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ABSTRACT

LEVERAGING DEEP REINFORCEMENT LEARNING FOR REAL-TIME TRADING
IN EMERGING MARKETS: INSIGHTS FROM NIFTY50

Stock trading is a complex decision-making problem influenced by market
volatility, macroeconomic conditions, and investor sentiment. Traditional strategies, such
as technical analysis and statistical models, rely on predefined rules and historical
patterns but often struggle to adapt to dynamic markets. Reinforcement learning (RL)
offers an adaptive approach by enabling trading agents to learn from past experiences and
optimize decisions over time. This study applies Q-learning (QN), Deep Q-Network
(DQN), and Double Deep Q-Network (DDQN) to intraday trading on NIFTY 50 stocks,
evaluating performance based on total profit, risk-adjusted returns, and trade execution
efficiency. The models were trained on four years of historical data and tested on one
year to assess adaptability to real-world conditions. Results show that DDQN
outperforms both QN and DQN, achieving the highest total profit (X1,151,325), best
Sharpe ratio (0.3450), lowest max drawdown (-1.12%), and highest trade accuracy
(67.72%). DQN improves over QN but suffers from higher drawdowns due to Q-value
overestimation, while QN struggles with profitability and risk control. These findings
confirm that RL-based trading models can significantly enhance decision-making and

profitability in algorithmic trading.



TABLE OF CONTENTS

ABSTRACT .ottt bbbt bbbt Rt e bbb b e \/
LISt OF TADIES ... ettt viil
S ) T U= S PRSPS iX
CHAPTER I: INTRODUCTION......ccttiiiiiiieiie st sieseeeeiesie sttt sne e snenns 1
1.1 BacKgroUnd........c.ccovouiiiiiieie e 1
1.2 Problem Statement.........cocvoiv e 4
1.3 Research QUESTIONS ......cuecivieiie ettt 10
1.4 Scope Of the STUAY ........ooeiiiiiieicee s 13
1.5 Contributions of the ReSearch..........ccccocoveieniiiiiiiiciec e 16
1.6 Business Relevance for AMCs and Large Institutional Desks............ 18
1.7 Thesis Organization ..........ccccvcveieeieeie i 22
CHAPTER II: LITERATURE REVIEW ..ottt 24
2.1 Overview of Reinforcement Learning in Business and Finance ........ 24
2.2 Deep Q-Networks (DQN) and Double Deep Q-Networks
(DDQN) in Algorithmic Trading........ccceveivievieieciese e 26
2.3 Reinforcement Learning in Different Business Domains................... 31
2.4 Review of Related Work in RL for Stock Trading...........ccccceevvevnennee. 35
2.5 Justification for RESEAICN.........ccoccvevveiee i 38
CHAPTER HI: METHODOLOGY ...oooiiiiieiesie sttt eneas 40
3.1 Data Collection and PreproCessing .........ccccoceverererieeieerienenesiesieseenns 40
3.2 Technical Indicator GENEration............cccoeeveieneeenieeriene e 43
3.3 Q-Value Simulation for RL Training.........cccoeerererienieienese e 48
3.4 Reinforcement Learning Model Development ...........c..ccceovveiieinnns 58
3.5 Training the RL AQENT......ccoiiiiiiiecee e 84
3.6 Performance Evaluation MetriCs...........coocoveviiiiniinienie e 90
3.7 Implementation and Deployment Considerations.............cccccvevvereeenee. 95
CHAPTER IV: RESULTS . ....ooitiiieeee ettt et 101
4.1 Research QUESLION ONE.......c.cccoveeiiiiiiec e 101
................................................................................................................. 101
4.2 Research QUESTION TWO .....vcveieeieeie e see e 104
4.3 Research QUESHION TNIEE .......cccvveeiiiiccee e 107
4.4 Research QUESLION FOUL ..........ccveiiiiie et 110
4.5 Research QUESLION FIVE ........cocviiiiiiic e 112
4.6 Research QUESLION SiX ....c.civeiieeiiiiie ettt 115

vi



4.8 How To Read The Results: A Guide For The Trading Mind ........... 118

e O] o [ 1] o] o ISR 118
CHAPTER V: DISCUSSION......ccotiiiiiieiiesie st se st eeeeie ettt sa e s e sne e 120
5.1 Research QUESLION ONE.........ccveiiiieiieciree et 120
5.2 Research QUESION TWO .....ocviiiiiiiiiesiieie e 121
5.3 Research QUESLION THIEE .......ccveevvieiicceece e 122
5.4 Research QUESEION FOUT .........ccveiiiieiieiesie et 123
5.5 Research QUESLION FIVE ........coovviiviiiieiciee e 125
5.6 Research QUESLION SIX ....ccuviieiieriieieiieie e 126
5.7 SUMMary of DISCUSSION .......c.ccveiiiiieieecie e 128
5.8 Governance, Model-Risk, and Auditability with Q-Written
LADEIS ..o 129
CHAPTER VI: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS....... 134
6.1 SUMMAIY ..ottt nbn e nre s 134
6.2 IMPICALIONS. ......iiiiiiiiieie s 134
6.3 Recommendations for Future Research...........ccccoocevvveivicieveccecnnn, 136
6.4 Limitations and Threats to Validity ..........c.ccoovviiiiiiinciecee 137
6.5 CONCIUSION ...t 138
REFERENGCES ...ttt st e e snenaentennenneeneas 140
APPENDIX A: LIST OF TECHNICAL INDICATORS USED.......cccoceiiiiiiiiiiennen, 148

vil



LIST OF TABLES

Table 1: Comparison of trading strategies and their limitations..............c.ccoccevvvevveveceenn. 4
Table 2: Key challenges in processing stock market data and their impact on

PrediCtiVe MOEIS ......ccveeie ettt e e sre e sreesreenee s 6
Table 3: Key research areas and expected improvements in RL-based trading. .............. 12
Table 4: Summary of study scope and model evaluation criteria.............ccccoeveveiiveinenns 15
Table 5: Summary of theoretical advancements in reinforcement learning-based

TrAdING MOUBIS... .ttt e e e s e e seeenresraenreeneens 17
Table 6: Reinforcement learning components and their relevance to financial

L0210 13T OSSP PRORSN 26
Table 7: Comparison of DQN vs. DDQN for financial trading applications ................... 30
Table 8: Key applications of reinforcement learning in financial services. ..................... 33
Table 9:Summary of key RL-based trading research and their contributions................... 35
Table 10: Comparison of RL-based trading models with traditional approaches ............ 36
Table 11: Comparision of DDQN VS DON.......c.ccoiiieiiiieiieie e 82
Table 12: Hyperparameter Tuning and Final Training Loop Execution ..............cccceeu... 89
Table 13: Summary of Evaluation METriCS..........coviiiiiiireieiesess e 95
Table 14:Overall Model Performance SUMMArY ...........ccccoeiieieeie i 102
Table 15:Risk-Adjusted Performance Metrics Across Models .........cccocevvveivnieieenee. 104
Table 16:Best Risk-Adjusted Stocks (Highest Sharpe Ratio)...........cccoceveviieiincnennnn 104
Table 17: Top 10 total profit performing stocks across models ............cccccovvevveeinnne. 108
Table 18: Stocks Exhibiting Worst Risk-Adjusted Performance in Baseline

IVIOTBIS. ..ttt ettt b et se et e et et nr et nne e 110
Table 19:Stocks with Best Resilience under DDQN .......cccccoovivviiiiiiienieie e 111
Table 20:Overall Model Performance CompariSON..........ccccvevvviiieiieiiieesie e 113
Table 21:Trade Behavior Comparison ACross Models...........ccoviirinienenenencncsen 115

viil



LIST OF FIGURES

Figure 1: Evolution of Algorithmic Trading..........cccecveveiiiieeie e 1
Figure 2: Reinforcement Learning Based Frameworks in Stock Market .............cc.ccoenee. 3
Figure 3: Comparison of Traditional Machine Learning vs. Reinforcement

Learning iN TTA0ING .....o.eoieeieiee e bbb b 8
Figure 4: Q-learning vs. DQN vs. DDQN — A Comparative Study on Trading
PEITOMMIANCE ...ttt et et e st e et e e st e sreenteeneesreenbeeneens 9
Figure 5:Fundamental Concepts of Reinforcement Learning..........cccccceevveveiveneeiiesieenn. 25
Figure 6:Comparing DQN and DDQN in Financial Applications............cccccoeevenininnnne. 30
Figure 7:RL-Based Stock Trading and Portfolio Optimization Framework .................... 32
Figure 8: Conceptual Framework for DDQN-Based Trading Agent...........cccccocevvnvnnne. 39
Figure 9: Data Collection and PreproCesSing........ccccvveivereieeieesesiieseeseeeeseese e ssee e 40
Figure 10: Q-Value Simulation ArchiteCtUre. ..........coeveiiiiiiiiiiecee e 48
Figure 11: MDP Framework for Intraday Trading ..........ccccoeevieeiiiieieece e 60
Figure 12: Deep Q-Network (DQN) for Stock Trading.........ccccevvrerieiieienencnenesesiee 70
Figure 13:Double Deep Q-Network (DDQN) for Stock Trading..........ccccevveveeveciesneenne. 77
Figure 14:Training and Evaluation Workflow for RL Agent.........cccccooeiineicncncncnnne. 84
Figure 15: Environment Setup for Live RL-Based Trading Models...........c.ccccccveiennnnne. 91
Figure 16:Evaluation Metrics in Stock Market Trading .........c.ccoovvoveienenencnenesieens 101
Figure 17:1llustrates the total cumulative profit comparison across the three

MOTEIS. ..ttt bbbt r ettt bbb reenes 103
Figure 18:Sharpe Ratio Comparison across QN, DQN, and DDQN ...........cccccocenvninnns 106
Figure 19:Profit Factor Comparison across the models.............cccccoviiiiiiiiciccinc i, 106
Figure 20:Cumulative Profit Distribution Across Stocks (Grouped by Model).............. 109
Figure 21:Sharpe Ratio Comparison for Top and Bottom Stocks Across Models......... 111
Figure 22:Total Profit vs Model COmPariSON...........covieiiieieneniieseiee e 114
Figure 23:Win Rate vs Trade Count Across Models.........cccoovveviiiiiiiiiiiicic e, 114
Figure 24:Average Trade Duration Comparison Across Models ... 117

X



1.1 Background

CHAPTER I

INTRODUCTION

Financial markets are highly dynamic, influenced by various factors such as

economic policies, global events, and investor sentiment. Traditional stock trading

strategies rely on either fundamental or technical analysis, both of which have limitations

in adapting to rapidly changing market conditions. The introduction of machine learning

(ML) and artificial intelligence (Al) in finance has led to significant advancements in

algorithmic trading. Among these, reinforcement learning (RL) has emerged as a

powerful tool for decision-making in complex and uncertain environments (Ansari et al.,

2024).

1.1.1 Evolution of Algorithmic Trading

Self-learning
trading agents
Adaptability to
market conditions
Optimized
execution strategies

Ultra-fast
execution

Al-driven
decision making

Low latency
strategies

Reinforcement
Learning-Based
Trading

High-Frequency
Trading (HFT)

Evolution of
Stock Trading

Figure 1: Evolution of Algorithmic Trading
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Algorithmic trading has transformed financial markets by automating trade

execution based on predefined rules. Early models used statistical approaches such as



moving averages and regression analysis, but these lacked adaptability to real-time
market fluctuations. The rise of machine learning-based trading systems allowed for more
dynamic strategies, leveraging historical price patterns and market indicators to predict
future price movements (Awad et al., 2023).
1.1.1.1 From Manual Trading to High-Frequency Trading
e Manual trading involved human decision-making based on experience and
market knowledge.
o The advent of electronic trading enabled faster trade execution, but decisions
were still rule-based.
o High-Frequency Trading (HFT) emerged, utilizing algorithms to execute
thousands of trades per second, reducing human intervention significantly.
1.1.1.2 Role of Machine Learning in Financial Markets
e Machine learning models, such as LSTMs and CNNSs, have been widely
applied to financial forecasting.
o Supervised learning models depend on labeled data but struggle with unseen
market conditions.
« Reinforcement learning surpasses traditional methods by allowing the model
to learn optimal strategies through trial and error (Byun et al., 2023).
1.1.2 Reinforcement Learning in Financial Markets
Reinforcement learning (RL) is an advanced decision-making framework where
an agent interacts with an environment and learns from rewards and penalties. It is well-
suited for financial markets, where traders must adapt to uncertain and dynamic
conditions. RL-based models can self-improve over time, making them ideal for trading

applications (Cui et al., 2023).



1.1.2.1 Why Reinforcement Learning for Stock Trading?

o Unlike traditional models, RL-based trading agents do not require predefined
rules.

e RL continuously adapts to market conditions by optimizing trading actions
(buy, hold, or sell).

o Advanced RL models such as Deep Q-Networks (DQN) and Double Deep Q-
Networks (DDQN) have shown superior performance in handling market
volatility (Choi & Kim, 2024).

1.1.2.2 Reinforcement Learning vs. Traditional Trading Strategies

RL-Based Trading

Framework
Rule-based decision
making
Traditional . HumarP
Requires labeled Trading Strategies m:'eerveil:'tel:lm
historical data Supervised ko
Learning in s AT
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indicators) CAITINE data
Advantages
Action: Buy, Sell, Key Components ‘ Adapts dynamically to
Hold decisions of RL Trading new conditions
Reward: -
Profit/Loss Multi-agent RL
e Future of RL in Hybrid AI models
Trading

Real-time decision
making

Figure 2: Reinforcement Learning Based Frameworks in Stock Market



Below table provides a comparison of different trading strategies, highlighting
their approaches and limitations. It shows how traditional methods like technical analysis
and statistical models struggle with adaptability, while reinforcement learning offers real-

time learning capabilities, making it more suitable for dynamic market conditions.

Table 1: Comparison of trading strategies and their limitations.

Trading Strategy Approach Limitations
Technical Analvsis Uses indicators like RSI, Struggles with sudden market
y MACD, moving averages shifts
. . Fails in high volatili
Statistical Models Regression, ARIMA, GARCH als |r_1 Igh volatility
scenarios

Supervised ML Models Uses labeled historical data g;?lr; otadapt to new trends

Reinforcement Learning Learns dynamically from actions Adapts t.o changing conditions
and rewards in real-time

1.2 Problem Statement

Stock market prediction and algorithmic trading have been extensively studied,
yet achieving consistently profitable trades remains a challenge due to market volatility,
unpredictable price movements, and high-frequency fluctuations. Traditional rule-based
strategies often fail to generalize across different market conditions, and even advanced
machine learning models struggle to adapt to sudden market changes. Reinforcement
learning (RL) offers a promising solution by enabling Al agents to learn optimal trading
strategies through interaction with the environment (Feizi-Derakhshi et al., 2024). Most
existing models rely on historical price patterns, technical indicators, or statistical
relationships, which often fail to capture the real-time complexities of stock market
behavior. The stock market is highly nonlinear, and the relationship between different

market variables is not always explicitly defined. In such cases, rule-based approaches



and even supervised learning techniques struggle to make accurate predictions (Guarino
etal., 2024).

This study aims to address the limitations of traditional trading strategies by
developing an RL-based Al agent trained on four years of NIFTY 50 stock data. The
agent utilizes Deep Q-Networks (DQN) and Double Deep Q-Networks (DDQN) to
improve its ability to learn and adapt to dynamic market conditions. The study evaluates
the effectiveness of RL-based trading strategies compared to traditional approaches,
focusing on profitability, risk management, and stability in financial decision-making.

1.2.1 Challenges in Stock Market Prediction

The unpredictability of stock prices arises from numerous factors, including
economic policies, geopolitical events, investor psychology, and sudden market shocks.
Traditional forecasting models such as linear regression, ARIMA, GARCH, and decision
trees often fail to generalize across different market conditions, leading to poor real-
world performance (Huang et al., 2023).

1.2.1.1 Market Volatility and Uncertainty

Financial markets exhibit extreme volatility, making it difficult to predict future
price movements with high confidence. Volatility can be caused by:

« Macroeconomic events such as interest rate changes, inflation, or GDP

fluctuations.

o Geopolitical risks like international conflicts, trade wars, or regulatory

changes.

o Market sentiment and investor behavior, which can lead to panic selling or

speculative bubbles.

Traditional machine learning models trained on historical price data often fail to

account for these uncertainties, leading to overfitting on past trends. In contrast, RL-



based trading systems can learn to adapt to new market conditions and adjust their
strategies dynamically (Bai et al., 2023).

1.2.1.2 Data Complexity and Noise in Market Trends

Financial datasets are high-dimensional and noisy, making it difficult to extract

meaningful patterns. Several challenges exist in handling stock market data:

Price fluctuations contain high levels of noise, leading to inaccurate
predictions.
« Technical indicators (e.g., MACD, RSI, Bollinger Bands) add complexity,
making feature selection crucial.
o Extreme market events (e.g., flash crashes) create outliers, which can distort
model performance.
« To improve data quality, this study applies data preprocessing techniques such
as:
« Filtering chaotic data by removing stocks with extreme volume spikes.
« [Feature engineering to extract meaningful patterns from price movements.
o Normalization and scaling to ensure stable learning for RL models (Guarino et
al., 2024).
Below table outlines key challenges in stock trading and their impact on trading
models. It highlights how high volatility, market noise, data sparsity, and overfitting
create difficulties for algorithmic trading, affecting prediction accuracy and model

reliability in real-time market conditions.

Table 2: Key challenges in processing stock market data and their impact on predictive
models

Challenge Description Impact on Trading Models




High volatility Sudden price fluctuations Difficult to predict short-term trends

Market noise Random fluctuations unrelated to Can mislead trading algorithms
fundamentals

Missing data points or irregular

Data sparsity reporting

Inconsistent training data

Models learn past trends but fail in

Overfitting risk .
real-time

Poor generalization to new conditions

1.2.2 Gaps in Existing Reinforcement Learning Trading Models
Despite the success of DQN-based trading systems, several challenges remain.
Many models fail to generalize across different market scenarios, leading to inconsistent
performance. Furthermore, overestimation bias in Q-learning algorithms affects decision-
making accuracy (Espiga-Fernandez et al., 2024).
1.2.2.1 Over-Reliance on Historical Data
Most trading models are trained on historical market data, making them
susceptible to overfitting. The primary issues include:
o Market conditions are constantly changing, and models trained on old data
may fail in new environments.
o Supervised learning models depend on labeled datasets, which are often
biased toward past trends.
o Traditional Q-learning models memorize past trades rather than adapting to
new patterns.
Reinforcement learning provides a solution by continuously updating its strategy

based on real-time feedback from market conditions (Du & Shen, 2024).
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Figure 3: Comparison of Traditional Machine Learning vs. Reinforcement Learning in

Trading

1.2.2.2 Lack of Stability in Q-Learning Approaches

Standard Q-learning algorithms suffer from high variance and instability, making

them unreliable for trading applications. Challenges include:

« Overestimation bias: The Q-learning agent often assigns unrealistically high

values to certain actions, leading to suboptimal trading decisions.

« Unstable training: The model may experience high fluctuations in

performance during training, leading to inconsistent trading behavior.

o Delayed rewards: In financial markets, the impact of a trade may not be

immediately visible, making it difficult for standard RL models to learn

effectively.
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Figure 4: Q-learning vs. DQN vs. DDQN — A Comparative Study on Trading
Performance

Deep Q-Networks (DQN) improve Q-learning by incorporating:
o Experience replay, which helps stabilize training by storing and reusing past

experiences.

o Target networks, which prevent the model from becoming too sensitive to

recent rewards.
However, DQN still has limitations, leading to the need for Double Deep Q-
Networks (DDQN), which further improves performance by:

« Decoupling action selection from Q-value estimation, reducing overestimation

bias.

« Enhancing stability in learning, leading to more consistent trading strategies

(Papageorgiou et al., 2024).



1.2.3 Addressing These Challenges with RL-Based Trading Strategies
To overcome these challenges, this research proposes an RL-based Al agent for
intraday trading, specifically designed to:
« Handle market volatility by dynamically adjusting trading strategies.
« Reduce data noise and overfitting by integrating technical indicators and
advanced feature selection techniques.
« Improve learning stability by implementing DDQN instead of standard Q-
learning.
o Optimize risk management by evaluating Sharpe ratio, win-loss ratio, and
cumulative profit as performance metrics.
1.3 Research Questions
This research aims to explore whether reinforcement learning, particularly the
Double Deep Q-Network (DDQN) framework, can outperform traditional intraday
trading strategies and be adapted to the specific market conditions of an emerging
economy like India’s NIFTY 50 index. The study will focus on optimizing buy, hold, and
sell decisions, enhancing risk management, and improving generalization across different

market conditions.

1. How effectively can a Double Deep Q-Network (DDQN)-based reinforcement
learning agent autonomously execute optimal buy, hold, and sell decisions in
the NIFTY50 intraday trading market?

2. How can the DDQN-based RL agent be optimized to balance maximizing

profitability with minimizing market risk, particularly during volatile periods?

10



3. How well does the DDQN model generalize across different market
conditions (e.g., bull markets, bear markets, and periods of high volatility) in
the NIFTY50 index?

4. Can reinforcement learning models like DDQN handle market anomalies
events that deviate significantly from normal market behavior?

5. What is the impact of experience replay and target networks on improving the
stability and learning efficiency of the DDQN model in the context of intraday
trading?

6. How does the exploration-exploitation tradeoff affect the performance of the
DDOQN agent in intraday trading, and how can it be managed for optimal

decision-making?

1.3.1 Primary Objectives

Develop a DDQN-based reinforcement learning agent for intraday trading

« Train the agent to autonomously execute buy, hold, and sell decisions in the
NIFTY 50 market.

o Implement Q-learning, DQN, and DDQN for comparative performance
analysis.

Optimize the DDQN agent for balancing profitability and risk management

« Design reward functions that maximize cumulative profit while minimizing
market exposure risks.

« Evaluate agent performance during high-volatility periods and unexpected
market fluctuations.

Assess the generalization ability of the DDQN model

11



o Test the RL agent’s adaptability across bull markets, bear markets, and

volatile periods.

o Investigate how market conditions impact the learning behavior of the model.

Analyze the impact of experience replay and target networks

o Measure the effect of experience replay on learning efficiency and model

stability.

« Evaluate how target networks reduce Q-value overestimation, leading to more

stable trading decisions.

Optimize the exploration-exploitation tradeoff for decision-making

« Tune epsilon decay strategies to balance exploration (learning new patterns)

and exploitation (executing profitable trades).

o Assess how different exploration strategies impact trade frequency, returns,

and market adaptability.

Table 3: Key research areas and expected improvements in RL-based trading.

Research Focus

Key Considerations

Expected Outcome

DDOQN trading performance

Buy, hold, and sell execution
in NIFTY 50

More profitable and efficient
trading decisions

Risk management strategies

Handling volatility,
drawdowns, and stop-loss

Improved capital protection
and lower risk

Generalization ability

Performance in bull, bear, and
volatile markets

More stable profits across
different market conditions

Experience replay & target
networks

Stability and learning
efficiency

Reduced overestimation bias,
better model training

Exploration-exploitation
tradeoff

Tuning epsilon decay for
decision-making

Optimized trade frequency and
adaptability

12



Above table presents the key research focus areas in reinforcement learning-based
trading, along with their considerations and expected outcomes. It highlights how DDQN
trading performance, risk management, generalization ability, experience replay, and
exploration-exploitation balance contribute to building a more stable, efficient, and
adaptable trading model for intraday stock markets. This research will provide valuable
insights into the practical application of reinforcement learning in intraday trading,
ensuring profitability, risk management, and adaptability to market conditions.

1.3.2 Secondary Objectives

Improve data preprocessing for better RL model training

« Use technical indicators like moving averages, RSI, and Bollinger Bands.

« Filter out market noise and extreme volume fluctuations.

Enhance RL agent stability through improved training techniques

o Implement experience replay and target networks to stabilize learning.

o Use epsilon decay strategies to refine exploration-exploitation balance.

Optimize hyperparameters for efficient model performance

« Tune learning rate, discount factor, batch size, and number of episodes.

o Experiment with different reward functions to encourage profitable trading

behavior.

Benchmark RL-based strategies against standard market indicators

e Compare the RL agent’s performance with technical analysis indicators.

« Test against common trading benchmarks (e.g., SMA crossovers, MACD).

1.4 Scope of the Study

This research focuses on developing and evaluating a reinforcement learning-
based trading agent, specifically using the Double Deep Q-Network (DDQN) framework,

for intraday trading in the NIFTY 50 stock market. The study aims to enhance trading

13



strategies by leveraging reinforcement learning techniques to optimize buy, hold, and sell
decisions while balancing profitability and risk management. The study covers data
collection, preprocessing, model development, and performance evaluation using four
years of historical market data for training and one year for testing. The trading agent will
operate in a simulated trading environment, where its decisions will be evaluated against
traditional trading strategies and benchmark models.
1.4.1 Inclusion Criteria
Stock Market Focus: NIFTY 50
e The study is limited to NIFTY 50 stocks, which represent India's top 50
publicly traded companies.
e The dataset includes intraday OHLCV data (Open, High, Low, Close,
Volume) extracted using Zerodha API.
Timeframe of Study
o Four years of data (training period): Used to train the RL agent and refine
trading policies.
e One year of data (testing period): Used to assess generalization and
profitability in real-world conditions.
Reinforcement Learning Models
e The study focuses on Q-learning, Deep Q-Networks (DQN), and Double Deep
Q-Networks (DDQN).
o Comparative analysis will be performed against rule-based strategies (e.qg.,
Moving Averages) and supervised learning models (e.g., LSTMs, Random

Forests).

14



Table 4: Summary of study scope and model evaluation criteria

Aspect Details

Market Index NIFTY 50 (Top 50 Indian stocks)

Trading Type Intraday trading (9:15 AM — 3:00 PM IST)

Data Source Zerodha API (Historical OHLCV data)

Training Period 4 years of stock data

Testing Period 1 year of stock data

Trading Models Q-learning, DQN, DDQN

Performance Metrics Cumulative Profit, Sharpe Ratio, Win-Loss Ratio, Drawdown

Above table provides an overview of the key aspects of the study, including the
market index, trading type, data source, training and testing periods, trading models,
comparison models, and performance metrics. It outlines the scope of the research,
ensuring a structured evaluation of reinforcement learning-based trading strategies in the
NIFTY 50 intraday market.

1.4.2 Exclusions

Exclusion of Fundamental Analysis

e The study does not incorporate fundamental indicators such as company

earnings, P/E ratios, or macroeconomic factors.

e The focus is solely on technical analysis and price-action-based trading

strategies.

Exclusion of Alternative Asset Classes

e The research does not consider cryptocurrencies, forex, commodities, or

derivatives.

15



o ltisstrictly limited to equity stocks listed on the NIFTY 50 index.
No Real-World Deployment
e The RL agent is tested only in a simulated environment using historical
market data.
o Live deployment on real trading accounts is outside the scope of this study.
The scope of this research ensures a focused and practical evaluation of
reinforcement learning in intraday trading, allowing for a controlled comparison between
traditional and Al-based trading models.
1.5 Contributions of the Research
This research makes significant contributions to the field of reinforcement
learning in financial markets, particularly in intraday trading using the NIFTY 50 index.
By leveraging Double Deep Q-Networks (DDQN), the study enhances trading decision-
making, ensuring a balance between profitability, risk management, and market
adaptability. The research provides both theoretical and practical insights into how RL-
based trading systems can outperform traditional models and adapt to dynamic market
conditions.
1.5.1 Theoretical Contributions
Advancing Reinforcement Learning for Stock Market Trading
« Demonstrates the effectiveness of DDQN over traditional Q-learning and
Deep Q-Networks (DQN).
« Investigates how experience replay, and target networks stabilize trading
decisions.
Understanding the Role of RL in High-Volatility Markets
« Analyzes the adaptability of RL agents during bull, bear, and highly volatile

periods.
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o Examines how reinforcement learning models handle market anomalies
compared to rule-based strategies.

Enhancing Exploration-Exploitation Strategies in Intraday Trading

« Investigates how epsilon decay strategies affect RL trading behavior.

o Optimizes the balance between exploring new strategies and exploiting

profitable ones.

Table 5: Summary of theoretical advancements in reinforcement learning-based trading
models

Contribution Description Impact

Evaluates DDQN performance More stable and profitable

DDQN in Stock Trading over Q-learning and DQN trading strategies

Risk and Volatility Adaptation Studies RL models in various  Helps in developing risk-

market conditions aware trading systems
Exploration-Exploitation Optimizes epsilon decay for Enhances adaptability and
Tuning RL decision-making trading efficiency

Above table highlights the key contributions of the study, describing their purpose
and impact. It demonstrates how evaluating DDQN, improving risk adaptation, and
optimizing exploration-exploitation tradeoffs contribute to the development of more
stable, efficient, and risk-aware reinforcement learning-based trading strategies.

1.5.2 Practical Contributions

Development of a Scalable RL-Based Trading System

e Implements an Al-driven reinforcement learning agent that can be integrated

into algorithmic trading platforms.

e Uses real-world financial data (NIFTY 50) to train and evaluate the RL agent.

Optimizing Risk-Adjusted Trading Strategies
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« Designs a reward function that incorporates profitability, volatility, and
drawdown constraints.
o Implements Sharpe ratio and drawdown-based optimization to reduce trading
risks.
1.5.3 Implications for Future Financial Markets
« Automation in Trading: RL-based agents can help in automating high-
frequency and intraday trading decisions.
o Risk-Aware Al Strategies: RL models can be fine-tuned to reduce risk
exposure in volatile markets.
« Scalability to Other Financial Markets: While this study focuses on NIFTY
50, the framework can be extended to other stock indices, cryptocurrencies,
and forex markets.
This study contributes to the advancement of reinforcement learning in financial
applications, bridging the gap between academic research and real-world trading.
1.5.4 Risk Disclosure & Non-Advisory Note
This thesis is a research document, not investment advice. The systems studied
operate under controlled assumptions and historical data. Live trading introduces
additional risks (execution, outages, regulation) that are outside scope. Any application of
these methods to real capital must undergo independent validation, risk review, and

compliance approvals.

1.6 Business Relevance for AMCs and Large Institutional Desks
Asset managers live in a world of daily subscriptions and redemptions,
benchmark pressure, fee compression, and intense oversight. Intraday, the problem is

simple but unforgiving: turn capital and client flows into steady cash generation while
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protecting execution quality and auditability. This thesis is relevant because it turns the

firm’s own reward logic (post-cost, after spread and latency) into actionable supervision

for models and does so using asset-agnostic technical indicators that travel cleanly across

equities, futures, FX, and crypto.

What problem does it solve for an AMC?

Speed to strategy. PM teams and central research can spin up intraday ideas
quickly because supervision comes from the same objective used to judge
P&L. That shortens the path from idea to desk-ready pilot—no endless
debates about ad-hoc tags or thresholds.

Cashflow and flow-of-volume. Daily flows (in/out) force AMCs to buy and
sell on the tape. The framework helps time those micro-decisions within the
day, aligning with typical U-shaped volume curves and pockets of liquidity,
which reduces slippage and stabilizes net basis points retained.

Execution discipline. Because the labels are tied to post-cost returns, the
same logic that trains the model can enforce don’t trade when the tape is thin
or spreads are wide. Doing nothing at the wrong moment is often the best
trade; the system makes that choice explicit.

Audit and model-risk. Every decision carries a recorded “why”: which
action won and by how much. This makes investment-committee reviews,
client due-diligence, and regulator questions faster to close—no folklore, just

a traceable margin by which one action beat the alternatives.

How would a large desk actually use it day-to-day?

Pre-trade: Before the open, PMs and the central execution desk review a short

scenario brief (“where is the model decisive/ambivalent today?”’). Flows from
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client orders or internal rebalances are bucketed against those decisiveness
windows to plan participation rates and venue selection.

e In-trade: The model’s intraday signals sit alongside broker algos
(VWAP/POVI/IS) in the EMS. When label margins compress (market
uncertain), the desk automatically leans toward lower participation or passive
queues; when margins are decisive, it leans in. Human oversight remains near-
ties are flagged for trader discretion, and all overrides are logged with reasons.

e Post-trade: Attribution splits P&L into alpha earned and costs saved. Losses
with large historical margins trigger a spec review; losses on near-ties are
treated as noise. This changes the tone of post-mortems from blame to

diagnosis.

Why this matters for scale and cross-asset rollout. AMCs rarely want one-off
toys; they want platforms. Because inputs here are only technical indicators—
and everything is measured in returns, z-scores, and ATR/volatility units—the
same stack can be re-used across strategies and asset classes. What changes are
execution assumptions (fees, spread, latency) and capacity limits. That means a
single investment in research engineering supports multiple desks: large-cap
equities today, sector sleeves next quarter, a futures overlay later, and even
crypto liquidity programs where 24x7 flow demands round-the-clock intraday
discipline.

Commercial outcomes an AMC can expect.
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e Faster approvals. Investment committees get a cleaner memo: “We trained
on the same objective we report; here are the decisive vs. ambiguous regions;
here’s the audit log.” Approval cycles shrink.

e Basis-points retained. Better timing relative to flow-of-volume and spreads
shows up as lower implementation shortfall and tighter slippage bands—
material in high-turnover books and cash equitization mandates.

e Capacity awareness. ADV-based caps and margin-aware throttles are built
into the governance design, reducing the risk of crowding and flow toxicity as
AUM grows.

e Client trust. Transparent decision logs and consistent post-trade narratives
make it easier to defend process quality with boards, consultants, and

regulators.

Where this sits in the operating model.

e PMs get a faster way to turn hypotheses into intraday tactics that respect their
risk budgets.

e Execution gains a “traffic-light” layer that tells them when to push, when to
shade, and when to stand down—fully logged.

e Risk and Compliance receive versioned configs, decision logs, and margin
distributions that map directly to policies on limits, outages, and incident
response.

e Data/Tech avoid brittle pipelines: only OHLCV is needed; the same code
runs across desks; releases follow a shadow — canary — full pattern with

instant rollback.
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Why now. Spreads are thin, venues fragment, and oversight tightens yearly.
AMCs must manufacture bps through timing, cost control, and clean process.
This thesis provides a method that is economically coherent (labels match the
objective), portable (features are asset-agnostic), and auditable (decisions
explain themselves). In other words, it’s not just a research result—it is a practical
playbook for converting flow and volatility into repeatable, defensible intraday

returns at scale.

1.7 Thesis Organization
This thesis is structured to provide a comprehensive study on reinforcement
learning-based intraday trading using the Double Deep Q-Network (DDQN) framework.
Each chapter follows a logical progression, from the background and literature review to
the methodology, results, and conclusions.
Chapter 1: Introduction
e Introduces the motivation, challenges, and research objectives of the study.
e Defines the scope of research and key contributions in reinforcement learning-
based trading.
Chapter 2: Literature Review
e Reviews existing work on reinforcement learning in financial markets.
e Explores Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN), and
their applications in stock trading.
e Identifies gaps in literature and justifies the need for this study.

Chapter 3: Methodology
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e Describes the data collection process using Zerodha API and preprocessing
techniques.

e Details the reinforcement learning architecture, including Q-learning, DQN,
and DDQN models.

e Outlines the training process, hyperparameter tuning, and model evaluation
criteria.

Chapter 4: Results and Discussion

e Presents experimental results of the RL agent’s performance.

e Compares RL-based trading strategies with rule-based and supervised learning
models.

e Evaluates trading performance using financial metrics like Sharpe ratio,
cumulative profit, and win-loss ratio.

Chapter 5: Conclusion and Future Work

e Summarizes key findings and contributions of the research.

e Discusses limitations of the study and proposes future research directions for

improving RL-based trading models.

This structured approach ensures a clear, logical progression in understanding

how reinforcement learning can enhance trading strategies.
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CHAPTER II:
LITERATURE REVIEW

2.1 Overview of Reinforcement Learning in Business and Finance

The rapid advancements in artificial intelligence (Al) and machine learning (ML)
have transformed financial markets, enabling the automation of trading strategies, risk
assessment, and portfolio management. One of the most promising Al techniques in
finance is reinforcement learning (RL), which allows trading systems to learn and adapt
dynamically based on past market experiences. Unlike traditional trading models, which
rely on predefined rules or statistical assumptions, RL-based models continuously refine
their decision-making process by interacting with real-time market data (Ansari et al.,
2024).

2.1.1 Evolution of Al and Reinforcement Learning in Financial Markets

The integration of Al in stock market trading has evolved over the years,

progressing through different computational techniques:

e Rule-Based Systems (Pre-2000s): Early trading algorithms relied on
predefined rules, such as moving average crossovers and Bollinger Bands, to
determine buy/sell signals. These models lacked adaptability to new market
conditions.

e Machine Learning-Based Trading (2000s-2015): Introduction of supervised
learning models (e.g., Support Vector Machines, Random Forests) that
learned patterns from historical data. However, these models required labeled
datasets and could not dynamically adapt.

¢ Reinforcement Learning-Based Trading (2015-Present): RL models,

particularly Deep Q-Networks (DQN) and Double Deep Q-Networks
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(DDQN), introduced self-learning capabilities, enabling trading agents to
adjust their strategies in response to market fluctuations (Choi & Kim, 2024).
2.1.2 Fundamental Concepts of Reinforcement Learning
Reinforcement learning is a subfield of Al that optimizes decision-making by
learning through interactions with the environment. In the context of stock trading, an RL
agent observes market conditions, executes trades, and adjusts its strategy based on
reward signals. The core components of RL include:
o State (S): Represents the market conditions, such as price movements,
technical indicators, and historical trends.
« Action (A): The decision taken by the RL agent, such as buy, hold, or sell.
e Reward (R): The feedback received based on the trade outcome (e.qg.,
profit/loss after a trade).

e Policy (): The strategy that the agent follows to maximize rewards over time.

Decision-making Polic State Market conditions
strategy y Reinforcement (OHLC, indicators)
Learning
Components
Profit/Loss S Atien Buy, Si'tll., Hold
feedback decisions

Figure 5:Fundamental Concepts of Reinforcement Learning

One of the key challenges in RL-based trading is the exploration vs. exploitation
dilemma. The model must explore new trading strategies to learn, while also exploiting
profitable patterns to maximize gains (Cornalba et al., 2024). Below table explains key
reinforcement learning concepts and their application in stock trading. It shows how

states, actions, rewards, policies, exploration, and exploitation influence the decision-

25



making process of an RL-based trading model, helping it adapt to market conditions,

optimize trade execution, and balance risk and reward effectively.

Table 6: Reinforcement learning components and their relevance to financial trading

Concept Description Application in Trading
Market condition (OHLC data, Determines the environment the RL
State (S) S i
indicators) agent perceives
Action (A) Buy, hold, sell Executes a trading decision
Reward (R) Profit/loss feedback after a trade qules t_h_e agent to optimize
profitability
Policy () Decision-making strategy Deflnes how the agent selects
actions
Exploration g’rylng new strategies to discover Helps find new profitable market
etter ones patterns
Exploitation Using known profitable strategies Ensures stable and reliable returns

This section has introduced the evolution of Al in stock trading and the
fundamentals of RL. Next, we will examine Deep Q-Networks (DQN) and Double Deep
Q-Networks (DDQN) in algorithmic trading.

2.2 Deep Q-Networks (DQN) and Double Deep Q-Networks (DDQN) in

Algorithmic Trading

Reinforcement learning has gained traction in financial markets, particularly in
intraday trading and algorithmic decision-making. Among RL-based approaches, Deep
Q-Networks (DQN) and Double Deep Q-Networks (DDQN) have emerged as effective
frameworks for optimizing stock trading strategies. These models improve upon

traditional Q-learning by integrating deep learning architectures that enable trading
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agents to handle high-dimensional market data and complex trading patterns (Cui et al.,
2023).
2.2.1 Deep Q-Networks (DQN) in Algorithmic Trading
Deep Q-Networks (DQN) have gained popularity in algorithmic trading due to
their ability to learn complex trading strategies from historical data. Unlike traditional Q-
learning, which struggles with large state spaces, DQN leverages deep neural networks to
approximate Q-values, enabling more effective decision-making in dynamic market
conditions. This section explores the application of DQN in trading, highlighting its
structure, advantages, and limitations.
2.2.1.1 Overview of Q-Learning and Its Limitations
Q-learning is a foundational RL technique that helps agents learn optimal
decision-making policies by updating Q-values for each state-action pair. However, in
complex environments like financial markets, traditional Q-learning struggles with
scalability and stability issues due to:
o Large state-action space: The number of possible market conditions and
actions is vast, making it impractical to maintain a Q-table.
« High variance in stock prices: Rapid price fluctuations lead to unstable
learning, causing poor convergence.
o Delayed rewards: Unlike environments with immediate feedback, financial
trading involves uncertain long-term rewards, making it difficult for Q-
learning models to learn effective policies (Du & Shen, 2024).
To overcome these challenges, Deep Q-Networks (DQN) leverage deep learning
techniques to approximate Q-values, enabling trading agents to learn more efficiently

from complex stock market data.
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2.2.1.2 How DQN Improves Traditional Q-Learning

Deep Q-Networks (DQN) extend Q-learning by incorporating neural networks to
approximate the Q-value function, allowing the agent to handle large state-action spaces
more effectively. The key improvements introduced by DON include:

o Experience Replay

o Stores past experiences (state, action, reward, next state) in a memory
buffer.

o Randomly samples past experiences during training to reduce
correlation between consecutive trades.

o Target Network Stabilization

o Maintains a separate target network to compute the Q-value updates,
preventing rapid fluctuations.
o Reduces instability in learning, allowing for better convergence.
« Neural Network Function Approximation
o Uses deep learning models (e.g., CNNs, LSTMs) to predict Q-values,
eliminating the need for explicit Q-tables.

These enhancements allow DQN-based trading agents to learn complex patterns,
make data-driven trading decisions, and improve market adaptability (Enkhsaikhan & Jo,
2024).

2.2.2 Double Deep Q-Networks (DDQN) for Stock Trading

Despite its success, DQN suffers from overestimation bias, where the agent
overestimates the expected reward of an action, leading to suboptimal trading decisions.
This overestimation often results in:

o Aggressive trading behavior: The agent may execute frequent, high-risk

trades due to inflated reward expectations.
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e Poor decision-making in volatile markets: Overestimated Q-values can

cause unrealistic price predictions, leading to losses.

To address these issues, Double Deep Q-Networks (DDQN) introduce a more
stable learning mechanism by decoupling action selection and evaluation (Papageorgiou
etal., 2024).

2.2.2.1 How DDQN Addresses Overestimation Bias

The key improvement in DDQN is the separation of action selection and Q-value
computation, reducing the likelihood of overestimated trading rewards. The DDQN
framework consists of:

e Two Neural Networks for Q-Value Estimation

o The online network selects the action.

o The target network evaluates the Q-value of the selected action.

o This separation prevents the model from assigning overly optimistic
rewards to risky trades.

e More Stable Learning in Volatile Markets

o By reducing overestimation, DDQN ensures more reliable trading
decisions during market fluctuations.

o The model is better suited for high-volatility scenarios like earnings
announcements, economic events, and sudden market shifts.

« Improved Risk Management

o The model discourages high-risk trades by ensuring that the agent
selects actions with realistic expected returns.

2.2.3 Comparing DQN and DDQN in Financial Applications

Recent studies have evaluated the effectiveness of DQN and DDQN in stock

trading, comparing their performance across different market conditions. Empirical
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results suggest that DDQN offers superior decision-making stability, particularly in high-

volatility markets (Feizi-Derakhshi et al., 2024).

Single Q-network

DDQN needs
more training Overestimates
> Challenges / DQN Q-values
Higher ‘\
computation cost p . { Higher risk trades
omparison o
DQN vs. DDQN
DQN suits stable Q Q Two networks
markets : :
Financial _/ \\ DDON More stable
DDQN handles Impact Q-values
volatility .
Better risk
control

Figure 6:Comparing DQN and DDQN in Financial Applications

2.2.3.1 Key Performance Metrics for Evaluating RL-Based Trading Agents

Below table compares Deep Q-Network (DQN) and Double Deep Q-Network
(DDQN) across key performance metrics. It highlights how DDQN improves over DQN
by reducing overestimation bias, enhancing risk management, and ensuring more stable
performance in volatile markets, whereas DQN tends to be more aggressive with frequent

trades but struggles in high-risk conditions.

Table 7: Comparison of DQN vs. DDQN for financial trading applications

Double Deep Q-Network

Metric Deep Q-Network (DQN) (DDON)

High (prone to aggressive

Overestimation Bias Low (more stable Q-values)

trading)
Profitability Good in stable markets Higher in volatile markets
Risk Management Weak (prone to high-risk Strong (discourages risky
trades) trades)
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Optimized (fewer but better

Trade Execution Frequency  High (frequent trades) trades)

More stable in changing

Performance Stability Fluctuates in volatile markets conditions

2.2.4 Research Gaps and Challenges in RL-Based Trading Systems
Although DDQN improves upon DQN, there are still challenges that need further
exploration in reinforcement learning-based trading:
o Data Efficiency and Sample Complexity - RL models require large amounts
of training data, making real-time implementation computationally expensive.
o Handling Market Anomalies and Black Swan Events - RL models may
struggle to react effectively to rare, extreme market events, such as flash
crashes.
o Optimal Reward Function Design - Designing risk-aware reward functions
that optimize both profitability and capital protection remains a challenge.
These limitations highlight the need for further refinements in RL-based trading
models, particularly in risk management and real-time adaptation (Wang et al., 2024).
This section has provided an in-depth analysis of DQN and DDQN in algorithmic
trading, highlighting their advantages, challenges, and empirical comparisons.
2.3 Reinforcement Learning in Different Business Domains
Reinforcement learning (RL) has expanded beyond financial trading to various
business sectors, where it enhances decision-making, automation, and efficiency. While
RL is widely studied in stock market prediction, its applications extend to banking,
supply chain management, healthcare, and energy optimization (Santos et al., 2023). This
section explores how RL is applied in different industries, drawing insights that can be

adapted to algorithmic trading models.
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2.3.1 RL in Stock Market and Algorithmic Trading

RL-Based Stock Trading and Portfolio Optimization

Automates trade
execution

Allocates assets

— Stock Trading
Learns from market

dynmmieully Portfolio | | daitsi

Balances risk and Optimization

i Minimizes

. drawdowns
Exploration- — Risk Management
exploitation balance Handles fr!arket
Challenges — volatility

High computational

cost

Figure 7:RL-Based Stock Trading and Portfolio Optimization Framework
Financial markets have embraced RL to optimize trading strategies, execute
trades efficiently, and manage risk dynamically. The primary applications of RL in stock
trading include:
o Intraday and High-Frequency Trading (HFT)
o RL models are used to automate rapid trade execution while
minimizing slippage and transaction costs.
o Multi-Agent Reinforcement Learning (MARL) is applied in HFT to
compete with other market participants.
o Portfolio Management and Asset Allocation
o RL-based models learn optimal asset allocation strategies, adjusting
portfolios based on market conditions.
o Studies have shown RL can outperform traditional portfolio

rebalancing methods (Millea & Edalat, 2023).
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e Sentiment Analysis and Market Prediction
o RL agents integrate news sentiment analysis and social media trends to
anticipate price movements.

2.3.2 RL in Banking and Credit Risk Analysis

Banks use RL models to optimize credit approval decisions, loan pricing, and risk
assessment. Key applications include:

e Credit Scoring and Loan Approvals - RL optimizes loan approval processes

by analyzing repayment probabilities and credit risk (Guarino et al., 2024).

o Fraud Detection and Prevention - RL-based anomaly detection helps

identify fraudulent transactions in real time.

« Dynamic Loan Pricing - RL adjusts interest rates based on customer profiles

and macroeconomic factors.

Below table presents real-world applications of reinforcement learning (RL)
across different industries, highlighting its benefits in finance and banking. RL enhances
stock trading through adaptive strategies, portfolio management by optimizing asset
allocation, credit scoring with improved decision-making, and fraud detection through

real-time anomaly detection, making financial systems more efficient and data-driven.

Table 8: Key applications of reinforcement learning in financial services.

Application Industry RL Benefit

Stock Trading Finance Adaptive trading strategies, risk management
Portfolio Management Finance Asset reallocation based on market trends
Credit Scoring Banking Improved loan approval efficiency

Fraud Detection Banking Real-time identification of fraud patterns
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2.3.3 RL in Supply Chain and Logistics
Supply chain management benefits from RL’s ability to optimize inventory
management, demand forecasting, and route planning.

e Inventory Optimization

o RL adjusts stock levels dynamically based on historical demand

patterns.

o Helps reduce storage costs and avoid stockouts (Demir et al., 2023).
e Logistics and Route Optimization

o RL-based route planning minimizes delivery delays and fuel costs.
2.3.4 RL in Healthcare and Drug Discovery
Reinforcement learning plays a transformative role in personalized medicine,

treatment optimization, and drug discovery.

e Personalized Treatment Recommendations

o RL tailors treatments based on patient history and medical conditions.
e Drug Discovery and Clinical Trials

o RL models optimize clinical trial design to reduce costs and improve

drug efficacy (Hirano & Izumi, 2023).

2.3.5 RL in Energy and Smart Grid Optimization
In the energy sector, RL is used to balance energy demand, improve efficiency,

and enhance renewable energy integration.

o Energy Demand Forecasting - RL models predict electricity demand and

optimize power distribution.

e Autonomous Power Trading - RL-based grid management systems adjust

electricity supply based on consumption patterns.
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2.3.6 Summary and Relevance to Algorithmic Trading

While RL is transforming various industries, its applications in banking, logistics,
and energy offer valuable insights for financial trading models:

e Risk Management in Banking — Better Portfolio Risk Assessment in

Trading

o Logistics Optimization — Optimized Trade Execution and Order Routing

e Energy Demand Forecasting — Predicting Market Trends and Volatility

These cross-industry learnings will be explored further in the methodology and
implementation sections of this study.

2.4 Review of Related Work in RL for Stock Trading

The application of reinforcement learning (RL) in stock trading has been an area
of extensive research, with various models developed to enhance decision-making, risk
management, and profitability. This section reviews key studies on RL-based trading
strategies, comparing their methodologies, limitations, and performance in financial
markets.

2.4.1 Key Papers on RL-Based Trading Strategies

Several studies have explored RL-based trading agents, evaluating their
effectiveness against traditional strategies. Below are some notable research contributions

in the field:

Table 9:Summary of key RL-based trading research and their contributions

Study RL Model Used Key Contributions

Applied DON for stock market prediction,
showing improved performance over supervised
learning models.

Deep Q-Network

Awad et al. (2023) (DON)
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Demonstrated that DDQN reduces
Cui etal. (2023) Double DQN (DDQN)  overestimation bias, leading to better risk-
adjusted returns.

Enkhsaikhan & Jo P Evaluated policy gradient methods for trading,
(2024) PPO & Actor-Critic showing improved adaptability to market trends.
Papageorgiou et al. Multi-Agent RL Applied multi-agent reinforcement learning for
(2024) (MARL) high-frequency trading (HFT).

RL Portfolio Optimized asset allocation strategies using RL-

Santos et al. (2023) Optimization based portfolio rebalancing.

2.4.2 Reinforcement Learning vs. Traditional Trading Strategies

Traditional stock trading approaches rely on technical analysis, statistical models,
and supervised learning techniques. However, RL-based strategies offer adaptability,
continuous learning, and automated decision-making, making them more robust in
dynamic market conditions (Guarino et al., 2024).

2.4.2.1 Comparison of RL-Based and Traditional Trading Models

Below table provides a comparison of different trading strategies, outlining their
key features and limitations. Traditional approaches like technical analysis and
supervised learning models rely on historical data but struggle with adaptability.
Reinforcement learning methods, such as Q-learning and DQN, offer dynamic learning
capabilities but face challenges like overestimation bias and scalability issues. DDQN
improves stability by reducing overestimation bias, but it requires significant
computational resources and large datasets for effective training. This comparison
highlights the trade-offs between different trading strategies and the advantages of

reinforcement learning in algorithmic trading.

Table 10: Comparison of RL-based trading models with traditional approaches
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Trading Strategy

Key Features

Limitations

Technical Analysis

Uses indicators (e.g., RSI,
MACD) for decisions

Struggles in volatile and
unpredictable markets

Supervised Learning Models

Predicts price movements
based on historical data

Requires labeled data, poor
adaptability to new trends

Q-Learning (Basic RL)

Learns trading strategies
through trial & error

Poor scalability, unstable
training

DQN (Deep Q-Networks)

Uses deep learning to estimate
Q-values

Suffers from overestimation
bias

DDQN (Double Deep Q-
Networks)

Reduces overestimation bias,
improves stability

High computational cost, data-
hungry training

2.4.3 Research Gaps in Existing Literature

Despite the advancements in RL-based trading, several research gaps remain:

o Handling Market Volatility and Extreme Events

o Existing RL models struggle with sudden market crashes, flash

crashes, and unexpected news events.

o Need for risk-aware RL frameworks that can mitigate financial losses

during black swan events.

o Optimizing Reward Function for Financial Markets

o Many RL-based trading models optimize for short-term profits rather

than long-term portfolio stability.

o Improved reward function engineering is needed to balance

profitability with risk management (Feizi-Derakhshi et al., 2024).

e Computational Complexity and Real-Time Trading Feasibility

o RL models require large-scale historical data and extensive

computational power for training.
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o The challenge remains in deploying RL agents in real-time, low-
latency trading environments.
e Generalization of RL Models Across Different Market Conditions
o Existing models perform well in specific datasets but struggle in
different market regimes (bull vs. bear markets).
o Further research is needed to enhance the adaptability of RL-based
agents across varying financial conditions (Huang et al., 2023).
2.5 Justification for Research
Given the gaps identified in existing literature, this study seeks to enhance
reinforcement learning-based trading models, particularly for intraday trading on the
NIFTY 50 index. The research focuses on optimizing risk-adjusted trading strategies
using Double Deep Q-Networks (DDQN).
2.5.1 Why DDQON for Intraday Trading?
e Addresses Overestimation Bias: Reduces unrealistic trade expectations,
making decision-making more reliable.
e More Stable Trading Performance: Ensures better handling of high-frequency
market fluctuations.
e Improved Risk-Awareness: Incorporates Sharpe ratio and drawdown-based
optimization to minimize financial losses.
2.5.2 Bridging the Gap in RL-Based Trading Models
e Developing an Adaptive RL Model: Integrating epsilon decay strategies and
target network refinements.
e Evaluating Performance Across Market Cycles: Testing the DDQN-based RL

agent in bull, bear, and volatile markets.
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e Ensuring Scalability and Real-Time Feasibility: Optimizing computation

efficiency for live market execution.

Proposed System Architecture for the Intraday Trading Agent

State Representation
(Technical Indicators)

Action Space (Buy, Sell,
Hold)

Reward Function
(Percentage Change in Price)

Train with Multiple
Episodes per Day

Optimize Hyperparameters

Evaluate Performance
(Cumulative Profit)

Backtesting and Cross-
Validation

Collect Historical Data from
Zerodha API

Preprocess Data
1. Data Collection

and Preprocessing Generate Technical Indicators (TA

2. Environment Library)

Setup Feature Selection and

Standardization

Initialize Q-Table

-L i
Q-Learning Set Learning

Parameters

Neural Network

Architecture
3. Model

Implementation

Deep Q-Network

(DQN) Experience Replay
4. Tralnlng and Target Network
Evaluation

Action Selection

Double Deep Q- Network
Network (Double
DQN) Value Evaluation

Network

5. Deployment and Simulated Live Trading

Monitoring Real-Time Monitoring

Figure 8: Conceptual Framework for DDQN-Based Trading Agent

This literature review has established the importance of RL-based trading,

highlighted current research gaps, and justified why this study focuses on DDQN for

intraday trading.
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CHAPTER III:

METHODOLOGY

3.1 Data Collection and Preprocessing

To develop an effective reinforcement learning-based trading model, high-quality

and structured financial data is essential. This study collects intraday stock market data

from the Zerodha API, covering five years of NIFTY 50 stocks. The dataset consists of

one-minute interval OHLCV (Open, High, Low, Close, and VVolume) data, which

provides fine-grained price movements for training the RL agent. Before using the data

for model training, several preprocessing steps are applied to clean and structure the

dataset. These include handling missing values, removing extreme fluctuations,

normalizing price movements, and filtering data within valid trading hours. Additionally,

the dataset is segmented into individual trading days, ensuring that each day is treated as

a separate episode for reinforcement learning.

Source:
Data Zerodha API
Collection Data
Frequency
Data Collection
and Preprocessing Data
Workflow Cleaning
Data
Preprocessin Feat.ure .
g Engineering

Standardizat
ion

Figure 9: Data Collection and Preprocessing
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3.1.1 Data Source
The dataset is obtained from Zerodha API, a widely used platform for stock
market data. The focus of this study is on NIFTY 50 stocks, which are the most liquid
and actively traded stocks in India.
o Timeframe: The dataset spans five years (four years for training, one year for
testing).
o Data Interval: One-minute intraday price data.
o Features Collected: Open, High, Low, Close, Volume (OHLCV), along with
technical indicators.
This dataset provides a rich historical record of stock price movements, allowing
the RL agent to learn patterns, trends, and optimal trading actions.
3.1.2 Handling Missing Data
Stock market data can sometimes have missing values due to exchange
downtimes or irregular trading activity. To ensure consistency, missing values are filled
using past or future values, a process known as:
« Forward Fill: If a price is missing at time tt, it is replaced with the price from
t—1t-1.
« Backward Fill: If no past data is available, the missing value is filled using
the next available price.
This ensures that no gaps exist in the dataset, which helps the RL model process
smooth price movements.
3.1.3 Removing Extreme Price Movements
Sometimes, stock prices show sudden spikes or drops due to rare events. These

can mislead the RL model, causing it to learn incorrect patterns. To detect and remove
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extreme values, the study applies outlier detection techniques, ensuring that only realistic
price movements are included.

3.1.4 Normalizing Stock Prices and Volume

Stock prices vary significantly between companies. A stock priced at 1000
moves differently than a stock priced at ¥50. To make sure the RL model treats all stocks

fairly, prices are scaled between 0 and 1 using a simple formula:

X— Xmin

Xmax - Xmin

X' =

Equation (1) : Formula for data normalization

This ensures that all stocks are processed on the same scale, improving the RL
model’s learning process.

3.1.5 Filtering Data by Market Hours

The Indian stock market operates from 9:30 AM to 3:00 PM. Any data outside
these hours is removed, so that the RL agent learns only from real-time trading sessions.
This ensures that the model does not train on after-hours price fluctuations, which do not
impact intraday trading.

3.1.6 Splitting Data into Training and Testing Sets

To check if the RL model can predict trades correctly, the dataset is divided into:

e Training Data (80%): The first four years of data, used to teach the model.

o Testing Data (20%): The final year, used to check if the model works on

unseen data.
Additionally, each day is treated as a separate learning episode, meaning the

model learns from one trading day at a time.
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3.2 Technical Indicator Generation

Stock prices move in patterns, and traders use technical indicators to identify
trends, momentum, and volatility. These indicators help the RL agent understand the
market conditions and make informed trading decisions. In this study, various technical
indicators are computed and added to the dataset to provide additional insights for the
reinforcement learning model. Technical indicators are derived from OHLCV (Open,
High, Low, Close, and Volume) data and are used to determine buy, hold, or sell signals.
The indicators are classified into three main categories:

e Trend Indicators — Identify market direction.

e Momentum Indicators — Measure the speed and strength of price

movements.

« Volatility Indicators — Analyze price fluctuations over time.

e Volume-Based Indicators — Evaluate trading activity and liquidity levels.

3.2.1 Trend Indicators

Trend indicators help determine whether a stock is in an uptrend, downtrend, or
moving sideways. The most commonly used trend indicators in this study are Moving
Averages and the MACD (Moving Average Convergence Divergence).

3.2.1.1 Moving Averages

Moving Averages (MA) smooth out price fluctuations by calculating the average
price over a specific period. There are two main types:

Simple Moving Average (SMA): The average closing price over NN periods:

N

1
SMAN == NZ Pi

i=1

Equation ( 2) : Simple Moving Average
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where P; is the closing price at time ii.
Exponential Moving Average (EMA): Places more weight on recent prices,

making it more responsive to price changes:

EMAt ES Pt X a4+ EMAt—l X (1 - O()

Equation ( 3 ) : Exponential Moving Average

where a = Niﬂ is the smoothing factor.

These indicators help determine the market trend by identifying whether prices

are consistently rising or falling.

3.2.1.2 Moving Average Convergence Divergence (MACD)
MACD helps identify trend strength by comparing two moving averages. It is
calculated as:

MACD = EMA oy — EMA o,

Equation (4 ) : Moving Average Convergence Divergence

where EMA short (usually 12 periods) reacts faster to price changes than EMA
long(usually 26 periods). A positive MACD indicates an uptrend, while a negative
MACD signals a downtrend.

3.2.2 Momentum Indicators

Momentum indicators measure how fast prices are moving. They help identify
when a stock is overbought (rising too fast) or oversold (falling too fast).

3.2.2.1 Relative Strength Index (RSI)

RSI evaluates whether a stock is overbought or oversold using the formula:
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100 )

RSI:lOO_(1+RS

Equation ( 5) : Relative Strength Index

where
Average Gain over N periods

~ Average Loss over N periods
e RSI > 70 suggests that the stock may be overbought (a price drop is likely).

e RSI < 30 suggests that the stock may be oversold (a price rise is likely).

3.2.2.2 Stochastic RSI (StochRSI)
A more sensitive variation of RSI, Stochastic RSI identifies short-term

momentum shifts:

RSI — Min RSIy

Stochastic RSI = :
ochastie Max RSIy — Min RSIy

Equation ( 6) : Stochastic RSI

where Max RSI and Min RSI are the highest and lowest RSI values over NNN

periods. This indicator helps detect faster trend reversals compared to standard RSI.

3.2.2.3 True Strength Index (TSI)

TSI smooths out momentum signals, measuring longer-term trend strength:

EMAy(EMAy(AP))

TSI = 100 X
EMAy(EMAy(|AP]))

Equation (7)) : True Strength Index
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where AP is the price change. TSI > 0 suggests bullish momentum, while TSI <0
signals bearish momentum.
3.2.2.4 Rate of Change (ROC)

ROC calculates the percentage change in price over NNN periods:

P, —P._
ROC = "N+ 100
P_n

Equation (8 ) : Rate of Change

A positive ROC suggests upward momentum, while a negative ROC signals a
price decline.

3.2.2.5 Ultimate Oscillator (UO)

The Ultimate Oscillator prevents false momentum signals by combining short,

medium, and long-term price changes:

4 X BP, + 2 X BP,, + BP,g

UO =100 x
4XTR;, +2XTRy4 +TRyg

Equation (9 ) : Ultimate Oscillator

where BP is buying pressure and TR is the true range. This indicator helps reduce
the lagging effect of momentum oscillators.

3.2.3 Volatility and Volume Indicators

Volatility and volume indicators measure price fluctuations and market activity.
These indicators help determine whether a stock is experiencing high or low trading
activity.

3.2.3.1 Bollinger Bands
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Bollinger Bands measure price volatility using a moving average and standard
deviations:
Upper Band = SMAy + kX o
Lower Band = SMAy —k X ©

Equation ( 10 ) : Bollinger bands

where o is the standard deviation, and kk is a constant (usually 2).
e When prices touch the upper band, the stock may be overbought.

e When prices touch the lower band, the stock may be oversold.

3.2.3.2 Average True Range (ATR)
ATR measures market volatility by calculating the average price range over NN

periods:

N
1
ATRy = NZ(Highi — Low;)

i=1

Equation (11) : Average True Range

Higher ATR values indicate higher market volatility, while lower ATR values
indicate a stable market.

3.2.3.3 Chaikin Money Flow (CMF)

CMF tracks money flow strength, helping determine institutional buying or
selling activity:

N
i—1 (MFL; X ;)
CMF = =———
i=1 Vi

Equation (12 ) : Chaikin Money Flow
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where MFI (Money Flow Index) evaluates how much volume flows into or out of
a stock.

3.2.4 Computation and Integration into the Dataset

All technical indicators are computed using the TA (Technical Analysis) library
in Python. These indicators are added as new features in the dataset, allowing the RL
agent to analyze them while making trading decisions. These indicators give the
reinforcement learning model a better understanding of market conditions, helping it
recognize patterns and potential trading opportunities. All 80 technical indicators are
computed using the Python ta library, which simplifies the extraction of trend,
momentum, and volatility indicators. These indicators are added as new columns in the
dataset, making them available for the reinforcement learning model.

3.3 Q-Value Simulation for RL Training

Q-Value Simulation

Architecture
Collect Intraday Data e
Preprocess Data o 1. Initialization | Set o (Learning Rate)
. Data i
Generate Technical ' Preparation e | el
Indicators Reset Initial State
Split Data (Train/Test) Choose Action (&-
3. Training
Greedy)
Loop
Test on Unseen Data | 4. Take Action
Measure Profit | Evaluation lf’fi::ll;:tifh Observe r and s'
} Update Q(s, a)
Set s to s'

5. Output | Optimized Q-Table

Figure 10: Q-Value Simulation Architecture
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Intraday data rarely offers a clean answer to the question “what should have been
done here?” Prices move, reverse, and pause in ways that make any single, rule-based
label feel brittle the moment market conditions shift. In this thesis, we treat that
ambiguity head-on by letting the learning objective itself define the label. Each state is
passed through the Q-value simulation—the same dynamics that will ultimately judge
performance—and the action with the highest expected return becomes the label for that
moment. In other words, instead of arguing after the fact about whether a threshold was
too loose or too strict, we ask the simulator, under our reward definition, “Which action is
most valuable here?” and record that answer. The experiment does not change; we simply
make explicit what was already implicit: labels are reward-consistent and born from the
same objective that will later evaluate the policy.

This framing has a quiet but important consequence for ground truth. Markets do
not hand out gold-standard tags, but the simulation does produce a consistent notion of
“truth” relative to the trading objective. By taking the arg-max over QBuy, QHold, QSell
we align supervision with the very payoff we care about. The label is not a heuristic
proxy—it is the action that the objective itself prefers in that state. When the market
regime changes, the simulator’s returns change with it, and so do the labels; the
supervision therefore remains coupled to economic reality rather than to a static rule that
ages poorly.

Because each trading day is treated as an episode, we gain something else that
simple historical passes cannot offer parallel knowledge discovery. Replaying the same
day many times with varied seeds, replay order, and exploration noise exposes multiple
plausible trajectories through identical market backdrops. We are not changing any
mechanics; we are simply exploiting the episodic design to surface alternative “what-ifs”

around the same states. Over time this produces a denser, more informative set of state—
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action—return impressions—small differences in timing, small differences in path—which
help the learner understand not just what worked once, but what tends to work across
many nearby possibilities.

The architecture of training—e-greedy exploration with experience replay—
reinforces this effect. High-episodic training ensures that informative moments do not
vanish after a single sweep; they are remembered, resampled, and contrasted against less
informative ones. This recycling of experience is not embellishment; it is fidelity. It
acknowledges that intraday dynamics are path-dependent and that learning benefits from
seeing the same context under slightly different perturbations. The result is not only more
coverage of the state space, but more stability: the supervision signal is less hostage to
any one run or one burst of volatility.

Another virtue of simulation-supervised labeling is full reward-based control. The
training target and the trading goal are literally the same function. Many pipelines drift
because they are optimized to hit an intermediate surrogate (a thresholder return, a
margin around a moving average) and only later judged by actual profit-and-loss. Here,
the surrogate is the objective. The Q-value engine that scores actions is the same
mechanism that proposes labels. That unity removes a common source of mismatch,
especially around regime edges where hand-crafted thresholds behave erratically. It also
makes performance discussions cleaner: if the learned classifier or the later DQN/DDQN
deviates from labels, it is deviating from the payoff rule—not from an external proxy.

Crucially, the method keeps a human touch. While Q-values automate label
selection, they do so with transparent components. At any timestep a reviewer can see
which action won, by how much, and whether the margin was decisive or marginal. Edge
cases—near-ties during fast moves, sudden liquidity gaps—become auditable rather than

mysterious. This auditability is practical: it supports spot-checks, post-mortems, and the
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kind of qualitative sense-making that market practitioners expect when a model behaves
surprisingly. Nothing in the experiment is altered to achieve this; we are only making
explicit the rationale already present in the Q-value comparisons.

Finally, this supervision confers an operational advantage: faster network
modeling. Once labels exist, the baseline network can be trained as a supervised
classifier, which is computationally lighter than on-policy RL and quicker to iterate. That
speed does not dilute rigor; it enables it. We can perform more careful validations, more
granular ablations, and more conservative early stops before handing the baton to
DQN/DDQN. In effect, simulation-supervised labels serve as a map: they do not replace
the journey of interaction-driven learning, but they chart a sensible route so that the
policy search starts near promising neighborhoods rather than wandering blindly.

Taken together, these choices—reward-consistent labels, episodic replays, stable
reuse of experience, and transparent Q-based rationale—do not modify the experimental
pipeline described elsewhere in this thesis. They explain it. The novelty is not a new
switch or a hidden parameter; it is the decision to let the objective function write the
labels, to let episodes multiply our understanding of each day, and to keep the supervision
signal human auditable. In a domain where “ground truth” is contested and regimes shift
without warning, that combination is the difference between a rule that happens to work
and a learning target that continues to make economic sense.

To train the reinforcement learning (RL) agent for stock trading, it is essential to
simulate market interactions and generate Q-values for various trading actions. The goal
of Q-value simulation is to allow the RL model to evaluate trading decisions, refine its
predictions over multiple learning episodes, and ultimately optimize its strategy for
maximizing profits while minimizing risks. Q-values represent the expected future

rewards of taking a specific action in a given market state. These values are updated
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iteratively through multiple training episodes, where the agent continuously learns from

past experiences and adjusts its decision-making accordingly.

The Q-value simulation process consists of the following key steps:

Segmenting historical market data into individual trading days.
Generating Q-values for Buy, Hold, and Sell actions.

Running multiple training episodes per day to enhance learning.
Applying an exploration-exploitation strategy to balance learning and
decision-making.

Using experience replay to stabilize learning and improve model convergence.

3.3.1 Generating Simulated Trading Data Using Q-Values

The Q-value function enables the RL model to evaluate different actions and

refine its decision-making over time. The Q-value update rule is formulated as:

Q(s,a) = Q(s,a) + a[r+ ymaxQ (s’,a’) — Q(s,a)]

Equation ( 13 ) : Reinforcement Learning Q-Value Formula

where:

Q(s, a) is the current Q-value for taking action aa at state ss.

« is the learning rate, which controls how quickly new experiences influence
the model.

1 is the reward obtained for executing the action.

y is the discount factor, determining how much future rewards impact the
current decision.

max Q (s’,a’) is the highest estimated Q-value for the next state s’.
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This update ensures that the RL model learns to associate specific market

conditions with profitable trading actions.

Pseudocode for Q-Value Computation
FOR each trading day:
FOR each time step in market data:
OBSERVE the current market state s
CHOOSE an action a using exploration-exploitation
EXECUTE the selected action
OBSERVE the next market state s' and reward r
UPDATE Q-values using the Bellman equation:
Q(s, @) +=a * [r +y * max(Q(s', ) - Q(s, )]
STORE predicted Q-values in dataset
END FOR
END FOR

This iterative process ensures that the RL agent refines its Q-values over multiple

learning episodes, improving its decision-making capabilities.

3.3.2 Breaking Market Data into Daily Segments

Since intraday trading resets daily, the RL model must learn from each trading
day independently. Market data is segmented into separate trading days, treating each day
as an individual episode. This ensures that the agent learns patterns specific to daily stock

movements without carrying over unnecessary information from previous days.
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Pseudocode for Daily Market Data Segmentation
FOR each trading day:
EXTRACT all market data within 9:30 AM - 3:00 PM
STORE as an independent learning episode

END FOR

Each trading day is broken down into minute-by-minute intervals, ensuring that
the RL agent can process real-time stock price movements and make sequential trading
decisions accordingly.

3.3.3 Running Multiple Episodes Per Day

To maximize learning, the RL agent replays each trading day 100 times with
different initial conditions. This process, known as episodic reinforcement learning,
allows the agent to explore various strategies before committing to a fixed decision-
making pattern.

By running multiple episodes per day, the model learns:

« How different trading strategies perform in identical market conditions.

« The impact of different reward structures on decision-making.

« How early mistakes affect overall profitability, leading to optimized trading

behaviour.

Pseudocode for Running Multiple Episodes Per Day

FOR each trading day:

FOR episode in range(100):
RESET environment to the start of the trading day
FOR each time step:

SELECT an action based on Q-values
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EXECUTE the action
RECEIVE reward and update Q-values
END FOR
END FOR
END FOR

3.3.4 Exploration vs. Exploitation Trade-off

During training, the RL model must decide whether to explore new strategies or
exploit learned strategies. This is handled using an epsilon-greedy approach, where the
probability of selecting a random action decreases over time:

— —At
€t = €min + (Emax - emin)e

Equation ( 14 ) : Exploration vs Exploitation Trade-off

where:
e ¢, isthe exploration rate at time step t.
e €. IS the initial exploration rate (higher chance of taking random trades).
e €,in IS the minimum exploration rate (agent selects best-known actions).
e Alisthe decay rate, controlling how fast the model shifts from exploration to

exploitation.
Pseudocode for Exploration-Exploitation Strategy

FOR each time step:
GENERATE a random number z
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IF z > epsilon:
SELECT the action with the highest Q-value (Exploitation)
ELSE:
SELECT a random action (Exploration)
END IF
UPDATE epsilon based on decay rate
END FOR

At the start of training, the model explores more to discover new strategies. As
training progresses, it gradually shifts towards exploiting profitable strategies, improving
its trading accuracy.

3.3.5 Experience Replay for Stable Learning

To improve learning stability, the RL model uses an experience replay buffer,
where past transactions are stored and randomly sampled to train the model. This
prevents the model from overfitting to short-term patterns and ensures that it learns
generalized trading strategies.

The replay buffer stores past experiences as:

E={(s,ars"),(s,ars"),..,(sars" )y}

Equation (15 ) : Experience Replay for Stable Learning

where each tuple represents:

e s =current market state.

e a = action taken (Buy, Hold, Sell).
e 1 =reward received.

e s’ =next market state.
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Pseudocode for Experience Replay

FOR each training iteration:
SAMPLE a batch of past experiences from replay buffer
UPDATE Q-values based on sampled experiences
APPLY updates to improve trading strategy

END FOR

By randomly sampling experiences, the RL agent avoids overfitting to short-term
trends, leading to better long-term generalization.

The Q-value simulation process plays a vital role in reinforcement learning by
enabling the RL agent to interact with a simulated market environment before making
real trading decisions. By simulating different trading actions and observing their
outcomes, the agent gradually learns which strategies lead to profitable trades and which
ones result in losses. This learning process is essential because financial markets are
highly dynamic, and a trading strategy that works in one scenario may not perform well
in another. Through Q-value updates over multiple episodes, the RL model can analyze
how buying, holding, or selling at specific moments affects cumulative returns, helping it
develop a better decision-making framework over time.

One of the primary benefits of Q-value simulation is that it allows the RL agent to
train on historical stock data without financial risk. Unlike traditional backtesting
methods, where predefined rules are tested on past data, reinforcement learning
dynamically adjusts trading strategies based on past experiences. The RL agent observes
past market trends, evaluates possible outcomes for different trading actions, and

optimizes its future decisions accordingly. By running multiple training episodes per
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trading day, the model can explore various possible market scenarios, allowing it to
refine its strategy to maximize long-term profitability.

Another key aspect of Q-value simulation is the balance between exploration and
exploitation, which is managed through epsilon decay strategies. At the beginning of
training, the model explores a wide range of actions, even if they are suboptimal, to
discover new trading patterns. As training progresses, the agent gradually shifts toward
exploiting the best-known strategies, reducing random actions and making data-driven
trading decisions. This controlled transition ensures that the RL model does not get stuck
in local optima, allowing it to continuously improve its performance.

To ensure stability during learning, the Q-value simulation process incorporates
experience replay, where past transactions are stored and randomly sampled for training.
This technique prevents the RL model from relying too heavily on recent experiences,
which could lead to overfitting specific market conditions. Instead, the agent learns from
a diverse set of past experiences, improving its ability to adapt to new market trends and
unexpected fluctuations. By randomizing the learning process, experience replay
enhances the robustness of the RL trading strategy, making it more effective in real-world

stock trading.

In summary, Q-value simulation is a structured learning process that allows the RL agent
to interact with the market, optimize trading decisions, and refine its strategy over time.
Through multiple training episodes, exploration-exploitation balance, and experience
replay, the model develops a robust, data-driven trading approach before being deployed
in live financial markets. This ensures that the RL-based trading system is not only
profitable but also stable, risk-aware, and adaptable to evolving stock market conditions.

3.4 Reinforcement Learning Model Development
Developing an effective reinforcement learning (RL) model for stock trading
requires a structured approach where the agent understands market conditions, makes

trading decisions, and refines its strategies over time. The core idea behind reinforcement
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learning is that the agent interacts with an environment (the stock market), takes actions,
and learns from the rewards or penalties it receives. In this study, the RL model is
formulated as a Markov Decision Process (MDP), where trading is modeled as a
sequential decision-making problem. The agent must determine the best possible
action—Buy, Hold, or Sell—at each time step while considering historical price patterns,
technical indicators, and market trends. The learning process is driven by Q-value
updates, which allow the model to evaluate different trading strategies and optimize its
decision-making over multiple learning episodes.

To ensure optimal trade execution, three different reinforcement learning models

are implemented:

e Q-Learning (Baseline Model) — A fundamental RL model that serves as the
foundation for learning trading actions.
e Deep Q-Networks (DQN) — An advanced model that replaces the Q-table with a
neural network, enabling learning from large-scale financial data.
e Double Deep Q-Networks (DDQN) — An improved version of DQN that
eliminates overestimation bias, leading to more stable trading decisions.
Each of these models has unique properties that influence how the RL agent
learns and makes trading decisions. The following sections provide a detailed breakdown
of each model, explaining their mathematical foundations, learning mechanisms, and

implementation in stock trading.
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Figure 11: MDP Framework for Intraday Trading

3.4.1 Q-Learning Baseline Model (Deep Learning-Based Training on
Simulated Data)

The Q-learning baseline model used in this study is a supervised deep learning
model trained on simulated Q-values rather than a traditional Q-learning approach that
uses a Q-table. Instead of updating Q-values iteratively during live market interactions,
the model learns from precomputed Q-values generated in the Q-value simulation phase
(Section 3.3). The goal is to classify Buy, Hold, or Sell decisions based on past market
conditions, making this a classification problem rather than a reinforcement learning
problem.

3.4.1.1 Converting Q-Values to Action Labels

During the Q-value simulation phase, three Q-values are computed for every time
step:

e Q(Buy) — The expected reward if the agent chooses to buy.
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e Q(Hold) — The expected reward if the agent chooses to hold.
e Q(Sell) — The expected reward if the agent chooses to sell.

For each data point, the highest Q-value determines the final action label:

A = argmax(Qpuy, Qnotar Qsei)

Equation ( 16 ) : Converting Q-Values to Action Labels

where A, represents the selected action at time step t. If:

e Q(Buy) is the highest, the label is Buy.

e Q(Hold) is the highest, the label is Hold.

e Q(Sell) is the highest, the label is Sell.

This conversion transforms the dataset into a classification problem, where the
model is trained to predict which action has the highest Q-value based on historical

market indicators.

Pseudocode for Q-Value to Label Conversion
FOR each row in dataset:
COMPUTE Q-values for Buy, Hold, and Sell
SELECT the action with the highest Q-value
ASSIGN label as Buy, Hold, or Sell

STORE processed dataset for training

This step ensures that the deep learning model learns from precomputed Q-values,
allowing it to classify trading actions efficiently.

3.4.1.2 Imbalance Issue in Buy, Hold, and Sell Labels
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Stock market data naturally contains far more Hold actions than Buy or Sell
actions. Since markets often remain stable, traders hold their positions most of the time,
leading to an imbalance in the dataset where:

e Hold (~70-80%0) is the most frequent label.

e Buy (~10-15%) occurs less frequently.

o Sell (~10-15%) also occurs less frequently.

This imbalance can lead the model to Favor Hold predictions, reducing its ability
to recognize Buy and Sell opportunities. To balance the dataset, the Synthetic Minority
Over-sampling Technique (SMOTE) is applied.

3.4.1.3 Importance of SMOTE for Handling Class Imbalance

SMOTE (Synthetic Minority Over-sampling Technique) is used to generate
synthetic samples for underrepresented classes (Buy and Sell), ensuring that all labels
have a more balanced distribution. Instead of simply duplicating existing Buy and Sell
samples, SMOTE creates synthetic new samples by interpolating between real
observations.

The SMOTE algorithm works as follows:

e Identify Minority Classes (Buy and Sell).

e Find K-nearest neighbours for each minority sample.

e Synthetically generate new data points by interpolating between existing

neighbours.
Mathematically, the synthetic sample is generated using:
Xnew = Xminority + AXneighbor — Xminority)

Equation (17 ) : SMOTE Algorithm

where:
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e Xminority 1S an existing Buy or Sell sample.

e Xncighvor IS ONE Of its nearest neighbors.

e Aisarandom number between 0 and 1.

This ensures that new synthetic data points remain realistic and follow market

patterns while addressing class imbalance.

Pseudocode for Applying SMOTE

IDENTIFY Buy and Sell classes as minority classes
FIND K-nearest neighbors for each minority sample
GENERATE new synthetic Buy and Sell data points
ADD synthetic samples to dataset

ENSURE balanced dataset before training

By applying SMOTE, the model is trained on a more balanced dataset, improving
its ability to predict Buy and Sell decisions accurately.

3.4.1.4 Deep Learning Model Architecture

The Q-learning baseline model is implemented as a deep neural network (DNN)
that learns to classify Buy, Hold, or Sell based on stock technical features. The
architecture consists of:

e Input Layer — Receives stock market features (technical indicators).

o Hidden Layers — Uses ReL.U activation and dropout regularization to prevent

overfitting.

o Output Layer — Uses Softmax activation to classify actions.

Mathematical Representation of Neural Network Layers. Each hidden layer applies a

transformation to the input data:
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hi ES f(WIX + bl)

Equation ( 18 ) : Representation of Neural Networks

where:

e h; is the output of the hidden layer.

o W, is the weight matrix.

e X is the input feature vector.

e b, is the bias term.

e f(x) isthe ReLU activation function:

f(x) = max(0,x)

For the final classification layer, the Softmax function converts raw scores into

probabilities:
eza
P(a) = S

Equation ( 19) : Softmax Equation for classification

where:
e P(a) is the probability of choosing action aa (Buy, Hold, or Sell).

e Z4is the raw network output for action a.

Pseudocode for Model Training

INITIALIZE deep neural network with multiple dense layers

APPLY dropout regularization to prevent overfitting

COMPILE model with Adam optimizer and Categorical Cross-Entropy loss
TRAIN model for 128 epochs with batch size of 64

SAVE trained model for later predictions
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The model is trained using the Categorical Cross-Entropy loss function, which

measures how well the predicted probabilities match the true action labels:

N
L== yilog(®)
i=1
Equation ( 20 ) : Categorical Cross-Entropy loss function

where:
e y; isthe actual class label.
e ¥, isthe predicted probability for the correct class.
By minimizing this loss, the model improves its classification accuracy, learning

to correctly identify profitable trading actions.

3.4.1.5 Asset-Agnostic Feature Design: Technical Indicators Only

This thesis makes a deliberate choice: the only inputs to every network—the
supervised baseline, DQN, and DDQN—are technical indicators computed from OHLCV
bars (open, high, low, close, volume). There is no use of fundamentals, earnings, analyst
reports, options Greeks, order-book depth, news, social feeds, or any asset-specific
metadata.

e Generalization across markets. Technical indicators form a common language for
price and volume behaviour. The same patterns—trend, momentum, volatility
changes, range compression and expansion, participation—exist in equities,
futures, FX, and crypto.

e Clarity and portability. By keeping inputs universal, the full pipeline (feature
build, simulation-supervised labels, supervised pre-training, RL refinement) can
be applied to any instrument that has OHLCV data, without altering experiments
or code structure.

e This design does not “dumb down” the problem—it widens the boundary of the

study to any marketplace where OHLCYV is available.
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3.4.1.6 The indicator set and how it’s used
Indicators are chosen for role and clarity, not brand names. Each group captures a

different aspect of the tape:

Returns and momentum. Simple and cumulative returns over short windows,
rate-of-change measures.

Averages and trend. Short and long moving averages (simple or exponential),
distance between them, and the slope of a longer average to indicate broad trend
strength.

Volatility and range. Rolling standard deviation of returns, true range and
average true range (ATR), normalized high-low and close-open ranges to spot
compression and expansion.

Oscillators. RSI, stochastic signals, and distance to dynamic channels (for
example, how far price sits from a moving-average band), always expressed in
normalized units.

Participation and volume. Volume z-scores, deviation from VWAP, and simple
volume-price concordance signals.

Structure and timing. Flags for higher-high/lower-low sequences, small bar-
shape summaries, and time-of-day encodings so the model can recognise intraday

regularities without peeking ahead.

Every transform is calculated with causal windows only (past bars up to the decision
point) and recorded with its exact window length and normalization. The goal is a
compact, stable state vector that describes market shape, not a kitchen-sink of formulas.

3.4.1.7 Scale-free by design
To make indicators comparable across assets with different price levels and

volatility, all features are expressed in dimensionless or relative terms:

Work with returns or differences instead of raw prices.

Standardize rolling values into z-scores using past-only means and standard
deviations.

Express distances (for example, from price to a moving average or VWAP) in

standard-deviation or ATR units, not in points or ticks.
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Because of this, a large-cap stock at 3,500 and a currency pair at 1.2450 can look like
the learner when their patterns are similar.

3.4.1.7 Venue awareness without hardwiring venue rules

The feature build respects market sessions but never bakes in asset-specific tricks:

Sessional markets (equities). Time encodings are tied to the local session clock;
features reset or mark the open explicitly.

24xT markets (crypto). The same encodings fall back to a 24-hour cycle; there is
no notion of “open,” and nothing in the features assumes one.

Gaps and halts. Gaps are treated as missing time; there is no forward-fill or any

transformation that would move future information into the past.

Because every feature depends only on a fixed number of past bars, switching to a
new asset class simply means pointing the same code at a new OHLCV stream.

3.4.1.8 Why this generalizes to any marketplace (including crypto)
Technical indicators summaries shape rather than identity. A momentum burst

after a tight range, or a mean-reversion snap after an extended run, is the same idea
whether you look at a bank stock, crude oil, EURUSD, or BTC-perpetuals. With returns,
z-scores, and ATR-scaled distances, the model learns those ideas without being confused
by different price scales or tick sizes.

Two practical benefits follow:

Label logic travels. The simulation-supervised labeller ranks actions by
expected, post-cost return. When the features speak a common, normalized
language, that ranking remains understandable across assets.

Policy reuse is realistic. Even if you retrain per asset (you should), you don’t
need new architectures or asset-specific feature engineering. Hyperparameters and

training flow transfer cleanly.

3.4.1.9 Preventing leakage and keeping causality
All rolling calculations use past-only data. There is no look-ahead to future bars,

no use of end-of-day information inside the day, and no adjustments that would sneak
tomorrow’s knowledge into today’s features. Resampling (for example, ticks to 1-minute
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bars) is time-forward and deterministic. The guiding rule is simple: the model may only
see what a trader could have known at that moment.

3.4.1.10 What stays the same and what changes when you switch assets
Because inputs are just technical indicators:

e Unchanged: feature code, model architectures, training loops, replay and
label logic, evaluation procedures.

e Restated outside the model: execution assumptions in the simulator (fees,
spread, slippage, latency), calendar or session logic, and capacity constraints.
These live in the reward specification, not in the features—exactly why the

feature layer is portable.

3.4.1.10 Summary

The Q-learning baseline model is a deep learning-based classification system
trained on simulated Q-values, making it capable of predicting Buy, Hold, or Sell actions
based on historical stock market data. Unlike traditional Q-learning, which dynamically
updates a Q-table through exploration, this model follows a supervised learning
approach, where it learns from precomputed Q-values generated during the Q-value
simulation phase. This transformation allows the reinforcement learning problem to be
framed as a classification task, where the model is trained to identify optimal trading
decisions using historical market patterns and technical indicators. The training dataset
consists of input features such as OHLC prices, volume, and technical indicators, while
the labels are determined by selecting the action with the highest Q-value at each time
step.

To address the imbalance in action distribution, where the Hold action naturally
occurs more frequently than Buy or Sell, the Synthetic Minority Over-sampling
Technique (SMOTE) is applied. Financial market data often exhibits long periods of low

volatility, leading to an overwhelming number of Hold labels compared to Buy and Sell.
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If left unaddressed, this imbalance would cause the model to favor Hold actions, reducing
its ability to correctly identify profitable entry and exit points. By using SMOTE,
synthetic samples for underrepresented classes (Buy and Sell) are generated by
interpolating between real observations, ensuring a more balanced dataset. This
adjustment enhances the model’s ability to distinguish meaningful trading opportunities
rather than simply predicting Hold as the default action.

Once trained, the deep learning model acts as a foundation for more advanced
reinforcement learning models, such as Deep Q-Networks (DQN) and Double Deep Q-
Networks (DDQN). Unlike this baseline approach, which learns from precomputed Q-
values, DQN and DDQN dynamically update Q-values during training, allowing the
model to adapt in real-time to market conditions. The baseline model, however, provides
a starting point for trade prediction, enabling a structured approach for testing market
patterns before implementing more complex reinforcement learning strategies. By using
this classification-based approach, the study establishes a strong foundation for
transitioning to advanced RL-based trading models, ensuring that the reinforcement
learning agent has a pre-trained understanding of profitable trading actions before

engaging in dynamic learning and real-time decision-making.

3.4.2 Deep Q-Network (DQN) for Stock Trading
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Figure 12: Deep Q-Network (DQN) for Stock Trading

The Deep Q-Network (DQN) is an advanced reinforcement learning model that
enhances traditional Q-learning by replacing the static Q-table with a deep neural
network. Unlike the Q-learning baseline model, which learns from precomputed Q-
values, DQN dynamically updates its Q-values based on real-time trading experiences,
making it more adaptable to changing stock market conditions. DQN is implemented in
this study using a deep neural network, combined with experience replay and an epsilon-
greedy policy to optimize trade execution. The model learns to predict the best action
(Buy, Hold, or Sell) by analyzing historical stock indicators, price trends, and volume

changes.

3.4.2.1 Limitations of the Q-learning Baseline Model

While the Q-learning baseline model provides a structured approach for

predicting trading actions, it suffers from several limitations:

o Lack of Real-Time Q-Value Updates - The baseline model learns from static
Q-values generated during simulation but does not dynamically update them
during market interactions.

o Scalability Issues - Stock market data has high-dimensional features, making
it inefficient to store and update Q-values for all possible states using
traditional methods.

e Overfitting to Past Market Trends - The baseline model relies solely on
historical Q-values, which may not generalize well to new market conditions.

To overcome these challenges, DQN introduces deep neural networks to

approximate Q-values, enabling the RL agent to learn directly from market interactions.
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3.4.2.2 Introduction to Deep Q-Networks (DQN)

The Deep Q-Network (DQN) extends traditional Q-learning by:

Using deep neural networks to estimate Q-values instead of a precomputed
table.

Implementing experience replay to stabilize training and improve learning.
Applying an epsilon-greedy policy to balance exploration and exploitation.
At each time step t, the RL agent:

Observes the current stock market state S;.

Chooses an action A, (Buy, Hold, or Sell) using an epsilon-greedy policy.
Receives a reward R, and transitions to the next state S;, 1.

Stores experience (S, A;, R;, S;+1) in an experience replay buffer.

Samples past experiences from the buffer and updates the neural network.

Q-Value Update Rule in DQN

The Q-value function in DQN is updated as follows:

where:

Q(s,a) = Q(s,a) + a[r + ymaxQ (s',a’) — Q(s,a)]

Q(s, a) is the predicted Q-value for state ss and action aa.

«a is the learning rate, controlling how much the model learns from new
experiences.

1 is the reward for executing action aa.

vy is the discount factor, which determines the importance of future rewards.

max Q (s’,a’) is the highest predicted Q-value in the next state s’.

By continuously updating these Q-values, the model learns to make profitable

trading decisions over time.

3.4.2.3 DQN Model Architecture

71



DQN uses a deep neural network to approximate Q-values for each possible
action (Buy, Hold, Sell). The model consists of:
Network Components
e Input Layer
o Takes in stock market indicators (OHLC prices, volume, and technical
indicators).
o Applies feature scaling using Standard Scaler for stable learning.
e Hidden Layers
o Multiple fully connected layers with ReLU activation for pattern
recognition.
o Dropout layers to prevent overfitting.
e Output Layer
o Uses a SoftMax activation function to output Q-values for Buy, Hold,
and Sell actions.
Mathematical Representation: Each hidden layer applies a transformation:
h; = f(W,X + b))

Equation ( 21 ) : Neural Network Hidden Layer Formula

where:
e h; is the output of the hidden layer.
e W, is the weight matrix.
e X is the input feature vector.
e b; is the bias term.

e f(x)isthe ReLU activation function:

f(x) = max(0, x)
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The final output layer of the DQN model applies a Softmax function to generate
normalized Q-values, ensuring that the Q-values for the three possible trading actions
sum to 1. This allows the model to output probabilistic Q-values, making the decision-

making process more interpretable. The Softmax function is defined as:

eQ(sa)

P(a) = % veQGD

Equation ( 22) : Softmax Function for DQN network

where:
e P(a) is the probability of selecting action aa (Buy, Hold, or Sell).
e Q(s,a) is the Q-value for action a in states.
o The denominator ensures that the sum of probabilities for all actions is 1,
making it a valid probability distribution.
o This approach allows the RL agent to:

e Ensure exploration: Even if one action has a higher Q-value, the agent still
assigns non-zero probabilities to other actions.

e Avoid extreme overestimation: By normalizing Q-values, the Softmax
function prevents the model from assigning unrealistically high Q-values
to one action.

e Smooth action selection: Unlike greedy selection, Softmax ensures that the
model gradually shifts toward optimal actions rather than making abrupt
changes.

3.4.2.4 Experience Replay Mechanism
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One of the challenges in reinforcement learning is that consecutive market trades
are highly correlated, causing the model to overfit short-term price fluctuations.
Experience replay:

e Stores past experiences in a memory buffer.

e Randomly samples past experiences for training.

e Breaks correlation between consecutive trades, improving stability.

Pseudocode for Experience Replay Mechanism
INITIALIZE replay buffer
FOR each training step:
STORE (state, action, reward, next state) in buffer
IF buffer is full:
SAMPLE a batch of past experiences
COMPUTE Q-value updates
APPLY gradient updates to network
END FOR
By learning from a mix of past experiences, the RL model avoids overfitting to
recent price movements, improving generalization.
3.4.2.5 Training Process of DQN
The training loop follows these steps:
e Initialize replay buffer and neural network.
e Observe the initial market state.
e Select an action using the epsilon-greedy policy.
e Execute the action, receive reward, and transition to the next state.

e Store experience in replay buffer.
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e Sample a batch from the replay buffer for training.
e Update the Q-network using the loss function.

e Repeat until training is complete.

Pseudocode for Training Process of DQN
INITIALIZE replay buffer
FOR each episode:
RESET environment
FOR each time step:
OBSERVE current state S t
CHOOSE action A_t using epsilon-greedy policy
EXECUTE action and receive reward R_t
STORE experience in replay buffer
SAMPLE a batch of past experiences
UPDATE Q-network using loss function
END FOR
END FOR

3.4.2.6 Summary

The Deep Q-Network (DQN) model significantly improves upon the Q-learning
baseline model by introducing neural networks for Q-value approximation. Unlike the
baseline approach, which relies on precomputed Q-values, DQN dynamically updates its
Q-values based on real-time market interactions, allowing the model to adapt to changing
stock market conditions. The Q-learning table used in traditional reinforcement learning

becomes infeasible for financial data due to the high dimensionality of stock features,
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making DQN an essential advancement. By using a deep neural network, the model can
efficiently process historical price data, technical indicators, and trading volume, learning
to make more informed Buy, Hold, and Sell decisions. This approach enables the model
to handle large-scale financial data while generalizing across different market conditions,
ensuring better predictive accuracy and decision-making flexibility.

One of the most significant enhancements in DQN is the introduction of
experience replay, a mechanism that helps break the correlation between consecutive
stock trades. In traditional RL models, each new experience is immediately used to
update Q-values, leading to instability in learning, especially in volatile markets.
Experience replay mitigates this by storing past experiences in a replay buffer, allowing
the model to sample random experiences for training. This process prevents overfitting to
short-term market fluctuations, ensuring that the model learns from diverse trading
conditions rather than memorizing specific price trends. By training on a variety of past
experiences, DQN becomes more resilient to sudden market changes, improving its
ability to execute profitable trades across different time frames.

While DQN offers substantial improvements over the baseline model, it suffers
from Q-value overestimation, where the model tends to assign excessively high values to
certain trading actions, leading to suboptimal trades. This issue arises because the same
network is used for both selecting and evaluating Q-values, causing inaccurate
estimations that impact trading performance. To address this, the next section explores
Double Deep Q-Networks (DDQN), an enhancement over DQN that introduces a
separate target network to stabilize learning and prevent overestimation bias. By
leveraging this improved training strategy, DDQN ensures that Q-values are more
realistic and balanced, leading to better trading stability and long-term profitability in

financial markets.
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3.4.3 Double Deep Q-Network (DDQN) for Stock Trading
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Figure 13:Double Deep Q-Network (DDQN) for Stock Trading

The Double Deep Q-Network (DDQN) is an improved version of the Deep Q-
Network (DQN) that resolves one of the major challenges in reinforcement learning: Q-
value overestimation. While DQN effectively replaces the static Q-table with a deep
neural network, it suffers from a bias where it overestimates the Q-values, leading to
suboptimal trading decisions. DDQN addresses this issue by decoupling action selection
from Q-value evaluation, making learning more stable and accurate. In stock trading,
overestimating the potential reward of a Buy, Hold, or Sell action can lead to unrealistic
trading behaviors, causing the RL agent to execute high-risk trades based on incorrect
value estimates. DDQN prevents this by introducing a separate target network, ensuring
that Q-values remain more balanced and representative of real market conditions.

The DDQN file implements this improved reinforcement learning approach by

incorporating:
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e Two separate networks for action selection and Q-value estimation.

e Target network updates to stabilize learning and reduce Q-value fluctuations.
o Experience replay to further refine trade execution over multiple episodes.
3.4.3.1 Limitations of DQN and the Need for DDQN

The Q-value Overestimation Problem. DQN updates its Q-values using the

same network for both:

o Selecting the best action.

« Evaluating the Q-value of the selected action.

This creates a positive bias, where the network overestimates the value of certain
actions, causing the agent to:

e Take excessive risks by choosing overvalued trades.

e Misjudge market signals, leading to incorrect Buy or Sell decisions.

Mathematically, DQN selects and evaluates actions using:

Q(s,a) =r+ymaxQ (s',a’)

Since the same Q-network is used for both choosing and evaluating the action, it
often inflates Q-values, making poor trades seem more profitable than they actually are.

How DDQN Fixes Q-value Overestimation

DDQN solves this by introducing a separate target network that prevents the

model from using its own overestimated values to update Q-values. Instead of using:

Q(s,a) =r+ymaxQ (s',a’)
DDQN decouples action selection and evaluation by introducing two networks:
e Online Network — Selects the action.
e Target Network — Evaluates the Q-value of the selected action.

Now, Q-values are updated using:
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Q(S, Cl) =r+ YQtarget(Sli arg max Qonline (SI' al))

Equation (23 ) : DDQN Q-value updating formula

where:

o Qouine (s, @) selects the best action.

o Qurge(s’, a’) evaluates its value.

By separating action selection and evaluation, DDQN prevents inflated Q-values,
leading to:

o More realistic trading decisions.

o Better risk management.

o Improved trading stability in volatile markets.

3.4.3.2 Double Deep Q-Network (DDQN) Architecture
The Double Deep Q-Network (DDQN) architecture follows the same general
structure as DQN but with two neural networks instead of one.
Network Components
e Online Network
o Learns optimal Q-values for stock market trading.
o Used to select the best trading action.
e Target Network
o A copy of the online network, but updated less frequently.
o Used to evaluate Q-values, preventing overestimation.
o Experience Replay

o Stores past transactions to improve learning stability.
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3.4.3.3 Target Network Strategy in DDQN
The target network is a crucial addition to DDQN, helping stabilize Q-value
updates. Instead of updating after every trade, the target network is updated periodically
using:
Btarget = TOontine T (1 — T)Btarget

Equation (24 ) : DDQN target network update policy

where:
o Oy represents the weights of the target network.
e 0,.ne represents the weights of the online network.
e Tisasmall update rate (e.g., 0.01 - 0.05), ensuring gradual learning.
This update rule smoothly blends new knowledge with past experiences,
preventing sudden, unstable Q-value changes.
3.4.3.4 DDQN Training Process
The DDQN agent follows these steps:
« Initialize online and target networks with identical weights.
o Observe market conditions and select an action using the epsilon-greedy
strategy.
o Execute the action and observe the resulting market state.
o Store the experience (state, action, reward, next state) in the replay buffer.
o Sample a batch of past experiences and update the online network using:
e Q(s,0) =7 + YQuugat(s' arg max Qopine (s, @)
o Periodically update the target network using the weighted averaging
technique.

e Repeat until the model is fully trained.
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Pseudocode for DDQN Implementation
INITIALIZE online network and target network with identical weights
INITIALIZE replay buffer
FOR each episode:
RESET environment
FOR each time step:
OBSERVE current state S t
CHOOSE action A_t using epsilon-greedy policy
EXECUTE action and receive reward R_t
STORE experience (S_t, A_t, R_t, S_t+1) in replay buffer
IF replay buffer has enough samples:
SAMPLE a batch of experiences
COMPUTE target Q-value:
Q(s,a) =r+vy Q_target(s', argmax Q online(s', a"))
UPDATE online network with new Q-values
EVERY few steps:
UPDATE target network using:
0 target =10 online + (1 -1) 0 target
END FOR
END FOR

3.4.3.5 Comparison of DDQN vs. DQN
Below table compares Deep Q-Networks (DQN) and Double Deep Q-Networks

(DDQN), highlighting their differences in action selection, Q-value estimation, learning
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stability, and trading performance. DQN suffers from Q-value overestimation, leading to
aggressive trading decisions, whereas DDQN mitigates this issue by using a separate
target network, resulting in more stable and risk-aware trading strategies. These

improvements make DDQN better suited for volatile and dynamic market conditions.

Table 11: Comparision of DDQN vs DON

Feature DON DDQOQN

Separates action selection and
evaluation using two
networks.

Uses the same network for

Action Selection . .
selection and evaluation.

Reduced, making decisions

Q-value Overestimation High, leading to risky trades. more stable.
. - More stable due to the target
Learning Stability Prone to unstable updates. network.
Trading Performance Can make overconfident More balanced and risk-aware
g trading decisions. trading decisions.

3.4.3.6 Summary

The Double Deep Q-Network (DDQN) enhances reinforcement learning by
addressing a critical issue in Deep Q-Networks (DQN)—Q-value overestimation. In
standard DQN, the same neural network is responsible for both selecting the best action
and evaluating its Q-value, which often leads to inflated value estimates. This
overestimation can cause the RL agent to favor high-risk trades that seem profitable but
may not yield consistent long-term rewards. By introducing a separate target network,

DDQN ensures that Q-values remain realistic and unbiased, leading to more stable
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trading strategies. This improvement is particularly important in financial markets, where
incorrectly valuing trades can lead to significant financial losses.

Another key enhancement in DDQN is the target network update strategy, which
prevents abrupt changes in Q-values, making learning smoother and more reliable.
Unlike DQN, where the Q-values fluctuate excessively due to constant network updates,
DDQN gradually updates the target network over multiple training steps. This approach
ensures that the model learns trading patterns effectively while avoiding overfitting to
short-term market noise. Additionally, by decoupling action selection from Q-value
estimation, DDQN allows the RL agent to make better-informed trade decisions,
reducing the likelihood of executing suboptimal Buy, Hold, or Sell actions.

Overall, DDQN provides a more stable, risk-aware, and efficient reinforcement
learning framework for stock trading. It enables the RL agent to adapt to volatile market
conditions, handle long-term investment strategies, and make better trading decisions
based on realistic reward estimations. By incorporating experience replay, target network
updates, and an improved Q-value update mechanism, DDQN outperforms standard
DQN in terms of decision accuracy, risk management, and trading profitability. As a
result, DDQN serves as an essential step toward building advanced Al-driven trading

strategies that are not only profitable but also sustainable in real-world financial markets.
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3.5 Training the RL Agent
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Figure 14:Training and Evaluation Workflow for RL Agent

The training phase is the most critical step in reinforcement learning, where the
Q-learning, Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) models
learn to make trading decisions based on historical stock market data. Each model
follows a different training approach, and this section details how they are trained to
optimize trading decisions. Since Q-learning (baseline model) follows a supervised deep
learning approach, while DQN and DDQN are reinforcement learning-based, the training
methodology varies significantly. However, they share some common elements, such as:

o Stock market simulation as the training environment.

o Exploration vs. exploitation tradeoff using epsilon decay.

o Gradient-based learning with experience replay (for DQN and DDQN).

e Hyperparameter tuning to optimize learning performance.
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3.5.1 Training the Q-Learning Baseline Model (Supervised Deep Learning
Approach)

The Q-learning baseline model does not use reinforcement learning techniques
like experience replay or epsilon decay. Instead, it is trained using a supervised deep
learning approach, where the model learns from precomputed Q-values generated during
the Q-value simulation phase (Section 3.3).

Training Process Overview

« Dataset Creation:

o The dataset consists of technical indicators, OHLC prices, and
trading volume.

o The labels (Buy, Hold, or Sell) are assigned based on the highest Q-
value at each time step.

e Supervised Learning:

o The model is trained as a classification problem, where it learns to
predict the best trading action for each market state.

o The Categorical Cross-Entropy loss function is used to measure
how well the predicted probabilities match the true labels.

« Dataset Imbalance Handling:

o Since Hold actions occur more frequently than Buy or Sell, SMOTE
(Synthetic Minority Over-sampling Technique) is applied to

balance the dataset.

Pseudocode for Training Q-Learning Model
LOAD historical stock data
CONVERT Q-values to Buy, Hold, or Sell labels
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APPLY SMOTE to balance dataset
INITIALIZE deep neural network
TRAIN model using categorical cross-entropy loss

EVALUATE model on test dataset

Since this model follows a supervised learning approach, its training is much
faster compared to DQN and DDQN. However, the limitation is that it does not
dynamically update Q-values during training, making it less adaptive to changing market
conditions.

3.5.2 Training the Deep Q-Network (DQN) (Reinforcement Learning
Approach)

Unlike the Q-learning baseline model, the DQN model is trained using
reinforcement learning techniques, meaning it learns by interacting with the stock market
simulation rather than labeled data.

Training Process Overview

« Initialize the RL Agent:

o The model starts with random weights and no prior knowledge.
o A stock market simulation is set up where the agent learns to trade
over multiple episodes.

« Exploration vs. Exploitation Strategy:

o The model uses an epsilon-greedy policy to explore new trading
strategies before shifting to exploitation of profitable strategies.

« Experience Replay:

o The agent stores past trades in a replay buffer and learns from them to

stabilize training.
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e Gradient Updates:
o The Mean Squared Error (MSE) loss function is used to update the

neural network weights based on Q-value errors.

Pseudocode for Training DQN Model
INITIALIZE replay buffer and neural network
FOR each training episode:
RESET market simulation to start of a trading day
WHILE market is open:
OBSERVE market state St
SELECT action A_t using epsilon-greedy strategy
EXECUTE action and receive reward R_t
STORE (S_t, A_t, R_t, S_t+1) in replay buffer
SAMPLE batch from replay buffer
UPDATE Q-network using gradient descent
END WHILE
REDUCE epsilon to shift from exploration to exploitation

END FOR

This iterative process allows the model to continuously improve its trading

strategy, making it more adaptable to real-world financial markets.

3.5.3 Training the Double Deep Q-Network (DDQN)
DDQN follows a similar training process to DQN but introduces an additional

target network to stabilize Q-value updates.
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Why DDQN Needs a Target Netwrk
o DOQN tends to overestimate Q-values, leading to high-risk trades.
« DDQN fixes this by separating action selection from Q-value evaluation,
ensuring that the agent makes more realistic trading decisions.
Training Process Overview
e Initialize Two Neural Networks:
o Online Network: Selects actions.
o Target Network: Evaluates Q-values (updated periodically).
e Follow the Same Process as DQN:
o The model interacts with the stock market simulation, stores past
experiences, and updates Q-values.
e Target Network Update:
o Instead of using the online network to update Q-values, DDQN

updates them using the target network, preventing overestimation bias.

Pseudocode for Training DDQN Model
INITIALIZE online network and target network
INITIALIZE replay buffer
FOR each training episode:
RESET market simulation
WHILE market is open:
OBSERVE market state St
SELECT action A_t using epsilon-greedy policy
EXECUTE action and receive reward R_t

STORE experience in replay buffer
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SAMPLE batch from replay buffer
COMPUTE target Q-value:
Q(s, a) =r+y Q target(s', argmax Q_online(s', a'))
UPDATE online network using loss function
END WHILE
EVERY few steps: UPDATE target network
REDUCE epsilon to shift from exploration to exploitation

END FOR

By updating the target network periodically, DDQN ensures that the model learns
more stable and risk-aware trading strategies.

3.5.4 Hyperparameter Tuning and Final Training Loop Execution

Since all three models share similar training settings, they are fine-tuned using
common hyperparameters to optimize learning performance. Below table outlines the key
hyperparameters used in training the reinforcement learning models, explaining their
roles and selected values. The learning rate (o)) controls how quickly the model updates
Q-values, while the discount factor (y) prioritizes long-term rewards over immediate
gains. Batch size determines the number of training samples per step, and epsilon decay
rate regulates the transition from exploration to exploitation. These hyperparameters are
crucial in ensuring efficient learning, stability, and optimal decision-making in the

trading environment.

Table 12: Hyperparameter Tuning and Final Training Loop Execution

Hyperparameter Description Value Used
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Controls how fast Q-values

Learning Rate (o) update 0.001
Discount Factor (y) Ejiﬂ?’[ar?g\]/\?;rtjhsé importance of 0.99

. Number of experiences
Batch Size sampled per training step. 64
Epsilon Decay Rate Speed of exploration-to- 0.995

exploitation transition.

Full Training Loop Execution

Once hyperparameters are tuned, the full training process follows these steps:

Initialize replay buffer and neural networks.

Observe the initial stock market state.

Select an action using the epsilon-greedy policy.

Execute the action, receive reward, and transition to the next state.
Store experience in replay buffer.

Sample a batch from the replay buffer for training.

Update the Q-network using gradient descent.

Periodically update the target network (for DDQN).

Repeat until the model is fully trained.

Now that the RL models are fully trained, the next section will focus on

evaluating their performance using financial metrics.

3.6 Performance Evaluation Metrics

Once the Q-learning, DQN, and DDQN models are trained, they must be

evaluated to determine their effectiveness in stock trading. Since these models are used
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for financial decision-making, their performance is assessed using both financial and

machine learning metrics.

The evaluation process ensures that the RL agent:

o Maximizes profits while managing risk.

o Executes trades with high accuracy.

e Generalizes well to unseen market conditions.

e Learns stable trading strategies without overfitting.

This section is divided into financial performance metrics (to assess profitability

and risk) and machine learning performance metrics (to evaluate model accuracy and

convergence).

3.6.1 Financial Metrics for RL-Based Trading Models

Track Key
Metrics

Real-Time
Alerts and Logs

Simulate
Market
Scenarios

Parameter
Adjustments

Failure
Recovery
Mechanisms

4. Performance
Monitoring

5. Environment
Control

Live Trading
Environment Setup

1. Data Feed

2. Trading
Agent

3. Execution
System

Figure 15: Environment Setup for Live RL-Based Trading Models

Real-Time
Market Data

Historical Data
for Backtesting
Deploy Trained
RL Model
Decision Making
in Real-Time
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Trade Execution

Order Matching

Transaction
Cost Modeling

Financial metrics measure the profitability, risk, and efficiency of the RL trading

models in a real-world market environment. These metrics help compare the performance
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of Q-learning (supervised deep learning), DQN, and DDQN. Below figure shows setup to

use model for live trading.

3.6.1.1 Cumulative Profit & Loss (PnL)

Definition: Cumulative Profit & Loss (PnL) measures the total returns generated

by the RL agent over a trading period. It is computed as the difference between

cumulative profits from successful trades and cumulative losses from unsuccessful trades.

T
PnL = Z(Psell,t - Pbuy,t) X Ny — C;
t=1

Equation ( 25 ) : Cumulative Profit and Loss formula

where:

Py1,¢ = Price at which stock is sold.
Pyy,: = Price at which stock is bought.
N, = Number of shares traded.

C, = Transaction costs (commission, slippage, taxes).

Interpretation:

Higher PnL — The RL agent is executing profitable trades consistently.
Negative PnL. — The agent is making unprofitable decisions, meaning it may

need further training or reward function adjustments.

3.6.1.2 Sharpe Ratio (Risk-Adjusted Returns)
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Definition: The Sharpe Ratio measures the risk-adjusted returns of the RL agent

by comparing the excess return over a risk-free rate to the portfolio's volatility.

Rp B Rf
Op

Sharpe Ratio =
Equation ( 26 ) : Sharpe Ratio Formula

where:

e R, = Average return of the RL trading model.

e Ry =Risk-free return (e.g., government bond rate).

» 0, = Standard deviation of portfolio returns (volatility).

Interpretation:

o Higher Sharpe Ratio (>1.0) — The RL model is generating high returns per
unit of risk.

e Low Sharpe Ratio (<0.25) — The model’s returns are highly volatile,
suggesting high-risk trades.

3.6.1.3 Maximum Drawdown (MDD) (Worst-Case Risk Management)

Definition: Maximum Drawdown (MDD) measures the largest peak-to-trough

decline in the RL agent’s portfolio value over time.

MDD = max <Ppeak - Ptrough>

P peak

Equation (27 ) : Maximum Drawdown Formula

where:
o P, = Highest portfolio value recorded.

e Py, = Lowest portfolio value recorded after the peak.
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Interpretation:

e Lower MDD — The agent maintains consistent performance without large
losses.

o High MDD — The agent suffers large portfolio declines, making it unreliable
in real trading.

3.6.1.4 Win-Loss Ratio (Trade Accuracy Analysis)

Definition: The Win-Loss Ratio measures the proportion of profitable trades

versus unprofitable trades executed by the RL model.

Number of Winning Trades

in-Loss Ratio = ———— of Losing Trades

Equation ( 28 ) : Win-Loss Ratio Formula

Interpretation:
« Higher Win-Loss Ratio (>1.0) — The RL agent is executing more successful
trades than losing trades.
e Low Win-Loss Ratio (<1.0) — The agent is making more losing trades,
indicating the need for strategy refinement.
3.6.2 Summary of Evaluation Metrics
Below table defines key performance metrics used to evaluate the trading models,
explaining their purpose and ideal values. Cumulative PnL measures total profitability,
where higher values indicate better performance. Sharpe Ratio assesses risk-adjusted
returns, with values above 1.0 preferred. Max Drawdown quantifies the worst-case
portfolio loss, meaning lower values indicate better risk control. Win-Loss Ratio

evaluates trade accuracy, where a value greater than 1.0 suggests more successful trades
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than unsuccessful ones. These metrics help assess the effectiveness, stability, and risk

management of reinforcement learning-based trading strategies.

Table 13: Summary of Evaluation Metrics

Metric Purpose Good Value
Cumulative PnL Measures total profit over time Higher is better
Sharpe Ratio Measures risk-adjusted return Higher is better
Max Drawdown Measures worst-case portfolio loss Lower is better
Win-Loss Ratio Measures trade accuracy >1.0

3.7 Implementation and Deployment Considerations
After training and evaluating the Q-learning, DQN, and DDQN models, the next
step is deploying these models in a real-world trading environment. While reinforcement
learning models can perform well in a simulated environment, deploying them in live
markets presents additional challenges related to computation, execution speed, risk
management, and adaptability.
This section covers:
o Computational complexity and training time — The resource requirements for
model training and inference.
o Challenges in real-time market execution — Ensuring low-latency trading
decisions.
o Scalability considerations — Expanding the RL models to different financial

markets (Forex, Crypto, Commodities).
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3.7.1 Computational Complexity and Training Time
Training reinforcement learning models for stock trading is computationally
expensive, especially for DQN and DDQN, which rely on deep neural networks for Q-

value approximation.

Factors Affecting Training Time

Model Complexity

e Q-learning baseline model (Supervised Learning) — Fastest training
(~minutes to hours).

o DOQON (Deep Q-Network) — Requires training neural networks and experience
replay, making it significantly slower (~hours to days).

o DDQN (Double Deep Q-Network) — Further complexity due to target
network updates, increasing training time.

Size of Training Data

e Training on 4 years of NIFTY 50 intraday data (minute-level) results in
millions of data points.

« More data improves generalization but increases computation time.

Hyperparameter Optimization

e Tuning learning rate, discount factor, batch size, and epsilon decay requires
multiple training runs, further increasing computation time.

Hardware Considerations for Training

e For Q-learning baseline — Can run on standard CPUs due to lower
complexity.

e For DQN/DDQN — Requires GPUs or TPUs for faster training.
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Cloud-Based Training — Using platforms like Google Cloud, AWS, or Azure

can significantly speed up the process.

Optimization Strategy — Training on a subset of data first, then scaling to the

full dataset to reduce training time.

3.7.2 Challenges in Real-Time Market Execution

Deploying reinforcement learning models in live trading presents several

challenges, especially in high-speed intraday trading environments.

Latency Issues in Trade Execution

Financial markets operate in milliseconds, but deep learning-based RL models
require computational time for inference.

Delays in decision-making can lead to missed trading opportunities or
execution at unfavorable prices.

Solution — Optimize inference speed using low-latency computing

architectures (e.g., TensorRT, ONNX for model acceleration).

Adaptability to Changing Market Conditions

Live markets are unpredictable, and RL models trained on historical data may
not generalize well to new events.

Market anomalies like economic crashes, pandemics, or sudden news events
require real-time retraining.

Solution — Implement adaptive learning, where the model is retrained

periodically with the latest market data.

Risk Management and Trade Execution Controls

Live deployment requires strict risk controls to prevent excessive losses.
Stop-loss mechanisms should be implemented outside the RL model to

prevent major drawdowns.
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e Solution — Limit trading exposure by setting:
o Maximum position size per trade.
o Daily risk limits (maximum allowable loss).
o Automated stop-loss orders to exit bad trades before major losses
occeur.
Integrating RL Models with Brokerage APIs
To execute trades, RL models must integrate with a brokerage API (e.g., Zerodha,
Interactive Brokers, Alpaca).
Steps for API Integration:
o Retrieve live stock data from APl — Format it to match the model’s input
requirements.
« Pass the live market state to the trained RL model — Get the predicted action
(Buy, Hold, Sell).
e Execute the trade via the broker’s API — Ensure real-time execution.
« Store trade history for model retraining — Keep a log of executed trades for

continuous learning.

3.7.3 Scalability to Other Financial Markets
While this study focuses on NIFTY 50 intraday trading, the RL models can be
extended to other financial markets with some modifications.
Forex and Cryptocurrency Markets
« Forex (foreign exchange trading) operates 24/7, requiring RL models to
handle continuous trading.
« Crypto markets are highly volatile, making risk management even more

crucial.
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« Modifications required:
o Additional technical indicators (e.g., VWAP, Fibonacci retracement).
o More frequent retraining due to extreme price swings.

Commodity and Futures Trading

Futures markets have different trading hours and expiration dates.

Adaptation needed: RL models must account for contract expiration and rollovers.

High-Frequency Trading (HFT) Considerations

RL models must be highly optimized for execution speed.

Requires specialized hardware (e.g., FPGA, low-latency trading engines).

Key Takeaway is RL models trained for NIFTY 50 can be adapted to other asset

classes by tuning reward functions, adjusting feature engineering, and modifying trading

strategies.

3.7.4 Summary

The deployment of RL models in live trading introduces several real-world

challenges that must be carefully addressed:

Computational Complexity — DQN and DDQN models require significant
computational resources, especially for large-scale datasets. Optimizing GPU-
based training can accelerate learning.

Real-Time Execution Challenges — Ensuring low-latency trade execution is
critical in live markets. Implementing optimized inference pipelines reduces

delays.
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e Risk Management & Trade Execution Controls — RL-based trading systems
must have strict risk controls, including position limits, stop-loss mechanisms,
and exposure monitoring.

o Scalability to Other Markets — With some adjustments, RL models can be
extended to Forex, Crypto, Commodities, and Futures trading, allowing greater

flexibility and profitability.

100



CHAPTER IV:
RESULTS

4.1 Research Question One

How effectively can a Double Deep Q-Network (DDQN)-based reinforcement
learning agent autonomously execute optimal buy, hold, and sell decisions in the
NIFTY50 intraday trading market?

4.1.1 Overview of Evaluation Metrics

Evaluation Metrics in Stock Market Trading

Cumulative returns

Profitability Metrics
= = Annualized returns
ArpE Lato Risk-Adjusted
Sortino ratio Metrics Maximum
= 5 drawdown
P : Risk Metrics
(:“S'Stency 0 Value at Risk (VaR)
PEUriy Performance
Volatility of Seability Win/loss ratio
performance Trade-Specific
Metrics Average trade
duration

Figure 16:Evaluation Metrics in Stock Market Trading

The primary goal of reinforcement learning (RL)-based trading models is to
maximize profits while minimizing risks, thereby improving decision-making in real-time
stock market conditions. Unlike traditional algorithmic trading strategies that rely on
fixed-rule-based approaches, RL models continuously learn and adapt to market
conditions by updating their Q-values over time. To assess the DDQN agent's trading

decision capability, the following performance metrics were computed

101



« Cumulative Profit: Total profitability achieved across trades.

e Average Profit per Trade: Mean profitability per trade executed.

e Win Rate (%): Percentage of profitable trades over total trades.

o Sharpe Ratio: Risk-adjusted returns compared to traditional models.

e Maximum Drawdown (%0): Largest observed loss from peak to trough.
These metrics directly reflect how well the DDQN agent autonomously executes buy,
hold, and sell actions over the one-year test period.

4.1.2 Performance Comparison Across Models

The DDQN model was benchmarked against Q-Learning (QN) and Deep Q-
Network (DQN) models for validation. Below table provides a comparative analysis of
Q-learning (QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) based
on key performance metrics. DDQN outperforms both models in total profit, win rate,
and Sharpe ratio, while maintaining the lowest max drawdown, making it the most stable
and profitable trading model. DQN follows closely behind but still suffers from higher
drawdowns due to Q-value overestimation. QN, while having the highest average profit
per trade, struggles with lower total profit, win rate, and higher risk exposure, making it

less suitable for dynamic market conditions.

Table 14:Overall Model Performance Summary

Model Total Avg. Profit ~ Win Rate  Sharpe Max Trade
Profit per Trade (%) Ratio Drawdown (%) Count

DDON 1,151,325 41152 67.72% 0.3450 -1.12% 2827.92

DQN 1,022,486  384.05 66.57% 0.3170 -1.36% 2682.66
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QN 460,426 439.86 65.77% 0.2262 -5.83% 1103.56

4.1.3 Visual Comparison

1e6 Total Profit Comparison: QN vs DQN vs DDQN

Total Profit (%)

QN DQN DDQN
Algorithm

Figure 17:1llustrates the total cumulative profit comparison across the three models.

4.1.4 Key Observations

« Profitability: The DDQN agent achieved the highest cumulative profit
(1,151,325) compared to QN and DQN, indicating superior decision-making.

« Trading Efficiency: DDQN's win rate (67.72%) was also the highest,
reflecting a higher proportion of successful buy/hold/sell decisions.

e Risk Management: DDQN maintained the best Sharpe ratio and the lowest

maximum drawdown among all models.
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o Trading Activity: A high but controlled trade count indicates active
participation without excessive overtrading.

4.2 Research Question Two

How can the DDQN-based RL agent be optimized to balance maximizing
profitability with minimizing market risk, particularly during volatile periods?

4.2.1 Metrics for Profitability and Risk Evaluation

To assess the balance between profit generation and risk control, the following
risk-adjusted performance indicators were analyzed:

o Sharpe Ratio: Measures risk-adjusted returns.

« Profit Factor: Ratio of total gross profit to total gross loss.

e Maximum Drawdown (%): Represents worst-case financial risk.

These metrics jointly determine how well the DDQN agent maximizes returns
while managing exposure during volatile intraday trading conditions.

4.2.2 Comparative Risk-Adjusted Performance

The DDQN model’s performance was benchmarked against DQN and QN models

using the key risk metrics summarized in below table.

Table 15:Risk-Adjusted Performance Metrics Across Models

. . Maximum
Model Sharpe Ratio Profit Factor Drawdown (%)
QN 0.2262 1.88 -5.83%
DQN 0.3170 2.40 -1.36%
DDQON 0.3450 2.60 -1.12%

Table 16:Best Risk-Adjusted Stocks (Highest Sharpe Ratio)
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Stock Model Sharpe Ratio Max Drawdown (%0)

ADANIENT ON 0.40 -2.90%
ADANIENT DDQN 0.40 -1.52%
TITAN DDQN 0.40 -1.00%
ASIANPAINT DDQN 0.40 -1.03%
HDFCBANK DDQN 0.39 -0.86%
INFY DDQN 0.39 -0.94%
RELIANCE DDQN 0.38 -1.28%
HINDUNILVR DDQN 0.38 -1.17%
JSWSTEEL DDQN 0.38 -1.03%
ITC DDQN 0.37 -0.94%

4.2.3 Key Observations

o Higher Sharpe Ratio: DDQN’s Sharpe ratio (0.3450) is the highest among
the three models, demonstrating superior risk-adjusted profitability.

o Better Profit Factor: The DDQN agent maintained a profit factor of 2.60,
suggesting that the model achieved 22.60 profit for every X1.00 loss,
outperforming other models.

e Lower Maximum Drawdown: DDQN suffered the least maximum
drawdown (-1.12%), indicating better risk control during adverse market
movements.

4.2.4 Visual Analysis
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Two plots were generated to visualize the risk-return trade-off:

Sharpe Ratio vs Max Drawdown: Risk-Adjusted Performance
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Figure 18:Sharpe Ratio Comparison across QN, DQN, and DDQN
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Figure 19:Profit Factor Comparison across the models

4.2.5 Implication
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These results clearly demonstrate that the DDQN agent achieves a better balance
between profitability and risk minimization compared to traditional reinforcement
learning baselines, even under volatile intraday market conditions.

4.3 Research Question Three

How well does the DDQN model generalize across different market conditions
(e.g., bull markets, bear markets, and periods of high volatility) in the NIFTY50 index?

4.3.1 Importance of Generalization in Trading

In dynamic financial markets, an effective RL agent must not only perform well
in favorable (bullish) conditions but also maintain profitability and stability during
bearish phases and high-volatility periods. Generalization reflects the model's ability to
handle unseen or shifting market behaviors without overfitting to specific patterns.

4.3.2 Evaluation Approach

Generalization was evaluated through:

e Top 10 Stock-wise Performance Analysis across all NIFTY50 stocks.

« Comparison of profitability, win rate, Sharpe ratio, and drawdown for each

stock under DDQN, DQN, and QN models.

e Focus on stock categories: strong performers (bullish), weak performers

(bearish), and highly volatile stocks.

Key Metrics:

e Top 10 Total Profit Stock per model

e Win Rate per Stock

e Sharpe Ratio per Stock

e Maximum Drawdown per Stock

4.3.3 Stock-Wise Performance Summary
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Below table presents the top-performing stocks based on total profit under all
reinforcement learning models. DDQN dominates the highest-ranked stocks,
demonstrating its ability to generate stable and profitable trades with controlled risk.
INDUSINDBK, ADANIENT, and ADANIPORTS appear multiple times across both
DDQN and DQN, indicating that these stocks provided consistent trading opportunities
for RL models. Stocks with higher Sharpe Ratios (e.g., ADANIENT) indicate better risk-
adjusted returns, while lower drawdowns suggest controlled risk exposure. This analysis
confirms that DDQN is more effective in maximizing profitability while maintaining

trading stability.

Table 17: Top 10 total profit performing stocks across models

Rank  Stock Model -li—(r)(t)?ilt ® \(QQ);' Rate ag?irope P)/II%)\(NdOWH
(%)
10 INDUSINDBK DDQN 1,660,729 70.34% 0.37 -1.19%
20] ADANIENT DDQN 1,594,113 69.77% 0.40 -1.52%
30 ADANIPORTS DDQN 1,542,059 69.73% 0.34 -0.91%
47 HINDALCO DDQN 1,508,058 68.46% 0.34 -1.05%
50 INDUSINDBK DON 1,436,828 69.35% 0.36 -1.91%
6] HINDALCO DON 1,425,932 67.82% 0.34 -1.00%
70 APOLLOHOSP DDQN 1,408,793  70.80% 0.33 -1.07%
80 ADANIPORTS DON 1,399,378 67.85% 0.32 -0.98%
901 JSWSTEEL DDQN 1,396,746 67.01% 0.38 -1.03%
10 ADANIENT DON 1,361,227 68.82% 0.33 -2.08%
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4.3.4 Key Observations

Strong Bullish Performance: Stocks like INDUSINDBK, ADANIENT, and
APOLLOHOSP showed very high profits and win rates with DDQN,
reflecting strong generalization in bullish trends.

Handling Volatility: Despite some challenging stocks like BPCL and
SUNPHARMA, DDQN maintained positive average profits and Sharpe ratios,
indicating resilience to volatility.

Reduced Drawdowns: Maximum drawdown remained consistently low for
top and mid-performing stocks under DDQN compared to DQN and QN

models.

4.3.5 Visual Analysis
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Figure 20:Cumulative Profit Distribution Across Stocks (Grouped by Model)

4.3.6 Implication
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The DDQN agent demonstrated strong generalization ability by adapting
effectively to different market conditions — capturing upside opportunities during bull
markets, minimizing losses during bearish trends, and navigating volatility better than
baseline models.

4.4 Research Question Four

Can reinforcement learning models like DDQN handle market anomalies —
events that deviate significantly from normal market behavior?

4.4.1 Understanding Market Anomalies

In financial trading, anomalies refer to unexpected, extreme, or sudden market
events — such as rapid selloffs, flash crashes, or sudden rallies. An effective trading
agent must be capable of managing these rare situations without catastrophic losses.

Indicators of how well a model handles anomalies include:

« Sharpe Ratio: Risk-adjusted returns even during turbulent phases.

e Maximum Drawdown (%0): The worst loss from peak-to-trough during an

anomalous market behavior.

« Win Rate (%): Maintaining profitable trades during high volatility periods.\

4.4.2 Evaluation Approach

For anomaly resilience, stocks with highest drawdowns and lowest Sharpe

ratios under different models were analyzed.

Table 18: Stocks Exhibiting Worst Risk-Adjusted Performance in Baseline Models

Stock Model Sharpe Ratio Max Drawdown (%0)
BPCL QN 0.09 -29.38%
SUNPHARMA QN 0.15 -10.40%
EICHERMOT QN 0.19 -10.30%
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ONGC

0.18 -9.32%

ON

UPL

QN 0.18 -8.97%

4.4.3 Key Observations

Handling Sharp Drawdowns: DDQN substantially reduced maximum

drawdowns across most stocks compared to QN and DQN, suggesting better

anomaly resilience.

Risk-Adjusted Stability: DDQN achieved higher Sharpe ratios even for

volatile stocks, showing the agent-maintained decision discipline.

Drawdown Control: Even in worst-performing stocks, DDQN’s drawdowns

were lower than those of the QN baseline, showing robustness against market

shocks.

4.4.4 Visual Analysis
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Figure 21:Sharpe Ratio Comparison for Top and Bottom Stocks Across Models

Table 19:Stocks with Best Resilience under DDQN
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Stock Model Sharpe Ratio Max Drawdown (%0)

TITAN DDON 0.40 -1.00%
ASIANPAINT DDON 0.40 -1.03%
ADANIENT DDON 0.40 -1.52%

4.4.5 Implication

The DDQN agent demonstrated enhanced resilience to market anomalies by
sustaining profitability and minimizing maximum drawdowns during unexpected or
chaotic market behaviors.

4.5 Research Question Five

What is the impact of experience replay and target networks on improving the

stability and learning efficiency of the DDQN model in the context of intraday trading?

4.5.1 Role of Experience Replay and Target Networks

In reinforcement learning, especially in DDQN:

o Experience Replay stores agent experiences (state, action, reward, next state)
and samples mini-batches randomly to break correlation between sequential
data.

o Target Network is a delayed-copy of the main network that stabilizes
learning by reducing oscillations during Q-value updates.

Both mechanisms are critical for training stability, risk reduction, and

convergence during stock trading where price series are sequential and noisy.

4.5.2 Evaluation Approach

Training stability was inferred using:

e Smoother Training Loss Curves and convergence behavior.

o Cumulative Profit Consistency across different stocks.
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o Reduced Overestimation Bias: Less aggressive trading behavior compared to

DON.

Table 20:Overall Model Performance Comparison

Model Total Profit )  Sharpe Ratio Trade Count Max Drawdown

(%)
QN 460,426 0.2262 1103.56 -5.83%
DQON 1,022,486 0.3170 2682.66 -1.36%
DDQN 1,151,325 0.3450 2827.92 -1.12%

4.5.3 Key Observations

e Training Stability: DDQN showed smoother learning curves with faster
convergence compared to DQN.

e Reduced Overtrading: The DDQN model demonstrated slightly fewer
unnecessary trades than DQN, suggesting more stable action-value estimates.

o Higher Risk-Adjusted Returns: The higher Sharpe Ratio of DDQN validates
that experience replay and target networks improve both stability and
profitability.

e Lower Drawdowns: Lesser maximum drawdowns confirm better risk

management, linked to stable learning processes.

4.5.4 Visual Analysis
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Figure 22:Total Profit vs Model Comparison

Win Rate vs. Trade Count: Model Trade Behavior
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Figure 23:Win Rate vs Trade Count Across Models
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4.5.5 Implication

Experience replay and target networks substantially improved the DDQN agent's
stability, learning efficiency, and performance consistency in the volatile intraday trading
environment.

4.6 Research Question Six
How does the exploration-exploitation tradeoff affect the performance of the DDQN
agent in intraday trading, and how can it be managed for optimal decision-making?

4.6.1 Importance of Exploration vs Exploitation

o Exploration: Trying new or less-visited actions to discover better strategies.

o Exploitation: Choosing actions with the highest known expected reward.

In stock trading, an ideal agent must explore enough to find new opportunities
without losing profits by over-experimenting. Managing this tradeoff is crucial for:

e Achieving optimal action selection.

o Adapting to new or changing market conditions.

o Preventing stagnation into sub-optimal strategies.

The agent controls exploration using an epsilon-decay schedule, starting with high
exploration (epsilon = 1) and gradually shifting towards exploitation (epsilon =~ 0.01).

4.6.2 Evaluation Approach

Overall Profitability and Risk Metrics: At the end of the training after exploration
decay. Trade Behavior Metrics: Trade count, win rate, profit factor. Trade-related

behavioral indicators were summarized:

Table 21:Trade Behavior Comparison Across Models
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Model

Trade Count Win Rate (%) Average Trade Duration (mins) Profit Factor

QN 1103.56 65.76% 37.17 1.88
DQN  2682.66 66.56% 14.07 2.40
DDQN 2827.92 67.72% 13.03 2.60

Average Trade Duration (Minutes)

4.6.3 Key Observations

Higher Win Rate: The DDQN agent achieved a win rate of 67.72%,
suggesting exploration led to profitable discovery during early training, later
stabilized by exploitation.

Optimal Trade Frequency: DDQN executed a high but manageable number
of trades, balancing active participation without unnecessary overtrading.
Higher Profit Factor: With a profit factor of 2.60, DDQN’s trade decisions
were more profitable relative to risk, showing successful tuning of the
exploration-exploitation balance.

Smarter Trade Durations: Shorter average trade durations suggest timely

and confident decision-making after exploration phase completion.

4.6.4 Visual Analysis

Average Trade Duration Comparison

QN DQN DD|QN
Algorithm



Figure 24:Average Trade Duration Comparison Across Models

4.6.5 Implication

The exploration-exploitation strategy effectively enabled the DDQN agent to

initially discover diverse trading opportunities and later focus on consistently profitable

actions, resulting in strong risk-adjusted returns and robust intraday trading behavior.

4.7 Summary of Findings

Across all six research questions, the findings consistently demonstrated the

superior performance of the DDQN agent:

Trading Execution: The DDQN agent achieved the highest cumulative
profits, win rates, and Sharpe ratios compared to QN and DQN models.
Profitability vs Risk: DDQN balanced profit generation and risk
management more effectively, achieving the highest profit factor and the
lowest maximum drawdowns.

Generalization: The DDQN agent generalized well across bull, bear, and
volatile market conditions, sustaining profitability even during market
anomalies.

Anomaly Handling: Through improved risk-adjusted returns and controlled
losses, DDQN showed resilience to sudden market shocks.

Training Stability: The integration of experience replay and target networks
significantly improved model convergence, leading to stable trading decisions.
Exploration-Exploitation Optimization: DDQN's tuned epsilon-decay
strategy allowed efficient discovery of profitable strategies while minimizing

random actions during later stages of training.

117



Overall, the DDQN model consistently outperformed both simpler Q-learning and
standard DQN frameworks across all key evaluation dimensions, demonstrating its

suitability for intraday trading applications under real-world-like conditions.

4.8 How To Read The Results: A Guide For The Trading Mind

The results in this thesis are best read as a conversation between three voices: the
objective that writes the labels, the policy that learns to act, and the market that pays or
punishes after frictions. An equity curve that rises smoothly is tempting to celebrate, but
here we read it with restraint: when the curve bends upward we ask whether the policy is
agreeing with reward-consistent labels in the very states that matter; when it sags we ask
whether the labels themselves were indecisive, or whether the market moved in ways the
state representation could not see.

Drawdowns are not merely depths to be minimized; they are exams in regime
adaptation. A quick recovery hints that the policy was following labels whose margins
were genuinely informative and briefly out of favor; a lingering drawdown suggests a
mismatch—either the reward specification drifted relative to costs and latency, or the
features fell out of step with microstructure realities. In those periods the label story
matters more than the P&L snapshot. Where margins were large and the policy still lost,
we suspect specification; where margins were thin and outcomes scattered, we accept
variance.

Volatile days offer the clearest windows into how the system thinks. When a
shock hits and liquidity vanishes, the action stream tells a human story: do decisions
cluster into Hold because the labeler’s margins compress and the system refuses to bluff,
or do we see a decisive Buy/Sell that remains consistent across replays of the same
episode? The thesis prefers the former posture in uncertainty; we choose to be audited for
caution rather than bravado.

Finally, comparative performance is interpreted not only as total return but as
alignment with the reward-truth narrative. Baselines that win by accident—opportunistic
thresholds that happened to fit a season—will disagree with labels at the edges, and their
equity will fray when regimes turn. Models that honor the labeler, even when they
momentarily lag, tend to recover with fewer surprises. Read the curves, then, as evidence
of coherence: when the objective, the labels, and the policy move in concert, the market’s
verdict is more likely to be durable.

4.9 Conclusion
This chapter systematically presented the experimental results obtained from
training and evaluating three different reinforcement learning models — Q-Learning

(QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) — on the NIFTY
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50 intraday trading dataset. The findings reveal that the DDQN model consistently
outperformed the baseline models across all critical performance metrics, including
cumulative profit, Sharpe ratio, win rate, and profit factor. The DDQN agent achieved
better risk-adjusted returns while maintaining lower maximum drawdowns and
demonstrating more stable trading behavior across both normal and volatile market
conditions.

Additionally, the comparative analysis highlighted the superior trade execution
patterns of the DDQN agent, including higher trade counts, shorter trade durations, and
optimized exploration-exploitation dynamics, all contributing to a more resilient and
profitable trading strategy. The results confirmed the suitability of DDQN-based
reinforcement learning agents for practical intraday trading applications. They also
validated the study's hypotheses regarding the importance of model stability techniques
such as experience replay and target networks in achieving real-world trading
performance.

The next chapter discusses these results in depth, interpreting the significance of
each finding in relation to the research questions, existing literature, and practical

implications for stock market trading automation.

119



CHAPTER V:
DISCUSSION

5.1 Research Question One

How effectively can a Double Deep Q-Network (DDQN)-based reinforcement
learning agent autonomously execute optimal buy, hold, and sell decisions in the
NIFTY50 intraday trading market?

5.1.1 Interpretation of Results

The empirical results demonstrated that the DDQN agent effectively learned to
autonomously execute buy, hold, and sell decisions in an intraday trading environment.
The agent achieved:

e The highest cumulative profit among all models tested.

e Asuperior win rate (67.72%), meaning the agent made more correct trading

decisions than incorrect ones.

« A higher Sharpe ratio, reflecting profitable outcomes even after adjusting for

risk.

The learning process allowed the agent to continuously update its decision-
making strategy based on the market state, without relying on hardcoded rules or human
interventions.

5.1.2 Relation to Literature

These findings align with prior studies (e.g., Byun et al., 2023; Cui et al., 2023)
that highlighted the adaptability of RL agents in financial trading. The DDQN
architecture, by mitigating Q-value overestimation issues found in standard DQN models,
provided more accurate value approximations, leading to better autonomous trading
performance.

5.1.3 Practical Implications
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In practical deployment scenarios, such an agent could offer:
o Reduced reliance on manual rule design.
o Greater adaptability to live market data.
o Real-time autonomous trading decisions for equity markets like NIFTY 50.
Thus, this study validates the DDQN framework’s capability to replace or
augment traditional intraday trading strategies with Al-driven, self-improving systems.
5.2 Research Question Two
How can the DDQN-based RL agent be optimized to balance maximizing
profitability with minimizing market risk, particularly during volatile periods?
5.2.1 Interpretation of Results
The DDQN agent successfully balanced profitability and risk:
« It achieved the highest profit factor (2.60), suggesting highly favorable
profit-to-loss ratios.
e The lowest maximum drawdown (-1.12%) among all models indicated
superior risk containment.
e Its Sharpe ratio (0.3450) confirmed consistently strong risk-adjusted returns
even during volatile trading sessions.
The agent’s training with experience replay and the use of a target network helped
stabilize learning, thereby reducing erratic or overly risky trading behaviors.
5.2.2 Relation to Literature
This outcome is consistent with prior reinforcement learning research in financial
domains (Feizi-Derakhshi et al., 2024), where models incorporating techniques to
stabilize learning (such as target networks) demonstrated better risk control in
unpredictable markets. The ability of DDQN to continuously update its policy while

limiting large adverse movements in profits is critical in real-world trading applications.

121



5.2.3 Practical Implications

In practical trading environments:

o DDQN agents could sustain profitability even during high-volatility periods
(e.g., market openings, news events).

o Risk minimization strategies, built into the learning framework (such as
conservative updates using target networks), are crucial for capital
preservation.

« Adaptive control of risk vs reward in live markets could enable better
portfolio management for institutional traders and retail investors alike.

Thus, the study shows that DDQN can be optimized not just for maximizing

returns but also for protecting capital during adverse market movements — a critical
requirement for sustainable trading success.

5.3 Research Question Three

How well does the DDQN model generalize across different market conditions

(e.g., bull markets, bear markets, and periods of high volatility) in the NIFTY50 index?

5.3.1 Interpretation of Results

The DDQN agent demonstrated strong generalization across diverse market

conditions:

« It performed consistently well during bullish trends, achieving high
cumulative profits for top-performing stocks like INDUSINDBK and
ADANIENT.

« It maintained positive profitability and acceptable Sharpe ratios even during
bearish phases and periods of high volatility, handling difficult stocks like
BPCL and SUNPHARMA better than baseline models.
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Maximum drawdowns remained controlled across stocks, suggesting the agent did
not overfit to specific market trends but learned more generalized trading behaviors. This
indicates that the DDQN model did not specialize only for ideal conditions but remained
adaptive and resilient across varying market regimes.

5.3.2 Relation to Literature

These findings are aligned with previous reinforcement learning studies (Guarino
et al., 2024; Byun et al., 2023) that demonstrated the capability of advanced RL agents
like DDQN to generalize better than supervised models or simple Q-learning
frameworks. Earlier literature highlighted that deep reinforcement learning models can
adjust dynamically without requiring explicit retraining for different market phases — a
behavior observed strongly in this study.

5.3.3 Practical Implications

In practical financial deployment:

o DDQN agents can survive and adapt through different economic cycles —

bullish rallies, recessions, and volatile geopolitical events.

e They reduce retraining costs by maintaining stable performance across

shifting environments.

« Such agents can potentially be used for long-term autonomous trading without

requiring constant model interventions or manual strategy reprogramming.

Thus, DDQN's ability to generalize enhances its practicality for real-world
intraday and portfolio management tasks where market behavior is unpredictable.

5.4 Research Question Four

Can reinforcement learning models like DDQN handle market anomalies —

events that deviate significantly from normal market behavior?
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5.4.1 Interpretation of Results

The DDQN model exhibited strong resilience when exposed to market anomalies:

For stocks exhibiting abnormal behaviors or sharp volatility (such as BPCL,
SUNPHARMA, and EICHERMOQOT), the DDQN model was able to limit
drawdowns and preserve positive returns better than the baseline QN model.
Although profitability declined during highly erratic periods (as expected), the
DDQN agent reduced extreme losses compared to simpler models.
Risk-adjusted metrics such as Sharpe ratio and maximum drawdown remained
better for DDQN across anomaly-prone stocks, reflecting more disciplined

trading even during unexpected market shocks.

Thus, DDQN not only performed under normal conditions but maintained

reasonable performance under stressed market situations.

5.4.2 Relation to Literature

Past research (Cui et al., 2023; Feizi-Derakhshi et al., 2024) emphasized that RL

agents with mechanisms like experience replay and target networks are better equipped to

face rare or volatile events. This study reinforces that notion — showing how DDQN can

adapt its policy even when confronted with scenarios that deviate significantly from

historical patterns used during training.

5.4.3 Practical Implications

In real-world trading:

Traders face unexpected black swan events such as flash crashes, sudden
sell-offs, or news-driven volatility.

A DDQN agent, by demonstrating controlled behavior during anomalies,
offers a practical advantage — minimizing catastrophic losses and preserving

capital during crisis periods.
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o This robustness enhances the agent’s viability for real-money trading,
especially in emerging markets like India where volatility is more
pronounced.

Thus, this study provides strong evidence that DDQN models can serve not only
as profit-generating tools but also as risk management frameworks during extreme
market conditions.

5.5 Research Question Five

What is the impact of experience replay and target networks on improving the
stability and learning efficiency of the DDQN model in the context of intraday trading?

5.5.1 Interpretation of Results

The integration of experience replay and target networks played a critical role in
improving the DDQN model’s training stability:

o The experience replay mechanism broke the sequential correlation of stock
data, providing more diverse and independent samples during training, which
helped in more generalized learning.

e The target network stabilized the Q-value updates by providing fixed targets
for certain intervals, preventing drastic oscillations in learning.

« This led to smoother training curves, higher convergence speed, and less
overfitting compared to DQN and QN models.

Empirical results showed that DDQN, with these mechanisms, achieved higher
profit factor, lower maximum drawdowns, and higher Sharpe ratios, reflecting improved
learning efficiency and outcome stability.

5.5.2 Relation to Literature

Previous studies (Ansari et al., 2024; Mnih et al., 2015) emphasized that

reinforcement learning models in financial domains require stabilization techniques to
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avoid divergence due to noisy and sequential data structures. The positive impact
observed in this study validates those findings — confirming that experience replay and
target networks are essential to achieving practical, stable RL-based trading agents.

5.5.3 Practical Implications

In practical deployment:

« Models without stabilization often fail under live market conditions due to
sudden environment shifts.

« DDQN, with proper stabilization, can learn efficiently from past mistakes
without immediate catastrophic feedback, thus ensuring longer-term
viability.

« Trading systems that incorporate experience replay and target networks can
reliably update policies without frequent retraining, reducing operational
costs and increasing reliability for intraday trading.

Therefore, the design choice of using experience replay and target networks
makes DDQN particularly suited for dynamic financial environments, significantly
improving its applicability beyond academic setups into real-world stock trading.

5.6 Research Question Six

How does the exploration-exploitation tradeoff affect the performance of the
DDOQN agent in intraday trading, and how can it be managed for optimal decision-
making?

5.6.1 Interpretation of Results

The performance of the DDQN agent was strongly influenced by how the
exploration-exploitation tradeoff was managed during training.

At the start of the training phase, a high exploration rate enabled the agent to try diverse

actions (buy, hold, sell) and learn the underlying market dynamics without bias toward
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any specific strategy. As the training progressed, a carefully decayed exploration rate
(epsilon) allowed the agent to increasingly favor the best actions based on accumulated
experience, shifting toward exploitation.

This gradual shift led to better decision-making stability, reflected in:

Higher cumulative profits,

Increased win rates,

Improved Sharpe ratios,

And reduced maximum drawdowns.

The results confirmed that without sufficient exploration, the agent could have
converged prematurely to suboptimal strategies, whereas a prolonged exploration phase
could have resulted in unnecessary trading losses. Therefore, finding the right balance
was critical for building a profitable and stable trading agent.

5.6.2 Relation to Literature

The findings are consistent with standard reinforcement learning theory (Sutton &
Barto, 2018), which emphasizes the need for exploration to discover optimal policies in
complex environments. In financial markets, which are highly dynamic and
unpredictable, proper exploration is even more critical to avoid overfitting to transient
patterns. Earlier studies (Feizi-Derakhshi et al., 2024) have shown that reinforcement
learning models without managed exploration strategies tend to perform poorly during
regime changes, a risk that was successfully mitigated in this work.

5.6.3 Practical Implications

In real-world trading environments, exploration-exploitation management can
directly impact:

e Trading frequency,

o Adaptability to sudden market changes,
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o Overall profitability and risk exposure.

By applying a gradual exploration decay, the DDQN agent was able to balance
adaptability with consistent profit generation. This suggests that careful design of
exploration strategies is essential not only for model development but also for live
deployment in trading systems where market conditions can change rapidly. Thus, this
study highlights that exploration-exploitation tradeoff is not merely a training parameter,
but a key component that determines the long-term success and robustness of Al-driven
trading agents in practice.

5.7 Summary of Discussion

This chapter analyzed and interpreted the findings obtained from the training and
evaluation of reinforcement learning models on NIFTY 50 intraday trading data. Each
research question was revisited to assess how the outcomes aligned with the study’s
objectives. The DDQN-based agent demonstrated superior autonomous decision-making
capabilities compared to QN and DQN maodels, effectively executing buy, hold, and sell
trades with higher profitability and risk control. Through the integration of experience
replay and target networks, the DDQN model achieved greater stability during learning,
resulting in consistent performance across both normal and volatile market conditions.
The agent generalized well across different market phases and handled market anomalies
more effectively than baseline models.

Moreover, the careful management of the exploration-exploitation tradeoff
allowed the agent to balance the discovery of new strategies with the exploitation of
learned profitable behaviors, enhancing trading performance in a dynamic market
environment. Overall, the discussions confirmed that reinforcement learning, particularly
the DDQN framework, offers a robust and adaptable approach for building Al-driven

intraday trading systems capable of operating in complex, uncertain financial markets.
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5.8 Governance, Model-Risk, and Auditability with Q-Written Labels

This section describes how the thesis’ central design choice—Q-written
(simulation-supervised) labels—naturally supports governance, model-risk management,
and auditability. The intent is practical: to show that the same mechanism used to create
reward-consistent supervision also creates transparent decision trails, human-interpretable
checkpoints, and principled stop/go rules suitable for production contexts. No
experiments are altered, and no new metrics are introduced; rather, we explain and
structure the safeguards that are already implicit in the system.

5.8.1 Model-Risk Taxonomy for a Trading System
Model risk in algorithmic trading has four interlocking facets:
e Data risk. Timestamp alignment, survivorship effects, and leakage. Even

small misalignments between features and tradeable quotes can distort labels
and, downstream, policy behavior.

e Specification risk. The simulator’s reward/friction assumptions (fees, spread,
latency) and the state representation. Labels are reward-truth, not oracle truth;
when reward specification drifts, labels drift with it.

e Implementation risk. Software errors, configuration mis-specifications, and
non-determinism in deployment.

e Operational risk. Capacity, market impact, unexpected downtime, and human
process failures.

This section situates each risk next to explicit controls that leverage Q-written labels for
monitoring and audit.

5.8.2 Decision Logging and Audit Trail

Q-written labels enable a compact, durable audit trail. Each labeled timestep can
be recorded as a decision tuple containing the state ID, the winning action, and the Q-
margins by which it won. During later reviews, we can reconstruct exactly what the
objective preferred at that moment.

e Retention. Store decision logs, configuration manifests, and hashes of input

features for the full research window and any live evaluation.
e Immutability. Append-only storage with cryptographic hashes lets reviewers
verify that the labels and assumptions used to train are exactly those later re-

examined.

5.8.3 Controls Aligned with Q-Written Labels
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Because labels are accompanied by margins (the gap between the best and
second-best Q), controls can be tied to the system’s own confidence.
e Pre-trade guardrails.
o Margin thresholding. Do not act when delta is below a configured quantile
of the historical margin distribution (e.g., bottom 15%). Ambivalence is a
valid reason to be flat.
o Exposure caps. Per-symbol and portfolio caps proportional to ADV
(average daily volume) to limit impact.
o Implementation shortfall budget. Bound the acceptable deviation between
decision price and expected fill.
e In-trade controls.
o Kill-switches. Immediate halt if realized costs or slippage exceed
historical bands for N consecutive trades.
o De-risk on ambiguity. If a live sequence enters a regime where label
margins compress broadly, scale down exposure until margins normalize.
e Post-trade controls.
o Attribution by margin. Losses with large historical margins are more
concerning than losses with near-ties. The former suggests a model/state

misspecification; the latter may be expected variance.

5.8.4 Human-in-the-Loop Review
The system invites human judgment where it matters—in edge cases—without
requiring manual tagging.

e Near-tie workflow. When Delta is below a threshold, flag the decision for
asynchronous review. The reviewer sees: features snapshot, Q-vector, recent
microstructure context (spread/volume), and the eventual realized P&L.

e Override protocol. Overrides are allowed only in near-ties and must be logged
with a plain-language rationale (e.g., “macro announcement in 3 minutes,”

“sudden spread blowout”).
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e Two-key rule. Production overrides require a second reviewer’s sign-off. This

prevents folklore-driven adjustments while preserving safety.

5.8.5 Human-in-the-Loop Review
Monitoring focuses on distributions of what the system believes, not only
outcomes.

e Label-margin drift. Track the distribution of A(st)\Delta(s_t) over time.
Widespread compression in margins signals a shift in state meaning or reward-
spec relevance.

e Action-mix drift. Monitor Buy/Hold/Sell proportions by regime buckets
(volatility terciles, time-of-day). Abrupt shifts can precede performance
degradation.

e Feature stability. Use simple distributional checks (e.g., PSI/KS) on standardized
features; flag when inputs depart from the training manifold.

e Outcome alignment. Compare realized post-cost returns following high-margin
labels vs. near-ties. The gap should remain positive; if it collapses, revisit

simulator assumptions first, not the learning code.

5.8.5 Change Management: Versioning, Cutovers, Rollbacks
Governance lives and dies on traceability. Every artifact—data, labels, configs,
and policy parameters—must be versioned.

e Immutable versions. Tag reward spec (fees/spread/latency), simulator version,
feature map, and policy version in every run.

e Shadow & canary. Before any cutover, run the candidate policy in shadow (no
capital) and then canary (small capital) while logging the same decision tuples for
side-by-side comparison.

¢ Rollback. Rollback is a configuration switch, not a rebuild. Because labels and

configs are versioned, reverting is instantaneous and auditable.

5.8.6 Compliance, Ethics, and Fair-Use of Data
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Simulation-supervised labels improve explainability and traceability, both central

to responsible use.

Traceable decisions. Every action ties to a recorded Q-vector and margin;
reviewers can justify trades ex-ante, not just ex-post.
Fair access & market integrity. Capacity caps and shortfall budgets reduce the
risk of undue market impact.
Data governance. Document provenance, licensing, and any transformations.
Store hashes of source files and post-ETL features to ensure reproducibility.
Privacy and PII. Not applicable for market data, but document that no PII enters
the pipeline.
5.8.7 Incident Response Playbook
When systems fail, speed and clarity matter more than cleverness.
e Trigger conditions.
o Realized implementation shortfall > 4x rolling median over 5
consecutive trades.
o Cross-sectional margin compression to the bottom 5th percentile.
o Data feed integrity alerts (timestamp gaps, out-of-order events).
e Immediate actions.
o Engage kill-switch; flatten risk if live.
o Triage: Data integrity — Reward spec drift — Policy anomaly (in that
order).
o Record incident with timestamps, affected symbols, and config hashes.
e Post-incident.
o 24-hour review with action items; if reward spec was the root cause,
update spec/version and re-stamp runs; if data was at fault, document

fixes and re-compute affected labels.

5.8.8 Governance Artifacts (Templates)
This section enumerates artifacts that make audits efficient and replicable.
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e Model Card (Trading). Objective, reward spec, simulator version, state
features, training window, embargo policy, capacity assumptions, and known
limits.

e Data Sheet. Source vendors, license, cleaning steps, splits, and hashes.

e Release Checklist. Shadow/canary gates, pass/fail criteria, and rollback switch

location.

5.8.9 Limitations of This Governance Approach

Two honest boundaries remain. First, the reward specification anchors everything;
if fees, spread, or latency deviate materially from assumptions, labels and policies inherit
that error. Second, state representation bounds what can be learned and audited; if
essential microstructure cues are absent, even perfect governance will not rescue
performance. Governance cannot eliminate risk; it surfaces it promptly and makes
decisions defensible.

5.8.10 Summary

Q-written labels are not merely a data convenience; they are a governance
advantage. The same Q-values that write labels also explain decisions, supply confidence
margins for risk controls, and create immutable audit trails linking states, actions, and
assumptions. By designing monitoring, change management, and human-in-the-loop
review around those margins, the thesis offers a system that is not only effective in back
tests but also operable, reviewable, and accountable—qualities that matter as much as
raw returns in real trading.
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CHAPTER VI:
SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS

6.1 Summary

This study focused on the design, training, and evaluation of reinforcement
learning-based agents for intraday trading in the Indian stock market, specifically
targeting the NIFTY 50 index. The research implemented three key models — Q-
Learning (QN), Deep Q-Network (DQN), and Double Deep Q-Network (DDQN) — and
compared their performance across multiple metrics, including cumulative profit, Sharpe
ratio, win rate, and maximum drawdown. The trading environment was constructed using
four years of historical intraday OHLCV data sourced through Zerodha API, with an
additional year reserved for testing and validation. Technical indicators were generated to
enhance feature representation, and a simulated Q-value data generation approach was
used to create supervised labels for initial model training.

The DDQN model emerged as the most effective, outperforming both QN and
DQON in terms of profitability and risk-adjusted returns. Stabilization techniques such as
experience replay and target networks played a vital role in achieving robust and
consistent learning outcomes. The results validate that reinforcement learning agents,
particularly DDQN-based models, can effectively adapt to volatile market conditions,
learn optimal trading strategies over time, and provide a viable alternative to traditional
rule-based or supervised learning trading strategies.

6.2 Implications

The findings of this study carry important implications for both academic research
and practical financial trading applications:

e Practical Trading Systems:

Reinforcement learning agents like DDQN provide a promising foundation for
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real-world algorithmic trading systems. Their ability to adapt to dynamic
market environments without human intervention positions them as powerful
tools for intraday trading strategies.

Risk Management:

The superior performance of DDQN in managing drawdowns and achieving
higher Sharpe ratios suggests that reinforcement learning agents can serve not
only as profit maximizers but also as effective risk managers, offering
balanced returns in volatile markets.

Model Stabilization Techniques:

The success of experience replay and target network mechanisms highlights
the importance of stabilization strategies in financial reinforcement learning
applications. Without such mechanisms, training could become unstable, and
models could underperform in live environments.

Adaptability Across Market Conditions:

The DDQN agent’s ability to generalize across bull, bear, and highly volatile
market phases demonstrates the potential for reinforcement learning models to
reduce dependency on constant retraining and optimization, improving
operational efficiency in trading systems.

Advancement of Reinforcement Learning in Finance:

This research contributes to the growing body of knowledge that showcases
reinforcement learning as a competitive approach for financial decision-
making, outperforming traditional rule-based and supervised learning methods

when properly implemented.
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6.3 Recommendations for Future Research

While this study demonstrated the strong potential of DDQN-based reinforcement

learning agents for intraday trading, several areas remain open for further investigation

and improvement:

Incorporating Online Learning:

Future models could adopt online reinforcement learning frameworks where
agents continuously update their policies based on live market data, enhancing
adaptability in real-time trading environments.

Hybrid Model Development:

Combining reinforcement learning with supervised learning models or
ensemble strategies could help create hybrid agents that leverage the strengths
of multiple approaches, improving both profitability and stability.

Broader Asset Class Testing:

Extending the application of DDQN models to other financial instruments,
such as commodities, foreign exchange (forex), or cryptocurrencies, would
provide insights into the model’s robustness across different market structures.
Enhanced Reward Structures:

Exploring more complex reward functions that integrate profitability,
drawdowns, volatility control, and transaction costs can lead to the
development of even more risk-aware and efficient trading agents.
Multi-Agent Reinforcement Learning:

Future research could involve training multiple specialized agents for different
market conditions (e.g., bull, bear, sideways), combining their outputs

dynamically to improve decision-making under varying scenarios.
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e Live Deployment and Real-World Validation:
Moving beyond simulated environments, live deployment with appropriate
safeguards (such as capital constraints and stop-loss systems) would validate
the true operational readiness of reinforcement learning agents in financial

markets.

6.4 Limitations and Threats to Validity

This work is explicit about the kind of truth it pursues. Labels are reward-truth:
they represent what the objective prefers after frictions, not what an omniscient annotator
might decree. That choice grants coherence between training and evaluation, but it binds
us to the reward specification. If fees rise, spreads widen, or latency drifts, the same
states may deserve different labels. Readers should weigh results with that dependence in
mind. Where performance turns while costs demonstrably change, the first remedy is to
re-stamp assumptions and regenerate labels—not to fault the learner.

A second boundary is state expressiveness. The simulator and policy can only
reason with what the state vector shows them. If microstructure cues essential to a sudden
regime switch are absent—queue dynamics around the inside market, news-sensitive
time-of-day structure—then even a perfect alignment of label and policy will feel
surprised. The thesis mitigates this by favoring compact, stable features over ornate ones,
but it does not eliminate the risk that reality speaks a dialect the model does not hear.

There is also the risk of over-reading back tests. Episodes are replayed to learn
from many plausible paths, but history itself happens once. We manage this tension with
embargoes and with a narrative attitude toward wins and losses: decisive labels that lose

tell us about misspecification; near-ties that scatter tell us about variance. Still, the
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strongest evidence of durability remains time. The thesis stops short of live deployment;
its claims should be read as carefully grounded, not as guarantees.

Finally, operator dependence is both a strength and a liability. The system makes
edge cases legible—near-ties are flagged, margins are visible—and invites human review
when prudence demands it. That invitation must not become a loophole. Overrides are
limited to ambiguous moments and are always logged with reasons; the point is to
maintain accountability, not to restore folklore. Governance chapter 5A explains the
controls; this section acknowledges that controls are only as good as the discipline with
which they are followed.

Taken together, these limitations do not weaken the contribution; they bound it.
The thesis argues that simulation-supervised labels produce a coherent, auditable learning
target for intraday trading under realistic frictions. Within that frame, the results are
persuasive. Outside it, the right response is not to stretch the claim, but to restate the

assumptions and start the conversation again.

6.5 Conclusion

This research successfully demonstrated the effectiveness of reinforcement
learning, particularly the Double Deep Q-Network (DDQN) framework, in building
adaptive and profitable intraday trading agents for the NIFTY 50 stock market. Through
systematic model design, simulation-driven data generation, and rigorous evaluation, the
DDQN agent consistently outperformed traditional Q-Learning and Deep Q-Network
models across key metrics such as cumulative profit, Sharpe ratio, and risk management.

The study reinforced the importance of stability techniques, such as experience
replay and target networks, and highlighted how exploration-exploitation dynamics

significantly influence learning quality and trading success. The agent's ability to
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generalize across different market phases and handle market anomalies underscores the
potential of reinforcement learning for real-world financial applications. While this work
lays a strong foundation, it also opens pathways for future enhancements such as online
learning, hybrid models, and live trading validations. Overall, reinforcement learning
holds significant promise for the evolution of intelligent, self-adapting financial trading

systems capable of thriving in increasingly complex and volatile markets.
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APPENDIX A:
LIST OF TECHNICAL INDICATORS USED

The following technical indicators were generated using Python's ta (technical

analysis) library to enrich the stock price data

Type Indicators
Volume-
Based ADI, OBV, CMF, FI, EM, SMA_EM, VPT, VWAP, MFI, NVI
Indicators
Volatilit Bollinger Bands (BBM, BBH, BBL, BBW, BBP, BBHI, BBLI), Keltner
Indicato);s Channel (KCC, KCH, KCL, KCW, KCP, KCHI, KCLI), Donchian Channel
(DCL, DCH, DCM, DCW, DCP), ATR, Ul
MACD (MACD, MACD Signal, MACD Diff), SMA (Fast, Slow), EMA (Fast,
Trend Slow), Vortex Indicator (Positive, Negative, Difference), TRIX, Mass Index,
Indicators DPO, KST (KST, KST Signal, KST Diff), Ichimoku (Conversion, Base, A, B),
STC, ADX (ADX, ADX Positive, ADX Negative), CClI, Visual Ichimoku (A,
B), Aroon (Up, Down, Indicator), PSAR (Up Indicator, Down Indicator)
RSI, Stochastic RSI (Stoch RSI, Stoch RSI K, Stoch RSI D), TSI, UO,
Momentum Stochastic Oscillator (Stoch, Stoch Signal), Williams %R (WR), Awesome
Indicators Oscillator (AO), ROC, PPO (PPO, PPO Signal, PPO Hist), PVO (PVO, PVO

Signal, PVO Hist)
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