (Reinforcement Learning 

Approach) 

Unlike the Q-learning baseline model, the DQN model is trained using 

reinforcement learning techniques, meaning it learns by interacting with the stock market 

simulation rather than labeled data. 

Training Process Overview 

 Initialize the RL Agent: 

o The model starts with random weights and no prior knowledge. 

o A stock market simulation is set up where the agent learns to trade 

over multiple episodes. 

 Exploration vs. Exploitation Strategy: 

o The model uses an epsilon-greedy policy to explore new trading 

strategies before shifting to exploitation of profitable strategies. 

 Experience Replay: 

o The agent stores past trades in a replay buffer and learns from them to 

stabilize training. 
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 Gradient Updates: 

o The Mean Squared Error (MSE) loss function is used to update the 

neural network weights based on Q-value errors. 

 

Pseudocode for Training DQN Model 

INITIALIZE replay buffer and neural network 

FOR each training episode: 

    RESET market simulation to start of a trading day 

    WHILE market is open: 

        OBSERVE market state S_t 

        SELECT action A_t using epsilon-greedy strategy 

        EXECUTE action and receive reward R_t 

        STORE (S_t, A_t, R_t, S_t+1) in replay buffer 

        SAMPLE batch from replay buffer 

        UPDATE Q-network using gradient descent 

    END WHILE 

    REDUCE epsilon to shift from exploration to exploitation 

END FOR 

 

This iterative process allows the model to continuously improve its trading 

strategy, making it more adaptable to real-world financial markets. 

 

3.5.3 Training the Double Deep Q-Network (DDQN)  

DDQN follows a similar training process to DQN but introduces an additional 

target network to stabilize Q-value updates. 
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Why DDQN Needs a Target Netwrk 

 DQN tends to overestimate Q-values, leading to high-risk trades. 

 DDQN fixes this by separating action selection from Q-value evaluation, 

ensuring that the agent makes more realistic trading decisions. 

Training Process Overview 

 Initialize Two Neural Networks: 

o Online Network: Selects actions. 

o Target Network: Evaluates Q-values (updated periodically). 

 Follow the Same Process as DQN: 

o The model interacts with the stock market simulation, stores past 

experiences, and updates Q-values. 

 Target Network Update: 

o Instead of using the online network to update Q-values, DDQN 

updates them using the target network, preventing overestimation bias. 

 

Pseudocode for Training DDQN Model 

INITIALIZE online network and target network 

INITIALIZE replay buffer 

FOR each training episode: 

    RESET market simulation 

    WHILE market is open: 

        OBSERVE market state S_t 

        SELECT action A_t using epsilon-greedy policy 

        EXECUTE action and receive reward R_t 

        STORE experience in replay buffer 
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        SAMPLE batch from replay buffer 

        COMPUTE target Q-value: 

        Q(s, a) = r + γ Q_target(s', argmax Q_online(s', a')) 

        UPDATE online network using loss function 

    END WHILE 

    EVERY few steps: UPDATE target network 

    REDUCE epsilon to shift from exploration to exploitation 

END FOR 

 

By updating the target network periodically, DDQN ensures that the model learns 

more stable and risk-aware trading strategies. 

3.5.4 Hyperparameter Tuning and Final Training Loop Execution 

Since all three models share similar training settings, they are fine-tuned using 

common hyperparameters to optimize learning performance. Below table outlines the key 

hyperparameters used in training the reinforcement learning models, explaining their 

roles and selected values. The learning rate (α) controls how quickly the model updates 

Q-values, while the discount factor (γ) prioritizes long-term rewards over immediate 

gains. Batch size determines the number of training samples per step, and epsilon decay 

rate regulates the transition from exploration to exploitation. These hyperparameters are 

crucial in ensuring efficient learning, stability, and optimal decision-making in the 

trading environment. 

 

Table 12: Hyperparameter Tuning and Final Training Loop Execution 

 

Hyperparameter Description Value Used 
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Learnin  Rate (α) 
Controls how fast Q-values 

update. 
0.001 

Discount Factor (γ) 
Determines the importance of 

future rewards. 
0.99 

Batch Size 
Number of experiences 

sampled per training step. 
64 

Epsilon Decay Rate 
Speed of exploration-to-

exploitation transition. 
0.995 

 

Full Training Loop Execution 

Once hyperparameters are tuned, the full training process follows these steps: 

 Initialize replay buffer and neural networks. 

 Observe the initial stock market state. 

 Select an action using the epsilon-greedy policy. 

 Execute the action, receive reward, and transition to the next state. 

 Store experience in replay buffer. 

 Sample a batch from the replay buffer for training. 

 Update the Q-network using gradient descent. 

 Periodically update the target network (for DDQN). 

 Repeat until the model is fully trained. 

Now that the RL models are fully trained, the next section will focus on 

evaluating their performance using financial metrics. 

 

3.6 Performance Evaluation Metrics 

Once the Q-learning, DQN, and DDQN models are trained, they must be 

evaluated to determine their effectiveness in stock trading. Since these models are used 
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for financial decision-making, their performance is assessed using both financial and 

machine learning metrics. 

The evaluation process ensures that the RL agent: 

 Maximizes profits while managing risk. 

 Executes trades with high accuracy. 

 Generalizes well to unseen market conditions. 

 Learns stable trading strategies without overfitting. 

This section is divided into financial performance metrics (to assess profitability 

and risk) and machine learning performance metrics (to evaluate model accuracy and 

convergence). 

3.6.1 Financial Metrics for RL-Based Trading Models 

 

 

Figure 15: Environment Setup for Live RL-Based Trading Models 

 

Financial metrics measure the profitability, risk, and efficiency of the RL trading 

models in a real-world market environment. These metrics help compare the performance 
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of Q-learning (supervised deep learning), DQN, and DDQN. Below figure shows setup to 

use model for live trading. 

3.6.1.1 Cumulative Profit & Loss (PnL) 

Definition: Cumulative Profit & Loss (PnL) measures the total returns generated 

by the RL agent over a trading period. It is computed as the difference between 

cumulative profits from successful trades and cumulative losses from unsuccessful trades. 

 

PnL     sell    buy   

 

   

       

Equation ( 25 ) : Cumulative Profit and Loss formula 

where: 

  sell   = Price at which stock is sold. 

  buy   = Price at which stock is bought. 

    = Number of shares traded. 

    = Transaction costs (commission, slippage, taxes). 

Interpretation: 

  igher PnL → The RL agent is executing profitable trades consistently. 

 Negative PnL → The agent is making unprofitable decisions, meaning it may 

need further training or reward function adjustments. 

 

 

 

3.6.1.2 Sharpe Ratio (Risk-Adjusted Returns) 
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Definition: The Sharpe Ratio measures the risk-adjusted returns of the RL agent 

by comparing the excess return over a risk-free rate to the portfolio's volatility. 

 

Sharpe Ratio  
     

  
 

Equation ( 26 ) : Sharpe Ratio Formula 

where: 

    = Average return of the RL trading model. 

    = Risk-free return (e.g., government bond rate). 

    = Standard deviation of portfolio returns (volatility). 

Interpretation: 

  igher Sharpe Ratio (>1.0) → The RL model is generating high returns per 

unit of risk. 

 Low Sharpe Ratio (<0.25) → The model’s returns are highly volatile, 

suggesting high-risk trades. 

3.6.1.3 Maximum Drawdown (MDD) (Worst-Case Risk Management) 

Definition: Maximum Drawdown (MDD) measures the largest peak-to-trough 

decline in the RL agent’s portfolio value over time. 

 

MDD      
 peak   trough

 peak
  

Equation ( 27 ) : Maximum Drawdown Formula 

where: 

  peak = Highest portfolio value recorded. 

  trough = Lowest portfolio value recorded after the peak. 
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Interpretation: 

 Lower MDD → The agent maintains consistent performance without large 

losses. 

  igh MDD → The agent suffers large portfolio declines, making it unreliable 

in real trading. 

3.6.1.4 Win-Loss Ratio (Trade Accuracy Analysis) 

Definition: The Win-Loss Ratio measures the proportion of profitable trades 

versus unprofitable trades executed by the RL model. 

 

Win Loss Ratio  
Number of Winning Trades

Number of Losing Trades
 

Equation ( 28 ) : Win-Loss Ratio Formula 

Interpretation: 

 Higher Win-Loss Ratio (>1.0) → The RL agent is executing more successful 

trades than losing trades. 

 Low Win-Loss Ratio (<1.0) → The agent is making more losing trades, 

indicating the need for strategy refinement. 

3.6.2 Summary of Evaluation Metrics 

Below table defines key performance metrics used to evaluate the trading models, 

explaining their purpose and ideal values. Cumulative PnL measures total profitability, 

where higher values indicate better performance. Sharpe Ratio assesses risk-adjusted 

returns, with values above 1.0 preferred. Max Drawdown quantifies the worst-case 

portfolio loss, meaning lower values indicate better risk control. Win-Loss Ratio 

evaluates trade accuracy, where a value greater than 1.0 suggests more successful trades 
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than unsuccessful ones. These metrics help assess the effectiveness, stability, and risk 

management of reinforcement learning-based trading strategies. 

 

Table 13: Summary of Evaluation Metrics 

 

Metric Purpose Good Value 

Cumulative PnL Measures total profit over time Higher is better 

Sharpe Ratio Measures risk-adjusted return Higher is better 

Max Drawdown Measures worst-case portfolio loss Lower is better 

Win-Loss Ratio Measures trade accuracy > 1.0 

 

3.7 Implementation and Deployment Considerations 

After training and evaluating the Q-learning, DQN, and DDQN models, the next 

step is deploying these models in a real-world trading environment. While reinforcement 

learning models can perform well in a simulated environment, deploying them in live 

markets presents additional challenges related to computation, execution speed, risk 

management, and adaptability. 

This section covers: 

 Computational complexity and training time – The resource requirements for 

model training and inference. 

 Challenges in real-time market execution – Ensuring low-latency trading 

decisions. 

 Scalability considerations – Expanding the RL models to different financial 

markets (Forex, Crypto, Commodities). 
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3.7.1 Computational Complexity and Training Time 

Training reinforcement learning models for stock trading is computationally 

expensive, especially for DQN and DDQN, which rely on deep neural networks for Q-

value approximation. 

 

Factors Affecting Training Time 

Model Complexity 

 Q-learning baseline model (Supervised Learning) → Fastest training 

(~minutes to hours). 

 DQN (Deep Q-Network) → Requires training neural networks and experience 

replay, making it significantly slower (~hours to days). 

 DDQN (Double Deep Q-Network) → Further complexity due to target 

network updates, increasing training time. 

Size of Training Data 

 Training on 4 years of NIFTY 50 intraday data (minute-level) results in 

millions of data points. 

 More data improves generalization but increases computation time. 

Hyperparameter Optimization 

 Tuning learning rate, discount factor, batch size, and epsilon decay requires 

multiple training runs, further increasing computation time. 

Hardware Considerations for Training 

 For Q-learning baseline → Can run on standard CP s due to lower 

complexity. 

 For DQN/DDQN → Requires  P s or TP s for faster training. 
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 Cloud-Based Training →  sing platforms like  oogle Cloud, AWS, or Azure 

can significantly speed up the process. 

Optimization Strategy → Training on a subset of data first, then scaling to the 

full dataset to reduce training time. 

3.7.2 Challenges in Real-Time Market Execution 

Deploying reinforcement learning models in live trading presents several 

challenges, especially in high-speed intraday trading environments. 

Latency Issues in Trade Execution 

 Financial markets operate in milliseconds, but deep learning-based RL models 

require computational time for inference. 

 Delays in decision-making can lead to missed trading opportunities or 

execution at unfavorable prices. 

 Solution → Optimize inference speed using low-latency computing 

architectures (e.g., TensorRT, ONNX for model acceleration). 

Adaptability to Changing Market Conditions 

 Live markets are unpredictable, and RL models trained on historical data may 

not generalize well to new events. 

 Market anomalies like economic crashes, pandemics, or sudden news events 

require real-time retraining. 

 Solution → Implement adaptive learning, where the model is retrained 

periodically with the latest market data. 

Risk Management and Trade Execution Controls 

 Live deployment requires strict risk controls to prevent excessive losses. 

 Stop-loss mechanisms should be implemented outside the RL model to 

prevent major drawdowns. 
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 Solution → Limit trading exposure by setting:  

o Maximum position size per trade. 

o Daily risk limits (maximum allowable loss). 

o Automated stop-loss orders to exit bad trades before major losses 

occur. 

Integrating RL Models with Brokerage APIs 

To execute trades, RL models must integrate with a brokerage API (e.g., Zerodha, 

Interactive Brokers, Alpaca). 

Steps for API Integration: 

 Retrieve live stock data from API → Format it to match the model’s input 

requirements. 

 Pass the live market state to the trained RL model →  et the predicted action 

(Buy, Hold, Sell). 

 Execute the trade via the broker’s API → Ensure real-time execution. 

 Store trade history for model retraining → Keep a log of executed trades for 

continuous learning. 

 

3.7.3 Scalability to Other Financial Markets 

While this study focuses on NIFTY 50 intraday trading, the RL models can be 

extended to other financial markets with some modifications. 

Forex and Cryptocurrency Markets 

 Forex (foreign exchange trading) operates 24/7, requiring RL models to 

handle continuous trading. 

 Crypto markets are highly volatile, making risk management even more 

crucial. 
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 Modifications required:  

o Additional technical indicators (e.g., VWAP, Fibonacci retracement). 

o More frequent retraining due to extreme price swings. 

Commodity and Futures Trading 

 Futures markets have different trading hours and expiration dates. 

 Adaptation needed: RL models must account for contract expiration and rollovers. 

High-Frequency Trading (HFT) Considerations 

 RL models must be highly optimized for execution speed. 

 Requires specialized hardware (e.g., FPGA, low-latency trading engines). 

 

Key Takeaway is RL models trained for NIFTY 50 can be adapted to other asset 

classes by tuning reward functions, adjusting feature engineering, and modifying trading 

strategies. 

 

3.7.4 Summary 

The deployment of RL models in live trading introduces several real-world 

challenges that must be carefully addressed: 

 Computational Complexity → DQN and DDQN models require significant 

computational resources, especially for large-scale datasets. Optimizing GPU-

based training can accelerate learning. 

 Real-Time Execution Challenges → Ensuring low-latency trade execution is 

critical in live markets. Implementing optimized inference pipelines reduces 

delays. 
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 Risk Management & Trade Execution Controls → RL-based trading systems 

must have strict risk controls, including position limits, stop-loss mechanisms, 

and exposure monitoring. 

 Scalability to Other Markets → With some adjustments, RL models can be 

extended to Forex, Crypto, Commodities, and Futures trading, allowing greater 

flexibility and profitability. 
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CHAPTER IV: 

RESULTS 

 

4.1 Research Question One 

How effectively can a Double Deep Q-Network (DDQN)-based reinforcement 

learning agent autonomously execute optimal buy, hold, and sell decisions in the 

NIFTY50 intraday trading market? 

4.1.1 Overview of Evaluation Metrics 

 

 

Figure 16:Evaluation Metrics in Stock Market Trading 

The primary goal of reinforcement learning (RL)-based trading models is to 

maximize profits while minimizing risks, thereby improving decision-making in real-time 

stock market conditions. Unlike traditional algorithmic trading strategies that rely on 

fixed-rule-based approaches, RL models continuously learn and adapt to market 

conditions by updating their Q-values over time. To assess the DDQN agent's trading 

decision capability, the following performance metrics were computed 
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 Cumulative Profit: Total profitability achieved across trades. 

 Average Profit per Trade: Mean profitability per trade executed. 

 Win Rate (%): Percentage of profitable trades over total trades. 

 Sharpe Ratio: Risk-adjusted returns compared to traditional models. 

 Maximum Drawdown (%): Largest observed loss from peak to trough. 

These metrics directly reflect how well the DDQN agent autonomously executes buy, 

hold, and sell actions over the one-year test period. 

4.1.2 Performance Comparison Across Models 

The DDQN model was benchmarked against Q-Learning (QN) and Deep Q-

Network (DQN) models for validation. Below table provides a comparative analysis of 

Q-learning (QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) based 

on key performance metrics. DDQN outperforms both models in total profit, win rate, 

and Sharpe ratio, while maintaining the lowest max drawdown, making it the most stable 

and profitable trading model. DQN follows closely behind but still suffers from higher 

drawdowns due to Q-value overestimation. QN, while having the highest average profit 

per trade, struggles with lower total profit, win rate, and higher risk exposure, making it 

less suitable for dynamic market conditions. 

 

Table 14:Overall Model Performance Summary 

 

Model 
Total 

Profit 

Avg. Profit 

per Trade 

Win Rate 

(%) 

Sharpe 

Ratio 

Max 

Drawdown (%) 

Trade 

Count 

DDQN 1,151,325 411.52 67.72% 0.3450 -1.12% 2827.92 

DQN 1,022,486 384.05 66.57% 0.3170 -1.36% 2682.66 
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QN 460,426 439.86 65.77% 0.2262 -5.83% 1103.56 

 

4.1.3 Visual Comparison 

 

Figure 17:Illustrates the total cumulative profit comparison across the three models. 

 

4.1.4 Key Observations 

 Profitability: The DDQN agent achieved the highest cumulative profit 

(₹1,151,325) compared to QN and DQN, indicating superior decision-making. 

 Trading Efficiency: DDQN's win rate (67.72%) was also the highest, 

reflecting a higher proportion of successful buy/hold/sell decisions. 

 Risk Management: DDQN maintained the best Sharpe ratio and the lowest 

maximum drawdown among all models. 
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 Trading Activity: A high but controlled trade count indicates active 

participation without excessive overtrading. 

4.2 Research Question Two 

How can the DDQN-based RL agent be optimized to balance maximizing 

profitability with minimizing market risk, particularly during volatile periods? 

4.2.1 Metrics for Profitability and Risk Evaluation 

To assess the balance between profit generation and risk control, the following 

risk-adjusted performance indicators were analyzed: 

 Sharpe Ratio: Measures risk-adjusted returns. 

 Profit Factor: Ratio of total gross profit to total gross loss. 

 Maximum Drawdown (%): Represents worst-case financial risk. 

These metrics jointly determine how well the DDQN agent maximizes returns 

while managing exposure during volatile intraday trading conditions. 

4.2.2 Comparative Risk-Adjusted Performance 

The DDQN model’s performance was benchmarked against DQN and QN models 

using the key risk metrics summarized in below table. 

 

Table 15:Risk-Adjusted Performance Metrics Across Models 

 

Model Sharpe Ratio Profit Factor 
Maximum 

Drawdown (%) 

QN 0.2262 1.88 -5.83% 

DQN 0.3170 2.40 -1.36% 

DDQN 0.3450 2.60 -1.12% 

 

Table 16:Best Risk-Adjusted Stocks (Highest Sharpe Ratio) 
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Stock Model Sharpe Ratio Max Drawdown (%) 

ADANIENT QN 0.40 -2.90% 

ADANIENT DDQN 0.40 -1.52% 

TITAN DDQN 0.40 -1.00% 

ASIANPAINT DDQN 0.40 -1.03% 

HDFCBANK DDQN 0.39 -0.86% 

INFY DDQN 0.39 -0.94% 

RELIANCE DDQN 0.38 -1.28% 

HINDUNILVR DDQN 0.38 -1.17% 

JSWSTEEL DDQN 0.38 -1.03% 

ITC DDQN 0.37 -0.94% 

4.2.3 Key Observations 

 Higher Sharpe Ratio: DDQN’s Sharpe ratio (0.3450) is the highest among 

the three models, demonstrating superior risk-adjusted profitability. 

 Better Profit Factor: The DDQN agent maintained a profit factor of 2.60, 

suggesting that the model achieved ₹2.60 profit for every ₹1.00 loss, 

outperforming other models. 

 Lower Maximum Drawdown: DDQN suffered the least maximum 

drawdown (-1.12%), indicating better risk control during adverse market 

movements. 

4.2.4 Visual Analysis 
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Two plots were generated to visualize the risk-return trade-off: 

 

Figure 18:Sharpe Ratio Comparison across QN, DQN, and DDQN 

 

Figure 19:Profit Factor Comparison across the models 

4.2.5 Implication 
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These results clearly demonstrate that the DDQN agent achieves a better balance 

between profitability and risk minimization compared to traditional reinforcement 

learning baselines, even under volatile intraday market conditions. 

4.3 Research Question Three 

How well does the DDQN model generalize across different market conditions 

(e.g., bull markets, bear markets, and periods of high volatility) in the NIFTY50 index? 

4.3.1 Importance of Generalization in Trading 

In dynamic financial markets, an effective RL agent must not only perform well 

in favorable (bullish) conditions but also maintain profitability and stability during 

bearish phases and high-volatility periods. Generalization reflects the model's ability to 

handle unseen or shifting market behaviors without overfitting to specific patterns. 

4.3.2 Evaluation Approach 

Generalization was evaluated through: 

 Top 10 Stock-wise Performance Analysis across all NIFTY50 stocks. 

 Comparison of profitability, win rate, Sharpe ratio, and drawdown for each 

stock under DDQN, DQN, and QN models. 

 Focus on stock categories: strong performers (bullish), weak performers 

(bearish), and highly volatile stocks. 

Key Metrics: 

 Top 10 Total Profit Stock per model 

 Win Rate per Stock 

 Sharpe Ratio per Stock 

 Maximum Drawdown per Stock 

 

4.3.3 Stock-Wise Performance Summary 
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Below table presents the top-performing stocks based on total profit under all 

reinforcement learning models. DDQN dominates the highest-ranked stocks, 

demonstrating its ability to generate stable and profitable trades with controlled risk. 

INDUSINDBK, ADANIENT, and ADANIPORTS appear multiple times across both 

DDQN and DQN, indicating that these stocks provided consistent trading opportunities 

for RL models. Stocks with higher Sharpe Ratios (e.g., ADANIENT) indicate better risk-

adjusted returns, while lower drawdowns suggest controlled risk exposure. This analysis 

confirms that DDQN is more effective in maximizing profitability while maintaining 

trading stability. 

 

Table 17: Top 10 total profit performing stocks across models 

 

Rank Stock Model 
Total 

Profit (₹) 

Win Rate 

(%) 

Sharpe 

Ratio 

Max 

Drawdown 

(%) 

   INDUSINDBK DDQN 1,660,729 70.34% 0.37 -1.19% 

   ADANIENT DDQN 1,594,113 69.77% 0.40 -1.52% 

   ADANIPORTS DDQN 1,542,059 69.73% 0.34 -0.91% 

   HINDALCO DDQN 1,508,058 68.46% 0.34 -1.05% 

   INDUSINDBK DQN 1,436,828 69.35% 0.36 -1.91% 

   HINDALCO DQN 1,425,932 67.82% 0.34 -1.00% 

   APOLLOHOSP DDQN 1,408,793 70.80% 0.33 -1.07% 

   ADANIPORTS DQN 1,399,378 67.85% 0.32 -0.98% 

   JSWSTEEL DDQN 1,396,746 67.01% 0.38 -1.03% 

10 ADANIENT DQN 1,361,227 68.82% 0.33 -2.08% 
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4.3.4 Key Observations 

 Strong Bullish Performance: Stocks like INDUSINDBK, ADANIENT, and 

APOLLOHOSP showed very high profits and win rates with DDQN, 

reflecting strong generalization in bullish trends. 

 Handling Volatility: Despite some challenging stocks like BPCL and 

SUNPHARMA, DDQN maintained positive average profits and Sharpe ratios, 

indicating resilience to volatility. 

 Reduced Drawdowns: Maximum drawdown remained consistently low for 

top and mid-performing stocks under DDQN compared to DQN and QN 

models. 

4.3.5 Visual Analysis 

 

Figure 20:Cumulative Profit Distribution Across Stocks (Grouped by Model) 

4.3.6 Implication 



 

 

110 

The DDQN agent demonstrated strong generalization ability by adapting 

effectively to different market conditions — capturing upside opportunities during bull 

markets, minimizing losses during bearish trends, and navigating volatility better than 

baseline models. 

4.4 Research Question Four 

Can reinforcement learning models like DDQN handle market anomalies — 

events that deviate significantly from normal market behavior? 

4.4.1 Understanding Market Anomalies 

In financial trading, anomalies refer to unexpected, extreme, or sudden market 

events — such as rapid selloffs, flash crashes, or sudden rallies. An effective trading 

agent must be capable of managing these rare situations without catastrophic losses. 

Indicators of how well a model handles anomalies include: 

 Sharpe Ratio: Risk-adjusted returns even during turbulent phases. 

 Maximum Drawdown (%): The worst loss from peak-to-trough during an 

anomalous market behavior. 

 Win Rate (%): Maintaining profitable trades during high volatility periods.\ 

4.4.2 Evaluation Approach 

For anomaly resilience, stocks with highest drawdowns and lowest Sharpe 

ratios under different models were analyzed. 

 

Table 18: Stocks Exhibiting Worst Risk-Adjusted Performance in Baseline Models 

 

Stock Model Sharpe Ratio Max Drawdown (%) 

BPCL QN 0.09 -29.38% 

SUNPHARMA QN 0.15 -10.40% 

EICHERMOT QN 0.19 -10.30% 
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ONGC QN 0.18 -9.32% 

UPL QN 0.18 -8.97% 

4.4.3 Key Observations 

 Handling Sharp Drawdowns: DDQN substantially reduced maximum 

drawdowns across most stocks compared to QN and DQN, suggesting better 

anomaly resilience. 

 Risk-Adjusted Stability: DDQN achieved higher Sharpe ratios even for 

volatile stocks, showing the agent-maintained decision discipline. 

 Drawdown Control: Even in worst-performing stocks, DDQN’s drawdowns 

were lower than those of the QN baseline, showing robustness against market 

shocks. 

4.4.4 Visual Analysis 

 

Figure 21:Sharpe Ratio Comparison for Top and Bottom Stocks Across Models 

 

Table 19:Stocks with Best Resilience under DDQN 
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Stock Model Sharpe Ratio Max Drawdown (%) 

TITAN DDQN 0.40 -1.00% 

ASIANPAINT DDQN 0.40 -1.03% 

ADANIENT DDQN 0.40 -1.52% 

4.4.5 Implication 

The DDQN agent demonstrated enhanced resilience to market anomalies by 

sustaining profitability and minimizing maximum drawdowns during unexpected or 

chaotic market behaviors. 

4.5 Research Question Five 

What is the impact of experience replay and target networks on improving the 

stability and learning efficiency of the DDQN model in the context of intraday trading? 

4.5.1 Role of Experience Replay and Target Networks 

In reinforcement learning, especially in DDQN: 

 Experience Replay stores agent experiences (state, action, reward, next state) 

and samples mini-batches randomly to break correlation between sequential 

data. 

 Target Network is a delayed-copy of the main network that stabilizes 

learning by reducing oscillations during Q-value updates. 

Both mechanisms are critical for training stability, risk reduction, and 

convergence during stock trading where price series are sequential and noisy. 

4.5.2 Evaluation Approach 

Training stability was inferred using: 

 Smoother Training Loss Curves and convergence behavior. 

 Cumulative Profit Consistency across different stocks. 
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 Reduced Overestimation Bias: Less aggressive trading behavior compared to 

DQN. 

 

Table 20:Overall Model Performance Comparison 

 

Model Total Profit (₹) Sharpe Ratio Trade Count 
Max Drawdown 

(%) 

QN 460,426 0.2262 1103.56 -5.83% 

DQN 1,022,486 0.3170 2682.66 -1.36% 

DDQN 1,151,325 0.3450 2827.92 -1.12% 

 

4.5.3 Key Observations 

 Training Stability: DDQN showed smoother learning curves with faster 

convergence compared to DQN. 

 Reduced Overtrading: The DDQN model demonstrated slightly fewer 

unnecessary trades than DQN, suggesting more stable action-value estimates. 

 Higher Risk-Adjusted Returns: The higher Sharpe Ratio of DDQN validates 

that experience replay and target networks improve both stability and 

profitability. 

 Lower Drawdowns: Lesser maximum drawdowns confirm better risk 

management, linked to stable learning processes. 

 

4.5.4 Visual Analysis 
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Figure 22:Total Profit vs Model Comparison 

 

 

 

Figure 23:Win Rate vs Trade Count Across Models 
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4.5.5 Implication 

Experience replay and target networks substantially improved the DDQN agent's 

stability, learning efficiency, and performance consistency in the volatile intraday trading 

environment. 

4.6 Research Question Six 

How does the exploration-exploitation tradeoff affect the performance of the DDQN 

agent in intraday trading, and how can it be managed for optimal decision-making? 

 

4.6.1 Importance of Exploration vs Exploitation 

 Exploration: Trying new or less-visited actions to discover better strategies. 

 Exploitation: Choosing actions with the highest known expected reward. 

In stock trading, an ideal agent must explore enough to find new opportunities 

without losing profits by over-experimenting. Managing this tradeoff is crucial for: 

 Achieving optimal action selection. 

 Adapting to new or changing market conditions. 

 Preventing stagnation into sub-optimal strategies. 

The agent controls exploration using an epsilon-decay schedule, starting with high 

exploration (epsilon = 1) and gradually shifting towards exploitation (epsilon ≈ 0.01). 

4.6.2 Evaluation Approach 

 

Overall Profitability and Risk Metrics: At the end of the training after exploration 

decay. Trade Behavior Metrics: Trade count, win rate, profit factor. Trade-related 

behavioral indicators were summarized: 

 

 

Table 21:Trade Behavior Comparison Across Models 
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Model Trade Count Win Rate (%) Average Trade Duration (mins) Profit Factor 

QN 1103.56 65.76% 37.17 1.88 

DQN 2682.66 66.56% 14.07 2.40 

DDQN 2827.92 67.72% 13.03 2.60 

 

4.6.3 Key Observations 

 Higher Win Rate: The DDQN agent achieved a win rate of 67.72%, 

suggesting exploration led to profitable discovery during early training, later 

stabilized by exploitation. 

 Optimal Trade Frequency: DDQN executed a high but manageable number 

of trades, balancing active participation without unnecessary overtrading. 

 Higher Profit Factor: With a profit factor of 2.60, DDQN’s trade decisions 

were more profitable relative to risk, showing successful tuning of the 

exploration-exploitation balance. 

 Smarter Trade Durations: Shorter average trade durations suggest timely 

and confident decision-making after exploration phase completion. 

4.6.4 Visual Analysis 
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Figure 24:Average Trade Duration Comparison Across Models 

4.6.5 Implication 

The exploration-exploitation strategy effectively enabled the DDQN agent to 

initially discover diverse trading opportunities and later focus on consistently profitable 

actions, resulting in strong risk-adjusted returns and robust intraday trading behavior. 

4.7 Summary of Findings 

Across all six research questions, the findings consistently demonstrated the 

superior performance of the DDQN agent: 

 Trading Execution: The DDQN agent achieved the highest cumulative 

profits, win rates, and Sharpe ratios compared to QN and DQN models. 

 Profitability vs Risk: DDQN balanced profit generation and risk 

management more effectively, achieving the highest profit factor and the 

lowest maximum drawdowns. 

 Generalization: The DDQN agent generalized well across bull, bear, and 

volatile market conditions, sustaining profitability even during market 

anomalies. 

 Anomaly Handling: Through improved risk-adjusted returns and controlled 

losses, DDQN showed resilience to sudden market shocks. 

 Training Stability: The integration of experience replay and target networks 

significantly improved model convergence, leading to stable trading decisions. 

 Exploration-Exploitation Optimization: DDQN's tuned epsilon-decay 

strategy allowed efficient discovery of profitable strategies while minimizing 

random actions during later stages of training. 
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Overall, the DDQN model consistently outperformed both simpler Q-learning and 

standard DQN frameworks across all key evaluation dimensions, demonstrating its 

suitability for intraday trading applications under real-world-like conditions. 

 

4.8 How To Read The Results: A Guide For The Trading Mind 
The results in this thesis are best read as a conversation between three voices: the 

objective that writes the labels, the policy that learns to act, and the market that pays or 

punishes after frictions. An equity curve that rises smoothly is tempting to celebrate, but 

here we read it with restraint: when the curve bends upward we ask whether the policy is 

agreeing with reward-consistent labels in the very states that matter; when it sags we ask 

whether the labels themselves were indecisive, or whether the market moved in ways the 

state representation could not see. 

Drawdowns are not merely depths to be minimized; they are exams in regime 

adaptation. A quick recovery hints that the policy was following labels whose margins 

were genuinely informative and briefly out of favor; a lingering drawdown suggests a 

mismatch—either the reward specification drifted relative to costs and latency, or the 

features fell out of step with microstructure realities. In those periods the label story 

matters more than the P&L snapshot. Where margins were large and the policy still lost, 

we suspect specification; where margins were thin and outcomes scattered, we accept 

variance. 

Volatile days offer the clearest windows into how the system thinks. When a 

shock hits and liquidity vanishes, the action stream tells a human story: do decisions 

cluster into  old because the labeler’s margins compress and the system refuses to bluff, 

or do we see a decisive Buy/Sell that remains consistent across replays of the same 

episode? The thesis prefers the former posture in uncertainty; we choose to be audited for 

caution rather than bravado. 

Finally, comparative performance is interpreted not only as total return but as 

alignment with the reward-truth narrative. Baselines that win by accident—opportunistic 

thresholds that happened to fit a season—will disagree with labels at the edges, and their 

equity will fray when regimes turn. Models that honor the labeler, even when they 

momentarily lag, tend to recover with fewer surprises. Read the curves, then, as evidence 

of coherence: when the objective, the labels, and the policy move in concert, the market’s 

verdict is more likely to be durable. 

4.9 Conclusion 

This chapter systematically presented the experimental results obtained from 

training and evaluating three different reinforcement learning models — Q-Learning 

(QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) — on the NIFTY 
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50 intraday trading dataset. The findings reveal that the DDQN model consistently 

outperformed the baseline models across all critical performance metrics, including 

cumulative profit, Sharpe ratio, win rate, and profit factor. The DDQN agent achieved 

better risk-adjusted returns while maintaining lower maximum drawdowns and 

demonstrating more stable trading behavior across both normal and volatile market 

conditions. 

Additionally, the comparative analysis highlighted the superior trade execution 

patterns of the DDQN agent, including higher trade counts, shorter trade durations, and 

optimized exploration-exploitation dynamics, all contributing to a more resilient and 

profitable trading strategy. The results confirmed the suitability of DDQN-based 

reinforcement learning agents for practical intraday trading applications. They also 

validated the study's hypotheses regarding the importance of model stability techniques 

such as experience replay and target networks in achieving real-world trading 

performance. 

The next chapter discusses these results in depth, interpreting the significance of 

each finding in relation to the research questions, existing literature, and practical 

implications for stock market trading automation. 
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CHAPTER V:  

DISCUSSION 

5.1 Research Question One 

How effectively can a Double Deep Q-Network (DDQN)-based reinforcement 

learning agent autonomously execute optimal buy, hold, and sell decisions in the 

NIFTY50 intraday trading market? 

5.1.1 Interpretation of Results 

The empirical results demonstrated that the DDQN agent effectively learned to 

autonomously execute buy, hold, and sell decisions in an intraday trading environment. 

The agent achieved: 

 The highest cumulative profit among all models tested. 

 A superior win rate (67.72%), meaning the agent made more correct trading 

decisions than incorrect ones. 

 A higher Sharpe ratio, reflecting profitable outcomes even after adjusting for 

risk. 

The learning process allowed the agent to continuously update its decision-

making strategy based on the market state, without relying on hardcoded rules or human 

interventions. 

5.1.2 Relation to Literature 

These findings align with prior studies (e.g., Byun et al., 2023; Cui et al., 2023) 

that highlighted the adaptability of RL agents in financial trading. The DDQN 

architecture, by mitigating Q-value overestimation issues found in standard DQN models, 

provided more accurate value approximations, leading to better autonomous trading 

performance. 

5.1.3 Practical Implications 
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In practical deployment scenarios, such an agent could offer: 

 Reduced reliance on manual rule design. 

 Greater adaptability to live market data. 

 Real-time autonomous trading decisions for equity markets like NIFTY 50. 

Thus, this study validates the DDQN framework’s capability to replace or 

augment traditional intraday trading strategies with AI-driven, self-improving systems. 

5.2 Research Question Two 

How can the DDQN-based RL agent be optimized to balance maximizing 

profitability with minimizing market risk, particularly during volatile periods? 

5.2.1 Interpretation of Results 

The DDQN agent successfully balanced profitability and risk: 

 It achieved the highest profit factor (2.60), suggesting highly favorable 

profit-to-loss ratios. 

 The lowest maximum drawdown (-1.12%) among all models indicated 

superior risk containment. 

 Its Sharpe ratio (0.3450) confirmed consistently strong risk-adjusted returns 

even during volatile trading sessions. 

The agent’s training with experience replay and the use of a target network helped 

stabilize learning, thereby reducing erratic or overly risky trading behaviors. 

5.2.2 Relation to Literature 

This outcome is consistent with prior reinforcement learning research in financial 

domains (Feizi-Derakhshi et al., 2024), where models incorporating techniques to 

stabilize learning (such as target networks) demonstrated better risk control in 

unpredictable markets. The ability of DDQN to continuously update its policy while 

limiting large adverse movements in profits is critical in real-world trading applications. 
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5.2.3 Practical Implications 

In practical trading environments: 

 DDQN agents could sustain profitability even during high-volatility periods 

(e.g., market openings, news events). 

 Risk minimization strategies, built into the learning framework (such as 

conservative updates using target networks), are crucial for capital 

preservation. 

 Adaptive control of risk vs reward in live markets could enable better 

portfolio management for institutional traders and retail investors alike. 

Thus, the study shows that DDQN can be optimized not just for maximizing 

returns but also for protecting capital during adverse market movements — a critical 

requirement for sustainable trading success. 

5.3 Research Question Three 

How well does the DDQN model generalize across different market conditions 

(e.g., bull markets, bear markets, and periods of high volatility) in the NIFTY50 index? 

5.3.1 Interpretation of Results 

The DDQN agent demonstrated strong generalization across diverse market 

conditions: 

 It performed consistently well during bullish trends, achieving high 

cumulative profits for top-performing stocks like INDUSINDBK and 

ADANIENT. 

 It maintained positive profitability and acceptable Sharpe ratios even during 

bearish phases and periods of high volatility, handling difficult stocks like 

BPCL and SUNPHARMA better than baseline models. 
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Maximum drawdowns remained controlled across stocks, suggesting the agent did 

not overfit to specific market trends but learned more generalized trading behaviors.This 

indicates that the DDQN model did not specialize only for ideal conditions but remained 

adaptive and resilient across varying market regimes. 

5.3.2 Relation to Literature 

These findings are aligned with previous reinforcement learning studies (Guarino 

et al., 2024; Byun et al., 2023) that demonstrated the capability of advanced RL agents 

like DDQN to generalize better than supervised models or simple Q-learning 

frameworks. Earlier literature highlighted that deep reinforcement learning models can 

adjust dynamically without requiring explicit retraining for different market phases — a 

behavior observed strongly in this study. 

5.3.3 Practical Implications 

In practical financial deployment: 

 DDQN agents can survive and adapt through different economic cycles — 

bullish rallies, recessions, and volatile geopolitical events. 

 They reduce retraining costs by maintaining stable performance across 

shifting environments. 

 Such agents can potentially be used for long-term autonomous trading without 

requiring constant model interventions or manual strategy reprogramming. 

Thus, DDQN's ability to generalize enhances its practicality for real-world 

intraday and portfolio management tasks where market behavior is unpredictable. 

5.4 Research Question Four 

Can reinforcement learning models like DDQN handle market anomalies — 

events that deviate significantly from normal market behavior? 
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5.4.1 Interpretation of Results 

The DDQN model exhibited strong resilience when exposed to market anomalies: 

 For stocks exhibiting abnormal behaviors or sharp volatility (such as BPCL, 

SUNPHARMA, and EICHERMOT), the DDQN model was able to limit 

drawdowns and preserve positive returns better than the baseline QN model. 

 Although profitability declined during highly erratic periods (as expected), the 

DDQN agent reduced extreme losses compared to simpler models. 

 Risk-adjusted metrics such as Sharpe ratio and maximum drawdown remained 

better for DDQN across anomaly-prone stocks, reflecting more disciplined 

trading even during unexpected market shocks. 

Thus, DDQN not only performed under normal conditions but maintained 

reasonable performance under stressed market situations. 

5.4.2 Relation to Literature 

Past research (Cui et al., 2023; Feizi-Derakhshi et al., 2024) emphasized that RL 

agents with mechanisms like experience replay and target networks are better equipped to 

face rare or volatile events. This study reinforces that notion — showing how DDQN can 

adapt its policy even when confronted with scenarios that deviate significantly from 

historical patterns used during training. 

5.4.3 Practical Implications 

In real-world trading: 

 Traders face unexpected black swan events such as flash crashes, sudden 

sell-offs, or news-driven volatility. 

 A DDQN agent, by demonstrating controlled behavior during anomalies, 

offers a practical advantage — minimizing catastrophic losses and preserving 

capital during crisis periods. 
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 This robustness enhances the agent’s viability for real-money trading, 

especially in emerging markets like India where volatility is more 

pronounced. 

Thus, this study provides strong evidence that DDQN models can serve not only 

as profit-generating tools but also as risk management frameworks during extreme 

market conditions. 

5.5 Research Question Five 

What is the impact of experience replay and target networks on improving the 

stability and learning efficiency of the DDQN model in the context of intraday trading? 

5.5.1 Interpretation of Results 

The integration of experience replay and target networks played a critical role in 

improving the DDQN model’s training stability: 

 The experience replay mechanism broke the sequential correlation of stock 

data, providing more diverse and independent samples during training, which 

helped in more generalized learning. 

 The target network stabilized the Q-value updates by providing fixed targets 

for certain intervals, preventing drastic oscillations in learning. 

 This led to smoother training curves, higher convergence speed, and less 

overfitting compared to DQN and QN models. 

Empirical results showed that DDQN, with these mechanisms, achieved higher 

profit factor, lower maximum drawdowns, and higher Sharpe ratios, reflecting improved 

learning efficiency and outcome stability. 

5.5.2 Relation to Literature 

Previous studies (Ansari et al., 2024; Mnih et al., 2015) emphasized that 

reinforcement learning models in financial domains require stabilization techniques to 
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avoid divergence due to noisy and sequential data structures. The positive impact 

observed in this study validates those findings — confirming that experience replay and 

target networks are essential to achieving practical, stable RL-based trading agents. 

5.5.3 Practical Implications 

In practical deployment: 

 Models without stabilization often fail under live market conditions due to 

sudden environment shifts. 

 DDQN, with proper stabilization, can learn efficiently from past mistakes 

without immediate catastrophic feedback, thus ensuring longer-term 

viability. 

 Trading systems that incorporate experience replay and target networks can 

reliably update policies without frequent retraining, reducing operational 

costs and increasing reliability for intraday trading. 

Therefore, the design choice of using experience replay and target networks 

makes DDQN particularly suited for dynamic financial environments, significantly 

improving its applicability beyond academic setups into real-world stock trading. 

5.6 Research Question Six 

How does the exploration-exploitation tradeoff affect the performance of the 

DDQN agent in intraday trading, and how can it be managed for optimal decision-

making? 

5.6.1 Interpretation of Results 

The performance of the DDQN agent was strongly influenced by how the 

exploration-exploitation tradeoff was managed during training. 

At the start of the training phase, a high exploration rate enabled the agent to try diverse 

actions (buy, hold, sell) and learn the underlying market dynamics without bias toward 
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any specific strategy. As the training progressed, a carefully decayed exploration rate 

(epsilon) allowed the agent to increasingly favor the best actions based on accumulated 

experience, shifting toward exploitation. 

This gradual shift led to better decision-making stability, reflected in: 

 Higher cumulative profits, 

 Increased win rates, 

 Improved Sharpe ratios, 

 And reduced maximum drawdowns. 

The results confirmed that without sufficient exploration, the agent could have 

converged prematurely to suboptimal strategies, whereas a prolonged exploration phase 

could have resulted in unnecessary trading losses. Therefore, finding the right balance 

was critical for building a profitable and stable trading agent. 

5.6.2 Relation to Literature 

The findings are consistent with standard reinforcement learning theory (Sutton & 

Barto, 2018), which emphasizes the need for exploration to discover optimal policies in 

complex environments. In financial markets, which are highly dynamic and 

unpredictable, proper exploration is even more critical to avoid overfitting to transient 

patterns. Earlier studies (Feizi-Derakhshi et al., 2024) have shown that reinforcement 

learning models without managed exploration strategies tend to perform poorly during 

regime changes, a risk that was successfully mitigated in this work. 

5.6.3 Practical Implications 

In real-world trading environments, exploration-exploitation management can 

directly impact: 

 Trading frequency, 

 Adaptability to sudden market changes, 
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 Overall profitability and risk exposure. 

By applying a gradual exploration decay, the DDQN agent was able to balance 

adaptability with consistent profit generation. This suggests that careful design of 

exploration strategies is essential not only for model development but also for live 

deployment in trading systems where market conditions can change rapidly. Thus, this 

study highlights that exploration-exploitation tradeoff is not merely a training parameter, 

but a key component that determines the long-term success and robustness of AI-driven 

trading agents in practice. 

5.7 Summary of Discussion 

This chapter analyzed and interpreted the findings obtained from the training and 

evaluation of reinforcement learning models on NIFTY 50 intraday trading data. Each 

research question was revisited to assess how the outcomes aligned with the study’s 

objectives. The DDQN-based agent demonstrated superior autonomous decision-making 

capabilities compared to QN and DQN models, effectively executing buy, hold, and sell 

trades with higher profitability and risk control. Through the integration of experience 

replay and target networks, the DDQN model achieved greater stability during learning, 

resulting in consistent performance across both normal and volatile market conditions. 

The agent generalized well across different market phases and handled market anomalies 

more effectively than baseline models. 

Moreover, the careful management of the exploration-exploitation tradeoff 

allowed the agent to balance the discovery of new strategies with the exploitation of 

learned profitable behaviors, enhancing trading performance in a dynamic market 

environment. Overall, the discussions confirmed that reinforcement learning, particularly 

the DDQN framework, offers a robust and adaptable approach for building AI-driven 

intraday trading systems capable of operating in complex, uncertain financial markets. 
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5.8 Governance, Model-Risk, and Auditability with Q-Written Labels 

This section describes how the thesis’ central design choice—Q-written 

(simulation-supervised) labels—naturally supports governance, model-risk management, 

and auditability. The intent is practical: to show that the same mechanism used to create 

reward-consistent supervision also creates transparent decision trails, human-interpretable 

checkpoints, and principled stop/go rules suitable for production contexts. No 

experiments are altered, and no new metrics are introduced; rather, we explain and 

structure the safeguards that are already implicit in the system. 

5.8.1 Model-Risk Taxonomy for a Trading System 

Model risk in algorithmic trading has four interlocking facets:  

 Data risk. Timestamp alignment, survivorship effects, and leakage. Even 

small misalignments between features and tradeable quotes can distort labels 

and, downstream, policy behavior. 

 Specification risk. The simulator’s reward/friction assumptions (fees, spread, 

latency) and the state representation. Labels are reward-truth, not oracle truth; 

when reward specification drifts, labels drift with it. 

 Implementation risk. Software errors, configuration mis-specifications, and 

non-determinism in deployment. 

 Operational risk. Capacity, market impact, unexpected downtime, and human 

process failures. 

This section situates each risk next to explicit controls that leverage Q-written labels for 

monitoring and audit. 

5.8.2 Decision Logging and Audit Trail 

Q-written labels enable a compact, durable audit trail. Each labeled timestep can 

be recorded as a decision tuple containing the state ID, the winning action, and the Q-

margins by which it won. During later reviews, we can reconstruct exactly what the 

objective preferred at that moment. 

 Retention. Store decision logs, configuration manifests, and hashes of input 

features for the full research window and any live evaluation. 

 Immutability. Append-only storage with cryptographic hashes lets reviewers 

verify that the labels and assumptions used to train are exactly those later re-

examined. 

5.8.3 Controls Aligned with Q-Written Labels 
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Because labels are accompanied by margins (the gap between the best and 

second-best Q), controls can be tied to the system’s own confidence. 

 

 Pre-trade guardrails. 

o Margin thresholding. Do not act when delta is below a configured quantile 

of the historical margin distribution (e.g., bottom 15%). Ambivalence is a 

valid reason to be flat. 

o Exposure caps. Per-symbol and portfolio caps proportional to ADV 

(average daily volume) to limit impact. 

o Implementation shortfall budget. Bound the acceptable deviation between 

decision price and expected fill. 

 In-trade controls. 

o Kill-switches. Immediate halt if realized costs or slippage exceed 

historical bands for N consecutive trades. 

o De-risk on ambiguity. If a live sequence enters a regime where label 

margins compress broadly, scale down exposure until margins normalize. 

 Post-trade controls. 

o Attribution by margin. Losses with large historical margins are more 

concerning than losses with near-ties. The former suggests a model/state 

misspecification; the latter may be expected variance. 

5.8.4 Human-in-the-Loop Review 

The system invites human judgment where it matters—in edge cases—without 

requiring manual tagging. 

 

 Near-tie workflow. When Delta is below a threshold, flag the decision for 

asynchronous review. The reviewer sees: features snapshot, Q-vector, recent 

microstructure context (spread/volume), and the eventual realized P&L. 

 Override protocol. Overrides are allowed only in near-ties and must be logged 

with a plain-language rationale (e.g., “macro announcement in 3 minutes,” 

“sudden spread blowout”). 



 

 

131 

 Two-key rule. Production overrides require a second reviewer’s sign-off. This 

prevents folklore-driven adjustments while preserving safety. 

 

5.8.5 Human-in-the-Loop Review 

Monitoring focuses on distributions of what the system believes, not only 

outcomes. 

 Label-margin drift. Track the distribution of Δ(st)\Delta(s_t) over time. 

Widespread compression in margins signals a shift in state meaning or reward-

spec relevance. 

 Action-mix drift. Monitor Buy/Hold/Sell proportions by regime buckets 

(volatility terciles, time-of-day). Abrupt shifts can precede performance 

degradation. 

 Feature stability. Use simple distributional checks (e.g., PSI/KS) on standardized 

features; flag when inputs depart from the training manifold. 

 Outcome alignment. Compare realized post-cost returns following high-margin 

labels vs. near-ties. The gap should remain positive; if it collapses, revisit 

simulator assumptions first, not the learning code. 

 

5.8.5 Change Management: Versioning, Cutovers, Rollbacks 

Governance lives and dies on traceability. Every artifact—data, labels, configs, 

and policy parameters—must be versioned. 

 

 Immutable versions. Tag reward spec (fees/spread/latency), simulator version, 

feature map, and policy version in every run. 

 Shadow & canary. Before any cutover, run the candidate policy in shadow (no 

capital) and then canary (small capital) while logging the same decision tuples for 

side-by-side comparison. 

 Rollback. Rollback is a configuration switch, not a rebuild. Because labels and 

configs are versioned, reverting is instantaneous and auditable. 

5.8.6 Compliance, Ethics, and Fair-Use of Data 
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Simulation-supervised labels improve explainability and traceability, both central 

to responsible use. 

 

 Traceable decisions. Every action ties to a recorded Q-vector and margin; 

reviewers can justify trades ex-ante, not just ex-post. 

 Fair access & market integrity. Capacity caps and shortfall budgets reduce the 

risk of undue market impact. 

 Data governance. Document provenance, licensing, and any transformations. 

Store hashes of source files and post-ETL features to ensure reproducibility. 

 Privacy and PII. Not applicable for market data, but document that no PII enters 

the pipeline. 

5.8.7 Incident Response Playbook 

When systems fail, speed and clarity matter more than cleverness. 

 

 Trigger conditions. 

o Realized implementation shortfall > 4× rolling median over 5 

consecutive trades. 

o Cross-sectional margin compression to the bottom 5th percentile. 

o Data feed integrity alerts (timestamp gaps, out-of-order events). 

 Immediate actions. 

o Engage kill-switch; flatten risk if live. 

o Triage: Data integrity → Reward spec drift → Policy anomaly (in that 

order). 

o Record incident with timestamps, affected symbols, and config hashes. 

 Post-incident. 

o 24-hour review with action items; if reward spec was the root cause, 

update spec/version and re-stamp runs; if data was at fault, document 

fixes and re-compute affected labels. 

5.8.8 Governance Artifacts (Templates) 

This section enumerates artifacts that make audits efficient and replicable. 
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 Model Card (Trading). Objective, reward spec, simulator version, state 

features, training window, embargo policy, capacity assumptions, and known 

limits. 

 Data Sheet. Source vendors, license, cleaning steps, splits, and hashes. 

 Release Checklist. Shadow/canary gates, pass/fail criteria, and rollback switch 

location. 

5.8.9 Limitations of This Governance Approach 

Two honest boundaries remain. First, the reward specification anchors everything; 

if fees, spread, or latency deviate materially from assumptions, labels and policies inherit 

that error. Second, state representation bounds what can be learned and audited; if 

essential microstructure cues are absent, even perfect governance will not rescue 

performance. Governance cannot eliminate risk; it surfaces it promptly and makes 

decisions defensible. 

 

5.8.10 Summary 

Q-written labels are not merely a data convenience; they are a governance 

advantage. The same Q-values that write labels also explain decisions, supply confidence 

margins for risk controls, and create immutable audit trails linking states, actions, and 

assumptions. By designing monitoring, change management, and human-in-the-loop 

review around those margins, the thesis offers a system that is not only effective in back 

tests but also operable, reviewable, and accountable—qualities that matter as much as 

raw returns in real trading. 
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CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

This study focused on the design, training, and evaluation of reinforcement 

learning-based agents for intraday trading in the Indian stock market, specifically 

targeting the NIFTY 50 index. The research implemented three key models — Q-

Learning (QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) — and 

compared their performance across multiple metrics, including cumulative profit, Sharpe 

ratio, win rate, and maximum drawdown. The trading environment was constructed using 

four years of historical intraday OHLCV data sourced through Zerodha API, with an 

additional year reserved for testing and validation. Technical indicators were generated to 

enhance feature representation, and a simulated Q-value data generation approach was 

used to create supervised labels for initial model training. 

The DDQN model emerged as the most effective, outperforming both QN and 

DQN in terms of profitability and risk-adjusted returns. Stabilization techniques such as 

experience replay and target networks played a vital role in achieving robust and 

consistent learning outcomes. The results validate that reinforcement learning agents, 

particularly DDQN-based models, can effectively adapt to volatile market conditions, 

learn optimal trading strategies over time, and provide a viable alternative to traditional 

rule-based or supervised learning trading strategies. 

6.2 Implications 

The findings of this study carry important implications for both academic research 

and practical financial trading applications: 

 Practical Trading Systems: 

Reinforcement learning agents like DDQN provide a promising foundation for 
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real-world algorithmic trading systems. Their ability to adapt to dynamic 

market environments without human intervention positions them as powerful 

tools for intraday trading strategies. 

 Risk Management: 

The superior performance of DDQN in managing drawdowns and achieving 

higher Sharpe ratios suggests that reinforcement learning agents can serve not 

only as profit maximizers but also as effective risk managers, offering 

balanced returns in volatile markets. 

 Model Stabilization Techniques: 

The success of experience replay and target network mechanisms highlights 

the importance of stabilization strategies in financial reinforcement learning 

applications. Without such mechanisms, training could become unstable, and 

models could underperform in live environments. 

 Adaptability Across Market Conditions: 

The DDQN agent’s ability to generalize across bull, bear, and highly volatile 

market phases demonstrates the potential for reinforcement learning models to 

reduce dependency on constant retraining and optimization, improving 

operational efficiency in trading systems. 

 Advancement of Reinforcement Learning in Finance: 

This research contributes to the growing body of knowledge that showcases 

reinforcement learning as a competitive approach for financial decision-

making, outperforming traditional rule-based and supervised learning methods 

when properly implemented. 

 

 



 

 

136 

6.3 Recommendations for Future Research 

While this study demonstrated the strong potential of DDQN-based reinforcement 

learning agents for intraday trading, several areas remain open for further investigation 

and improvement: 

 Incorporating Online Learning: 

Future models could adopt online reinforcement learning frameworks where 

agents continuously update their policies based on live market data, enhancing 

adaptability in real-time trading environments. 

 Hybrid Model Development: 

Combining reinforcement learning with supervised learning models or 

ensemble strategies could help create hybrid agents that leverage the strengths 

of multiple approaches, improving both profitability and stability. 

 Broader Asset Class Testing: 

Extending the application of DDQN models to other financial instruments, 

such as commodities, foreign exchange (forex), or cryptocurrencies, would 

provide insights into the model’s robustness across different market structures. 

 Enhanced Reward Structures: 

Exploring more complex reward functions that integrate profitability, 

drawdowns, volatility control, and transaction costs can lead to the 

development of even more risk-aware and efficient trading agents. 

 Multi-Agent Reinforcement Learning: 

Future research could involve training multiple specialized agents for different 

market conditions (e.g., bull, bear, sideways), combining their outputs 

dynamically to improve decision-making under varying scenarios. 
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 Live Deployment and Real-World Validation: 

Moving beyond simulated environments, live deployment with appropriate 

safeguards (such as capital constraints and stop-loss systems) would validate 

the true operational readiness of reinforcement learning agents in financial 

markets. 

 

6.4 Limitations and Threats to Validity  

This work is explicit about the kind of truth it pursues. Labels are reward-truth: 

they represent what the objective prefers after frictions, not what an omniscient annotator 

might decree. That choice grants coherence between training and evaluation, but it binds 

us to the reward specification. If fees rise, spreads widen, or latency drifts, the same 

states may deserve different labels. Readers should weigh results with that dependence in 

mind. Where performance turns while costs demonstrably change, the first remedy is to 

re-stamp assumptions and regenerate labels—not to fault the learner. 

A second boundary is state expressiveness. The simulator and policy can only 

reason with what the state vector shows them. If microstructure cues essential to a sudden 

regime switch are absent—queue dynamics around the inside market, news-sensitive 

time-of-day structure—then even a perfect alignment of label and policy will feel 

surprised. The thesis mitigates this by favoring compact, stable features over ornate ones, 

but it does not eliminate the risk that reality speaks a dialect the model does not hear. 

There is also the risk of over-reading back tests. Episodes are replayed to learn 

from many plausible paths, but history itself happens once. We manage this tension with 

embargoes and with a narrative attitude toward wins and losses: decisive labels that lose 

tell us about misspecification; near-ties that scatter tell us about variance. Still, the 



 

 

138 

strongest evidence of durability remains time. The thesis stops short of live deployment; 

its claims should be read as carefully grounded, not as guarantees. 

Finally, operator dependence is both a strength and a liability. The system makes 

edge cases legible—near-ties are flagged, margins are visible—and invites human review 

when prudence demands it. That invitation must not become a loophole. Overrides are 

limited to ambiguous moments and are always logged with reasons; the point is to 

maintain accountability, not to restore folklore. Governance chapter 5A explains the 

controls; this section acknowledges that controls are only as good as the discipline with 

which they are followed. 

Taken together, these limitations do not weaken the contribution; they bound it. 

The thesis argues that simulation-supervised labels produce a coherent, auditable learning 

target for intraday trading under realistic frictions. Within that frame, the results are 

persuasive. Outside it, the right response is not to stretch the claim, but to restate the 

assumptions and start the conversation again. 

 

6.5 Conclusion 

This research successfully demonstrated the effectiveness of reinforcement 

learning, particularly the Double Deep Q-Network (DDQN) framework, in building 

adaptive and profitable intraday trading agents for the NIFTY 50 stock market. Through 

systematic model design, simulation-driven data generation, and rigorous evaluation, the 

DDQN agent consistently outperformed traditional Q-Learning and Deep Q-Network 

models across key metrics such as cumulative profit, Sharpe ratio, and risk management. 

The study reinforced the importance of stability techniques, such as experience 

replay and target networks, and highlighted how exploration-exploitation dynamics 

significantly influence learning quality and trading success. The agent's ability to 
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generalize across different market phases and handle market anomalies underscores the 

potential of reinforcement learning for real-world financial applications. While this work 

lays a strong foundation, it also opens pathways for future enhancements such as online 

learning, hybrid models, and live trading validations. Overall, reinforcement learning 

holds significant promise for the evolution of intelligent, self-adapting financial trading 

systems capable of thriving in increasingly complex and volatile markets. 
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APPENDIX A:  

LIST OF TECHNICAL INDICATORS USED 

The following technical indicators were generated using Python's ta (technical 

analysis) library to enrich the stock price data 

 

Type Indicators 

Volume-

Based 

Indicators 

ADI, OBV, CMF, FI, EM, SMA_EM, VPT, VWAP, MFI, NVI 

Volatility 

Indicators 

Bollinger Bands (BBM, BBH, BBL, BBW, BBP, BBHI, BBLI), Keltner 

Channel (KCC, KCH, KCL, KCW, KCP, KCHI, KCLI), Donchian Channel 

(DCL, DCH, DCM, DCW, DCP), ATR, UI 

Trend 

Indicators 

 

MACD (MACD, MACD Signal, MACD Diff), SMA (Fast, Slow), EMA (Fast, 

Slow), Vortex Indicator (Positive, Negative, Difference), TRIX, Mass Index, 

DPO, KST (KST, KST Signal, KST Diff), Ichimoku (Conversion, Base, A, B), 

STC, ADX (ADX, ADX Positive, ADX Negative), CCI, Visual Ichimoku (A, 

B), Aroon (Up, Down, Indicator), PSAR (Up Indicator, Down Indicator) 

 

Momentum 

Indicators 

RSI, Stochastic RSI (Stoch RSI, Stoch RSI K, Stoch RSI D), TSI, UO, 

Stochastic Oscillator (Stoch, Stoch Signal), Williams %R (WR), Awesome 

Oscillator (AO), ROC, PPO (PPO, PPO Signal, PPO Hist), PVO (PVO, PVO 

Signal, PVO Hist) 

 


